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a b s t r a c t

Signature synthesis is a computation technique that generates artificial specimens which can support
decision making in automatic signature verification. A lot of work has been dedicated to this subject,
which centres on synthesizing dynamic and static two-dimensional handwriting on canvas. This paper
proposes a framework to generate synthetic 3D on-air signatures exploiting the lognormality principle,
which mimics the complex neuromotor control processes at play as the fingertip moves. Addressing the
usual cases involving the development of artificial individuals and duplicated samples, this paper con-
tributes to the synthesis of: (1) the trajectory and velocity of entirely 3D new signatures; (2) kinematic
information when only the 3D trajectory of the signature is known, and (3) duplicate samples of 3D
real signatures. Validation was conducted by generating synthetic 3D signature databases mimicking
real ones and showing that automatic signature verifications of genuine and skilled forgeries report
performances similar to those of real and synthetic databases. We also observed that training 3D
automatic signature verifiers with duplicates can reduce errors. We further demonstrated that our
proposal is also valid for synthesizing 3D air writing and gestures. Finally, a perception test confirmed
the human likeness of the generated specimens. The databases generated are publicly available, only
for research purposes, at https://gpds.ulpgc.es.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

This work was carried out in the context of active 3D signature
ynthesis research. A 3D signature can be defined as a rapid
nd overlearned complex movement of the fingertip in the air.
ecause this movement can be considered as the final response
f a set of complex neuromotor systems, computational models
nspired by biological principles can be used to synthesize 3D
ignatures.
Many human-related computer vision problems can be ap-

roached by analysing the kinematics of human movements [1].
inematics variables include linear and angular displacements,
elocities, and accelerations. These data typically register the
inematics of anatomical landmarks such as the centre of gravity
f body segments, the centres of joint rotations, the end effectors
f limb segments, key anatomical prominences, etc.
Exploring natural human kinematics provides fundamental

nsight allowing to understand the mechanisms that characterize
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nc-nd/4.0/).
natural human motion, the higher level strategies of realizing
complex tasks, and the interactions with the external environ-
ment. It might be useful to develop tools for characterizing hu-
man motion changes due to disease, aging, or injury. This can help
in understanding how fine motor control is learned by elemen-
tary school children, and can provide quantitative and objective
learning indexes. It can facilitate rehabilitation applications, in-
cluding the design of prostheses and exoskeletons, workplace
ergonomics, sports medicine, orthopedics, and physical therapy,
which are of paramount importance for human welfare.

Furthermore, the synthesis of such kinematics opens wide the
door to predicting movements and synthesizing human-like mo-
tions and developing strategies for human motion reconstruction
on engineered anthropomorphic systems, such as humanoids,
mobile manipulators and simulated systems.

Many theories have attempted to approach the kinematics of
human movement in general [2]. Among these, the Kinematic
Theory of Rapid Human Movements and its associated Delta-
Lognormal [3] and Sigma-Lognormal (ΣΛ) [4] models have been
extensively used to explain most of the fundamental phenomena
covered by classical studies on human motor control and to study
several factors involved in fine motricity.
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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.1. Related work

The synthesis of the human-like kinematics of 3D movements
as emerged as an alternative to the limitations imposed by using
eal data. Certainly, freely using, sharing, or processing sensitive
uman data advances technological development. However, this
s hindered by data regulations and laws, such as the European
eneral Data Protection Regulation. Moreover, acceptance of syn-
hetic data has increased with enhanced realism, as presented in
he literature. Indeed, it is often hard to differentiate such data
rom real data relating to humans and machines.

The synthesis of kinematics is especially suited to computer-
ased applications. For example, computer systems are starting to
eplace real data with synthetic specimens in a bid to reduce pri-
acy concerns. Also, this synthesis can balance data in training or
ugment it through duplication strategies. Synthesis can also be
pplied to computational classifiers to optimize initializing model
eights or fine-tuning features. Other areas focus on improving
he realism of synthetic samples. Furthermore, the generation
f large databases has allowed both industry and academia to
valuate algorithms under common benchmarks [5].
These domains of application also allow facing several human

nalyses assisted with synthetic data; for example, the estimation
f a 3D head pose [6], the recovery of a skeleton-based body
ose [7], improvements in smartphone user authentication [8] or
ction recognitions through the use of phones with the hands [9],
tc.
Over the last decade, comprehensive research on the ΣΛ

odel has been conducted to generate complete databases of
ynthetic signatures in 2D [10–12]. Initially, a master signature
ith its ΣΛ paremeters is designed. Then, repetitions of this
aster signature are generated by randomly modifying their
arameters. Similarly, skilled forgeries for synthetic genuine users
re also generated [13–15].
Furthermore, given a spatial trajectory of a signature, some

roposals have been oriented to add the signature’s kinematic
roperties with the ΣΛ model. This addition has led to inves-
igations of how to recover temporal data [16], make a signature
ore fluent [17], or render a fake specimen more skilfully [18].
One advantage of modelling a real dynamic signature with the

Λ is the possibility of generating duplicates by modifying the
ignature’s parameters [11]. Combining real enrolled signatures
ith such duplicates has improved the performance of Automatic
ignature Verifiers (ASVs) [19]. Such a combination is, however,
hallenging since the training includes real and synthetic sig-
atures. Similar strategies have also been applied to generate
andwriting [20], duplicate the generation of handwriting [21] or,
o synthesize gestures [22].

The above synthesis of 2D signatures has evolved to the devel-
pment of a new trend in which on-air signatures are synthesized
n 3D. The growth of motion sensors such as the Leap Motion,
he creative senz3D camera, inertial measurement units, etc., has
ed to the acquisition of new 3D on-air signature databases. The
atter include several users with genuine and skilled forgeries
epetition such as the DeepAirSig [23], 3DIIT Signatures [24], or
ther in-house datasets [25]. Experiments verifying 3D signatures
f these databases [25] suggest that the third dimension offers
n extra security layer. Based on the lesson learnt in synthe-
izing 2D signatures, synthetic signatures in 3D can impulse
he development of new automatic signature verifiers and im-
rove the performance of the systems. Some challenges resolved
hrough the synthesis include sharing 3D data without being
ubject to legal procedures and data protection law, conducting
calable data analysis, improving the robustness of biometric
ystems against attacks [26], and designing databases to avoid
ecruiting volunteers and eliminating human errors in labelling
pecimens, among others. In sum, all the advantages of synthesis
f signatures in 2D will be directly transferred to 3D.
 o

2

.2. Our contributions

In this paper, the main proposal is a procedure to gener-
te synthetic 3D signatures. The procedure is extended to cre-
te databases of such signatures. Specifically, we consider five
nnovations to the state of the art:

1. We synthesize entirely 3D on-air signatures belonging to
synthetic identities. This is done by reversing an imple-
mentation of the Sigma-Lognormal model in 3D called
iDeLog3D [27]. This method is known as a Full Synthesis
(FS).

2. Next, we provide a method to generate human-like ve-
locity profiles in 3D signatures when only the spatial 3D
trajectory is available without time information. In other
words, only the 3D trajectory position is used as input. This
method is known as Kinematic Synthesis (KS).

3. Duplicated on-air signatures of real specimens are also
generated. The same duplication procedure synthesizes 3D
genuine and skilled forgeries. This method is named Dupli-
cated Synthesis (DS).

4. To demonstrate the flexibility of our model, we generate
the synthetic counterparts of several publicly available 3D
signature databases.

5. We conduct extensive experiments demonstrating that real
and synthetic signature databases have similar quantitative
and subjective performances. A Turing test is
conducted to judge the human likeness of the synthetic
samples through videos of signatures. Furthermore, we
investigate the capacity of our synthesizer to generate air
writing and gestures in 3D, obtaining competitive results
as well.

To the best of our knowledge, this work is the first to pro-
ide open on-air synthetic signatures. A graphical diagram of the
ontributions of the present article and the evaluations of the
roposed methodologies are illustrated in Fig. 1. The generated
atabases are publicly available only for research at https://gpds.
lpgc.es.
The remainder of the paper is organized as follows: Section 2

resents our contribution to the synthesis of 3D on-air signatures
f synthetic identities (FS method), while the generation of the
inematics of a given 3D signature trajectory (KS method) is
xplained in Section 3. Section 4 provides our contribution to
uplicated genuine and skilled forgeries (DS method). An ex-
ensive experimental validation of the synthesis is reported in
ection 5. Finally, Section 6 concludes and discusses the article
y summarizing its key contributions.

. FS: Full-based synthesis of 3D signatures

The FS procedure proposes a method for synthesizing the tra-
ectory and kinematics of human-like 3D on-air signatures.1 This
procedure allows for data replacement experiments in signature
verification, avoiding data protection issues. The FS also helps in
setting up standard benchmarks and massive ASV evaluations.

First, we define a set of virtual target points for the trajectory
and the link between them. Then, for velocity, we assign a reach-
ing time to each virtual target point and a lognormal sampling of
each link between virtual target points. Finally, a summation of all
the time-overlapped links between virtual target points generates
the 3D signature. As a result, a master signature of the synthetic
identity is obtained.

1 Note that for kinematic synthetizes, this work refers to the speed profile
f the fingertip as the single end effector.

https://gpds.ulpgc.es
https://gpds.ulpgc.es
https://gpds.ulpgc.es
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Fig. 1. Graphical diagram of the contributions of this article: three methods for designing 3D signatures, their evaluation, and additional experiments.
2.1. Synthesis of virtual target points and links in 3D

According to kinematic theory, a signature trajectory can be
esigned through a set of virtual target points, tpj, connected
y circular arcs of circumference. These points represent the
ognitive action plan for a human movement [28]. In addition,
o synthesize credible signatures from scratch, a language model
ay be of help. Such a model would produce signatures with

semi-)legible names, flourishes, or a combination of name and
lourishes.

Similar to our previous works [10,14,29], we used the lexical
nd morphological characteristics of real signatures [30] in this
rticle. They provided the distribution of characters and flourishes
n terms of virtual target points in 2D. Then, we connected them
ith an arc of circumference.
The tpj and the midpoints of the circular arcs, denoted mpj,

re projected to 3D through the following sinusoidal 3D surface:
= Ax sin(ωxx + φx) + Ay sin(ωyy + φy), where (x, y) are the

oordinates of the defined 2D tpj and mpj. The surface parameters
Ax, Ay, ωx, ωy, φx, φy) were set up heuristically in a trial-and-
rror fashion to obtain a similar appearance between the real and
ynthetic specimens.
Finally, using the tuple (tpj, tpj+1,mpj) we defined a plane in

D. Next, a planar circumference, passing through these three
oints in 3D, was generated for each target point. This procedure
s visually exemplified in Fig. 2 with the letter ‘‘v’’. Firstly, the
irtual target points and circular arcs of the letter were generated
n 2D, and then later projected onto 3D.

.2. Synthesis of velocity

The timing of the virtual target points and the lognormal
elocity function parameters are required to generate the 3D
n-air signature.
3

2.2.1. Timing of virtual target points
The virtual target points are timed following a periodic pattern

based on the so-called Central Pattern Generators (CPG), which
produce rhythmic patterned outputs to activate different motor
pools [31]. This can be observed in the periodic pattern of human
kinematics. Thus, a timestamp is assigned to each virtual target
point as tsj = tsj−1 + r, ∀j = 1, . . . ,Ns, where ts0 is the beginning
of the movement, and r is a random value which follows a normal
distribution N (0.1; 0.005) [10].

2.2.2. Velocity parameters
The velocity profile, vj(t), of the links between the virtual

target points tpj−1 and tpj is defined with a family of lognormal
equations as follows:

vj(t) =
Dj

σj
√
2π (t − t0,j)

exp

{
−

[
ln(t − t0,j) − µj

]2
2σ 2

j

}
(1)

where t is the basis of time, t0 is the time of stroke occurrence,
Dj is the amplitude of the input commands, µj is the stroke time
delay on a logarithmic time scale and σj is the stroke response
time. The values of Dj, µj and σ 2

j are based on the experimental
observations showing that the velocity profile starts to increase
at tpj−1, reaches a maximum around the centre of the stroke,
and decreases up to tpj. Additionally, the adjacent strokes are
temporally overlapped.

There are many solutions to t0,j,Dj, µj and σ 2
j fits the bell-

shaped speed profile of a stroke [17]. The solution adopted heuris-
tically in this paper is to select t0,j = tsj−1 − 0.5 [32], giving
enough time to the lognormal function to increase at the begin-
ning of the stroke in tsj−1. The parameter Dj is computed as the
distance travelled from tpj−1 to tpj.

To calculate µj and σ 2
j , we build a system of two equations

with these two unknowns. The first equation is obtained, bear-
ing in mind that the distance D travelled from tp to tp is
j j−1 j
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Fig. 2. Generation of the action plan of letter ‘‘v’’ in 3D from the generated virtual target points and links in 2D through their projected points on a sinusoidal
surface. The following abbreviations are used in the figure: vpj (blue) — the generated virtual target point in 2D; mpj (blue) — the middle target point in 2D; the
lanar links (blue) connecting two consecutive virtual target points in 2D; vpj (black) — the projection of the 2D virtual target points onto a 3D sinusoidal surface;

mpj (black) — the 2D middle points projected onto the sinusoidal surface, and 3D planar links (magenta) between virtual target points.
equal to the integral of the stroke velocity profile of the 3D
Sigma-Lognormal model. Hence, it holds that:

Dj ≈

∫ tsj

t0,j

Djvj(t) dt =
Dj

2

{
1 + erf

[
ln(tsj − t0,j) − µj

√
2σj

]}
(2)

which calls the first equation of the system, given by:

ln(tsj − t0,j) − µj
√
2σj

= 3 → µj = ln(tsj − t0,j) − 3
√
2σj (3)

since, by definition, from a practical point of view, erf(3) = 1.
Then, we consider the experimental fact that the lognormals

are centred around the middle of the stroke. Because we assume
that the peak of the lognormal occurs at eµj−σ2

j and the centre of
he stroke occurs at time (tsj−1 + tpj)/2, the second equation of
he system is given by:

tsj−1 + tpj)/2 − t0,j = eµj−σ2
j (4)

The parameter σ 2
j is obtained by solving the second-degree equa-

tion obtained when (3) and (4) are combined:

σ 2
j + 3

√
2σj − ln(3/2) = 0 (5)

and then µj can be drawn by substituting the σ 2
j value in (3).

2.3. 3D on-air signature reconstruction

Once the velocity profiles vj(t) of each link between virtual
target points are established, each of the links, defined by arcs of
circumferences, is sampled at fm amples per second. The distance
from the virtual target point tpj−1 to the kth 8-connected sample
of the circular link between tpj−1 and tpj is given by:

dk,j ≈

∫ k/fm

0
Djvj(t) dt, ∀j = 1, . . . ,N, k = 0, 1, . . . , fm · T

(6)
4

From dk,j, the coordinates of the links between virtual target
points

(
xj(t), yj(t), zj(t)

)
can be obtained and the synthetic tra-

jectory reconstructed as follows:

(xr (t), yr (t), zr (t)) =

tpn∑
j=1

(
xj(t), yj(t), zj(t)

)
(7)

Fig. 3 shows an example of a master synthetic signature (tra-
jectory and velocity) obtained from a set of virtual target points
randomly generated from the lexical and morphological charac-
teristics.

3. KS: Synthesis of the kinematics for a signature trajectory

This section synthesizes the kinematics of a given 3D trajec-
tory as a sequence of ordered points. This method can be applied
to stabilize the kinematics of deficient acquisition devices because
they register data with unstable frequency rates, or jitter in the
timing signal, among other noises. Indeed, synthetic kinematics
can boost the performance of real kinematics in signature veri-
fication [33]. Note that many recognizers perform classifications
according to the kinematic properties of signatures. Another case
that KS can solve is that of using kinematics as a predictor,
which may improve the quality of the acquired samples. Also,
kinematic estimation is typically the final stage in a whole off-2-
on challenge in 2D. In a follow-up work [17], KS is used to adapt
our previous work to the case of 3D signatures.

Firstly, KS determines the salient points which are directly re-
lated to the target points [28]. Next, a velocity profile is assigned
between two consecutive salient points. Finally, the 8-connected
trajectory is sampled according to the estimated velocity.

3.1. Salient points estimation

The salient points are defined in an 8-connected 3D trajectory
as the points with maximum curvature. Obtaining the curvature
from the 3D trajectory misses some relevant salient points. As a
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esult, we worked out the curvature in the three planes, xy, xz,
nd yz. Then, we combined the resulting salient points. Thus, the
urvature in the plane xy is calculated as:

(x, y) =

√
(ÿẋ − ẍẏ)2√(
ẋ2 + ẏ2

)3 (8)

The salient points in each plane are obtained as follows
[17,34]: he curvatures at each plane are worked out with a
multiscale algorithm [34] at dozen scales, uniformly distributed
between 1 and M/2, with M being the length of the trajectory,
and the scale, the number of points used to work out the derivate.
All the curvatures calculated are added together to obtain the
summed curvature C . The salient points at each plane are selected
as the peaks of C whose height/width ratio are greater than
(max(C) − min(C))/45. The salient points of the 3D trajectory are
obtained as the union of the salient point of the xy, xz, and yz
planes.

3.2. Synthesis of velocity

Given the salient points, the velocity synthesis is based on a
sum of lognormal functions inserted between consecutive salient
points. There are many solutions to t0,j,Dj, µj and σ 2

j fits the
bell-shaped speed profile of a stroke [17]. According to the syn-
ergy of the neighbouring lognormals considered by the kinematic
theory, an inevitable overlapping among adjacent lognormals is
considered.

Initially, a time is assigned to each salient point, spj. This time
is roughly available in the case of a low or unstable sampling
frequency. If we do not rely on this timing, the salient points
can be timed as in the FS method. We heuristically chose the
following relation once again: t0,j = tsj−1 − 0.5, giving enough
time to the lognormal function to increase at the beginning of
the stroke in tsj−1.

To calculate the parameters µj and σ 2
j , we define a bell shape

with a mean Mj equal to the centre tsj−1 + (tsj − tsj−1)/2 and
variance Vj = (tsj − tsj−1)/4 (it takes 95.45% of energy in the
segment and the rest of the overlap). This is an experimental
value based on the general observations in the databases used
in this article. The lognormal parameters are then recovered by
the method of moments [35]:

µj = log
(
Mj/

√
Vj + M2

j

)
; σ 2

j = log
(
Vj/M2

j + 1
)

(9)

And ls,j = Dj, where ls,j is the distance between spj−1 and spj in
the 8-connected 3D trajectory. Therefore, the velocity module can
5

be defined as:

v(t) = ω

Nblog∑
j=1

Djvj(t) (10)

where Nblog is the number of lognormals and ω a scalar that ad-
usts the final area of the velocity to the distance travelled in the
rajectory because overlap inaccuracies exist between lognormals
s: ω = Ls/

∫ T
0 v(t) dt , where Ls is the length of the trajectory and

the signature duration.

.3. Final signature

Finally, the 3D 8-connected trajectory is sampled using the
elocity module of Eq. (10). To this end, a frequency of the output
ignal is assigned to mimic the samples per second, fm, typically
efined by the acquisition device. Let k be a sampling point in the
nline 3D signatures, and k/fm the timestamp of such sampling
oints, then the distance dk between samples in the 8-connected
rajectory can be defined as follows:

k =

∫ k/fm

0
v(t) dt (11)

This distance, dk, is later used to select the samples that
atisfy the defined velocity profile, obtaining the online signature
x(t), y(t), z(t)).

A visual example is illustrated in Fig. 4. Note that the trajectory
is given as input, whereas the KS method synthesized the velocity.

4. DS: Duplicated synthesis of 3D real signatures

It is well-known that two 2D signatures of a signer are never
equal. The differences here constitute what is called intra-person
variability. In 3D on-air signatures, these differences are even
more evident. 3D movement is carried out by hands and arms,
and this does not allow as fine a control as that of finger move-
ments. A greater intra-person variability by duplication of signa-
tures is thus expected in 3D.

A duplicated specimen is generated from a given online signa-
ture, which can be a real signature or a synthesized one. As well,
a skilled forgery can be seen as a sort of duplicated signature with
a different intra-personal variability.

In our duplicated synthesis (DS), an online signature is anal-
ysed and parameterized with iDeLog3D [27]. Then, the signature
is distorted by defining a global parameter and modifying the
value of the iDeLog3D parameters.

The DS method can help train signature verifiers. For example,
it can balance the number of signatures required during training.



M.A. Ferrer, M. Diaz, C. Carmona-Duarte et al. Knowledge-Based Systems 265 (2023) 110365

A
a

t
v
t
t

ϑ

Fig. 4. Example of a 3D signature with a sampled trajectory and a synthetic velocity through the KS method.
N
v
a

lso, our method can augment the training set. Likely, this latter
pplication is the most popular in the literature [36].
First, we define the parameter m ∈ (0, 1), which controls

he gradual deformation of the movement. The higher the m
alue, the greater the changes in the trajectory and velocity. Then,
he iDeLog3D parameters are distorted by applying the following
ransformations:
µ′

j = µj(1 + 0.01 · m · N (0;Nblog))

σ 2′

j = σ 2
j (1 + 0.01 · m · N (0;Nblog))

t ′0,j = t0,j(1 + 0.001 · m · N (0;Nblog))
′

e,j = ϑe,j(1 + 0.001 · m · N (0;Nblog))
ϑ ′

s,j = ϑs,j(1 + 0.001 · m · N (0;Nblog))
φ′

e,j = φe,j(1 + 0.001 · m · N (0;Nblog))
φ′

s,j = φs,j(1 + 0.001 · m · N (0;Nblog))

(12)

Next, the virtual target points are altered. Let N be the number
of virtual target points calculated in the master 3D signature and
N ′ the points in a duplicated signature. We randomly remove the
closest salient points between 0% and 5%. Similarly, new points
are added among the 0%–5% of the nearest point. As a result, we
have a new tpj, ∀j = 1, . . . ,N ′ sequence. Inserting and removing
target points affects the fluency of the signature [17]. Typically, a
duplicated skilled forgery requires adding more tpj.

In 3D, the positions of virtual target points are defined as:
tpj =

(
tpxj, tpyj, tpzj

)
. Similar to our previous work designing

duplicates [19], the points’ position is modified with non-linear
distortions as follows:

tpx′

j = tpxj
(
1 + Ax sin(2πPxtpxj/Lx)

)
tpy′

j = tpyj
(
1 + Ay sin(2πPytpyj/Ly)

)
tpz ′

j = tpzj
(
1 + Az sin(2πPz tpzj/Lz)

) (13)

where (Lx, Ly, Lz) are the width and height of the signature de-
fined with the virtual target points margins,
(Ax, Ay, Az) = m/50(Lx, Ly, Lz) the amplitudes of the sinusoids;
Px = Py = Pz = 3m the number of periods of the sinusoidal
transformation and (tpx′

j, tpy
′

j, tpz
′

j ) the new target points.
Next, two affine transformations are applied to the virtual

target points: a rotation followed by a displacement, as follows:⎛⎜⎝tpx′′

j

tpy′′

j

tpz ′′

j

⎞⎟⎠ =

⎛⎜⎝tpx′

j

tpy′

j

tpz ′

j

⎞⎟⎠
⎛⎝1 0 1
0 c(·) −s(·)
0 s(·) c(·)

⎞⎠⎛⎝ c(·) 0 s(·)
0 1 0

−s(·) 1 c(·)

⎞⎠
×

⎛⎝c(·) −s(·) 0
s(·) c(·) 0
0 0 1

⎞⎠ +

⎛⎝r · tpx′

r · tpy′

r · tpz ′

⎞⎠ (14)
6

where c(·) or s(·) denote the sin and cos operations of π/100 ·

(0; 1) on the three rotation matrices, r ∈ (0, 0.02) is a random
alue from a uniform distribution used for the displacement effect
nd

(
tpx′, tpy′, tpz ′

)
are the average values of the target point on

each axis. According to our observations, a genuine duplicated
signature should suffer less distortion than a duplicated forgery.

Once the new parameters are defined, the signature is re-
constructed from (t ′0,j, µ

′

j, σ
2′

j , ϑ ′

s,j, ϑ
′

e,j, φ
′

s,j, tpx′′

j , tpy
′′

j , tpz
′′

j ), j =

1, . . . ,N ′, obtaining the online duplicated 3D signature. Three real
and three duplicated genuine signatures are illustrated in Fig. 5
as an example of the DS method.

5. Experiments and results

The synthetic 3D signatures were validated in two ways: (i) by
generating synthetic 3D signature databases with realistic intra-
and inter-person variability and (ii) by confusing humans to judge
as real the synthetic signature through a Turing Test. Finally, for
a proof of concept, an extension of our synthesizer to 3D on-air
writing and 3D gesturing was investigated.

5.1. Signature verification performance

We examined whether a machine could see synthetic 3D
signatures as real ones. To this end, we conducted signature ver-
ification experiments in random and skilled forgeries scenarios,
using two publicly available databases:

1. 3DIIT Signatures, consisting of 1600 air-written signatures
by eighty individuals, recorded using a Leap motion at 60
Hz [24].

2. Deep3DSigAir, consisting of signatures from forty users: 10
for training, 10 for testing, and 25 forgeries acquired with
Intel’s creative senz3D depth camera at a sampling rate of
60 Hz [23].

Next, we generated two types of synthetic counterpart
databases. Firstly, the FS+DS method were used to generate a
master and duplicates. The FS method matched the databases
mentioned above by replicating their lexical and morphological
properties such as the distribution of the number of words,
letters, flourishes, signature sizes, intra-person variability, sam-
pling frequency, etc. Secondly, the original temporal information
was removed, and the signatures were synthesized with the KS
method. The results of both methods were compared to the origi-
nal databases. All generated databases had the same organization
and number of samples as the original ones.

A DTW algorithm was selected with the 3D trajectory to serve
as the ASV, and its first and second derivatives were chosen as
features [37]. Then, we trained the ASV with five random genuine
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Fig. 5. Examples of 3D real and duplicated signatures with the DS method.
ignatures per user. The rest of the signatures were used to test
ollowing the standard ASV field benchmark with random and
killed forgeries [12]. Finally, we repeated the ASV experiments
en times and have presented the average DET plots in Fig. 6.

As results, the synthetic databases displayed a similar be-
aviour as real ones. Specifically, in the case of Signature3DIIT,
he generated database with FS+DS seemed to be a bit easier to
erify than the real one in the Signature3DIIT. However, an excel-
ent matching was obtained with the KS method in this database.
onversely, the FS+DS was better than the KS in mimicking the
eep3DSigAir in both random and skilled forgeries. For skilled
orgeries, our synthetic database seemed more challenging than
he real one.

As the synthetic databases were generated to mimic the be-
aviour of real databases using the DTW algorithm, these results
ay be biased. To test the generalization ability of our synthe-
izers, we conducted comparative experiments using a different
SV based on the Manhattan (MAN) distance. This verifier was
dapted for 3D signature verification from [38]. It is based on
tatistical distributions of the signatures, which are computed
n linear time. While the DTW algorithm focuses on temporal
ntra- and inter-personal variations, the new MAN-based verifier
ocuses on variations in histograms.

As a result, similar findings were observed using the MAN-
ased ASV on the Signature3DIIT database. Specifically, we found
better match between the real and synthetic databases in the
ase of the Signature3DIIT database. In fact, the standard de-
iation of the Equal Error Rates (EERs) of the three databases
as 2.37 with the MAN method, as compared to 3.73 with the
TW method. In the case of the DeepAirSIg database, the match
etween the real and synthetic databases was worse with the
TW method in the case of the FS+DS method, but significantly
etter with the KS method.
7

We can conclude that the match between real and synthetic
databases depends on the specific database being mimicked and
the verifier used as a reference to adjust the variability in the
database. Additionally, the generalization ability also depends on
the specific database. Finally, it is worth pointing out that the
proposed synthesizer can be adapted to the tendency of these
performances in both random and skilled forgeries, using differ-
ent databases acquired in several conditions and sensors, such as
motion capture suits based on a video and leap motion. Note also
that only the variability of the synthesis parameters was modified
to show the flexibility of the FS+DS and KS methods.

5.2. Enlarging the training signatures with duplicates

Of note, the greater the number of signatures used in training,
the better the ASV results expected. Following the DS method,
we duplicated the training signatures to enlarge the training set.
This was a challenging experiment since our duplicates were
based on mathematical models and smoother curves. For context,
real signatures contain noise errors associated with the acqui-
sition process and user devices, which were not modelled in
this work. Accordingly, once the training signatures were param-
eterized with iDeLog3D, more artificial training samples were
generated with the DS method, which tries to capture the real
intra-personal variability among subjects. The variation ranges of
DS parameters were manually adjusted by trial and error. Thus,
by training and testing with the same users and generating ten
synthetic duplicated samples per training sample, the average
equal error rate (EER) by using the DTW verifier for 3DIIT Sig-
natures decreased from 15.37% to 5.10% (reduction of 66.8%). The
Deep3DAirSig improved from EER = 0.32% to EER = 0.27% for
random forgery (reduction of 15.62%) and from EER = 5.06% to
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Fig. 6. Automatic signature verification results with real data and synthetic 3D signatures with FS+DS and KS methods in random and skilled forgeries scenarios
or both systems. Above: DTW-based ASV. Below: MAN-based ASV. (FAR: False Acceptance Rate, FRR: False Rejection Rate, EER: Equal Error Rate, AUC: Area Under
urve)
Fig. 7. Equal Error Rate improvements by using duplicates in training.
ER = 1.91% (reduction of 62.25%) in the case of skilled forgeries
see Fig. 7). In the case of MAN-based ASV, we observed an
ncrease in Deep3DAirSig from EER = 16.21% to EER = 19.68%
(a 21.41% increase). For random forgeries with Deep3DAirSig, we
found a constant effect from EER = 6.01% to EER = 6.17% (a
2.66% increase). However, we also saw an improvement in skilled
forgeries from EER = 7.19% to EER = 6.53% (a 9.18% reduction).
Our findings indicate that our duplicates improved the skilled
forgeries experiment, which is typically the most challenging.
Additionally, for random forgeries, the improvement was more
limited when real and synthetic samples were combined with the
training of the verifiers. The MAN classifier may be more sensitive
to device noise than DTW, making it easier to detect synthetic
8

samples. This suggests the need for further research in modelling
this type of noise to improve the synthesizer. Although this
improvement came at the cost of increasing the computational
load as the training set was augmented, this experiment shows
the usefulness and efficiency of our duplication method in terms
of augmenting datasets. This may be very useful, particularly for
developing deep learning systems.

5.3. Turing test

We are aware that a human perception test could quantify the
human-like appearance of our synthetic 3D signatures. Thus, a
final perceptual Turing test was carried out.
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Fig. 8. Classification results with 3D writing and 3D gestures with real and synthetic samples using the FS+DS and KS methods. (ACC shows the average and standard
deviation of the rank-1 recognition rate.)
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Table 1
Global and database Turing test results.

Part I Part I Part II
FMR FHR Accuracy

Signature3DIIT 42.24% 47.29% 56.32%
Deep3DAirSig 53.07% 44.04% 56.32%
All databases 47.65% 45.67% 56.32%

In the first part of the test, 12 short videos with the movement
f an end effector were presented to participants, who had to
udge if a human or a machine had carried out the action. The
esults were given in terms of False Machine Rate (FMR), which
ndicates the percentage of real human samples perceived as
achine-made (synthetic), and False Human Rate (FHR), which
hows the percentage of synthetic or machine samples perceived
s human-made.
In the second part, five videos with two executions of the

ame movement were displayed to the participants, who had to
ecide which one was executed by a machine. The results were
iven in terms of accuracy in determining which was the machine
ovement.
The test was carried out through Google forms.2 We got 369

articipants with 6273 answers, with 4428 and 1845 for the first
nd second part of the test, respectively. 58.84% of respondents
ffirmed having computer skills. Regarding age distribution, 4.23%
ere under 16, 68.22% were in the 16–25 range, 19.13% were in
he 26–40 range, and the rest were over 40 years old. On average,
he respondents took 5 min and 12 s to answer the entire test.

Results are given in Table 1. The FMR was 47.65% in the first
art, and the FHR was 45.67%. The global accuracy in the second
art of the test was 56.32%. The results show confusion between
uman and machine movements at nearly 50%, confirming the
uman-likeness of the synthesis procedure.

.4. Extension to handwriting and gestures

The Sigma-Lognormal model has demonstrated its ability to
ynthesize handwriting [21] and gestures [22] in 2D. Accordingly,
e used our synthesizer to generate handwriting and gestures in
he air and to enlarge the training set with duplicates.

For writing in the air, we used the AirWriting database, which
ncludes 100 words written once by five users, with 500 words

2 https://forms.gle/bS68BtBPcheo4HNf7
 A

9

registered with a Leap motion at 60 Hz [39]. For gestures, two cor-
pora were selected: (i) the HDM05, which contains 11 synthetic
actions performed from 2 to 7 times by ten actors, with a total of
250 samples acquired with a VICON system at 120 Hz [40], and
(ii) the UTKinect, which includes ten synthetic gestures written
twice by ten actors recorded by a Kinect camera at 30 Hz [41].

For the FS method, we synthetically emulated the AirWriting
dataset with a sequence of two to four uppercase letters defining
the corresponding virtual target points. For the gestures, a series
of five to ten random points inside a 3D cube with a size of
100 pixels was obtained. Let us consider two consecutive virtual
target points: the Sagitta of the circumference was randomly ob-
tained between d/20 and d/5, with d being the distance between
these two points. Accordingly, the starting and ending azimuth
and polar angles of the arc of circumferences were calculated.
Once the gesture was designed based on the iDeLog3D, we also
modified its spatial orientation in 3D.

Next, we reproduced the classification experiments3 in
[42,43], which were also based on a DTW algorithm. The experi-
ments were repeated ten times with real and synthetic databases,
and the cumulative match curves are averaged and plotted in
Fig. 8. In the AirWriting database, we can see that the FS+DS and
KS achieved similar accuracies. However, the FS approximated
the real one with ranks greater than three. For gestures, the
FS+DS curves were closer to the corresponding real databases
than was the KS. This was especially the case in the HDM05,
which approximated practically all ranks. In all cases, the KS
followed the tendency of real curves, but with a slightly lower
performance. In comparison, the FS+DS showed a similar accuracy
to the real one in all cases.

As duplication is also a relevant stage in synthesis, experi-
ments similar to the signatures experiments were studied. Once
again, the training and testing were performed with the same
users, and ten synthetic samples per training sample were gen-
erated. As a result, the average accuracy for AirWriting increased
from 95.60 to 96.00%; HDM05 improved from 95.93% to 96.01%,
and UTKinect, from 62.57% to 67.84% (see Fig. 9). These insignif-
icant improvements demonstrated that the duplicator is more
effective in signatures, at least when it comes to working with
these databases.

This proof of concept suggests that the proposed methods used
to synthesize and duplicate signatures can also be applied to

3 As baseline, the classification accuracies reported in [42,43] with real
atabases were AirWriting: Acc = 99.0%, HDM05: Acc = 96.4% and, UTkinect:
cc = 94.0%.

https://forms.gle/bS68BtBPcheo4HNf7
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Fig. 9. Accuracy improvements by using duplicates in training.
he case of short movements, such as with the characters found
n AirWriting and in the 3D gestures. It is worth pointing out
hat a wide range of sampling frequencies varying from 30 Hz
p to 125 Hz was tested in the experiments, tackling different
cenarios.

. Conclusion and discussion

This paper focused on synthesizing 3D handwriting signatures
ollowing the lognormality principle of human kinematics. Based
n a reverse-engineered implementation of iDeLog3D [27] analy-
is, three synthesis methods were proposed: (i) a full synthesis
f master 3D on-air signatures, named FS; (ii) the human-like
inematic synthesis of a given spatial on-air trajectory, named KS,
nd (iii) the synthesis of duplicated 3D on-air signatures, named
S. In addition, the synthesis procedure allowed modifying the
evel of difficulty of the recognition problem.

The experiments performed herein showed that the FS+DS
nd KS can generate databases of synthetic movements carried
ut by artificial users that perform similarly to real ones in
erification experiments. Also, it was demonstrated that the DS
ethod could augment real databases for classification problems.
urthermore, a Turing test was carried out to measure the human
bility to discriminate between real and synthetic movements.
he confusion obtained was close to 50%, confirming the human
ikeness of artificial movements in 3D. Finally, an extension of
ur experiments demonstrated the capacity of our methods to
ynthesize 3D writing and 3D gestures.
The literature identifies three main proposals to synthesize

ignatures: full synthesis, duplication, and analysis of system
ulnerabilities. In the case of full synthesis, specimens are gen-
rated from scratch [11]. Here, from some statistical distribu-
ions, generators were able to produce synthetic signatures and
arge databases [14]. One of the main objectives was to design
atabases that perform similarly to real ones. In the case of
uplication, the goal is to use real signatures as seeds to produce
ther specimens, while keeping the personal intra-variability [44]
nd boosting the performances [19,36]. Furthermore, other works
ocused on telling human and machine signatures apart [45].
ynthesis-related progress has led to the generation of signatures
hat are so realistic that their detection by both human verifiers
as indicated in Section 5.3 or [46]) and automatic verifiers [47]
s truly challenging.

One aspect needed to improve the realism of our synthetic
ignatures is their smooth appearance because they are generated
y summing Lognormals and circumferences, as is the case in
he Sigma-Lognormal model. Furthermore, while retaining the
euromotor background of the Sigma-Lognormal model [32], it
ould be interesting to add imperfections found in real hand-
riting [45], such as acquisition irregularities of digitizers or ink
eposition problems, etc.
On the other hand, although the realism of synthetic signa-

ures can always be improved, current results open the door to
isuse and fraud. Indeed, these procedures allow to generate du-
licates that can successfully fool an automatic signature verifier.
10
Moreover, brute force attacks or more sophisticated like hill-
climbing techniques [48] represent a digital threat to signature
verification based systems.

The databases generated in this paper, and Turing Test videos
are available for interested readers in https://gpds.ulpgc.es/, which
may be helpful in many applications such as human–computer
interfaces, medicine, education, games, etc. One of the interests
in designing challenging synthetic databases is in the context
of forgery generation. The capacity to simulate different degrees
of skills allows the signature verification community to develop
more precise ASVs. We thus hope that this paper’s models and
tools will help researchers develop 3D human-like kinematics.
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Appendix. 3D Sigma-Lognormal model

The Kinematic Theory of Rapid Human Movements and its
associated Sigma-Lognormal model [2] provide a velocity v⃗o(t)
modelling regardless of the dimension of the movement. Two dif-
ferent methods have been proposed herein to calculate the ΣΛ -
parameters in 3D: ScriptStudio [43], which optimizes the velocity,
and iDeLog (iterative Decomposition in Lognormals) [27], which
simultaneously optimizes the speed and the trajectory. For the
tridimensional case, in this work, let (xo(t), yo(t), zo(t))T be the
observed trajectory of a 3D human movement whose vectorial

https://gpds.ulpgc.es/
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elocity and module are defined by:

⃗o(t) =
(
vox(t), voy(t), voz(t)

)
= (dxo(t)/dt, dyo(t)/dt, dzo(t)/dt)

(A.1)

o(t) = |v⃗o(t)| =

√
v2
ox(t) + v2

oy(t) + v2
oz(t) (A.2)

The velocity v⃗o(t) is decomposed as a sum of temporally
overlapped strokes. Each stroke is a spatiotemporal trajectory
between two virtual target points with a lognormal velocity pro-
file [2]. Thus, the velocity is modelled as a sum of N lognormals
as:

v⃗r (t) =

N∑
j=1

Dj

⎡⎢⎢⎣sin(φj(t)) cos(ϑj(t))

sin(φj(t)) sin(ϑj(t))

cos(φj(t))

⎤⎥⎥⎦ vj(t) (A.3)

Regarding the trajectory, φj(t) and ϑj(t) are the azimuth and
polar angles that represent a planar arc of circumference between
the two virtual target points corresponding to the jth stroke.

Once the Sigma-Lognormal parameters{
Dj, t0,j, µj, σ

2
j , ϑs,j, ϑe,j, φs,j, φe,j

}N
j=1

are obtained, the velocity
v⃗o(t) can be reconstructed as v⃗r (t), and the trajectory recovered
as:

sr (t) = (xr (t), yr (t), zr (t)) =

∫ t

0
v⃗r (τ ) dτ (A.4)

The similarity between the original velocity vo(t) and the
reconstructed velocity vr (t) is calculated through the Signal-to-
Noise Ratio, SNRv [32].

The reconstruction quality of the trajectory is determined
through the Signal-to-Noise Ratio, SNRt of the 8-connected orig-
inal and reconstructed trajectories [32].

SNRv = 10 log

⎛⎜⎜⎝
∫ T

0
|v⃗o(t)|2 dt∫ T

0
|v⃗o(t) − v⃗r (t)|2 dt

⎞⎟⎟⎠ (A.5)

NRt = 10 log

⎛⎜⎜⎝
∫ T

0
|so(t) − s̄o|2 dt∫ T

0
|so(t) − sr (t)|2 dt

⎞⎟⎟⎠ (A.6)

where T is the temporal length of the movement, | · |
2 is the Eu-

clidean norm 2, s̄o the time average and, so(t) and sr (t) the module
of the observed and reconstructed trajectory, respectively.
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