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Abstract 

We experimentally study how the reordering techniques affect the rate of con-
vergence of preconditioned Krylov subspace methods for nonsymmetric sparse 
linear systems, where the preconditioner is a sparse approximate inverse. In 
addition, we show how the reordering reduces the number of entries in the ap­
proximate inverse and thus, the amount of storage requirement and computations 
for a given accuracy. These properties are illustrated with a numerical experiment 
taken from the discretization of PDE by a finite element method. 

Introduction 

The solution of sparse linear systems Ax = b hy preconditioned Krylov methods 
is studied. We focus our work on sparse approximate inverse preconditioners. These 
preconditioners are specially interesting in parallel environment since their construction 
and application at each step of the iterative method, i.e. matrix-vector products, 
are highly parallelizable. On the other hand, even on sequential computations, the 
sparse approximate inverse preconditioners may be useful for solving those problems 
for which other type of preconditioners such as ILU fail. The approximate inverse here 
considered, is a versión of the SPAI proposed by Grote et al [1], and both theoretical 
and computational aspects have been analyzed in [2],[3]. We present results of the 
eíTect of reordering not only on the amount of the entries in the inverse factors, but 
also on the number of steps of the iterative solver. Although the inverse A~^ is usually 
fuU, regardless of the ordering chosen, we experimentally show how the fiU-in of the 
sparse approximate inverses is dependent on the ordering of A. A similar study has 
been carried out by Benzi et al [4] for factorized approximate inverses. Also, interesting 
results on the effect of ordering for incomplete factorization in the convergence of Krylov 
subspace methods may be found in [5]. 

Sparse approximate inverse computation 

Next we consider an explicit preconditioner [13]. Our algorithm automatically 
searches one by one the non nuil entries in matrix M, starting from the diagonal struc-
ture. Let denote by rj. = m}j.A — e\., the residual corresponding to the row k oí M and let 
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Ik betheset of Índices ofthe non nuil entriesinr-^, \.e.,Xk = {i € {1,2, ...,n} / rki 7̂  0}. 
If Ck = {I & {1,2, ...,n} I mki 7¿ 0}, then the new entry is searched in the set J^ = 
{j € C\/ aji ^0,'ii G^k}- Indeed, the only entries considered in m^ are those affect-
ing to non nuil ones of r[, We assume that C^ U {j} = {íÍ!*2i---!*pfc} is not empty, 
with pk being the actual number of non nuil entries of m^ and i^^ — j , for all j £ Jk-
For each j , we compute 

,tl^det(Gf_i)det(Gf) ^ ^ 

where, for all fc, det (GQ) ~ 1 and Gf is the Gram matrix of the rows ÍÍ,¿2I •••>̂ f of 
matrix A with respect to the euclidean inner product, D^ results from replacing the 
last row of matrix G* by a^k^.,a^k¡^,.••, a^k¡^, with 1 < ¿ < Pfc. The Índex j^ which makes 
minímal the valué of ||m^^ — e\\\^ is selected. This strategy defines the new selected 
índex jk only attending to the set £*,, what leads us to an actual optímum where all the 
entries correspondíng to the índices of Ck are updated. Thus the row corresponding 
to mj. is searched in the set Sk = {m'¡.£ WP/rriki = 0; Vi ^ £)c U {j*,}}, of which entries 
are computed at each stáge by 

^1= E 
det (Df) 

^-^ M (2) 
í=i 

det (Gf_i) det (Gf) 

where ñi\ is the vector with non nuil entries ¿̂  [i < h < 1). Each of them is obtaíned 
evaluatíng the corresponding determinant which results from replacing the last row of 
det (Gf) by e^, with l<l<Pk. 

Some remarks on reordering 

We have considered several reordering techníques in order to illustrate the effect 
of ordering on the iterative resolution of linear systems of equations using SPAI pre-
conditioners. The original ordering corresponds to matrices dírectly arising from Fi-
nite Element Method with unstructured meshes and adaptive mesh refinement. The 
reordering algorithms are summarized below (see, e.g., |14) and [15]). Let ^ be a non-
symmetric matrix of dimensión n with symmetric pattern and let G = {V, E) be the 
directed graph of the matrix A, where V = {1, ...,n} is the set of nodes and E is the 
set of edges (i, j) such that ÜÍJ ^ Q. The set of nodes adjacent to v in G is denoted by 
AdJG{v). The degree of the node v is \AdJG{v)\- L{G) is a partition of the set of nodes 
V which is known as a level structure rooted at a node v, where Lj = {D} and L¿ is the 
set of the nodes adjacent to nodes of level L¿_i which are not yet in a previous level. 
The width of the level i, Wi{L), is defined by the cardinality of Li, and the width of 
the level structure L{G) is w{L) = maxWi(L). 

The mínimum degree ordering has been used to reduce the fiU-in in factorization of 
matrices with symmetric sparsity pattern. The performance of the algorithm may be 
found in [6]. 
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Mínimum Degree algorithm. 
1. Define the graph G = {V,E), associate with the matrix A. 
2. While V yí$ 

2.1 Select a node v of minimum degree in G and order v next 
2.2 Define 

V, = V- {v} and Ey = {{i,j} € E : i,j € K,}U 
{{hJ} -i^janáie AdJG(w), j € A d j c H } • 
Set y = K , í^ = -E„ and G ^ {V, E). 

3. End 

The Reverse Cuthill-Mckee algorithm [8] is a modification of the Cuthill-Mckee al­
gorithm [16] that simply takes the reverse ordering of that obtained by this last one, 
The general characteristics of these algorithms are the reduction of bandwidth and 
profile. 

Reverse Cuthill-Mckee algorithm. 
1. Define the graph G = {V,E), associate with the matrix A. 
2. Select a node p in l^ of minimum degree in G and order p the first 
3. Generated the level structure rooted at node p L{G). 
4. For 1 < i < number of levéis, do 

4.1. For 1 < j < Wi{L), do 
Select a node v in Z,¿ of minimal width and order v next 
Set Li = Li — {v} 

5. Set the inverse ordering, i.e., change the numbering CM{v) associated to the 
node V to RCM(v) = n + 1 - CM{v) 

6. End 

The Minimum Neighbouring [7] is a variant of the Minimun Degree algorithm which 
works by eliminating the selected nodes in the structure of the graph associated vî ith 
the matrix .4, such that no new edge is defined and inserted in the graph. It chooses a 
node which has the minimum number of neighbours. This algorithm is specially useful 
when we look for an incomplete factorization with the same sparsity pattern as matrix 
.4, e.g. the ILU(O) preconditioner which will be used in the numerical experiments of 
this paper. 

Minimum Neighbouring algorithm. 
1. Define the graph G = (V, E), associate with the matrix A. 
2. While V / 0 

2.1 Select a node v of minimum degree in G and order v next 
2.2 Define 

V'„ = r - {z;} and £•„ = {{i,j} e E -.ij e v;} 
Set V = \l,E = E„ a n d G = {\\E). 

3. End 
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In all the algorithms, we start from a pseudoperipherical node searched by the 
George's algorithm. 

The main objective of this work is to answer the following questions: 
1. Does the reordering reduce the amount of entries in the SPAl preconditioners? 
2. Does it improve the convergence of iterative solvers with such preconditioners? 
Since {P'^AP)~^ = P'^'A'^P, i.e., the inverse of the reordered matrix is the reorder­

ing of the inverse matrix, when we reorder a matrix, its approximate inverse should 
tend to the reordered inverse. 

If the accuracy of the approximate inverse is given by s, in the subspace S C M„{R), 

mm\\MA-I\\^ = \\NA-I\\p<e (3) 

then, 

min | | M ' P ' ^ ^ P - / | L = m i n | | M A - / | | < e (4) 

Let 5' be a subspace of M„(K) corresponding to the same number of non nuil entries 
as 5, where the optimal approximate inverse is obtained for such a number of non nuil 
entries. Also note that the number of non nuil entries of S is the same as P^SP. In 
this case, we obtain, 

\\N'P^AP-l\l=n^m\\M'P^AP-l\l 
(5) 

< min | |M'P^AF-7|L <e ' 

Evidently, the number of non nuil entries needed in S' becomes less or equal to that in 
P^SP and thus in S. We conclude that the reordering reduces the amount of entries 
in the approximate inverse for a given accuracy £, or at least does not augment it. 

Due to the result given in (5), the reordered sparse approximate inverse precon­
ditioners adquire better properties from the point of view of the performance of the 
iterative solver [3]. The closeness of the condition number of M'P'^AP to 1 is charac-
terized by, 

, , „ , l + \\M'P'^AP-lL 
^^(^'^'^P) ^ rA\M'prAP-li (^) 

The (M'P^AP)'s departure from normality is bounded by, 

i ¿ ( | A , | - a,f < ^ \\M'P^AP\\l (1 - a„) (7) 

with {Xk]1^i' {'̂ fc}fc=i being the eingenvalues and singular valúes of M'P'^AP (non 
increasing modules sequence). Finally, the clustering of eigenvalues and singular valúes 
is defined by, 

¿ ( 1 - < 7 , ) ^ < | | M ' P ' ^ A P - / | | ; (8) 
k=\ 

j^{\-Kf<\\M'P^AP-lf^ (9) 
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Numerical experiments 

The BiCGSTAB algorithm proposed in |9) is a variant of BiCG algorithm which 
provides a smoother convergence behaviour than CGS algorithm [17]. We have used it 
in our numerical experiments since it has preved to be an efficient iterative solver in 
convection-diffusion problems of the type solved here [18]. The numerical example is a 
convection-diffusion problem {convdifhor ]19]) defined in [0,1] x [0,1] by the equation, 

du íd^u d'^u\ _ 

dx \dx'^ dy'^ J 

where Vi = 10^ (y — 1) {x — x'^) (I — x), K = 10"^ inside the triangles of vértices 
{(0.5,0), (1,0.5), (0.5,0.5)} and {(0,0.5), (0.5,0.5), (0.5,1)}, elsewhere K = 10^, and 
F = W inside the triangles {(0.5,0), (1,0), (1,0.5)} and {(0,0.5), (0.5,1), (0,1)}, else­
where F = 1. Dirichlet boundary conditions, it = O on a; = 1 and w = 1 on a; = O were 
considered. Elsewhere of the boundary we set nuil Neumann conditions. The matrix 
corresponds to an unstructured mesh of finite elements with n = 1960 and nz = 13412. 
Tables 1-4 indícate the performance of ILU(O) and SPAI preconditioners. The reduc-
tion of the amount of entries in the SPAI matrices is between 40 and 50 per cent for 
Mínimum Degree and Reverse Cuthill-Mckee. The Mínimum Neighbouring does not 
affect to nz. Furthermore, the number of iteration of BiCGSTAB was reduced by both 
reorderings from 60 to 70 per cent. Since we are interested in the effect of the reordering 
of A in the characteristics of the SPAI preconditioners, the sparsity pattern of matrix 
M with £it = 0.3 is shown in Figures l(a)-(d) for Original, Mínimum Degree, Reverse 
Cuthill-Mckee and Mínimum Neighbouring orderings, respectively. Any non nuil entry 
is represented by a point. The pattern corresponding to the original ordering represents 
a fuU matrix, as expected. However, a certain parallelism with the structure of A is 
noticed. The bandwidth and profile reduction carried out by the Reverse Cuthill-Mckee 
algorithm in matrix A are somehow saved in matrix M, even though there is a tendency 
to exploit some entries out the profile. This is clearly illustrated in Figure l(c). The 
patterns of SPAI matrices corresponding to Mínimum Degree and Mínimum Neigh­
bouring also save in part the structures of the reordered matrix A, respectively, even 
when our SPAI algorithm should not produce matrices M with symmetric structure. 
In Figure 2 we compare the convergence behaviour of BiCGSTAB-SPAI(0.2) for all 
these reorderings. Clearly, the reordering produced by Mínimum Degree and Reverse 
Cuthill-Mckee have a beneficial effect in the rate of convergence of the preconditioned 
BiCGSTAB-SPAI algorithm. We conclude, as in other experiments carried out, that 
the sparsity pattern of SPAI starts from a structure similar to the typical of A obtained 
by reordering, and tends to a full matrix as we augment its accuracy. 
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Preconditioner 
Unprecond. 

ILU(O) 
SPAI Sk = 0.6 
SPAI Ek = 0.4 
SPAI Ek = 0.3 
SPAI £k = 0.2 
SPAI £:;t = 0.1 

Iter 

> 1-960 
74 

414 
302 
171 
83 
21 

nz{M) 
1960 

13412 
3161 
10693 
21734 
54406 

167678 

nz{M)/nz{A) 

0.15 
1.00 
0.24 
0.80 
1.62 
4.06 
12.50 

\\MA-I\\F 

13279 
-

22.42 
16.99 
12.78 
8.70 
4.36 

Table 1: Convergence results for condiflior with Original Ordering and left precondi-
tioned BiCGSTAB 

Preconditioner 
Unprecond. 

ILU(O) 
SPAI ek = 0.6 
SPAI ek = 0.4 
SPAI Ek = 0.3 
SPAI Ek = 0.2 
SPAI efc = 0.1 

Iter 
> 1960 

57 
166 
99 
68 
40 
21 

nz{M) 
1960 
13412 
2617 
6255 
11461 
26992 
92864 

nz{M)/nz{A) 

0.15 
1.00 
0.20 
0.47 
0.85 
2.01 
6.92 

\\MA-I\\F 

13275 
-

19.82 
15.18 
11.42 
7.78 
3.85 

Table 2: Convergence results for condiflior with Mínimum Degree and left precondi-
tioned BiCGSTAB 

Preconditioner 
Unprecond. 

ILU(O) 
SPAI Ek = 0.6 
SPAI Ek = 0.4 
SPAI Ek = 0.3 
SPAI Sk = 0.2 
SPAI Ek = 0-1 

Iter 
1477 
31 
144 
92 
66 
41 
18 

nz(M) 
1960 

13412 
2510 
6126 
11355 
26270 
88093 

nz{M)/nz{A) 
0.15 
1.00 
0.19 
0.46 
0.85 
1.96 
6.57 

\\MA-I\\F 

13272.9 
-

19.51 
15.51 
11.67 
7.98 
4.01 

Table 3: Convergence results for condifhor vî itli Reverse Cuthill-McKee and left pre-
conditioned BiCGSTAB 

Preconditioner 
Unprecond. 

ILU(O) 
SPAI Ek = 0.6 
SPAI Ek = 0.4 
SPAI £k = 0.3 
SPAI Ek = 0.2 
SPAI Ek = 0-1 

Iter 
> 1960 

45 
397 
294 
173 
86 
24 

nz{M) 
1960 
13412 
3161 
10693 
21734 
54406 
167678 

nz(M)/nz{A) 
0.15 
1.00 
0.23 
0.80 
1.62 
4.06 
12.50 

| | M ^ - / | | F 

13271.5 
-

22.41 
16.98 
12.78 
8.69 
4.36 

Table 4: Convergence results for condiflior with Minimun Neighbouring and left pre-
conditioned BiCGSTAB 
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Figure 2: Performance of BiCGSTAB-SPAI with different reorderings. 
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Conclusions 

We have experimentally proved that reordering techniques have beneficial effects 
on the performance of sparse approximate inverses which are used as preconditioners 
in iterative solvers based on Krylov subspace methods. The reduction of the number 
of nonzero entries due to the reordering allows to obtain sparse approximate inverses 
with similar accuracy as those obtained without reordering, but at a lower storage re-
quirement and computational cost. In addition, the reordering provides better .quahty 
preconditioners since the number of steps of an iterative solver for convergence is gen-
erally reduced. Further research must be carried out on the effect of other reordering 
techniques which take into account the numerical valúes of the entries of A, (see e.g. 
[20], [21]). Though these techniques are usually too expensive, when several linear 
systems involving the same matrix are solved, they may be a competitive choice in 
parallel machines. 
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