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Simple Summary: This study aims to assess the relationship between morphology and metabolism
during the ontogenetic development of Chelon auratus. The geometric morphometric analysis allowed
us to identify morphological variations in the transformation from larvae to juveniles and to establish
the growth patterns of each stage. According to our results, the ETS activity is linked to the individual
morphology, specifically to the body size and to the posterior area.

Abstract: The fish body shape is a key factor that influences multiple traits such as swimming, forag-
ing, mating, migrations, and predator avoidance. The present study describes the body morphological
changes and the growth trajectories during the transformation from 24 to 54 days post-hatching in
the golden grey mullet, Chelon auratus, using geometric morphometric analysis (GMA). The results
revealed a decrease in morphological variability (i.e., morphological disparity) with the somatic
growth. The main changes affected head size, elongation, and widening of the body. Given that
this variability could affect the metabolism, some individuals with different morphologies and in
different ontogenetic developmental stages were selected to estimate their potential respiration rate
using the Electron Transport System (ETS) analysis. Differences were detected depending on the de-
velopmental stage, and being significantly smaller after 54 days post-hatching. Finally, a multivariate
linear regression indicated that the specific ETS activity was partially related to the fish length and
body shape. Thus, our findings emphasized the relevance of larval morphological variability for
understanding the physiological processes that occur during the development.

Keywords: geometric morphometric analysis; ontogenetic development; respiration rate; fishes

1. Introduction

Theoretical morphology is a scientific discipline arising from the early monographs of
the 20th century on the ‘form, shape, and function’ of animal morphologies by Russell [1]
and Thomson [2]. Thomson’s work, based on the ideas of Galileo and Goethe on morphol-
ogy and of Russell on functionalism, was the first to postulate that physical forces and
internal growth parameters regulate biological forms and could be revealed via geometric
transformations in morphological space [3]. Since then, the theoretical morphology has
demonstrated that organism shape is an expression of ecological [4–6], evolutionary [7,8],
and phylogenetic processes [9,10].

In fishes, the inter- and intraspecific morphological variability is mainly reflected in the
body and head shape. Body shape is related to multiple vital activities, such as swimming,
searching for food, evading predators, courtship dances, and territory defence [11–13],
whereas head shape is mainly linked with foraging and prey selection [14–16]. The fish
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shape has a high phenotypic plasticity: the ability of individual genotypes to produce
different phenotypes when exposed to different environmental conditions [17–19]. It is
conspicuous from the earliest stages of ontogenetic development [20,21]. The plasticity is
considered as an ecological strategy to ensure the survival of the species [22,23], which
has great relevance during the spawning and recruitment periods [24], known as “critical
periods” [25]. Ecological traits expressed by juveniles and adults can be affected by envi-
ronmental factors during embryo development through epigenetic modifications [26,27]
or morphological alterations (e.g., number of vertebrae and muscle fibres) [28]. More-
over, fish larvae have many critical periods that are correlated with ontogenetic events
(e.g., preflexion and flexion), which are affected by environment, leading to phenotypic
response [29–31]. In this sense, morphological, sensorial, and behavioral changes occur
throughout the fish ontogenetic development depending on exogenous factors (e.g., food
supply and temperature) and on physiological characteristics (e.g., type of respiration and
muscle reorganization) that affect the metabolism of each specimen [21,32,33]. During the
ontogenetic development, somatic growth tends to be allometric with a high rate during
the larval stage, while it is isometric and slower during the early juvenile stage [34,35] and
stabilizes thereafter [36]. These metabolic changes are related to the development of vital
organs and sensory mechanisms that optimize their survival [37–39]. Thus, body shape and
metabolic rate are coupled in early life stages of fish [40], understanding the shape as body
mass [41,42]. However, morphological changes are clearly visible, such as the position and
size of the eyes (which affect visual capacity), the size of the mouth (which influences inges-
tion capacity), the area of the gill apparatus (which increases the efficiency of respiration),
and the pattern of the caudal region (which relates to locomotion) [20,21,34,37].

Distance measurements and geometric morphological analysis (GMA) are the common
tools for assessing the degree of change in shape, and the latter is the most powerful for
describing different visual patterns [43,44]. In particular, GMA has been used in the early
ontogenetic fish stages to evaluate the phenotypic flexibility in different environmental
conditions (e.g., temperature, salinity, and pH) [31,45]. In addition, GMA has been used
to influence ecological factors (e.g., feeding and preference of habitat) [46] to visualize
ontogenetic changes [21,47,48] and to identify deformities [49,50]. Recently, González and
Nicieza [51] have used the GMA to explain the effects of ontogeny and size, on the link
between shape and metabolic scaling in one- and two-year-old juvenile brown trout. In
general, all studies concluded that a more streamlined body shape displayed maximum
metabolic rates than a deep-bodied species at intra- and interspecific levels [51–53], which
influenced the prolonged swimming capability [54]. However, there is an important gap
between the body shape and the metabolism in these stages, which may be crucial to
evaluate metabolic scaling theories.

The present study is the first approach to apply GMA for exploring the morphological
changes during the early stages of ontogenetic development and its relevance with the
metabolic activity. The main goals are (i) to display the change in body shape that occurs
during ontogenetic development, (ii) to estimate the relative metabolic activity of specimens
with different morphology and days post-hatching, and (iii) to evaluate the effect of fish
size and body shape on the potential respiration of individuals. For our purpose, we
selected specimens of Chelon auratus (Risso, 1810) (Pisces: Mugilidae) because it is an
important species for aquaculture due to their euryhaline and eurythermal adaptability,
which facilities their farming [55]. In fact, there are industrial (extensive and semi-extensive)
aquaculture activities in the Mediterranean region using ponds and reservoirs, which
mainly focus on nutrition [56]. Furthermore, physiological and morphological studies in
these initial stages have already been performed in other mugilids species [36,39], which
could help us in the interpretation of our findings.
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2. Materials and Methods
2.1. Study Sampling

Specimens were obtained from the Scientific and Technologic Park of the University
of Las Palmas de Gran Canaria (Las Palmas, Canary Island, Spain). This species shows the
absence of cannibalism, avoiding the loss of morphological and physiological variability
within tanks. Due to limitations to obtain larvae, we studied two developmental stages.
Larvae were acclimatized in tanks with temperatures ranging between 19 and 20 ◦C, and
the oxygen concentration was around 6–7 mg·L−1. During the first 17 days post-hatching
(dph), larvae fed on the rotifer Brachionus plicatilis, and on the artemia nauplii Artemia salina,
both enriched. Thereafter, larvae fed on commercial pellets.

For our experimental study, we set two sampling times for fish at 24 and 54 dph. The
criterion for selecting these periods was based on previous studies in species of Mugilidae,
where the differentiation between larvae and the juvenile stage was established around
40–60 days [57–59]. Specimens were captured with a small net and euthanized with tricaine
solution for 5–10 s. A total of 131 specimens from 24 dph were collected and photographed
using a camera attached to the stereomicroscope (Leica, EZ4W, Wetzlar, Germany). One
hundred eighteen individuals obtained after 54 dph were photographed using a digital
camera (Nikon, D70, Tokyo, Japan) due to their large size. After imaging, all specimens
were labelled and stored in liquid nitrogen for 2 h and later preserved at −80 ◦C until the
metabolic analysis.

2.2. Geometric Morphometric Analysis

To characterize the morphology of body shape, we used GMA based on the landmarks-
based method [43,60]. This method consists of a set of two- or three-dimensional landmark
coordinates to record the geometry of the structure to evaluate the degree of change [44].
The scheme of landmarks (fixed homologous points) and semi-landmarks (sliding or mobile
non-homologous points), consisting of 18 different points defining the general and head
shape (Figure 1), was selected using common configurations to previous studies [51,61].
Some individuals were discarded due to alterations in the position.
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Digitalization of these points was performed using the software tpsDig v. 1.81 [34], 
as well as the measure of the standard length (SL in mm) (Figure 1). tpsSmall 1.28 software 
package [62] was used to evaluate the approximation of the distribution of the specimens 
in Kendall’s shape space relative to the linear tangent space for each analyzed view [63]. 
The correlation coefficient between tangent distances and the Procrustes distances was 

Figure 1. Location of selected landmarks (red dots) and semilandmarks (yellow dots) to describe
body shape in C. auratus specimens of 24 dph. L1, anterior tip of the premaxilla; L2, posterior tip
of the premaxilla; L3, angle of the lower jaw; L4, anterior margin in the eye; L5, posterior margin
in the eye; L6, inferior margin in the eye; L7, superior margin in the eye; L8, dorsal margin of the
head; L9, ventral margin in the end of the head; L10, posterior margin in the end of the head; L11,
dorsal margin in the end of the head; L12, insertion of the pelvic fin; L13, anterior insertion of the
anal fin; L14, ventral insertion of the caudal fin; L15, central of the caudal fin; L16, dorsal insertion of
the caudal fin; L17, dorsal projection of the landmark 13; L18, dorsal projection of the landmark 12.

Digitalization of these points was performed using the software tpsDig v. 1.81 [34], as
well as the measure of the standard length (SL in mm) (Figure 1). tpsSmall 1.28 software
package [62] was used to evaluate the approximation of the distribution of the specimens
in Kendall’s shape space relative to the linear tangent space for each analyzed view [63].
The correlation coefficient between tangent distances and the Procrustes distances was
high (uncentered correlation = 1, root mean square error = 0.000003), indicating that the
amount of shape variation was small enough to permit statistical analyses using only the
Procrustes distances. A generalized Procrustes analysis (GPA) was performed [63–65]
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on the raw landmarks data to translate specimens to a common location in coordinate
space, scale, and rotate them to reduce the distances between homologous landmarks. The
analysis was performed using the package geomorph v. 4.04 [66,67] in R environment (R
Development Core Team, 2022). A scale was included in the images to allow the acquisition
of a scaling factor for calculating centroid sizes (CS), which was defined as the square root
of the summed squared interlandmark distances [68]. In fact, log-CS was highly correlated
with log fish length (log-SL) of the specimens (r2 = 0.799, p = 0.001, 9999 permutations).
Principal Components Analysis (PCA) based on the variance–covariance matrix of the
aligned specimens was performed to describe how shape varied between stages. Signifi-
cant eigenvectors were identified by plotting the percentage of total variation explained
by the eigenvectors versus the proportion of variance expected under the “broken-stick
model” [69]. Thin-plate spline deformation grids showing shape variation along the PC
axes [68] were constructed with the PAST software v. 4.03 [70].

2.3. Electron Transport System (ETS) and Protein Measurements

To study the potential respiration during ontogeny development, we analyzed the
ETS activity method. A subsample was taken according to morphological results obtained.
A total of 58 individuals were selected (Table S1), some of them were distributed in key
positions in the morphospace (ends of axes), and the others were taken random. The ETS
activity was measured following the method of Packard et al. [71] modified by Gómez
et al. [72]. The first step consisted of homogenization of each sample in a phosphate buffer
using an electric homogenizer and they were centrifugated for 10 min at 4000 rpm at
0–4 ◦C. Thereafter, a subsample was taken of the liquid phase resulting from centrifugation
and incubated at 18 ◦C and mixed with a buffer reaction containing NADH and NADPH
coenzymes, succinate, and tetrasodium salt (INT, artificial electron acceptor). The reaction
was stopped after 20 min of adding quench solution. This entire procedure was performed
at a low temperature to avoid degradation of enzyme activity and protein, and for each
sample, a blank assay was made without ETS substrates. Finally, using a spectrophotometer,
we measured the ETS activity at 490 and 750 nm.

To determine biomass in terms of protein, we used the previous subsample following
the method described by Lowry et al. [73] with modifications of Rutter [74]. We used bovine
serum albumin (BSA) as the standard, and we measured at 750 nm in the spectrophotome-
ter. Specific ETS activity (µlO2·mg protein−1 h−1) was used to characterize the potential
respiration rate of each specimen. Assuming an activation energy of 15 kcal·mol−1 [71], a
quite conservative respiration I to ETS (R/ETS) ratio of 0.5 was used as in zooplankton [72].

2.4. Statistical Analysis

To detect differences for the set of Procrustes shape variables between larval and
juvenile stages, an analysis of variance (ANOVA) was carried out considering the ’stage’
and ‘centroid size’. To quantify the phenotypic variability between stages, we calculated
the morphological disparity (MD) using the function morphol. disparity in geomorph. This
measure was estimated as the Procrustes variance for groups, using residuals of a linear
model fit [75]. The PC1 and PC2 were plotted to build the morphospace for explaining
the variability of the fish body shape [76]. Finally, a multiple linear stepwise regression
was used to predict the relationship between log-ETS and log-CS and PC components
with the function stepAIC in the package MASS v. 7.3–58.1 [77]. Previously, we tested the
multicollinearity and homoscedasticity between variables using the Spearman correlation
(non-normal data) and Goldfeld–Quandt test, respectively. The mean level of ETS between
stages (24 versus 54 dph) was compared using a Student t-test (permutations = 9999). The
assumption of the normality and homogeneity of variance were previously checked using
Shapiro–Wilk and F tests [78].
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3. Results
3.1. Body Analysis

A total of 110 and 116 individuals were collected during the larval and juvenile stages,
respectively (Table S1). The SL increased with the ontogenetic development, hence larval
individuals ranging from 6.7 to 15.2 mm, and juveniles from 14.5 to 38.8 mm. The ANOVA
analysis showed significant differences in the body shape (F = 25.11, p < 0.001) and centroid
size (F = 215.52, p < 0.001) between the development stages (Table 1). The morphologi-
cal disparity significantly differed between stages, which was double in the larval stage
(MDL = 0.00222 vs. MDJ = 0.00158, permutations = 9999, p < 0.001), demonstrating a higher
morphological heterogeneity in this development phase.

Table 1. ANOVA results to determine the effect of centroid size and ontogeny phase on the body
shape of Chelon auratus.

df SS MS Rsq F p

Centroid 1 0.199 0.199 0.465 215.52 0.001
Stages 1 0.023 0.023 0.054 25.11 0.001

Residuals 223 0.206 0.0009 0.481
Total 225 0.428

df : degrees of freedom; F: test statistic; MS: mean of sum squares; Rsq: percentage of variation; SS: sum of squares;
p-value significance.

The first three components of the PCA analysis accounted for higher variance than
expected by chance alone (78.8%), reaching the first two components 70.5% of variance. The
morphospace illustration (PC1 versus PC2 and, PC1 versus PC3) showed a clear ontogenetic
difference between the stages studied (Figure 2A,B). The PC1 explained 54.4% of variance,
the positive values identified specimens with a higher proportion of head and big eyes
(larvae stage); whereas the negative values showed individuals with wider and shorter
heads and a more elongated body shape (juvenile stage). The PC2 attained 16.1% of
variance and was linked to fish body variation from the anal fin position to tail ending. The
positive-axis represented individuals with a shorter body, while the negative-axis illustrated
specimens with an enlarged development. Contrary to PC1, PC2 equally affected larvae
and juvenile stages (Figure 2A). The PC3 (8.3% of variance) was linked to the height and
elongation of body shape. The positive-axis represented individuals with a higher dorsal
widening fish body and greater proportion of the region between the anal and caudal fins,
while the negative-axis illustrated specimens with a greater ventral development fish body
and lesser development of the posterior region. Like PC2, the point distribution of larvae
and juveniles did not differ along the PC3 axis (Figure 2B).

Correlation between PC components and log-centroid size (log-CS) were significant for
PC1 (p < 0.001), explaining the 82.1% of total variance. When the analysis was performed
separately for each stage, significant differences were obtained between slopes of linear
regressions (mean ± standard error, bL = 0.078 ± 0.004 for larvae and bJ = 0.024 ± 0.004 for
juveniles; t-test = 9.134, p < 0.001), demonstrating a change in the somatic growth between
the stages (Figure 3). Moreover, the shape (i.e., distribution points along PC1 axis) was
clearly different between stages, showing a higher heterogenous larvae than juveniles.
The PC2 component scarcely explained 2.9% of variability (p = 0.012) and it was not in
correlation with PC3 (r = 0.077, p = 0.251).
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Figure 3. Linear regression between PC1 and log-centroid size (log-CS) during larval and juvenile
stages of Chelon auratus. Red dots are larvae (24 dph), blue dots are juveniles (54 dph).

3.2. Metabolic Analysis

The ETS values were normally distributed for larval and juvenile specimens (Shapiro–Wilk
test, W = 0.969, p = 0.760; W = 0.978, p = 0.776, respectively). The F-test (F = 7.605, p < 0.001)
showed significant differences between their variances (2.63 and 20.01 for larval and juvenile stage,
respectively). The comparison of mean values between stages provided significant differences
between the stages (t-test, t = 11.174, p < 0.001).

The linear relationships between all variables indicated a weak correlation of PC1
(r = −0.290, p < 0.05) with the log-ETS, whereas it was stronger with PC2 (r = −0.860,
p < 0.001) (Figure 4). Consequently, the linear stepwise regression analysis was only
performed using PC1 and PC2. These two variables explained the 23% of total variance
of ETS activity (F2,47 = 7.02, p = 0.002), mainly indicating that smaller individuals and a
greater anal–caudal region had a higher metabolic activity.

Animals 2023, 13, x  7 of 13 
 

 
Figure 3. Linear regression between PC1 and log-centroid size (log-CS) during larval and juvenile 
stages of Chelon auratus. Red dots are larvae (24 dph), blue dots are juveniles (54 dph). 

3.2. Metabolic Analysis 
The ETS values were normally distributed for larval and juvenile specimens 

(Shapiro–Wilk test, W = 0.969, p = 0.760; W = 0.978, p = 0.776, respectively). The F-test (F = 
7.605, p < 0.001) showed significant differences between their variances (2.63 and 20.01 for 
larval and juvenile stage, respectively). The comparison of mean values between stages 
provided significant differences between the stages (t-test, t = 11.174, p < 0.001). 

The linear relationships between all variables indicated a weak correlation of PC1 (r 
= −0.290, p < 0.05) with the log-ETS, whereas it was stronger with PC2 (r = −0.860, p < 0.001) 
(Figure 4). Consequently, the linear stepwise regression analysis was only performed 
using PC1 and PC2. These two variables explained the 23% of total variance of ETS activity 
(F2,47 = 7.02, p = 0.002), mainly indicating that smaller individuals and a greater anal–caudal 
region had a higher metabolic activity. 

 
Figure 4. Stepwise regression analysis between the metabolic activity (log-ETS) and significant PC 
components during larval and juvenile stages of Chelon auratus. Red dots are larvae (24 dph), blue 
dots are juveniles (54 dph). 

Figure 4. Stepwise regression analysis between the metabolic activity (log-ETS) and significant PC
components during larval and juvenile stages of Chelon auratus. Red dots are larvae (24 dph), blue
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4. Discussion

In recent years, many studies have focused on embryonic and larval development for
the domestication of mugilids as important target species for aquaculture [79–81]. Among
other reasons, they are low trophic level species, which makes them undemanding in the
type of prey to ingest, their organ development is fast, and they show a good adaptability
to hatching in different environmental conditions, mainly regarding salinity and tempera-
ture [55,82]. However, despite significant advances, rearing conditions and morphological
changes during larval development are still under investigation [59,83]. In this context,
our study describes the common morphological changes that occur during the ontogenetic
development from larval to juvenile stage in fishes. These changes are visible in the eye
position and size, mouth size, gill apparatus area, and body elongation especially in the
anal–caudal region. They were not uniform during the growth for the whole larvae, which
explains the high grade of morphological heterogeneity. From an ecological perspective,
the morphological disparity reflects a fast allometric growth [34,35]. This could potentially
mean that larvae exhibit an adaptive suitability to the different physio-chemical environ-
ment conditions [84] driving their recruitment, distribution, and survival [85]. The larval
stage finishes when the disparity decreases and the growth becomes isometric, which is
an omen of the onset of the juvenile stage [35,39]. Throughout this transition, body shape
of larvae changes to become deeper and laterally compressed, which is more appropriate
for fast swimming [45,86,87]. The shift in shape can be interpreted as a transition from
anguilliform to subcarangiform motion [39,88,89].

The estimation of oxygen consumption is important in energy budgets, especially
when attempting to determine energy requirements for growth and survival of fish lar-
vae [90]. Studies have concluded that specific ETS activity increases with the ontogenetic
development from eyed egg to juvenile stages [91,92] present study. Future climate change
conditions seem to increase the energy demand during the embryonic and larval stages,
which potentially may constitute a survival bottleneck [92,93]. Knowing that the metabolic
activity and growth rate are interconnected [94,95], different studies have focused on the
intensity of protein degradation during the active growth period. The studies demonstrated
its utilization as an energy source for swimming, reducing the locomotion cost for obtaining
a higher speed [88,96,97]. Khemis et al. [39] observed in Chelon labrosus that during meta-
morphosis, the fish developed an adult axial muscle distribution, showing a decrease in the
red muscle (aerobic respiration) and an increase in the white muscle in this area (anaerobic
respiration) in the anal–caudal region. This region is key for body movement during
swimming and requires high protein content and oxygen supply. This organization and
development of the axial musculature was related to the increased swimming performance
during the larval stage to reduce predation. Although the present study did not analyze
the musculature organization between stages, we found that the anal–caudal region varied
independently of the ontogenetic development (PC2 component) and showed a weak cor-
relation with ETS activity. Considering that high levels of ETS require greater muscle mass
and cell respiration [87], proportion of the muscular types vary during the transformation
of larval to juvenile individuals [39,98]. It is plausible to think that there is a tridimensional
growth favoring the anaerobic respiration and a high activity, independent of ontogenetic
stage. Given the limitations of geometric morphometric analysis used in the present study,
all evidence suggests that individual growth in body shape elongation may be more inter-
esting than the ontogenetic stage itself. The results can contribute to understanding the
energetic requirements of individuals during these early vulnerable stages.

From an eco-evolutionary point of view, the observed phenotypic plasticity may be
linked with the ability of mugilids to cope well with salinity fluctuations shortly after
hatching until the larva stage [99–101]. However, oxygen consumption does not appear
to vary in eggs and larvae reared at different salinities [101]. This could likely be due to
the osmoregulatory mechanisms developing precociously [102]. In addition, individuals
with higher ETS activity and more developed anal–caudal regions should have higher
swimming performance. These individuals could be more efficient in avoiding predators
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and feeding [103], which will eventually favor their survival and growth, respectively.
However, observational experiments are needed to demonstrate this.

5. Conclusions

The present study represents a first step to assess the body shape changes during
ontogenetic development and their relationship with fish metabolism. We found high mor-
phological disparity during ontogenetic development, even under constant environmental
conditions. Different growth trajectories and morphological variability were observed
during the development, although the morphological shifts in the anal–caudal region could
be related to variations in the type and disposition of muscle and energy demands. Given
that this morpho-functional variation is independent of ontogenetic development, the
present study opens new lines of research needing to be clarified, especially under different
scenarios of climatic changes where the phenotypic plasticity can play a key role in the
sustainability of fishery resources.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/ani13030370/s1, Table S1: Summary of individuals used in each analysis.
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