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Abstract. Our methodology is to use evolutionary algorithms (EAs) as a simulation and 
meshless method, because of the equivalence between verifying a numerical scheme for a 
nodal point and minimizing a corresponding objective function at this point. One advantage 
and powerful characteristic of our methodology is that mathematical knowledge and theories 
related to the problem can be efficiently and easily incorporated. The methodology proposed 
opens the possibility of solving the problem from a more local point of view as a domain 
decomposition problem. In its practical application, our aim is to obtain a good approximate 
solution of the exact solution, and from the good and useful information thereby made 
available, we can use a traditional simulation method to refine results, but starting the 
application of the method in a more appropriated way, for example, starting with an 
appropriate mesh. In this paper we continue our open research line. Here we get numerical 
results when a divergent nozzle has supersonic upstream flow at the entrance and subsonic 
flow at the exit. The steady state solution contains a transonic shock. The results agree with 
the exact position and conditions of the shock line. 

 
 

 
1 INTRODUCTION AND BACKGROUND 

We highlighted in previous works1,2 the capability and applicability of the Evolutionary 
Computation in solving an EDP non-linear boundary problem, as was the case when obtaining 
a solution for the stationary full potential flow problem. This involved the calculation of the 
speeds for transonic flow regime in the compressible and isentropic flow within a Laval 
nozzle, with maximum Mach number inside the nozzle approaching Mach 1 (and thus without 
the presence of a shock line). The problem was solved in 2D, and because the large search 
space required to find the optimal solution that minimized the objective function, we proposed 
consideration of our efficient optimiser as being appropriate for this case of large search 
space: namely, an Evolutionary Intelligent Agent-based software named Flexible Evolution 
Agent (FEA)3,4,5. A procedure associated with parallelization6 was made too. In all these 
previous works, the numerical scheme was a simple central difference approximation of first-
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order derivatives of the following non-linear differential equation for the velocity components 
without dimensions (u’ , v’) = ( u/c0 , v/c0 ): 
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Our procedure was to generate candidate solutions for the velocity field and getting in 
many points to find the numerical values of the velocities that correspond to the global 
minimum of the fitness function (sum of all square numerical schemes associated with the 
points) for the whole domain. 

2 FINDING THE POSITION OF THE SHOCK LINE AND THE VELOCITY AND 
DENSITY FIELDS 

We point out in passing an important technical difference between the situation considered 
in this paper and the one in our previous work. Now we seek the capacity of our methodology 
to localize the position of the shock line – transonic shock and steady flow – when the nozzle 
has supersonic upstream flow at the entrance.  
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Figure 1: Geometry of the nozzle. 

In the applications shown in this paper, the geometry of the nozzle is the same provided 
from H.M. Glaz and T.P. Liu7 (Fig. 1), which is given by: 

( ) ( ) 100,48.0tanh347.0398.1 ≤≤−+= xxxA  (2) 

We consider in the computational implementation two subdomains:  
• The left subdomain ( −Ω ) has supersonic flow at the entrance and 

*cuu entrance >≥  on −Ω , where *c  is the critical velocity.  

• The right subdomain ( +Ω ) has subsonic flow at the exit with *cuuexit <≤  on 
+Ω , where *c  is the critical velocity. 
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The size of both subdomains was chosen so as to be large enough for both to include the 

shock zone. For each subdomain, we solve the transonic flow with consideration of isentropic 
flow and using Evolutionary Computation. The target is to obtain the velocity and density 
fields on the whole nozzle and to determinate the localization of the shock line. 

On the position of the shock line, it is well known that if u has one discontinuity on the 
shock point (xs) then: 

( ) ( ) 2
*cxuxu ss =+−  

(3) 

( )( ) ( ) ( )( ) ( )ssss xuxuxuxu ++−− = ρρ  (4) 

Eq. (3) is the Prandtl-Meyer relation.  
Physical entropy condition8: The density increases across the shock in the flow direction: 

( )( ) ( )( )ss xuxu +− < ρρ . 
The flow cases considered in this paper are close to being quasi-one-dimensional. Thus for 

the divergent nozzle with supersonic entrance considered, we can ensure that the mass flow: 
ρ(u(x))u(x)A(x), is conserved at each point x. 

3 NUMERICAL IMPLEMENTATION AND APPLICATIONS 
First we consider the formulation given by the equations: 

( ) 0=uAdiv ρ  (5) 
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where c0 is the speed of sound in normal conditions and γ = 1.4 for the air.  

3.1 Evolutionary computation and a first implementation  
To solve this problem with evolutionary algorithms we have designed the following 

algorithm: 
Step 1:  Read the input data (boundary conditions and GA parameters). 
Step 2:  Set cont = 0; 
Step 3:  Set cont = cont + 1; 
Step 4:  Run the GA on −Ω  
Step 5:  Run the GA on +Ω  
Step 6:  Find the shock point xs ∈ −Ω ∩ +Ω  as the point where the following conditions 

are minima: 

( ) ( ) 2
*cxuxu ss −+−  (7) 

( )( ) ( ) ( )( ) ( )ssss xuxuxuxu ++−− − ρρ  (8) 
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Step 7: Set [ ) −− Ω⊂=Ω ss x,0  and ( ] ++ Ω⊂=Ω 10,ss x . 
Step 8:  Evaluate the fitness function (ff) over all the points of the domain 

+− Ω∪Ω=Ω sss . 
Step 9: If cont < max_cont or ff  >= error  go to Step 3. Otherwise go to Step 10. 
Step 10: Run the FEA on the whole domain { }ss x∪Ω=Ω . 
Step 11: Save results and stop. 
 
The pseudocode of the GA is the following: 
Step 1GA: The limit values of the variables are established (they are different depending 

on whether we are at Step 4 or Step 5 of the preceding algorithm). 
Step 2GA: If cont = 1, the initial population is randomly generated. Otherwise, the initial 

population is generated from the best solution obtained at the corresponding 
Step 4 or Step 5 of the preceding algorithm when cont = cont − 1. 

Step 3GA: Set contGA = 0; 
Step 4GA: Set contGA = contGA + 1; 
Step 5GA: The individuals are repaired in such a way that they verify the hypotheses of 

the problem: 
• If the algorithm is at Step 4: the velocities are ordered from lowest to 

highest and the densities from highest to lowest. 
• If the algorithm is at Step 5: the velocities are ordered from highest to 

lowest and the densities from lowest to highest. 
Step 6GA: Evaluate the fitness function. 
Step 7GA: Order the population from lowest to highest value of the fitness function. 
Step 8GA: Selection: Tournament selection operator (2:1). 
Step 9GA: Crossover: Antithetic crossover operator. 
Step 10GA: Mutation: Smooth mutation over one variable randomly chosen. 
Step 11GA: If contGA < max_contGA go to Step 4GA. Otherwise leave. 
 
The chromosomes considered are:  
• ( )121121 ,,,,,,, −− nleftnleftuuu ρρρ KK  when −Ω  is split in nleft points xi with xi = ih, 0 ≤ i < 

nleft and ( )1−Ω= − nlefth . Here u(x0) = uentrance and ρ(u(x0)) = ρentrance. 

• ( )121121 ,,,,,,, −− rightrightuuu ρρρ KK  when +Ω  is split in nright points xi with xi = x - + ih, 

0 < i <= nright, x - = 10−| +Ω |−h and ( )1−Ω= + nrighth . Here u(xnright) = uexit and 
ρ(u(xnright)) = ρexit. 
 

The fitness function considered is the following one: 

( )∑
=

var
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When the FEA is run the shock point conditions (7) and (8) are added to the fitness 
function as follow: 

( ) ( ) ( )( ) ( )( ) ( ) ( )( ) ( )( )[ ]222
*
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var
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=
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3.2 Results 
In order to validate our methodology, we consider the same data at the entrance and the 

exit of the divergent nozzle given in one example from Keppens9. Thus we have: 
Boundary conditions at the entrance: Mentrance = 1.28 (Mach number); uentrance = 2 and  ρ0 = 

1.0156.  
Boundary conditions at the exit: ρexit = 0.8.  
From these boundary conditions, c0, c* and ρentrance are determined, and also the flow 

conditions at the exit of the nozzle under isentropic consideration.  
In this test case we defined: [ ]6,0=Ω−  and [ ]10,4=Ω+  and considered only 101 

equidistant points on the whole domain, nleft = nright = 61, max_contGA = 100, max_cont = 
100000 and error = 10-9. The fitness function was 7.874707 10-10 at cont = 24990 and the 
shock point error was 1.438531 10-1. Once obtained the shock point, FEA was run 100000 
generations on the whole domain. The fitness function and the shock point error decreased to 
5.531903 10-10 and 1.321814 10-5, respectively. Fig. 2 shows the solution obtained. The 
position of the shock point was well captured: xs = 5.1, close to the exact position, and the 
results agree with the Prandtl-Meyer relation. Moreover, the range of values of the Mach 
number is compatible with the isentropic flow consideration. We have a shock in the 
numerical applications that is not strong. 

3.3 A second implementation  

Chen and Feldman10,11 delighted that “the uniform velocity state at the exit of the an 
infinite nozzle in the downstream direction is uniquely determined by the supersonic upstream 
flow at the entrance, which being sufficiently close to be an uniform flow”. In this context but 
for a finite nozzle, now we consider the test case where the boundary conditions at the exit 
are: ∂xu = 0 and ∂xρ = 0. This is consistent according to the geometry of the nozzle that has a 
constant section at the exit (see Fig. 1). 
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Figure 2: Velocity, density and Mach number in the nozzle. 

Now the chromosomes considered are:  
• ( )121121 ˆ,,ˆ,ˆ,,,, −− nleftnleftuuu ρρρ KK  when −Ω  is split in nleft points xi with xi = ih, 0 ≤ i 

< nleft and ( )1−Ω= − nlefth . Here u(x0) = uentrance and ( ) 00ˆ ρρρ entrancex = . 

• ( )121121 ˆ,,ˆ,ˆ,,,, −− rightrightuuu ρρρ KK  when +Ω  is split in nright points xi with xi = x - + 

ih, 0 < i < nright, x - = 10−| +Ω |−h and ( )1−Ω= + nrighth . Here [∂xu]exit = 0 and 
[∂xρ]exit = 0. 

 
And the fitness function terms are: 

( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )( )[ ] 2
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where: 
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The first-order derivatives are approximated by:  
• A backward difference approximation on Ω-: 

( ) ( ) ( ) ( )
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• A forward difference approximation on Ω+: 

( ) ( ) ( ) ( )
ii

iii
ix xx

xgxgxg
xg

−
−+−

=∂
+

++

2

12 34
 (15) 

0 1 2 3 4 5 6 7 8 9 10
0.5

1

1.5

2

2.5

y

 
Figure 3: Velocity  in the nozzle. 

In this test case we defined: [ ]6,0=Ω−  and [ ]10,4=Ω+  and considered only 51 
equidistant points on the whole domain, nleft = nright = 31, max_contGA = 100, max_cont = 
20000. Fig. 3 shows the solution obtained. The position of the shock point was well captured: 
xs = 4.9, very near to the exact position, and the results agree with the Prandtl-Meyer relation.  

4 CONCLUSIONS 

We proposed a simple and efficient method for calculating transonic flows that captures the 
steady state solution and the position of the line shock with a good accuracy. The results of 
the numerical examples shown in this paper provide strong evidence on the effectiveness of 
this new methodology as an alternative to use a traditional method. In this paper a simple 
genetic algorithm is capable to find remarkable solutions but, as we have delighted, the use of 
our FEA provides more refined solutions. 
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