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Abstract

Branchiostomatidae (lancelets or amphioxus) comprises about 30 species, several of which

are well-established models in evolutionary development. Our zoological and ecological

knowledge of the family is nonetheless limited. Despite evident differences can be found

among known populations, the taxonomy of Branchiostoma lanceolatum (type species of

the genus Branchiostoma) has never been investigated with modern methods through its

range in the northeastern Atlantic and Mediterranean Sea. We address this via a multilocus

molecular approach and comparing specimens collected from different European popula-

tions. Results obtained here confirm the presence of a single species inhabiting the range

between the topotypical localities of B. lanceolatum (Atlantic Ocean) and of its junior syno-

nym B. lubricum (Mediterranean Sea), without evincing geographical structure between

populations. This suggests that environment most likely drives the characteristics observed

in different geographic areas. The long larval phase and the slow mutation rate in lancelets

may have played a key role in the evolutionary history of this iconic species.

Introduction

The family Branchiostomatidae Bonaparte, 1846 (subphylum Cephalochordata) comprises

about thirty species, known as lancelets or amphioxus [1–4]. They inhabit the soft bottoms of

various sublittoral and coastal habitats (estuaries, coastal lagoons, river deltas, and open coasts)

from temperate to tropical regions [5–7] and some species grow up to 10 cm in length. Lance-

lets are generally benthic, living half-buried and only exposing the rostral end to the water.

They filter plankton through the gill-bars by generating a ciliary water current, entering from
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the mouth through the buccal cirri. Food particles are embedded in mucus, collected in the

pharynx and then passed into the intestine [6–10].

Until recently, lancelets were divided in the genera Branchiostoma Costa, 1834 (the most

diverse genus, exceeding twenty species) and Epigonichthys Peters, 1876 [1, 11]. However, sub-

sequent studies reinstated the genus Asymmetron Andrews, 1893; these allocated there some

taxa previously ascribed to Epigonichthys and investigated the phylogenetic relationships

between the three clades, suggesting that Asymmetron diverged first and that Epigonichthys
and Branchiostoma are sister groups [2, 3, 12–14].

Notwithstanding morphological differences between the three genera in gonads organiza-

tion, metapleural fold, and caudal process [1, 2, 14], they share the same adult morphology, a

translucent and elongated body with well visible neural tube, a notochord, an endostyle, a seg-

mented musculature and a postanal tail [15–17]. Despite sharing these features with verte-

brates, lancelets lack key vertebrate structures, such as migratory neural crest cells, a highly

regionalized brain, or paired sense organs [18].

The morphological similarity of lancelets to vertebrates and their phylogenetic relatedness

has attracted the scientific attention of biologists for centuries [19]. In particular, the European

Branchiostoma lanceolatum [20], the East Asian Branchiostoma belcheri [21], and the Florid-

ian–Caribbean Branchiostoma floridae Hubbs, 1922, have become established model organ-

isms for the evolution of the developmental mechanisms (Evo-Devo) during the transition

from invertebrate to vertebrate chordates [16, 22–25]. Moreover, the lancelet genome resem-

bles that of the chordate ancestor in terms of conserved organization, regulation, and function

[26–28].

Despite the general importance of Branchiostomatidae, little is known about much of this

family. Several species were newly described, or their taxonomy has been clarified only

recently [2, 29, 30], and species misidentification or cryptic diversity have been found using

molecular approaches or integrative taxonomy [14, 31–36]. Moreover, new records of lancelet

larvae or adults improved our assessment of species-specific geographical distribution and eco-

logical traits at a range of scales [37–46].

Finally, even widely studied lancelet species still lack rigorous characterization. As an exam-

ple, the taxonomy and phylogeography of B. lanceolatum, the type species of its genus (see

[47]), has never been investigated with modern approaches through its range in the northeast-

ern Atlantic–Mediterranean Sea. Yet, populations differ in size and morphology (Atlantic

specimens are larger), developmental rate (Atlantic larvae grow slower), and spawning period

(of longer duration in the Mediterranean Sea) [48–51]. We addressed this using a multilocus

molecular approach to compare B. lanceolatum specimens collected from diverse European

populations by both Atlantic and Mediterranean coasts.

Material and methods

Sampling

Lancelet specimens were collected between 2012 and 2017 in five European localities (two

from the Atlantic Ocean, two from the western Mediterranean Sea, and one from the central-

eastern Mediterranean Sea) and including populations widely exploited for Evo-Devo studies

[28, 52–56]. Noteworthy, specimens were also sampled from near the type localities of Limax
lanceolatus Pallas, 1774 (Cornwall: see [20]) and Branchiostoma lubricum Costa, 1834 (Naples,

Italy: see [47]), the only confirmed subjective junior synonym of B. lanceolatum. Sampled

localities are summarized in Table 1 and shown in Fig 1. Voucher specimens were fixed in 70–

100% ethanol for molecular analyses, shortly after collection.
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Ethical statement

The field study did not involve endangered or protected species. All animal procedures were

in compliance with the European Union guidelines.

DNA extraction, amplification, and sequencing

Genomic DNA was extracted from adult lancelets as previously described [56]. Partial

sequences of three mitochondrial genes widely used for taxonomic studies, namely cytochrome
c oxidase subunit I (COX1), 12S ribosomal ribonucleic acid (12S rRNA), and 16S ribosomal
ribonucleic acid (16S rRNA), were amplified from three specimens randomly selected from

each sampling locality, using the following species-specific primers designed for this study

using OligoEvaluator™: Cox1_forward 5’-GATTCATAATATGCGTGCTAGC-3’ and Cox1_

reverse 5’-CGGCTCCTATAGACAAAACG-3’; 12S_forward 5’-GGGTTACTGATGAT
ACATGC-3’ and 12S_reverse 5’-CTACTATTGACTACACCCTG-3’; 16S_forward 5’-
CGCCTGTTTAACAAAAACAT-3’ and 16S_reverse 5’-CGGTCTGTACTCAGATCA
CGTA-3’.

Table 1. Sampling sites (codes as in Fig 1) with geographic coordinates (WGS 84), environmental data, sampling gear, date, and legit.

N Locality Coordinates Substrate Sampling Date Legit
BRO France: Roscoff 48.726667, -3.850833 gravel, 1–2 m dredge May 2017 Agnés Boutet

BFA Portugal: Faro, Ria Formosa 37.009093, -7.995101 sand, 1–2 m hand dredge July 2012 Filipe Castro

BAR France: Argelès sur Mer, Le Racou 42.540802, 3.061389 sand, 8–15 m dredge June 2016 Hector Escriva

BNA Italy: Napoli, Posillipo 40.809354, 14.208846 sand, 8–15 m dredge May 2015 Salvatore D’Aniello

BSI Italy: Siracusa, Plemmirio MPA 37.039364, 15.309600 sand, 10–12 m grab June 2015 Gianfranco Mazza

https://doi.org/10.1371/journal.pone.0251358.t001

Fig 1. Map of the sampling sites (codes correspond to the localities reported in Table 1) highlighting the type localities of Limax lanceolatus
Pallas, 1774 (red square) and Branchiostoma lubricum Costa, 1834 (red circle).

https://doi.org/10.1371/journal.pone.0251358.g001
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PCR was conducted in a 25 μl volume reaction, containing 5 μl of Green GoTaq Reaction

Buffer (5×), 1.75 μl of MgCl2 (25 mM), 0.5 μl dNTP mix (10 mM each), 1 μl of template DNA

(50–80 ng/μl), 2.5 μl of each primer (5 μM), 0.12 μl of GoTaq1DNA Polymerase (5 u/μl), and

distilled water. Amplifications were performed according to the following conditions: initial

denaturation at 95˚C (5 min), followed by 30 cycles of denaturation at 95˚C (30 sec), annealing

at 55˚C (30 sec), extension at 72˚C (1 min), with a final extension at 72˚C (5 min).

PCR products were examined on ethidium bromide-stained 1% agarose-TAE gels, and

bands of the appropriate molecular weight were extracted from the gel and purified using the

GFX™ PCR DNA and Gel Band Purification Kit (GE Healthcare Life Sciences). For each speci-

men, the three amplified gene fragments were cloned in pGEM1-T Easy Vector (Promega)

and Sanger sequenced from both directions using the M13 forward and reverse primers (Pro-

mega). Sequencing was carried out with an Automated Capillary Electrophoresis Sequencer

3730 DNA Analyzer (Applied Biosystems) using the BigDye1 Terminator v3.1 Cycle Sequenc-

ing Kit (Life Technologies).

Sequences and sequence alignment

Sequences obtained for the three gene fragments were compared with reference sequences

from the NCBI nucleotide database using BLASTn [57], and assembled into single contigs for

each specimen using Sequencher v.5.4 (Gene Codes Co.; Ann Arbor, MI, USA). Complete

mitochondrial genomes from the genus Branchiostoma were acquired from GenBank [58],

together with those of Epigonichthys maldivensis (NC_006465) as outgroup based on its sister

relationship with Branchiostoma taxa [3, 14, 36].

To construct the data set, the amino acid sequences of the partial COX1 gene were aligned

using Translator X [59] to better align based on peptide sequence, whereas orthologous nucle-

otide sequences of the ribosomal RNA mitochondrial genes were aligned separately using

MAFFT [60]. The nucleotide alignments from the three gene fragments (COX1, 12S, and 16S)

were then concatenated. Alignment format conversions were performed using the ALTER

webserver [61].

Phylogenetic analyses

We conducted phylogenetic analyses on the complete aligned and concatenated multilocus

data sets, using two optimality criteria: Maximum likelihood estimation (ML) [62] and Bayes-

ian inference (BI) [63]. ML analyses were conducted with RAxML v.8.1.16 [64] using the rapid

hill-climbing algorithm.

BI analyses were conducted using MrBayes v.3.2.7a [65] on XSEDE through the on-line

CIPRES Science Gateway v.3.3 [66]. We ran four simultaneous Markov chains for two million

generations, sampling every thousand generations, and discarding the first quarter of genera-

tions, to prevent sampling before reaching stationarity (assessed by plots of log likelihood val-

ues and standard deviation of split frequencies). Two independent Bayesian inference runs

were performed to assure adequate mixing of the Markov chains and detect convergence.

The best partition scheme and best-fit models of substitution for the data set were identified

with Partition Finder 2 [67], applying the Akaike information criterion [68]. The partitions

tested were all genes combined; all genes separated; and genes grouped by subunits—i.e. cox,

ribosomal. Support for internal branches was evaluated by non-parametric bootstrapping [69]

with a thousand replicates (ML) and by Bayesian posterior probabilities (BI). Maximal, high,

moderate, and poor support for nodes was defined for ML as 100%, >70%, 50–70%, and

below 50%, and for BI as 1,>0.95, 0.90–0.95%, 0.90, respectively.
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Genetic distances

We evaluated genetic distances to assess species boundaries. Genetic distances (shown as the

percentage difference in base substitutions per sites) were computed using the Kimura

2-Parameters (K2P) model [70] with a thousand bootstrap resampling using MEGA X [71],

treating the concatenated dataset (COX1, 12S, and 16S) as a single locus.

Species delimitation analyses

Three different approaches were used for species delimitation: the Bayesian implementation of

the Poisson Tree Processes model (bPTP) [72], the Automatic Barcode Gap Discovery

(ABGD) method [73], and a statistical parsimony network analysis (TCS) [74].

The bPTP is a phylogeny-based species delimitation method that delimits species based on

single-locus molecular data [72]. Species delimitation was thus analyzed using the entire mito-

chondrial dataset (COX1+12S+16S) as a single-locus data [75], and the bPTP was run to com-

pare the number of species delimited by each model. The PTP model uses non-ultrametric

trees to enumerate species in terms of the number of substitutions, which indicates branch

length. The phylogenetic trees obtained using BI and ML provided inputs for comparison.

The bPTP analysis was performed in the Exelixis Lab species delimitation web server

(http://species.h-its.org), as follows: the number of MCMC generations was 105, as recom-

mended for small trees, thinning was set to 100 and we discarded the first quarter of samples.

Convergence of the parameters was checked after the run.

The ABGD method detects the so-called ‘barcode gap’ in the distribution of pairwise dis-

tances [73, 76]. A distance value corresponding to the most reliable gap was used to group the

sequences in MOTUs (Molecular Operational Taxonomic Units) [77]. The concatenated

dataset alignment was processed using the ABGD program (https://bioinfo.mnhn.fr/abi/

public/abgd/abgdweb.html), excluding the outgroup E. maldivensis. We applied default

parameters with the Kimura two-parameter (K2P) model [70] and the following settings: a

prior constraint on the maximum value of intraspecific divergence between 0.001 and 0.1, 10

recursive steps within the primary partitions defined by the first estimated gap, and a gap

width of 1.5.

The statistical parsimony network analysis calculates the maximum number of mutational

steps constituting a parsimonious connection between two haplotypes [74, 78]. The haplotypes

are then joined into networks as per Templeton and colleagues [79], and those separated by

more mutational steps (i.e. probability of secondary mutations exceeding 5%) remain discon-

nected. A statistical parsimony network analysis implemented in the TCS program [80] was

applied to the complete Branchiostoma dataset to differentiate species in a mixed sample [81,

82]. Moreover, two complementary analyses (one with the concatenated fragments and one

with the COX1 fragment only) were also carried out on the B. lanceolatum dataset to identify

any geographic structure within the haplotypes found.

Results

Partial sequences of the three mitochondrial genes [COX1 (621 bp), 12S (488 bp), and 16S

(501 bp)] were obtained from three specimens from each of the five different localities (Fig 1,

Table 1, S1 Table). These were deposited in GenBank and accession numbers are reported in

S2 Table. Our GenBank data extraction yielded complete mitochondrial genomes of 48 Bran-
chiostoma specimens, belonging to four different taxa, as well as that of E. maldivensis (S1

Table).

We acquired fragments of all the three genes from all complete mitochondrial genomes

derived from GenBank, and generated a concatenated matrix including all specimens. After
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alignment, the sequence data used for analyses consisted of 1653 characters (S1 File). The best

partition scheme for the data set was to treat the three concatenated loci separately. The best-

fit model of substitution for all was the GTR+G model. ML (-ln L = 7718.59) and BI (-ln

L = 8331.61 and -ln L = 8341.92 for the respective runs) analyses reached a similar tree topol-

ogy, with four well-defined terminal clades gaining maximal support (Fig 2).

Relationships between Branchiostoma clades were unclear, showing maximal support for

the BI analysis, but moderate support for the ML analysis (Fig 2). Moreover, our results placed

B. floridae as the sister species of a group composed by the remaining species, with B. lanceola-
tum diverging first, and B. belcheri and B. japonicum as sister species. Such data are consistent

with a previous work by [83] who used protein-coding genes of the mitochondrial DNA,

although they differ from other studies using phylogenomic data [84], complete mitochondrial

genomes [33], and 12S rRNA [83]. Phylogenetic relationships based on complete mitochon-

drial genomes are presumably more reliable than those obtained here; however, this is out of

the scope of the present work.

At a species level, two of the four terminal clades were monophyletic (those representing B.

floridae and B. lanceolatum) and the clade representing B. lanceolatum included all our experi-

mentally-derived specimens studied here. The two remaining clades comprised (i) a single

specimen of B. belcheri (AY932825: [83]) and (ii) several specimens described as B. belcheri
clustering with a single specimen of B. japonicum (NC_008069, derived from DQ407722:

[83]), respectively (Fig 2; S1 Fig). This first clade (i) corresponds to B. belcheri, whereas the lat-

ter (ii) corresponds to B. japonicum, which was considered a junior synonym or a subspecies

of B. belcheri until recently [13, 83].

The species delimitation approaches arrived at similar results and confirmed the topology

of the phylogenetic analyses, yielding four well-defined MOTUs (Fig 2; S1 Fig). The TCS anal-

ysis defined a total of 61 haplotypes in the concatenated dataset. Two B. lanceolatum
(AB194383 and AB478572) and two B. floridae (AB478581 and AB478582) specimens, respec-

tively, had identical sequences in all three fragments.

All the interspecific genetic distances were over 20% (Table 2). The lower genetic distance

was found between B. lanceolatum and B. belcheri (mean 20.6%, SEM ± 1.2%), while the high-

est was between B. floridae and B. japonicum (mean 25.9%, SEM ± 1.4%).

The TCS analysis on the concatenated B. lanceolatum dataset yielded a total of 25 different

haplotypes found in the 26 specimens analyzed (AB194383 and AB478572 were identical, see

above), but found no clear geographic structure (Fig 3). A similar result was also obtained

when analyzing the COX1 fragment only, with 17 haplotypes and the following samples shar-

ing haplotypes: (i) AB194383, AB478567, AB478572, AB478573, and BFA3; (ii) BNA2, BFA1,

and BRO3; (iii) AB478568, AB478570, and BSI3; (iv) AB478571 and BAR1 (S2 Fig). In both

cases, the Mediterranean coast of France had the most haplotypes (13 in the concatenated

dataset and 9 in the COX1 matrix), possibly explained by this region contributing the most

samples.

Discussion

The Mediterranean marine biogeography is mostly a subset of that of the Atlantic, having orig-

inated with the re-establishment of the Atlantic–Mediterranean connection (5.33 million years

ago) [85, 86], a phenomenon that would suggest conspecificity between the biotas of the two

seas. Indeed, several species possess an Atlantic–Mediterranean distribution [87–90]. How-

ever, phylogeographical barriers between the Atlantic Ocean and the Mediterranean Sea and

the geographical complexity of the Mediterranean have given rise to endemism, and cryptic

and vicariant species, even among conspicuous species and model systems [82, 91–94].
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Fig 2. ML and BI consensus tree based on the analyses of the concatenated mitochondrial dataset (COX1+12S+16S). Values at nodes represent ML

bootstrap support and Bayesian posterior probabilities, respectively. Colored bars indicate the results of the species delimitation analyses: bPTP with

ML tree in red, bPTP with Bayesian tree in blue, ABGD in green, and TCS in grey. Novel sequence samples are highlighted in bold (see S1 Table for

codes).

https://doi.org/10.1371/journal.pone.0251358.g002

Table 2. Average of the uncorrected pairwise genetic distances between Branchiostoma species based on the concatenated dataset (COX1, 12S, and 16S).

B. belcheri B. japonicum B. floridae
B. japonicum 21.2 ± 1.2

B. floridae 24.1 ± 1.3 25.9 ± 1.4

B. lanceolatum 20.6 ± 1.2 22.7 ± 1.3 23.5 ± 1.4

Values reported as percentage ± mean standard error.

https://doi.org/10.1371/journal.pone.0251358.t002
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Speciation remains one of the most controversial and least understood topics in evolution

due to the complexity and diversity of living organisms; it typically results from combining

various intrinsic and extrinsic factors including geographic barriers to larval dispersal, dura-

tion of the larval phase, and reproductive isolation due to prezygotic and postzygotic mecha-

nisms [95–98].

Recent advances in the use of DNA barcoding and integrative taxonomy are now clarifying

relationships between species and within ambiguous species-groups, including the biota of the

northeastern Atlantic and the Mediterranean Sea [92–94, 99, 100]. In fact, while the systemat-

ics of the Atlantic–Mediterranean biota dates back centuries [85, 86, 101, 102], we need to test

historical and morphological taxonomy with modern research approaches. This is particularly

important when differences among species can be subtle, as exemplified by Branchiostomati-

dae. Lancelets are typical examples of morphological and evolutionary stasis, exhibiting con-

served morphology, genetic machinery, and development regulation, even in species that

diverged million of years ago [103, 104].

Despite we tested here B. lanceolatum specimens from throughout its range in the north-

eastern Atlantic and the Mediterranean, none of the analyses done was able to discern them at

the species level, which implies that they constitute a single species. This suggests that

Fig 3. TCS for the concatenated matrix (COX1+12S+16S) of B. lanceolatum, showing relationships between the recorded haplotypes. See S1 Table

for codes. Abbreviations used: ATL–Atlantic Ocean; MED–Mediterranean Sea; AR–Argelès sur Mer; NA–Napoli; SI–Siracusa. Circles representing

haplotypes are scaled to their frequencies. Black dots represent missing intermediate haplotypes. Branch length connecting the different haplotypes is

proportional to the number of mutations, with small transversal lines along the connecting branches representing mutational steps.

https://doi.org/10.1371/journal.pone.0251358.g003
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environment most likely drives the peculiar characteristics observed in certain populations.

Indeed in diverse taxonomic groups, the Atlantic specimens outgrow their Mediterranean

counterparts [105], whereas developmental rates and spawning periods may differ due to the

discrepant mean temperatures between the two seas. Finally, the TCS analysis also failed to

identify a clear geographic structure; while this method warrants further testing with more sam-

ples, it is indeed in agreement with studies of other lancelet populations worldwide [106, 107].

The absence of speciation at the Atlantic–Mediterranean boundary may be explained by

(among other factors) the long-duration of the larval phase before settlement and the sluggish

mutation rate of this clade. In fact, the planktonic larvae of B. lanceolatum dwell in the plank-

ton until metamorphosis [48, 51], and the duration of the larval phase of lancelets is long, vary-

ing from one to three months, depending on species [9, 108–110]. This species may therefore

disperse widely, enhancing genetic connectivity among distant populations, and thus dimin-

ishing population structure. Moreover, cephalochordates generally exhibit a slow mutation

rate, with diverse Branchiostoma species barely differing even within their complete mitochon-

drial sequences [111–113].

Notwithstanding present results, this work refines our taxonomic and phylogeographic

understanding of an iconic and important model species and, more generally, of the Atlantic–

Mediterranean biota. Given that B. lanceolatum is the most widely-distributed species in the

genus, with historical records from other biogeographic areas than the Atlantic–Mediterra-

nean, including the Red Sea and the Indo–Pacific region (review in [1]), further work ought to

explore the taxonomy of this species in A Phylogenomic Framework and Divergence History

of Cephalochordata Amphioxus Framework global context.

Supporting information

S1 Table. GenBank identification numbers for Branchiostoma and Epigonichthys maldi-
vensis sequences used in the present analyses and associated specimen data (localities

obtained from GenBank and/or relevant paper/s). �Misidentifications for Branchiostoma
japonicum (see [13, 83]). Codes as in Table 1, Figs 1–3 and S1 and S2 Figs. Abbreviations used

(GenBank ID): CM—complete mitochondrial; COX1—cytochrome c oxidase subunit I; 12S -

12S ribosomal ribonucleic acid; 16S - 16S ribosomal ribonucleic acid.

(PDF)

S2 Table. GenBank accession numbers.

(XLSX)

S1 Fig. TCS for the concatenated matrix (COX1+12S+16S) of Branchiostoma lanceolatum,

showing relationships between the recorded haplotypes. See S1 Table for codes. Circles rep-

resenting haplotypes are scaled to their frequencies. Branch length connecting the different

haplotypes is proportional to the number of mutations, with small transversal lines along the

connecting branches representing mutational steps.

(TIF)

S2 Fig. TCS for the COX1 matrix of Branchiostoma lanceolatum, showing relationships

between the recorded haplotypes. See S1 Table for codes. Abbreviations used: ATL–Atlantic

Ocean; MED–Mediterranean Sea; NA–Napoli; SI–Siracusa. Circles representing haplotypes

are scaled to their frequencies. Black dots represent missing intermediate haplotypes. Branch

length connecting the different haplotypes is proportional to the number of mutations, with

small transversal lines along the connecting branches representing mutational steps.

(TIF)
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S1 File. Alignment of the concatenated dataset (COX1+12S+16S).
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