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Abstract. The quality improvement in mesh optimisation techniques
that preserve its connectivity are obtained by an iterative process in
which each node of the mesh is moved to a new position that minimises
a certain objective function. In general, objective functions are derived
from some quality measure of the local submesh, that is, the set of tetra-
hedra connected to the adjustable or free node. Although these objective
functions are suitable to improve the quality of a mesh in which there
are non snverted elements, they are not when the mesh is tangled. This
is due to the fact that usual objective functions are not defined on all R®
and they present several discontinuities and local minima that prevent
the use of conventional optimisation procedures. Otherwise, when the
mesh is tangled, there are local submeshes for which the free node is out
of the feasible region, or this does not exist. In this paper we propose the
substitution of objective functions having barriers by modified versions
that are defined and regular on all R®. With these modifications, the
optimisation process is also directly applicable to meshes with inverted
elements, making a previous untangling procedure unnecessary.

1 Introduction

In finite element simulation the mesh quality is a crucial aspect for good nu-
merical behaviour of the method. In a first stage, some automatic 3-D mesh
generator constructs meshes with poor quality and, in special cases, for example
when node movement is required, inverted elements may appear. So, it is neces-
sary to develop a procedure that optimises the pre-existing mesh. This process
must be able to smooth and untangle the mesh.

The most usual techniques to improve the quality of a walid mesh, that
is, one that does not have inverted elements, are based upon local smoothing.
In short, these techniques consist of finding the new positions that the mesh
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nodes must hold, in such a way that they optimise an objective function. Such a
function is based on a certain measurement of the quality of the local submesh,
N (v), formed by the set of tetrahedra connected to the free node v. As it is a
local optimisation process, we can not guarantee that the final mesh is globally
optimum. Nevertheless, after repeating this process several times for all the nodes
of the current mesh, quite satisfactory results can be achieved. Usually, objective
functions are appropriate to improve the quality of a valid mesh, but they do not
work properly when there are inverted elements. This is because they present
singularities (barriers) when any tetrahedron of N (v) changes the sign of its
Jacobian determinant. To avoid this problem we can proceed as Freitag et al in
[7,9,10], where an optimisation method consisting of two stages is proposed. In
the first one, the possible inverted elements are untangled by an algorithm that
maximises their negative Jacobian determinants [9]; in the second, the resulting
mesh from the first stage is smoothed using another objective function based on a
quality metric of the tetrahedra of N (v) [10]. One of these objective functions are
present in Section 2. After the untangling procedure, the mesh has a very poor
quality because the technique has no motivation to create good-quality elements.
As remarked in [7], it is not possible to apply a gradient-based algorithm to
optimise the objective function because it is not continuous all over R®, making
it necessary to use other non-standard approaches.

In Section 3 we propose an alternative to this procedure, such that the un-
tangling and smoothing are carried out in the same stage. For this purpose, we
use a suitable modification of the objective function such that it is regular all
over R?. When a feasible region (subset of R® where v could be placed, being
N (v) a valid submesh) exists, the minima of the original and modified objective
functions are very close and, when this region does not exist, the minimum of
the modified objective function is located in such a way that it tends to untangle
N (v). The latter occurs, for example, when the fixed boundary of N (v) is tan-
gled. With this approach, we can use any standard and efficient unconstrained
optimisation method to find the minimum of the modified objective function,
see for example [2].

In this work we have applied the proposed modification to one objective
function derived from an algebraic mesh quality metric studied in [11], but it
would also be possible to apply it to other objective functions which have barriers
like those presented in [12]. The results for two test problems are shown in Section
4. Finally, conclusions and future research are presented in Section 5.

2 Objective Functions

Several tetrahedron shape measures [4] could be used to construct an objective
function. Nevertheless those obtained by algebraic operations are specially indi-
cated for our purpose because they can be computed very efficiently. The above
mentioned algebraic mesh quality metric and the corresponding objective func-
tion are shown in this Section.



Let T be a tetrahedral element in the physical space whose vertices are given
by X = (T, Yk, 21) € R3, k = 0,1,2,3 and Tx be the reference tetrahedron
with vertices up = (0,0,0)%, w; = (1,0,0)%, us = (0,1,0)% and uz = (0,0, l)T.
If we choose x¢ as the translation vector, the affine map that takes T to T
is x =Au + x¢, where A is the Jacobian matrix of the affine map referenced to
node xg, and expressed as A = (x; — Xg, X2 — Xg, X3 — Xq)-

Let now T7 be an equilateral tetrahedron with all its edges of length one
and vertices located at vo = (0,0,0)T, v; = (1,0,0)7, vo = (1/2,v3/2,0)7T,
vy = (1/2, V3/6, ﬂ/\/ﬁ)T Let v =Wu be the linear map that takes Tg to T,
being W = (v1, va, v3) its Jacobian matrix.

Therefore, the affine map that takes Tr to T is given by x =AW ~v + x,
and its Jacobian matrix is S = AW !. This weighted matrix S is independent
of the node chosen as reference; it is said to be node invariant [11]. We can use
matrix norms, determinant or trace of S to construct algebraic quality measures
of T. For example, the Frobenius norm of S, defined by |S| = 1/tr (STS), is
specially indicated because it is easily computable. Thus, it is shown in [11]
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that ¢ = ‘3;; is an algebraic quality measure of T, where ¢ = det (S). The
maximum value of these quality measures is the unity and it corresponds to
equilateral tetrahedron. Besides, any flat tetrahedron has quality measure zero.
We can derive an optimisation function from this quality measure. Thus, let
x = (z,v, z)T be the free node position of v, and let S, be the weighted Jacobian
matrix of the m-th tetrahedron of N (v). We define the objective function of x,

associated to an m-th tetrahedron as

NIm = 2 (1)

303,

Then, the corresponding objective function for N (v) can be constructed by using
the p-norm of (91, 72,...,1M0m) as

1
P
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where M is the number of tetrahedra in NV (v). The objective function | K|, was
deduced and used in [1] for smoothing and adapting of 2-D meshes. The same
function was introduced in [3], for both 2 and 3-D mesh smoothing, as a result
of a force-directed method. Finally, this function, among others, is studied and
compared in [12]. We note that the cited authors only use this objective function
for smoothing valid meshes.

Although this optimisation function is smooth in those points where N (v) is
a valid submesh, it becomes discontinuous when the volume of any tetrahedron
of N (v) goes to zero. It is due to the fact that 7, approaches infinity when
om tends to zero and its numerator is bounded below. In fact, it is possible
to prove that |S,,| reaches its minimum, with strictly positive value, when v is
placed in the geometric centre of the fixed face of the m-th tetrahedron. The



positions where v must be located to get N (v) to be valid, i.e., the feasible

M
region, is the interior of the polyhedral set P defined as P = (| H,,, where H,,
m=1
are the half-spaces defined by o, (x) > 0. This set can occasionally be empty,
for example, when the fixed boundary of N (v) is tangled. In this situation,
function |K,,|p stops being useful as optimisation function. On the other hand,
when the feasible region exists, that is int P # 0, the objective function tends to
infinity as v approaches the boundary of P. Due to these singularities, a barrier
is formed which avoids reaching the appropriate minimum by using gradient-
based algorithms, when these start from a free node outside the feasible region.
In other words, with these algorithms we can not optimise a tangled mesh N (v)
with the above objective function.

3 Modified Objective Functions

We propose a modification in the previous objective function (2), so that the
barrier associated with its singularities will be eliminated and the new function
will be smooth all over R®. An essential requirement is that the minima of
the original and modified functions are nearly identical when int P # (. Our
modification consists of substituting ¢ in (2) by the positive and increasing
function

h(o) = 5(0 + /o + 4?) 3)

being the parameter § = h(0). We represent in Fig. 1 the function h(c). Thus,
the new objective function here proposed is given by

M »
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where | |2
* Sm

is the modified objective function for the m-th tetrahedron.
The behaviour of h(g) in function of § parameter is such that, girré h(o) =0,
—

Yo > 0 and ;in(th(a) = 0, Yo < 0. Thus, if int P # (), then Vx € int P we
—
have o, (x) > 0, for m = 1,2,..., M and, as smaller values of J are chosen,
h (o.,) behaves very much as o,,, so that, the original objective function and its
corresponding modified version are very close in the feasible region. Particularly,
in the feasible region, as § — 0, function |K;';|p converges pointwise to |K,,|p.
Besides, by considering that Vo > 0, }irr(l)h’ (0) =1 and ;ir%h(") (o) = 0, for
— —
n > 2, it is easy to prove that the derivatives of this objective function verify

the same property of convergence. As a result of these considerations, it may be
concluded that the positions of v that minimise original and modified objective



functions are nearly identical when § is small. Actually, the value of § is selected
in terms of point v under consideration, making it as small as possible and
in such a way that the evaluation of the minimum of modified functions does
not present any computational problem. Suppose that int P = (), then the

Fig. 1. Representation of function A (o).

original objective function, |Kn|p, is not suitable for our purpose because it is
not correctly defined. Nevertheless, modified function is well defined and tends to
solve the tangle. We can reason it from a qualitative point of view by considering
that the dominant terms in |K;|p are those associated to the tetrahedra with
more negative values of o and, therefore, the minimisation of these terms imply
the increase of these values. It must be remarked that h(c) is an increasing
function and |K;|p tends to co when the volume of any tetrahedron of N (v)

tends to —oo, since lim h (o) =0.
g—r—00

In conclusion, by using the modified objective function, we can untangle the
mesh and, at the same time, improve its quality. Obviously, the modification
here proposed can be easily applied to other objective functions.

For a better understanding of the behaviour of the objective function and
its modification, we propose the following 2-D test example. Let us consider a
simple 2-D mesh formed by three triangles, vBC, vC' A and vAB, where we have
fixed A(0,—1), B(+/3,0), C(0,1) and v(z,y) is the free node. In this case, the
feasible region is the interior of the equilateral triangle ABC. In Fig. 2(a) we
show |K,|, (solid line) and |K; , (dashed line) as a function of z for a fixed
value y = 0 (the y-coordinate of the optimal solution). The chosen parameter §
is 0.1. We can see that original objective function presents several local minima
and discontinuities, opposite to the modified one. Besides, the original function
reach their absolute minimum outside the feasible region. Vertical asymptotes
in original objective function correspond to positions of the free node for which
o = 0 for any tetrahedra of the local mesh. As might be expected, the optimal




solution for the modified function results in v(v/3/3, 0). The original and modified
functions are nearly identical in the proximity of this point, see Fig. 2(a).

500 /
400 /
/|
30
\_IP

200

(2) (b)

Fig. 2. (a) Transversal cut of |K,|, (solid line) and |K;‘] , (dashed line) for the 2-D
test example; (b) the same objective functions for the tangled mesh.

Let us now consider the tangled mesh obtained by changing the position of
point B(v/3,0) to B'(—+/3,0). Here, the mesh is constituted by the triangles
vB'C, vCA and vAB’, where vB'C and vAB’ are inverted. The feasible region
does not exist in this new situation. The graphics of functions |K,|, and |K;|,
are represented in Fig. 2(b). Although the mesh can not be untangled, we get
v(—+v/3/3,0) as the optimal position of the free node by using our modified
objective function. For this position the three triangles are “equally inverted”
(same negative values of o). In this example the same result could be achieved
by maximising the minimum value of ¢ in the mesh, as proposed in [9].

4 Applications

To check the efficiency of the proposed techniques we first consider a regular
mesh of a unit cube with 750 tetrahedra, 216 nodes uniformly distributed and a
maximum valence of 16. In order to get a tangled test mesh, we transform the
unit cube into a greater one (10 x 10 x 10) changing the positions of some nodes
and preserving their connectivities. The inner nodes remains in their original
positions, the nodes sited on the edges of the unit cube are replaced on the
edges of new cube and, finally, the interior nodes of each face of the unit cube
are projected on the corresponding face of the new cube. The initial tangled
mesh, shown in Fig. 3(a), has 10 inverted tetrahedra and an average quality
measure of gq,y = 0.384 (the average quality of the regular mesh is 0.749).
Besides, approximately the 50% of tetrahedra has a very poor quality (less than
0.04). Here we have chosen the quality measure proposed in [7], ¢ = W, for



valid tetrahedra and ¢ = 0 for inverted ones. The result after twenty four sweeps
of the mesh optimisation process with |K;';|2 is shown in Fig. 3(b). In this case,
the steepest descent algorithm was used for the optimisation of the objective
function. In Fig. 4 we present the evolution of the average quality measure, gqvg,
and the minimal quality, ¢, in terms of the number of iterations of the mesh
optimisation process. Note that the average quality initially decreases because
the number of inverted tetrahedra increases in former iterations. The mesh has
22 inverted tetrahedra after the first iteration, 33 after the second, 16 after the
third, 11 after the fourth and 0 after the fifth.

Fig. 3. (a) Initial tangled mesh of a cube and (b) the resulting mesh after twenty four
steps of the optimisation process.

We have also used these optimisation techniques to construct 3-D meshes
adapted to complex surfaces as those defined by irregular terrains [13] and [14].
A version of the refinement/derefinement algorithm presented in [6] and the
3-D Delaunay triangulation analysed in [5] are implemented in this mesh gen-
erator. In the resulting mesh there can be occasional low quality elements, or
even inverted elements, thus making it necessary to apply any untangling and
smoothing procedure. As application of the mesh generator and the optimisation
procedure we have taken under consideration the “volcano” test problem shown
in Fig. 5. The meshes have 20038 tetrahedra and 4013 nodes, with a maximum
valence of 31. The initial tangled mesh has 576 inverted tetrahedra with an av-
erage quality measure g,v9 = 0.529. The node distribution is modified during
the optimisation process in such a way that all the inverted elements disappear
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Fig. 4. Values of the average quality gavg and the minimal quality gmin in terms of the
number of iterations of the mesh optimisation process for the cube test.

in the fourth step of this process and the average quality measure increases to
davg = 0.615 in the sixth step. We remark that only a few seconds of CPU time
on an XEON were necessary to obtain the optimised mesh applying six steps
of this latter procedure and using BFGS method [2] to minimise the objective
function.

5 Conclusions and Future Research

In this paper we present a way to avoid the singularities of common objective
functions used to optimise tetrahedral meshes. To do so, we propose a modifi-
cation of these functions in such a way that it makes them regular all over R®.
Thus, the modified objective functions can be used to smooth and untangle the
mesh simultaneously. The regularity shown by the modified objective functions
allows the use of standard optimisation algorithms as steepest descent, conju-
gate gradient, quasi-Newton, etc. In principle, a similar modification could be
also applicable to other objective functions having the same behaviour as that
studied here. These techniques can be implemented in a parallel algorithm, as
reported in [8], in order to reduce the computational time of the process.

We have efficiently used these techniques in the generation of 3-D meshes
adapted to complex surfaces [13] and [14], and in other applications [15]. A
promising field of study would combine the 3-D refinement/derefinement of
nested meshes with node movement, where the ideas presented here could be
introduced. Good recent results have been obtained in [16] and [17] using these
techniques, for determining the shape and size of the elements in anisotropic
problems.
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Fig. 5. “Volcano” test problem: (a) initial mesh with 576 inverted tetrahedra and (b)
resulting valid mesh after six steps of the optimisation process.
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