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Abstract: A 1.4-dB Noise Figure (NF) four-stage K-band Monolithic Microwave Integrated Circuit
(MMIC) Low-Noise Amplifier (LNA) in UMS 100 nm GaAs pHEMT technology is presented. The
proposed circuit is designed to cover the 5G New Release n258 frequency band (24.25–27.58 GHz).
Momentum EM post-layout simulations reveal the circuit achieves a minimum NF of 1.3 dB, a
maximum gain of 34 dB, |S11| better than –10 dB from 23 GHz to 29 GHz, a P1dB of –18 dBm
and an OIP3 of 24.5 dBm. The LNA draws a total current of 59.1 mA from a 2 V DC supply and
results in a chip size of 3300 × 1800 µm2 including pads. We present a design methodology focused
on the selection of the active device size and DC bias conditions to obtain the lowest NF when
source degeneration is applied. The design procedure ensures a minimum NF design by selecting a
device which facilitates a simple input matching network implementation and obtains a reasonable
input return loss thanks to the application of source degeneration. With this approach the input
matching network is implemented with a shunt stub and a transmission line, therefore minimizing
the contribution to the NF achieved by the first stage. Comparisons with similar works demonstrate
the developed circuit is very competitive with most of the state-of-the-art solutions.

Keywords: low noise amplifier; noise figure; monolithic microwave integrated circuit; gallium
arsenide; electromagnetic simulation; input return loss; K-band; 5G

1. Introduction

Although SOI technologies achieve remarkable results and are closing the gap with
existing III-V processes [1], the latter still show a superior performance and are attracting
the attention of many integrated circuit designers. Moreover, monolithic microwave
integrated circuit (MMIC) processes provide an efficient solution for implementing discrete
components and full radio interfaces in a single chip [2]. In this sense, gallium nitride
(GaN)-based circuits provide many advantages, mainly in terms of power management,
efficiency, and breakdown voltage [3]. In contrast, gallium arsenide (GaAs) technologies are
the preferred option when a lower noise figure (NF) is pursued at greater frequencies [4,5].
Therefore, GaAs technologies are most appropriate in high-frequency scenarios requiring a
very low NF, such as mmWave applications, SATCOMs or 5G networks. These technologies
are utilized in high-resolution radar, including short range military aircraft radios and
astronomical observations, all of them operating in the K-band. Particularly, the 26 GHz
frequency band is of great interest since it has been identified as a pioneer band for the
European Union’s 5G new radio (NR) networks [6]. There are two mm-Wave bands,
designated as n258 and n257 in 3GPP NR, ranging from 24.25 to 27.5 GHz and 27.5 to
29.5 GHz, respectively. They enable very high data rates and data capacity, making them
suitable for hotspot coverage. Similarly, the US identified the 27.5–28.35 GHz band for
the same purpose, whereas the 27.5–29.5 GHz and 26.5–29.5 GHz frequency bands are
considered for Japan and Korea, respectively [6].

To implement a very low noise receiver, special attention must be paid to the design of
the low-noise amplifier (LNA) since its noise contribution is critical to the NF of the system.

Sensors 2023, 23, 867. https://doi.org/10.3390/s23020867 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23020867
https://doi.org/10.3390/s23020867
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-0174-7408
https://orcid.org/0000-0003-0087-2370
https://orcid.org/0000-0003-2610-883X
https://doi.org/10.3390/s23020867
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23020867?type=check_update&version=1


Sensors 2023, 23, 867 2 of 11

Thus, the LNA performance affects the overall receiver sensitivity and linearity [2,7,8]. Not
many works are available in the literature that report LNA implementations achieving a NF
below 1.5 dB with a gain above 30 dB and low Input Return Loss (IRL or |S11|) [4,5,9–13].

In this article, a 2-V 1.4-dB NF four-stage GaAs MMIC LNA from 24.25 to 27.5 GHz is
presented. We introduce a design methodology focused on the selection of the active device
geometry and DC bias conditions to obtain the lowest NF possible in a common-source (CS)
amplifier with source degeneration. The LNA operates in the K-band (from 23 to 29 GHz),
achieving a maximum gain of 34 dB at 24.5 GHz, a minimum NF of 1.3 dB at 26.5 GHz,
an |S11| better than 10 dB, a P1dB of –18 dBm and an OIP3 of 24.5 dBm. In Section 2, a
detailed description of the proposed circuit is presented, and particular aspects regarding
the design implementation with the selected Process Design Kit (PDK) are provided in
Section 3. Electromagnetic (EM) post-layout simulation results of the four-stage GaAs
LNA are shown in Section 4, and a comparison is made with the most relevant proposals
available in the literature. Conclusions are drawn in Section 5.

2. Circuit Design

According to the Friis formula [2,7], the overall noise figure (NFtot) of a cascaded
system with n stages is given as (1), where NFn and Gn represent the NF and gain of the
n-th stage, respectively. As seen, the first element contributes the most to NFtot, and the NF
of the upcoming stages is attenuated by the gain of the first stage (G1) and all the preceding
stages. Hence, the implementation of the LNA must be thoroughly carried out since its
performance is critical for the receiver [2,7].

NFtot = 1 + (NF1 − 1) +
NF2 − 1

G1
+ . . . +

NFn − 1
G1···Gn−1

(1)

The LNA is composed of four cascaded CS stages with source degeneration to achieve
a minimum NF design. The Friis formula can be applied to the whole system but it can be
applied locally too, as shown in (2).

NFLNA = 1 + (NFs1 − 1) +
NFs2 − 1

Gs1
+

NFs3 − 1
Gs1·Gs2

+
NFs4 − 1

Gs1·Gs2·Gs3
(2)

If the LNA is divided into four CS amplifiers, the first stage (characterized by NFs1, Gs1) is
again the main contributor to the overall LNA NF (NFLNA). Applying (2), one can calculate
the requirements of each stage to achieve a certain value of NFLNA. We assume the designer
is interested in NFLNA = 1.4 dB and Gtot = 33 dB. If the first stage presents NFs1 = 1 dB and
Gs1 = 6.5 dB (which is constrained by the selected process and the active device selection),
assuming NFs2 = NFs3 = NFs4 = NFs234 and Gs2 = Gs3 = Gs4 = Gs234 for simplicity, then to
achieve the desired performance, the NFs234 and Gs234 should be:{

NFs234 < 1.7 (dB)
Gs234 ≥ 9 (dB)

, (3)

In this sense, the first stage should introduce the lowest NF possible and a high gain in
order to allow a more flexible design of the upcoming stages. Additionally, to achieve
NFs1 = 1 dB and Gs1 = 6.5 dB, the implementation of the input matching network with
a single inductor is desired to minimize the number of elements in the signal path and
to minimize the noise contribution of the input matching network. Otherwise, obtaining
an LNA with an NF under 1.4 dB is not possible without lowering the NF of stages 2, 3
and 4. However, as explained in the following section, lowering NFs234 is only possible at
the expense of a gain reduction, which means an additional stage may be needed to reach
Gtot = 33 dB.

The performance of the active device used in the CS amplifier is mainly defined
by three parameters: the minimum NF it provides (NFmin), the maximum stable gain
(Gmax) and Rollet’s stability factor (k). The value of these three parameters depends on
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several factors, namely, the device geometry, physical parameters of the selected process,
impedance matching or DC bias conditions, among others. The value of NFmin is given
as (4), where gm is the device transconductance (obtained from the device’s DC operating
point), RG and RS are the gate and source resistances, f is the frequency of operation and fT
is the transit frequency [1]. Similarly, Gmax is defined as (5), and Rollet’s stability factor k is
given by (6).

NFmin = 1 + K
√

gm·(RG + RS)·
f
ft

(4)

Gmax =

∣∣∣∣S21

S12

∣∣∣∣·(k−
√

k2 − 1
)

(5)

k =
1− |S11|2 − |S22|2 + |S11S22 − S12S21|2

2|S21S12|
> 1 (6)

Impedance matching selection plays a critical role in the design of each stage of the LNA. To
obtain an amplifier that yields the maximum gain, one must match the input of the LNA to
(S11)*, whereas to obtain a minimum NF design, one must match the input to the conjugate
of the optimum source impedance (Sopt)*. Nevertheless, these two values (S11 and Sopt) are
generally different, so that simultaneously matching the circuit for NFmin and Gmax is not
possible. Therefore, source degeneration is often applied to the CS amplifier to bring these
two impedances close together. To be able to use a single inductance to implement the
input matching network, the selected source impedance should present a real part close to
50 Ω so that a single gate inductor is enough to cancel the capacitive component [1]. The
main problem is that most designs use fixed transistor sizes, so their Sopt may not present
a real part close to 50 Ω, resulting in a non-minimum NF design. To address this issue,
multiple iterations of the design process are performed to find a combination of device size
and input matching network that meets the appropriate NF specifications.

Design Approach

In this paper, we present a design methodology focused on how to choose the active
device geometry and DC bias conditions to obtain the lowest NF possible when source
degeneration is applied. A simplified overview of the design procedure is given in Figure 1a.
First, to select the device size, the CS amplifier with the source degeneration depicted in
Figure 1b is employed. Note that all the ports are matched to 50 Ω and the DC biasing
circuitry is not shown for simplicity. The device geometry is defined by the total width (Wt),
which is the product of the unitary finger width (Wu) and the number of fingers (Nf). Zopt is
the impedance seen looking away from the gate and Zin is the impedance seen looking into
the gate of the active device. The effect of increasing Wt, the value of the source inductor
(Ls) and the gate inductor (Lg) are shown in Figure 1c.

In Figure 1b, the source degeneration inductance Ls is swept from 0 to 300 pH. Source
degeneration helps reduce the NF at the expense of a gain reduction, improving the
amplifier’s stability. A value of approximately 150 pH for Ls is enough to bring the S11 and
Sopt closer to the unity circle, i.e., to achieve a real part of about 50 Ω. A gate inductor is
then used to bring both S11 and Sopt to the center of the Smith chart, obtaining a maximum
gain and minimum NF amplifier. To select the size and biasing of the LNA first stage
device, its performance (NFmin and Gmax) against its current density (J) is studied, keeping
close attention to the S11 and Sopt, as shown in Figure 2, for different device sizes. In these
figures, only device geometries that provide S11 and Sopt close to 50 Ω are included.
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Figure 1. Simplified overview of the design procedure (a), schematic diagram used for device
selection (b) and Smith Chart representation of the influence of varying the transistor width (Wt), the
source inductor (Ls) and the gate inductor (Lg) on the input impedance (Zin) and the optimum source
impedance (Zopt) (c).
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A finger width of 20 µm is explored in Figure 2a,b. In Figure 2a, the NFmin and Gmax are
plotted as a function of the current density. As seen, a device of 4 fingers and 20 µm biased
with a current density of 0.12 mA/µm results in a Gmax of 12.7 dB and 0.79 dB of NFmin,
which is the lowest NFmin possible. As shown in Figure 2b, a device of 2 fingers × 20 µm
would require a very high value of Lg to be matched. It presents a real part higher than
50 Ω and would be increased further after applying source degeneration, so this choice is
discarded. However, 6 and 4 finger devices present a real part lower than 50 Ω and would
be suitable for the first stage design. In fact, both options could be matched to the input
with a single gate inductor with a very similar value. Nevertheless, since the 4 × 20 µm
transistor presents a Sopt closer to the unitary circle, a lower value of Ls can be employed.
This situation is highly desirable since a very high Ls decreases the NF, but it also decreases
the gain significantly. In Figure 2c,d, a finger width of 30 µm is explored. Note that a
2 × 30 µm transistor results in an even lower NFmin than the 4 × 20 µm device. Still, this
device presents a real part higher than 50 Ω, so it is discarded for the same reason as the
2 × 20 µm transistor. The 4 × 30 µm transistor would be a better option, but its NFmin is
higher than the 4 × 20 µm device. Finally, a 2 × 40 µm transistor is studied in Figure 2e,f.
Further geometries are discarded directly since their Re{Sopt} are significantly lower than
50 Ω, making them unsuitable for the design. In addition, a higher total width yields a
higher power consumption for the same current density.

From this analysis the designer can determine the optimal device and current den-
sity for minimum NF, maximum gain, or a reasonable trade-off between NF, gain and
power consumption. Note that, as previously discussed, a 4 × 20 µm transistor with
a current density of 0.12 mA/µm (120 A/m) is required for minimum NF, which re-
sults in a Gmax of about 12.8 dB and NFmin of ~0.8 dB. However, after applying source
degeneration, the value of Gmax is greatly reduced. A drain current (ID) of
4 (fingers) × 20 (µm) × 0.12 (mA/µm) = 9.6 (mA) is needed to bias the active device.
In this step, it is critical to fix a device size and current density which facilitate the input
matching considering the discussion of Figure 1b [1]. Once the components of the first
stage are selected, the same procedure is followed to determine the device size and biasing
of the upcoming stages to define their optimum source and load impedances to meet
(3). When they are known, the interstage matching network can be designed. The last
step is the design of the DC bias lines to feed the devices of each stage. In our circuit,
quarter-wavelength lines with bypass capacitors were used to bias the gate and drain of
each transistor. The transmission lines (TLs) used in the bias paths show high impedance
in the LNA’s operating frequency band, and therefore, they do not contribute to impedance
matching significantly.

3. Proposed Circuit

The amplifier is implemented using the models of the 100-nm UMS PH10 GaAs
pHEMT process, characterized by a 130-GHz transit frequency (fT) and 1-dB NF @ 30 GHz.
The schematic implementation of the proposed circuit is depicted in Figure 3, and the
corresponding layout is shown in Figure 4.
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Figure 4. Layout of the Low-Noise Amplifier. Pads 1, 2, 3 and 4 represent the terminals VG1, VG2,
VG3, and VG4, respectively. Also, pads 5, 6, 7 and 8 represent the terminals VD1, VD2, VD3, and
VD4, respectively.

Ground-signal-ground (GSG) pads with 150-µm pitch are used for the input and
output RF signals. The gate voltages of each stage are provided through DC pads VG1,
VG2, VG3, and VG4. Similarly, DC pads VD1, VD2, VD3 and VD4 are used to bias the
drain voltage of each stage with 2 V. Instead of relying on inductors to bias the active
devices as RF chokes, we use quarter-wavelength (λ/4) TLs with a length of 1 mm and a
shunt capacitor of 0.53 pF. These bias lines are oversized to comply with the maximum
ratings defined by the process design kit (PDK) to avoid electro-migration and aging issues.
The main advantage of using λ/4 TLs is that, if designed correctly, they barely affect the
matching networks and result in an almost negligible impact on the LNA’s overall NF and
gain. Additionally, in order to provide DC isolation, a 0.58-pF DC block capacitor (CB) is
used in the interstage matching networks as an additional component.

Since a very low NF is pursued, the designer must carefully choose the bias currents
and inductances for each stage. Therefore, the first stage employs a device of four fingers
with 5 µm each, resulting in a total width of 20 µm, and is biased with a current density of
0.47 mA/µm for minimum NF and low-power operation. Since the first stage achieves a
very low NF (about 1 dB @ 26 GHz) but a limited gain (about 6.5 dB for the same frequency),
the next stages are biased with a higher current density of 0.53 mA/µm to obtain a 9-dB
gain-per-stage at the expense of a slightly higher NF. The device geometry selected for
stages 2, 3 and 4 is 4 × 7.5 µm. Note that a VG and a VD of 0 V and 2 V are used to bias to
all the transistors, respectively. Source degeneration is applied to all the CS stages since it
prevents instability, reduces the NF, brings the S11 and Sopt closer together and increases
the circuit resilience to process, voltage, and temperature (PVT) variations. The source
transmission line (S1 in Figure 3) adds a small inductance which brings the S11 of the input
transistor closer to Sopt, as discussed in Figure 2b. The size of S1 is 420 × 10 µm2, which is
enough to ensure stability and a low NF for the first stage. The transmission lines S2, S3
and S4 are sized 200 × 10 µm2, providing a lower inductance for a higher gain than the first
stage. The selected source impedance for the first stage is equivalent to the device’s Sopt and
is given by (7). As seen, thanks to careful device sizing plus source degeneration, the real
part of Zs1 is very close to 50 Ω. From the selected source impedance, one can obtain the
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source reflection coefficient (ΓS) and then the corresponding load reflection coefficient (ΓL)
by applying expression (8). After translating ΓL into the load impedance ZL1, Equation (9)
is obtained. Following this methodology, the source and load impedances for stages 2, 3
and 4 are obtained as (10) and (11), respectively. Since the interstage matching does not
require any intermediate 50 Ω termination, the stages are directly matched to each other.

ZS1 = (Zin)
∗ = 50·(1.043 + j·1.399) (Ω) (7)

ΓL =

(
S22 +

S12S21ΓS
1− S11ΓS

)∗
(8)

ZL1 = (Zout)
∗ = 50·(1.366 + j·1.261) (Ω) (9)

ZS2,3,4 = 50·(0.329 + j·0.709) (Ω) (10)

ZL2,3,4 = 50·(0.537 + j·0.955) (Ω) (11)

The input matching network can be implemented by a very low-inductance, high-Q
inductor since it is critical that it presents a very high Q to avoid a significant degradation
of the NF [14,15]. However, in practice, the inductance required is so small that it can be
easily implemented with a series TL and a shunt stub. The same applies to the inductor
between stages 1 and 2, which has been replaced with a series TL and a shunt stub. The
matching networks between stages 2 and 3 and 3 and 4 were implemented using two
inductors (520 pH and 510 pH, Q≈ 15) and two open stubs (O1, O2) in series. The layout of
these inductors, the current density distribution and the inductance and Q values obtained
from the EM simulations are shown in Figure 5. The open stubs O1 and O2 are sized
80 × 280 µm2 and 80 × 270 µm2, respectively, and they provide an extra capacitance
required for proper matching. Finally, a series TL, a shunt stub, and a DC Block capacitor of
0.58 pF form the output matching network. The layout of the circuit is depicted in Figure 4,
with a total size of 3300 × 1800 µm2 including pads.
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Figure 5. Layout and current distribution (a), and inductance, and quality factor (b) for the inductors
employed in stages 3 and 4.

4. Simulation Results

Post-layout scattering (S-parameters) and noise parameters were simulated using
Keysight’s Advanced Design System software and the Momentum EM simulator at room
temperature. The resulting |S11| and |S22| as well as the gain and NF are depicted in
Figure 6a,b. The proposed LNA presents an IRL better than 10 dB from 23.5 to 28.5 GHz
and an output return loss better than 5 dB. A maximum gain of 34 dB is obtained at 24 GHz,
and an NF below 1.4 dB is obtained from 24 GHz to 28 GHz with a minimum value of
1.3 dB at 26.5 GHz.
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Figure 6. Input and output return loss (a), and gain and NF (b) of the proposed LNA from 20 to
30 GHz.

The value of the Rollet’s stability factor k is shown in Figure 7a. As seen, the k-factor is
above one from 0 to 30 GHz, with a minimum of 3.5 at a frequency of 24.3 GHz. Individual
stability was also checked for each stage and for the whole four-stage amplifier, concluding
that the LNA is unconditionally stable. The NF of the LNA was simulated for different
temperature values (–40 ◦C, 16.85 ◦C and 125 ◦C), as shown in Figure 7b. As expected, the
best results are observed at the lowest temperature, with a minimum NF as good as 1.2 dB
at 25.5 GHz. On the other hand, at 125 ◦C the LNA presents a minimum NF of 1.6 dB at
26 GHz.
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The results of the single- and two-tone non-linear simulations for the proposed 4-stage
GaAs LNA are shown in Figure 8. The gain compression of the LNA at 26 GHz is presented
in Figure 8a, and the input and output third order intercept points (IIP3 and OIP3) are
shown in Figure 8b, where two tones with 200 MHz spacing from a central frequency of
26 GHz were used. The GaAs LNA achieves an output power 1 dB-compression point
(P1dB) of −18 dBm, an IIP3 of −4.5 dBm and an OIP3 of 24.5 dBm.
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Figure 8. Output 1-dB compression point (P1dB) (a), and output third order intercept (OIP3) (b) of
the proposed GaAs LNA.

A Monte Carlo analysis with 250 samples was also carried out to verify the results
vary within an acceptable range. The histograms representing the input return loss, output
return loss, gain and NF of the circuit are shown in Figure 9. As seen, the input return loss
is better than 10 dB for all the samples, the output return loss is better than 5 dB for most of
the samples, the gain is between 32 and 33 dB, and the NF is better than 1.4 dB for most of
the samples.
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To better understand how the proposed circuit performs in contrast to other works
available in the literature, the small-signal figure of merit (FoMSS) defined in (12) is intro-
duced [5]. A concise comparison with similar works available in the literature along with
the main results of the proposed LNA are given in Table 1. The results of the proposed
circuit are superior to most of the GaAs LNAs reported in the literature and are superior to
the SOI LNA proposed in [16]. As seen in Table 1, although the 4-stage LNA presents a
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power consumption and area in line with most of the proposals available in the literature,
it achieves one of the highest gains and lowest NFs reported, this combination results in
the best FoMSS compared with the other proposals.

FoMSS =
G

NF− 1
(12)

Table 1. Comparison of similar works available in literature.

Parameter [17] [18] [16] [19] [4] This Work

Data Simulated Measured Measured Measured Measured Simulated

Freq. range (GHz) 26–36 15–25 23–30 17.5–22.5 24–30 23–29
Gain (dB) 33 30 12.8 23.9 25 33

Noise figure (dB) 1.8 1.5 1.5 1.3 1.5 1.4
|S11| (dB) 12 10 6 12 10 10
|S22| (dB) 12 10 6 5 10 5

Power consumption (mW) - 212 15 66 150 118.2
Publication year 2015 2017 2018 2020 2022 2023

FoMSS 41.25 60 25.6 79.67 50 82.5
Process GaAs 100 nm GaAs 150 nm SOI 45 nm GaAs 90 nm GaAs 70 nm GaAs 100 nm

Area (mm2) 3.64 1.87 0.3021 2.6 - 5.94

5. Conclusions

This paper presents a four-stage LNA using a 100 nm GaAs pHEMT process that covers
the 5G New Release n258 frequency band (24.25–27.58 GHz). The proposed LNA achieves
a maximum gain of 34 dB, a minimum NF as low as 1.3 dB, an input return loss better than
−10 dB from 23 to 29 GHz, a P1dB of −18 dBm, and an OIP3 of 24.5 dBm. The LNA draws
a total current od 59.1 mA from a 2V DC supply, resulting in a chip size of 3300 × 1800 µm2

including pads. Electromagnetic simulations as well as a Monte Carlo analysis results at
room temperature demonstrate a final gain of 33 dB, a 1.4 dB NF, an |S11| better than
10 dB, an |S22| better than 5 dB, a P1dB of −18 dBm and an OIP3 of 24.5 dBm in the band
of interest. The paper also presents a design methodology focused on the selection of the
active device size and DC bias conditions to obtain the lowest NF when source degeneration
is applied. The design procedure ensures a minimum NF design by selecting a device that
facilitates a simple input matching network implementation and obtains a reasonable input
return loss thanks to the application of source degeneration. This approach minimizes
the number of elements in the input matching network. Comparisons with similar works
demonstrate the developed circuit is competitive with state-of-the-art solutions.
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