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Dedicatoria 

Esta tesis está dedicada a mi abuelo, quien a lo largo de su vida caminó 6 km 

diarios para trabajar su tierra con el único objetivo de alimentar a su familia. Incluso 

meses antes de morir por múltiples patologías, entre ellas Alzheimer, y sin conocimiento 

científico, se pasaba los días recorriendo (a su ritmo) un pequeño carril de ida y vuelta de 

50m que tenía a la entrada de su casa. Él estaba convencido de que permanecer 

físicamente activo era lo único que le permitiría mantenerse con vida, físicamente 

independiente y mentalmente saludable. Como experimento casero, cada vuelta que daba 

al carril dejaba una pequeña piedra de lado para tener una referencia de los metros que 

había caminado ese día e intentar mejorar al día siguiente. Esta tesis aspira a ser una de 

esas piedras que él dejaba, una referencia personal del trabajo de estos últimos 4 años que 

intentaré superar en el futuro con los valores que aprendí de mi abuelo: trabajo duro, 

constancia y humildad. Sin duda, la memoria de mi abuelo me sigue motivando en el día 

a día más que los posibles éxitos que pueda llegar a alcanzar. Si bien he disfrutado de este 

"viaje" en la investigación, espero continuar agregando "pequeñas piedras" sobre los 

beneficios del ejercicio físico en las personas, e intentar demostrar que él tenía razón.  
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1. PREFACE 

1.1. Thesis impact statement  

The findings of this thesis are part of a larger project initially designed to 

determine the mechanisms that limit performance during exercise in humans (1). In 

addition, complementary studies were undertaken to determine muscle signalling 

responses.  

In this thesis, we have used the muscle biopsies (seven biopsies in eleven subjects) 

to carry out one of the most comprehensive analyses ever conducted on the 

intramuscular protein regulation of three transcription factors and the exercise-

induced responses of upstream and downstream signals in the human skeletal muscle, 

which required more than four years of intense laboratory work. 

The thesis is unique due to the technical difficulty of doing this type of 

experiment in humans and because we have studied two exercise conditions: normoxia 

and severe acute hypoxia. The level of hypoxia used is close to the limit that humans can 

tolerate without acclimatization to altitude.  

This thesis provides insights into the development of a novel method for the 

rapid and sensitive identification of human skeletal muscle signalling, as we have 

shown by using immediate post-exercise ischaemia to observe that these signalling 

pathways change extremely rapidly in the human skeletal muscle. It is important to note 

that most of the signals disappear 60 s after the end of the exercise. The latter must be 

considered when interpreting the literature. Finally, we would like to highlight the novelty 

of the study and the new mechanistic insight with more than ten new findings in human 

physiology.  
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1.2. Main Scientific publications 

Original contributions arising from this thesis are listed below: 

Article 1 (Gallego-Selles et al. 2020) 

 Authors: Angel Gallego-Selles, Marcos Martin-Rincon, Miriam Martinez-Canton, 

Mario Perez-Valera, Saul Martin-Rodriguez, Miriam Gelabert-Rebato, Alfredo 

Santana, David Morales-Alamo, Cecilia Dorado, Jose A.L. Calbet. 

 Title: Regulation of Nrf2/Keap1 signalling in human skeletal muscle during exercise 

to exhaustion in normoxia, severe acute hypoxia and post-exercise ischaemia: 

influence of metabolite accumulation and oxygenation.  

 Journal: Redox Biology; Volume 36, September 2020, 101627 

 DOI: 10.1016/j.redox.2020.101627 

Article 2 (Gallego-Selles et al. 2022) 

 Authors: Angel Gallego-Selles, Victor Galvan-Alvarez, Miriam Martinez-Canton, 

Eduardo Garcia-Gonzalez, David Morales-Alamo, Alfredo Santana, Juan Jose 

Gonzalez-Henriquez, Cecilia Dorado, Jose A.L. Calbet, Marcos Martin-Rincon. 

 Title: Fast regulation of the NF-κB signalling pathway in human skeletal muscle 

revealed by high-intensity exercise and ischaemia at exhaustion: role of oxygenation 

and metabolite accumulation. 

 Journal: Redox Biology; Volume 55, September 2022, 102398 

 DOI: 10.1016/j.redox.2022.102398 

 

  

https://doi.org/10.1016/j.redox.2020.101627
https://doi.org/10.1016/j.redox.2022.102398
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1.3. Other scientific contributions 

Additional publications during the thesis period are cited below, but are not included in 

this thesis: 

Article 3 (Perez-Valera et al. 2021) 

 Authors: Mario Perez-Valera, Miriam Martinez-Canton, Angel Gallego-Selles, 

Victor Galván-Alvarez, Miriam Gelabert-Rebato, David Morales-Alamo, Alfredo 

Santana, Saul Martin-Rodriguez, Jesus Gustavo Ponce-Gonzalez, Steen Larsen, Jose 

Losa-Reyna, Ismael Perez-Suarez, Cecilia Dorado, David Curtelin, Juan Jose 

Gonzalez-Henriquez, Robert Boushel, Jostein Hallen, Pedro de Pablos Velasco, Jorge 

Freixinet-Gilart, Hans-Christer Holmberg, Jorn W. Helge, Marcos Martin-Rincon, 

Jose A. L. Calbet 

 Title: Angiotensin-Converting Enzyme 2 (SARS-CoV-2 receptor) expression in 

human skeletal muscle.  

 Journal: Scandinavian Journal of Medicine & Science in Sports. 

 DOI: 10.1111/sms.14061 

Article 4 (Martinez-Canton et al. 2020) 

 Authors: Miriam Martinez-Canton, Angel Gallego-Selles, Miriam Gelabert-Rebato, 

Marcos Martin-Rincon, Fernando Pareja-Blanco, David Rodriguez-Rosell, David 

Morales-Alamo, Joaquin Sanchis-Moysi, Cecilia Dorado, Juan Jose Gonzalez-

Badillo, Jose A. L. Calbet.  

 Title: Role of CaMKII and sarcolipin in muscle adaptations to strength training with 

different levels of fatigue in the set. 

 Journal: Scandinavian Journal of Medicine & Science in Sports. 

 DOI: 10.1111/sms.13828 

https://doi.org/10.1111/sms.14061
https://doi.org/10.1111/sms.13828
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Article 5 (Martin-Rincon et al. 2020) 

 Authors: Marcos Martin-Rincon, Miriam Gelabert-Rebato, Victor Galvan-Alvarez, 

Angel Gallego-Selles, Miriam Martinez-Canto, Laura Lopez-Rios, Julia C. Wiebe, 

Saul Martin-Rodriguez, Rafael Arteaga-Ortiz, Cecilia Dorado, Sergio Perez-

Regalado, Alfredo Santana, David Morales-Alamo, Jose A. L. Calbet. 

 Title: Supplementation with a Mango Leaf Extract (Zynamite®) in Combination with 

Quercetin Attenuates Muscle Damage and Pain and Accelerates Recovery after 

Strenuous Damaging Exercise. 

 Journal: Nutrients. 

 DOI: 10.3390/nu12030614 

Article 6 (Gelabert-Rebato et al. 2019) 

 Authors: Miriam Gelabert-Rebato, Marcos Martin-Rincon, Victor Galvan-Alvarez, 

Angel Gallego-Selles, Miriam Martinez-Canton, Tanausú Vega-Morales, Julia C. 

Wiebe, Constanza Fernandez-del Castillo, Elizabeth Castilla-Hernandez, Oriana 

Diaz-Tiberio, Jose A. L. Calbet.  

 Title: A Single Dose of The Mango Leaf Extract Zynamite® in Combination with 

Quercetin Enhances Peak Power Output During Repeated Sprint Exercise in Men and 

Women. 

 Journal: Nutrients. 

 DOI: 10.3390/nu11112592 

 

 

 

 

https://doi.org/10.3390%2Fnu12030614
https://doi.org/10.3390/nu11112592
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1.4. Congress presentations 

International congress presentations of results from this thesis are listed below: 

Presentation 1: Oral defence for the YIA competition.  

 Authors: Angel Gallego-Selles; Marcos Martin-Rincon; Miriam Martinez-Canton; 

Alfredo Santana-Rodriguez; Víctor Galvan-Alvarez; David Morales-Alamo; Cecilia 

Dorado; Jose A. L. Calbet. 

 Title: Post-exercise ischaemia maintains the exercise-induced activating 

phosphorylation of Nrf2: role of metabolites and PO2. 

 Congress: European College of Sport Science. 

 Date: from 03 to 06/07/2019. 

Presentation 2: YIA competition in poster category. 

 Authors: Angel Gallego-Selles; Marcos Martin-Rincon; Miriam Martinez-Canton; 

Miriam Gelabert-Rebato; Víctor Galvan-Alvarez; Sergio Perez-Regalado; Alfredo 

Santana; Saul Martin-Rodriguez; David Morales-Alamo, Cecilia Dorado; Jose A. L. 

Calbet. 

 Title: High-intensity exercise combined with post-exercise ischaemia induces the 

activation of Nrf2 in human skeletal muscle. 

 Congress: International Sport Forum. 

 Date: from 15 to 16/11/2019. 

Presentation 3: awarded with a Young Investigator Award. 

 Authors: Angel Gallego-Selles; Miriam Martinez-Canton; Marcos Martin-Rincon; 

Sergio Perez-Regalado; Saul Martin-Rodriguez; Alfredo Santana; David Morales-

Alamo; Cecilia Dorado; Jose A. L. Calbet. 
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 Title: Application of ischaemia reveals an important role of Pi and PO2 in the 

regulation of Nrf2 and NF-κB signalling in human skeletal muscle. 

 Congress: European College of Sport Science. 

 Date: from 28 to 30/10/2020. 

Presentation 4: oral defence for the YIA competition.   

 Authors: Angel Gallego-Selles, Victor Galvan-Alvarez, Miriam Martinez-Canton, 

Sergio Perez-Regalado, Alfredo Santana Rodriguez, Cecilia Dorado García, Saul 

Martin-Rodriguez, Giovani Garcia-Perez, David Morales-Alamo, Marcos Martin-

Rincon, Jose A. L. Calbet. 

 Title: Fast activation/deactivation of the NFκB signalling pathway in human skeletal 

muscle: role of oxygenation and metabolite accumulation. 

 Congress: European College of Sport Science. 

 Date: from 08 to 10/09/2021. 

Presentation 5: oral defence for the YIA competition. 

 Authors: Angel Gallego-Selles, Victor Galvan-Alvarez, Miriam Martinez-Canton, 

Eduardo Garcia-Gonzalez, Miriam Gelabert-Rebato, Giovani Garcia-Perez, Alfredo 

Santana, David Morales-Alamo, d1, Benjamin Fernandez-García, Robert Boushel, 

Jostein Hallén, Jose A. L. Calbet, Marcos Martin-Rincon. 

 Title: Nrf2 and NF-kB signalling, and antioxidant enzyme adaptations to sprint 

interval training are potentiated by brief ischaemia application during the recovery 

periods. 

 Congress: European College of Sport Science. 

 Date: from 30/08/2022 to 02/09/2022.  
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1.5. Funding sources 

 Candidate Funding: 

The development of this thesis has been possible thanks to obtaining the 

competitive predoctoral research contract financed by the University of Las Palmas de 

Gran Canaria to be part of the University Predoctoral Research Staff in (Personal Docente 

e Investigador en formación). 

 

 Economic resources used for this thesis: 

The research for this thesis was financed in a project previously awarded with 

grants from Ministerio de Economía y Competitividad (DEP2015-71171-R; DEP2017-

86409-C2-1-P), University of Las Palmas de Gran Canaria (ULPGC 2015/05), and 

ACIISI (ProID2017010106).  
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1.6. Research Stay Abroad 

A description of the research stay carried out during this thesis can be found below: 

 Traineeship title: Development of an in vitro model of ischaemia reperfusion using 

cultured human myotubes to study Nrf2 activation/deactivation mechanisms. 

 Receiving Organisation: The Swedish School of Sport and Health Sciences (GIH). 

 Mentor: Filip Larsen. 

 Affiliation: Åstrand Laboratory; Physiology, Nutrition, and Biomechanics. 

 Address: Lidingövägen 1, 114 33 Stockholm, Sweden; Website: https://www.gih.se/ 

 Traineeship period: from 01/11/2020 to 01/05/2021. 

 Duration of the traineeship: 6 months (4.344 Total hours). 

During the research stay I learned about the experiments with myotubes in the cell 

culture laboratory. My experience began with purification of satellite cell cultures, 

maintenance, and proliferation of isolated muscle cell cultures, followed by testing of 

different human culture media and analysis of specific biomarkers. After different 

experiments with culture differentiation media and coating plates, I worked on in vitro 

experiments with human myotube cultures in the development of a cell stimulation model 

that mimics exercise by using different electrostimulation protocols in the cultures. The 

effect of exposure to different concentrations of antioxidant reagents (such as 

sulforaphane or Iberine) separately and accompanied by electrostimulation was also 

studied. Finally, the effects of antioxidant treatment and electrostimulation on 

mitochondrial respiration and the generation of cellular protein signalling responses 

induced by reactive oxygen and nitrogen species (Nrf2, catalase, SOD, etc.) were 

examined. Additionally, I participated as a subject and collaborator in different projects.

https://www.gih.se/
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2. SYMBOLS, TERMS, AND ABBREVIATIONS 

ADP, adenosine diphosphate 

AMPK, AMP-activated protein kinase 

ANOVA, analysis of variance 

ARE, antioxidant response element 

ATP, adenosine triphosphate 

BCA, bicinchoninic acid 

BMI, body mass index 

BSA, bovine serum albumin 

Ca2+, calcium ion 

CaMKII, calcium/calmodulin-dependent protein kinase II 

CK, creatine kinase 

Cr, creatine 

DEXA, dual-energy x-ray absorptiometry 

DNA, deoxyribonucleic acid 

ERK, extracellular-signal-regulated kinase 

FIO2, inspired oxygen fraction 

GPx, glutathione peroxidase 

GR, glutathione reductase 

GSH, reduced glutathione 

GSSG, oxidised glutathione 

H+, hydrogen ion 

H2O2, hydrogen Peroxide 

HR, heart rate 

HRmax, maximal heart rate 
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Hyp, hypoxia 

IE, incremental exercise to exhaustion  

IKK, IκB kinase 

IκB, inhibitor of nuclear factor κappa B 

kDa, kilodalton 

Keap1, Kelch-like ECH-associated protein 1 

MAPK, mitogen activated protein kinase 

mRNA, messenger ribonucleic acid 

NAD(P)H or NOX, nicotinamide adenine dinucleotide phosphate 

NADH+, nicotinamide adenine dinucleotide reduced 

NF-κB, nuclear factor κappa-light-chain-enhancer of activated B cells 

Nrf2-/-, Nrf2-null mice 

Nrf2, nuclear factor erythroid-derived 2-like 2 

Nx, normoxia  

Oxidization: the transfer of a negatively charged electron from one organic compound 

to another organic compound or to oxygen. 

p105, p105 subunit of NF-κB 

p38 MAPK, p38 mitogen-activated protein kinases 

p50, p50 subunit of NF-κB 

p62/SQSTM1, Sequestosome 1 

p65, p65 (RelA) subunit of NF-κB 

PCr, phosphocreatine 

Phosphorylation, a biochemical process that involves the addition of phosphate to an 

organic compound. 

Pi, inorganic phosphate 
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PIO2, partial pressure of inspired O2 

PO2, oxygen pressure 

PVDF, polyvinylidene fluoride 

Redox reaction, a process in which one molecule is reduced and another is oxidized. 

Reduction, a half-reaction in which a chemical species decreases its oxidation number, 

usually by gaining electrons. 

RNS, reactive nitrogen species 

RONS, reactive oxygen and nitrogen species 

ROS, reactive oxygen species 

Ser, serine 

SOD, superoxide dismutase 

Thr, threonine 

Trx1, Thioredoxin 1 

TrxR1, Thioredoxin Reductase 1 

Tyr, tyrosine 

VO2, oxygen uptake 

VO2max, maximal O2 uptake  

VO2peak, peak O2 uptake 

Wmax, maximal power output at exhaustion during the incremental exercise 
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3. ABSTRACT 

3.1. Abstract of the thesis  

Introduction: unaccustomed, prolonged, and exhaustive exercise can generate excess 

production of reactive oxygen and nitrogen species (RONS), which, accompanied by an 

insufficient antioxidant response, cause oxidative stress, triggering tissue damage, 

impaired muscle contractility and even muscle degenerative pathologies. RONS have 

traditionally been considered harmful for causing oxidative damage; however, recent 

discoveries have shown their importance as essential modulators for proper cell function 

by regulating signalling pathways essential for skeletal muscle adaptation. Redox-

sensitive Nrf2 and NF-κB signalling pathways are activated by extracellular signals and 

intracellular changes, regulating more than 150 genes involved in inflammation, 

antioxidant response and muscle metabolism. Although their activation is required for the 

adaptive response to exercise in vitro or in rodents, whether Nrf2 and NF-κB signalling 

pathways are activated during exercise in human skeletal muscle remains unknown. The 

application of hypoxia could affect the activation of these transcription factors since the 

low oxygen levels characteristic of hypoxia seem to alter the antioxidant response and the 

production of RONS. Furthermore, the instantaneous application of complete ischaemia 

after exercise could prevent early recovery and help the study of exercise-induced redox 

changes due to the short in vivo duration of RONS and the rapid recovery of energy 

metabolism at the end of exercise.  

Objectives: the main objective of this study was to determine the regulation of Nrf2 and 

NF-κB by acute exercise in human skeletal muscle, and the role of muscle oxygenation 

and metabolite accumulation in this process. Another objective was to determine the time 
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course of Nrf2 and NF-κB signalling during early recovery and to determine whether 

these signalling pathways were activated by the application of post-exercise ischaemia. 

Hypothesis: we hypothesized that acute exercise would activate Nrf2 and NF-κB 

signalling, more markedly during exercise in severe acute hypoxia and during post-

exercise ischaemia. This activation would be accompanied by an increase in antioxidant 

enzymes. Furthermore, we hypothesized that these changes would return to pre-exercise 

levels one minute after exercise completion when the muscles recover without circulatory 

occlusion. 

Methods: eleven men performed incremental exercise to exhaustion (IE) in normoxia 

(PIO2: 143 mmHg) and hypoxia (PIO2: 73 mmHg). After IE, circulation to one leg was 

instantly occluded (300 mmHg). Muscle biopsies of m. vastus lateralis were taken before 

(Pre), and 10s (from the occluded leg) and 60s after the exercise simultaneously from 

both legs, the occluded and the leg with free circulation. 

Results: Nrf2 and NF-κB signalling pathways were activated by exercise to exhaustion 

with similar responses in normoxia and severe acute hypoxia. CaMKII and AMPKα 

phosphorylation were similarly induced in both conditions. Enhanced Nrf2 signalling was 

achieved by elevating total Nrf2 protein and Ser40 Nrf2 phosphorylation, accompanied by 

a reduction in Keap1. Keap1 protein degradation was facilitated by Ser349 

phosphorylation of p62/SQSTM1. NF-κB activation was reflected in increased levels of 

p105, p50, IKKα, IκBβ, and GR, and the activation of the main kinases involved, 

particularly pSer176/180 IKKα/ß and CaMKII δD, while IKKβ was not affected. The ratio 

of Nrf2 to Keap1 was markedly elevated and was closely associated with a 2-fold increase 

in catalase. While SOD2 did not change significantly during exercise or ischaemia, SOD1 

protein expression was slightly down- and up-regulated during exercise in normoxia and 
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hypoxia, respectively. Trx1 expression was reduced immediately after IE and after 1 min 

of occlusion, while Gpx1 and TrxR1 expression levels were unaffected. Post-exercise 

ischaemia maintained most of the changes by preventing muscle reoxygenation. Changes 

were rapidly reversed at the end of exercise when the muscles recovered with free 

circulation. 

Conclusions: Nrf2 signalling is increased after incremental exercise to exhaustion to a 

similar degree in normoxia and severe acute hypoxia. This increase seems to occur 

through a mechanism related to the decrease in the amount of Keap1 protein. At the same 

time, this thesis shows a strong activation of NF-κB signalling with exercise to exhaustion 

that, similar to Nrf2 activation, is not magnified by severe acute hypoxia and remains 

stimulated by the application of post-exercise ischaemia. Exercise-induced activation of 

the Nrf2 and NF-κB signalling pathways seems to regulate the expression levels of the 

antioxidant enzymes catalase and GR in human skeletal muscle. Interestingly, these 

changes are reversed in less than 60 seconds by an O2-dependent mechanism, as 

suggested by a rapid return to pre-exercise levels as muscles recover with free circulation. 

These findings show the importance of obtaining muscle biopsies as close as possible to 

the end of exercise, and the usefulness of applying post-exercise ischaemia to capture 

these rapid response signals. Finally, these results indicate that a delay of as little as one 

minute in obtaining muscle biopsies can significantly affect the results and interpretation 

of exercise-induced activation of these signalling pathways in human skeletal muscle.   
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3.2. Abstract of Article 1 

The Nrf2 transcription factor is induced by reactive oxygen and nitrogen species and is 

necessary for the adaptive response to exercise in mice. It remains unknown whether Nrf2 

signalling is activated by exercise in human skeletal muscle. Here we show that Nrf2 

signalling is activated by exercise to exhaustion with similar responses in normoxia (PiO2: 

143 mmHg) and severe acute hypoxia (PiO2: 73 mmHg). CaMKII and AMPKα 

phosphorylation were similarly induced in both conditions. Enhanced Nrf2 signalling was 

achieved by raising Nrf2 total protein and Ser40 Nrf2 phosphorylation, accompanied by a 

reduction of Keap1. Keap1 protein degradation is facilitated by the phosphorylation of 

p62/SQSTM1 in Ser349 by AMPK, which targets Keap1 for autophagic degradation. 

Consequently, the Nrf2-to-Keap1 ratio was markedly elevated and closely associated 

with a 2-3-fold increase in Catalase protein. No relationship was observed between Nrf2 

signalling and SOD1 and SOD2 protein levels. Application of ischaemia immediately at 

the end of exercise maintained these changes, which were reverted within one minute of 

recovery with free circulation. While SOD2 did not change significantly during either 

exercise or ischaemia, SOD1 protein expression was marginally downregulated and 

upregulated during exercise in normoxia and hypoxia, respectively. We conclude that 

Nrf2/Keap1/Catalase pathway is rapidly regulated during exercise and recovery in human 

skeletal muscle. Catalase emerges as an essential antioxidant enzyme acutely upregulated 

during exercise and ischaemia. Post-exercise ischaemia maintains Nrf2 signalling at the 

level reached at exhaustion and can be used to avoid early post-exercise recovery, which 

is O2-dependent. 
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3.3. Abstract of Article 2 

The NF-κB signalling pathway plays a critical role in inflammation, immunity, cell 

proliferation, apoptosis, and muscle metabolism. NF-κB is activated by extracellular 

signals and intracellular changes in Ca2+, Pi, H+, metabolites and reactive oxygen and 

nitrogen species (RONS). However, it remains unknown how NF-κB signalling is 

activated during exercise and how metabolite accumulation and PO2 influence this 

process. Eleven active men performed incremental exercise to exhaustion (IE) in 

normoxia and hypoxia (PIO2: 73 mmHg). Immediately after IE, the circulation of one leg 

was instantaneously occluded (300 mmHg). Muscle biopsies from m. vastus lateralis 

were taken before (Pre), and 10s (Post, occluded leg) and 60s after exercise from the 

occluded (Oc1m) and free circulation (FC1m) legs simultaneously together with femoral 

vein blood samples. NF-κB signalling was activated by exercise to exhaustion, with 

similar responses in normoxia and acute hypoxia, as reflected by the increase of p105, 

p50, IKKα, IκBβ and glutathione reductase (GR) protein levels, and the activation of the 

main kinases implicated, particularly IKKα and CaMKII δD, while IKKβ remained 

unchanged. Postexercise ischaemia maintained and stimulated further NF-κB signalling 

by impeding muscle reoxygenation. These changes were quickly reverted at the end of 

exercise when the muscles recovered with open circulation. Finally, we have shown that 

Thioredoxin 1 (Trx1) protein expression was reduced immediately after IE and after 1 

min of occlusion while the protein expression levels of glutathione peroxidase 1 (Gpx1) 

and thioredoxin reductase 1 (TrxR1) remained unchanged. These novel data demonstrate 

that exercising to exhaustion activates NF-κB signalling in human skeletal muscle and 

regulates the expression levels of antioxidant enzymes in human skeletal muscle. The fast 

regulation of NF-κB at exercise cessation has implications for the interpretation of 

published studies and the design of new experiments.



 

 
 

 

 

 

 

 

 

 

 

 

 

 

RESUMEN



Resumen | Ángel Gallego Sellés 

29 
 

4. RESUMEN (SUMMARY IN SPANISH) 

Introducción: el estrés oxidativo ha sido redefinido como un término utilizado para 

describir el estado prooxidante causado por el desequilibrio celular entre la producción 

de oxidantes y las propiedades antioxidantes. El ejercicio excesivamente prolongado y/o 

exhaustivo, especialmente practicado sin un periodo de adaptación, pueden generar un 

exceso de especies reactivas de oxígeno y nitrógeno (colectivamente llamadas RONS). 

Acompañadas por una insuficiente respuesta antioxidante, RONS podrían llegar a 

provocar estrés oxidativo, y, por consiguiente, daño oxidativo. De hecho, el estrés 

oxidativo severo puede conllevar la muerte celular, al inducir modificaciones en 

componentes celulares como el ADN, los lípidos y las proteínas. Además, el estrés 

oxidativo favorece el deterioro de la función contráctil muscular, e incluso promueve 

patologías musculares degenerativas. En el músculo esquelético sano, RONS son 

constantemente producidas y contrarrestadas, manteniendo el equilibrio redox. Aunque 

la principal fuente de producción de radicales libres en el músculo esquelético durante el 

ejercicio continúa siendo materia de estudio, varios candidatos han sido identificados: 

cadena de transporte de electrones mitocondrial, NAD(P)H-oxidasa, xantina oxidasa, 

óxido nítrico sintasa, entre otros.  

Experimentos in vitro sugieren que la actividad contráctil muscular durante el 

ejercicio podría aumentar hasta 3 veces los niveles intracelulares de RONS. Los 

principales radicales libres producidos por el músculo esquelético son el óxido nítrico y 

el superóxido, cuya transformación química puede producir entre otras especies reactivas, 

el radical hidroxilo, el peróxido de hidrógeno o el peroxinitrito. A pesar de que la 

medición directa de RONS en experimentos in vivo es todavía compleja debido a su alta 

reactividad y su corta vida media, la evaluación de marcadores de estrés oxidativo (p. ej., 
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peroxidación lipídica, niveles de antioxidantes o activación de proteínas redox-

dependientes) permite estimar y evaluar cambios en el estado redox. 

Tradicionalmente RONS han sido considerados nocivos por ser causantes del 

daño oxidativo, sin embargo, recientes descubrimientos han evidenciado su importancia 

como moduladores para la correcta funcionalidad celular. Por ejemplo, cierto grado de 

RONS en el músculo esquelético es necesario para una adecuada producción de fuerza 

muscular, mientras que el desequilibrio redox conduce a una pérdida de producción de 

fuerza asociada a la fatiga. Además del estrés oxidativo, tanto factores metabólicos como 

mecánicos podrían dañar el músculo esquelético debido a un entrenamiento 

excesivamente intenso y/o prolongado. Consecuentemente, los niveles de metabolitos del 

músculo esquelético (p. ej., creatina quinasa o lactato deshidrogenasa) junto con los 

marcadores del estado redox (p. ej., glutatión reductasa o catalasa) son comúnmente 

examinados como indicadores del estado funcional de tejido muscular. Además, RONS 

actúan como inductores que modulan vías de señalización esenciales para el correcto 

funcionamiento y adaptación celular. 

Dos de los principales factores de transcripción implicados en la regulación de la 

expresión génica mediada por RONS son Nrf2 y NF-κB. Nrf2 se acumula y se traslada al 

núcleo, donde se une a los elementos de respuesta antioxidante para regular la 

transcripción de más de 250 genes implicados en la respuesta antioxidante, el 

metabolismo, y la inflamación. Por su parte, NF-κB regula más de 150 genes implicados 

en la inflamación, la respuesta antioxidante, la apoptosis y el metabolismo muscular. 

Ambas vías de señalización, Nrf2 y NF-κB, son sensibles al estado redox celular y se 

activan tanto mediante señales extracelulares como intracelulares. Aunque la activación 

de estos factores de transcripción parece ser necesaria para la respuesta adaptativa al 

ejercicio, aún no se ha confirmado que estas vías de señalización se activan en el músculo 
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esquelético humano durante el ejercicio, y se desconoce cómo la acumulación de 

metabolitos y la PO2 podrían influir en su activación. Teniendo en consideración que 

experimentos in vitro y/o en animales sugieren que las vías de señalización dependiente 

de Nrf2 o NF-κB podrían activarse en respuesta a las alteraciones redox provocadas por 

el ejercicio, la utilización de un protocolo de ejercicio hasta el agotamiento que alcance 

el consumo máximo de oxígeno (VO2max), provocando una activación marcada de la 

glucólisis y posiblemente un alto grado de estrés oxidativo, parece un modelo óptimo 

para el estudio de estos cambios redox en el musculo esquelético humano. Además, la 

aplicación de hipoxia severa aguda podría afectar la activación de estos factores de 

transcripción, puesto que los bajos niveles de oxígeno característicos de la hipoxia 

parecen alterar la respuesta antioxidante y la producción de RONS. Asimismo, debido a 

la corta duración in vivo de RONS y la rápida recuperación del metabolismo energético 

al final del ejercicio, la aplicación instantánea de isquemia completa posteriormente al 

ejercicio podría prevenir la recuperación temprana y ayudar al estudio de los cambios 

redox inducidos por el ejercicio. Para el modelo experimental propuesto, se utilizaría un 

manguito neumático para ocluir la circulación en una sola pierna, usando la pierna 

contralateral como control. 

Objetivos: el propósito principal de este estudio fue determinar la regulación de Nrf2 y 

NF-κB por el ejercicio agudo en el músculo esquelético humano, y el papel que tiene la 

oxigenación muscular y la acumulación de metabolitos en este proceso. El siguiente 

objetivo era determinar el curso temporal de la señalización de Nrf2 y NF-κB durante la 

recuperación temprana, y determinar si estas vías de señalización permanecen activadas 

por la aplicación de isquemia posterior al ejercicio. 

Hipótesis: hipotetizamos que el ejercicio agudo activaría la señalización de Nrf2 y de 

NF-κB, más intensamente durante el ejercicio en hipoxia aguda severa y durante la 
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isquemia posterior al ejercicio. Esta activación estaría acompañada por el aumento de las 

enzimas antioxidantes. Además, planteamos la hipótesis de que estos cambios volverían 

a los niveles previos al ejercicio dentro del minuto posterior a la finalización del ejercicio 

cuando los músculos se recuperan sin oclusión de la circulación. 

Métodos: después de la realización de pretest y familiarizaciones, once hombres 

realizaron ejercicio incremental hasta el agotamiento (IE) en normoxia (FIO2: 143 mmHg) 

e hipoxia aguda severa (FIO2: 73 mmHg). Después del IE, la circulación de una pierna se 

ocluyó instantáneamente (300 mmHg). Biopsias musculares del m. vastus lateralis se 

tomaron antes (Pre), 10s después del ejercicio de la pierna ocluida, y 60s después del 

ejercicio simultáneamente tanto de la pierna ocluida como de la que tenía libre 

circulación. Los niveles de expresión de las proteínas estudiadas y sus fosforilaciones 

reguladoras se analizaron mediante Western Blot. El análisis estadístico fue 

principalmente realizado con SPSS (p < 0.05). 

Resultados: las vías de señalización de Nrf2 y NF-κB fueron activadas por el ejercicio 

hasta el agotamiento similarmente en normoxia e hipoxia aguda severa. De igual manera, 

la fosforilación de CaMKII y AMPKα se indujo también en ambas condiciones. El 

aumento en la señalización de Nrf2 se logró elevando la proteína Nrf2 total y la 

fosforilación en Ser40 de Nrf2, acompañadas de una reducción en Keap1. La degradación 

de la proteína Keap1 fue facilitada por la fosforilación en Ser349 de p62/SQSTM1. La 

activación de NF-κB se reflejó en niveles aumentados de p105, p50, IKKα, IκBβ y GR, 

y la activación de las principales quinasas involucradas, particularmente la fosforilación 

en Ser176/180 de IKKα/ß y CaMKII δD, mientras que IKKβ no cambió significativamente. 

La ratio de Nrf2/Keap1 aumentó notablemente y estuvo estrechamente asociada con el 

aumento en 2 veces de Catalasa. Aunque SOD2 no cambió significativamente durante el 

ejercicio o la isquemia, la expresión de la proteína SOD1 se reguló ligeramente a la baja 



Resumen | Ángel Gallego Sellés 

33 
 

y al alza durante el ejercicio en normoxia e hipoxia, respectivamente. La expresión de 

Trx1 se redujo inmediatamente después del IE y después de 1 min de oclusión, mientras 

que los niveles de expresión de Gpx1 y TrxR1 no se vieron afectados por la intervención. 

La isquemia posterior al ejercicio mantuvo la mayoría de los cambios inducidos por el 

ejercicio al impedir la reoxigenación muscular. Estos cambios se revirtieron rápidamente 

al final del ejercicio cuando los músculos se recuperaron con libre circulación. 

Conclusiones: la señalización de Nrf2 aumenta después del ejercicio incremental hasta 

el agotamiento en un grado similar en normoxia y en hipoxia aguda severa. Este aumento 

parece realizarse a través de un mecanismo relacionado con la disminución de la cantidad 

de proteína Keap1. Al mismo tiempo, esta investigación muestra una fuerte activación de 

la señalización de NF-κB con el ejercicio hasta el agotamiento que, de manera similar a 

Nrf2, no se magnifica con la hipoxia aguda severa y permanece estimulada por la 

isquemia. La activación inducida por el ejercicio de las vías de señalización de Nrf2 y 

NF-κB parece regular los niveles de expresión de las enzimas antioxidantes Catalasa y 

GR en el músculo esquelético humano. Curiosamente, estos cambios se revierten en 

menos de 60 segundos por un mecanismo dependiente de O2, puesto que vuelven 

rápidamente a niveles previos al ejercicio cuando los músculos se recuperan con libre 

circulación. Estos hallazgos muestran la importancia de obtener las biopsias musculares 

lo más cerca posible de la finalización del ejercicio, y la utilidad de la aplicación de 

isquemia posterior al ejercicio para captar estas señales de respuesta rápida. Finalmente, 

se debe considerar que un retraso de tan solo un minuto en la obtención de biopsias 

musculares puede afectar significativamente a los resultados y la interpretación de la 

activación inducida por el ejercicio en estas vías de señalización en el músculo 

esquelético humano. 
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5. INTRODUCTION 

5.1. General introduction 

5.1.1. Reactive Oxygen and Nitrogen Species.  

Atoms or molecules that contain one or more unpaired electrons that are capable 

of existing independently are known as "free radicals". However, there are non-radical 

reactive derivatives of oxygen and nitrogen molecules that can easily cause free radical 

reactions in living organisms. Reactive oxygen species (ROS) is a general term that refers 

as a group to oxygen-centred radicals (such as superoxide (O2
-) and hydroxyl (HO-)) and 

non-radical but reactive derivatives of oxygen (such as hydrogen peroxide (H2O2), singlet 

oxygen (-O2) and ozone (O3)). Similarly, reactive nitrogen species (RNS) are nitrogen 

radicals (such as nitric oxide (NO-) and nitrogen dioxide (NO2
-)) and non-radical reactive 

nitrogen molecules (such as peroxynitrite (ONOO-), nitrous acid (HNO2) and dinitrogen 

trioxide (N2O3)).  

Collectively, ROS and RNS are known as reactive oxygen and nitrogen species 

(RONS). RONS arise from chain reactions that include three steps: initiation, 

propagation, and termination. After oxidative signal initiation, primary free radicals (O2
- 

and NO-) tend to "steal" a surrounding electron, triggering signal propagation through the 

formation of secondary RONS. After that, newly formed RONS seek to steal electrons 

from cellular structures or molecules. Cellular antioxidants are a group of molecules 

capable of slowing or terminating the oxidation of other molecules. Therefore, 

antioxidants are oxidized to prevent cell damage, stopping these chain reactions by 

removing RONS intermediates and preventing subsequent oxidation reactions. 
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5.1.2. Cellular consequences of oxidative stress. 

Incidents during World War II exhibited the pathological effects (mutations and 

diseases) on humans exposed to prominent levels of radiation. Consequently, a new 

biological field of research focused on free radicals and cellular redox balance began to 

develop. In 1954, Gerschman et al. (2) asserted that cell damage caused by exposure to 

ionizing radiation was due to free radicals, while Commoner et al. (3) showed that free 

radicals are present in living organisms. The same year, free radical theory of aging stated 

that organisms age due to the accumulation of free radical damage over time (4). 

Expansion of this idea in the 1970s led to the discovery of mitochondrial damage caused 

by free radicals (5) while the identification of superoxide dismutase enzyme (specifically 

SOD1) evidenced the functioning of antioxidant enzymes against free radicals in 

mammals (6). In the late 1970s, consideration of free radicals shifted towards direct 

modifiers of enzyme activation and necessary inducers of signalling pathways (7). 

Controlled amounts of RONS are required for normal cellular function, acting as 

regulatory signalling mediators in physiological processes. However, overproduction of 

RONS accompanied by insufficient antioxidant capacity leads to a damaging oxidative 

environment called oxidative or nitrosative stress. As shown in Supplementary Fig. 1, 

oxidative stress has been redefined as a term used to describe the pro-oxidant state caused 

by the imbalance between the production of oxidants and the antioxidant properties (8). 

The concept of oxidative stress involves different aspects, such as overproduction of 

RONS, inadequate antioxidant response, alteration of cellular redox balance, and 

oxidative damage of cellular components. Different classifications of the degree of 

oxidative stress have been proposed depending on the redox state of the cell, for example, 

basal, low-intensity, intermediate-intensity, and high-intensity oxidative stress (9).  
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Adaptive cellular response against oxidative stress restores reduction-oxidation 

(redox) homeostasis. Since the cellular redox state is determined not only by the balance 

between the rate of RONS production but also by the rate of RONS removal by 

antioxidants, a complex unit of RONS-regulating enzyme antioxidants (SOD, catalase, 

GPx) and antioxidants non-enzymatic (vitamin C, E, carotenoids, etc.) are strategically 

compartmentalized in the cell to protect from oxidative damage during periods of 

increased production of reactive radicals (e.g. muscle fibers during extremely intense or 

prolonged exercise) (10). The extremely high reactivity of RONS implies that they only 

diffuse over short distances, reacting with molecules close to their site of production (11). 

Oxidative stress can result in severe cell oxidative damage, producing cell death 

and leading to tissue injury (12) by modifying cellular components such as DNA (13), 

lipid (14), and proteins (15). In fact, strong evidence suggests that oxidative stress 

biomarkers are associated with the primary or secondary pathophysiological mechanisms 

of multiple acute and chronic human diseases (16). 

 

Supplementary Figure 1. Schematic representation of oxidative stress, defined as the pro-oxidant state caused by the 

imbalance between the production of oxidants and the antioxidant properties (8). 
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5.1.3. Oxidative stress effect on gene expression. 

The intracellular redox state plays an essential role in the regulation of gene 

expression. Oxidative stress can cause damage to genetic information due to increased 

DNA base degradation, DNA-strand breaks, DNA binding modifications, and DNA 

proteins cross-linking (17). Mitochondrial DNA may be especially susceptible to RONS-

induced damage due to its location close to the electron transport chain (18). Changes in 

the base composition of DNA binding sites for some transcription factor disrupt 

transcription factor binding and thus the expression of related genes (19). Regulated 

levels of RONS function as physiological regulators of gene expression mediated through 

specific redox-sensitive signal as transcription factors, such as Nrf2 and NF-κB signalling 

pathways (20). The regulation of signalling pathways sensitive to redox changes is 

studied to formulate hypotheses about the cellular redox state, for example, assessing the 

activation of Nrf2 likely induced against exercise-induced oxidative stress in human 

skeletal muscle. 

5.1.4. Oxidative stress mediated lipid damage and protein modifications. 

The structure of the lipid bilayer present in all biological membranes is composed 

of lipids and proteins. Modifications in the biological properties of the membrane are 

triggered by oxidative stress-induced peroxidation of membrane lipids (21), which 

disrupts normal membrane function by propagating oxidative damage by creating pores 

in the membrane and inactivating membrane-bound proteins. This modification alters the 

permeability and fluidity of the membrane (14, 22), leading to the immediate 

depolarization of the membrane potential, swelling of the matrix, rupture of the external 

mitochondrial membrane, which implies the release of pro-apoptotic molecules to the 

cytosol (23). Therefore, lipid peroxidation products, such as 4-hydroxy-2-nonenal (HNE), 

are investigated as secondary biomarkers of cellular oxidative damage (24).  
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Comparably, RONS induce oxidation of protein amino acids, cause breakage of 

peptide chains, modify electrical charge, increase proteolysis through specific proteases, 

cause loss of protein function and alter protein structure (25). RONS-induced oxidative 

damage to amino acids produces protein carbonyl groups, considered a marker of RONS-

mediated protein oxidation  (26). Furthermore, RONS can induce post-translational 

modifications, these are reversible and non-reversible and could change the function, 

localization, or stability of various proteins. Protein phosphorylation is the most studied 

post-translational modification, as one-third of mammalian proteins can be 

phosphorylated, often modulating protein function. 

In short, oxidative stress compromises cellular integrity and viability through 

reacting with intracellular macromolecules and generating oxidative stress biomarkers. 

Excessive oxidative stress leads to dysregulation of DNA cross-linking (18), attack 

double bonds of phospholipids in cell membranes (14), and impair protein functions (27). 

In addition, oxidative stress triggers the deterioration of muscle contractility and even 

degenerative muscle pathologies. 

5.1.5. Free radical production in skeletal muscle. 

In skeletal muscle, RONS are continuously produced and counteracted in several 

subcellular compartments both at rest and during muscle contractions of exercise (28). 

Periods of muscle contractile activity during exercise increase intracellular RONS levels 

by 1- to 3-fold (29). The main free radicals produced by skeletal muscle are nitric oxide 

(NO-) and superoxide (O2
-) (29) (see supplementary Fig. 2).  

Nitric oxide synthase (NOS) regulates the conversion of the amino acid L-arginine 

to citrulline using nicotinamide adenine dinucleotide phosphate (NADPH) as a cofactor 

(30, 31), producing a free radical known as NO- (32). The NO- radical generates highly 
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reactive species (such as peroxynitrite) when combined with O2
- (33). Although iNOS 

isoform is expressed in skeletal muscle, nNOS isoform is considered the major source of 

NO release, especially in fast-twitch muscle fibers (34). Increased intracellular calcium 

concentration during muscle contraction facilitates phosphorylation of Ca/calmodulin-

dependent protein kinase II (CaMKII), an interactive protein identified from nNOS 

transcription in neuronal cells (35). In fact, higher nNOS protein content has been 

detected as an adaptation in skeletal muscle to intense period of training (36). 

Considered the most potent oxidant generated from the one-electron reduction of 

O2, the negatively charged free radical superoxide arises through incomplete reduction of 

O2 in the electron transport chain or as a product of enzymatic reactions. The O2
- radical 

can be either protonated to produce a hydroperoxyl radical (HO-) or depleted by a 

dismutation reaction to produce hydrogen peroxide (H2O2) (29). Moreover, O2
-, release 

ferrous iron by damaging aconitase and dismutates to form hydrogen peroxide (H2O2) 

(37, 38), which is ultimately converted into a water molecule H2O and a molecular oxygen 

(O2). H2O2 may reacts either with ferrous iron to form hydroxyl (HO-) or with nitric oxide 

(NO-) to form peroxynitrite (39), contributing to the increase of RONS mitochondrial and 

the cytosolic cellular locations (40). 

 

Supplementary Figure 2. The major reactive oxygen species in muscle. Numbers in brackets indicate approximate 

lifetimes of various species. GPX, glutathione peroxidase. Extracted from Allen et al. (2007) (41). 
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5.1.6. RONS production during exercise in skeletal muscle. 

Although the main source of free radicals production in skeletal muscle remains 

unclear (29), several sources of RONS have been proposed (10, 42): mitochondrial 

electron transport chain (mETC) (43), nicotinamide adenine dinucleotide phosphate 

oxidase (NAD(P)H-oxidase or NOX) (44, 45), xanthine oxidase (XO) (46), nitric oxide 

synthase (NOS). To a lesser extent, other additional sources have also been considered 

for the production of RONS during exercise (47, 48), such as the loss of cytochrome 

oxidase activity induced by high temperatures (49), exercise-induced activation of 

phospholipase A(2) isoform (50) and exercise-produced catecholamine metabolites (51). 

However, identifying RONS sources during exercise is challenging as RONS formation 

can further stimulate RONS production (RONS-induced release of RONS) (52). 

I. Mitochondrial RONS production. 

According to the endosymbiotic theory, mitochondria evolved by endosymbiosis 

from a bacterial parent within a eukaryotic host cell millions of years ago (53). 

Mitochondria are organelles necessary for cellular metabolism that generate energy 

stored in an energized molecule called adenosine triphosphate (ATP) through 

biochemical reactions through the process called oxidative phosphorylation system 

(OXPHOS). Although considered the "powerhouse" of the cell, mitochondria are also 

involved in different cellular processes, including cell cycle control, innate immunity, 

autophagy, redox balance, and calcium homeostasis (54, 55). This organelle is continually 

remodelled by opposing but balanced processes called mitochondrial dynamics, changing 

its morphology, function, and location in response to different physiological stimuli (56). 

Pathological alterations in mitochondrial dynamics are associated with neurodegenerative 

diseases, cardiomyopathies, cancer and inflammatory diseases (56, 57). 
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Oxygen is used as an electron acceptor and reduced to form H2O during mETC 

(between complexes I and IV). H+ are released especially in complexes I and III through 

the inner mitochondrial membrane, creating an electrochemical gradient of H+, called the 

proton motive force (58). According to Mitchel's chemiosmotic theory (59), the proton 

motive force is used by ATP synthase (or mitochondrial complex V) to transfer H+ back 

into the mitochondrial matrix, resulting in the release of energy used to convert 

phosphorylated adenosine 5'-diphosphate (ADP) and inorganic phosphate into adenosine 

5'-triphosphate (ATP). The increase of RONS production during exercise has traditionally 

been considered as a side-effect of the increased oxidative metabolism in mitochondria. 

Although the formation and removal of RONS are well adjusted under normal 

conditions, the rapid electron transfer during mETC can lead to the production of free 

radicals due to electron leakage (60). Although complexes I and III have classically been 

considered the main mitochondrial sources of O2
- (61), the RONS-generating 

contributions of additional mitochondrial sites (such as monoamine oxidase, aconitase, 

and p66shc) in vivo and during exercise are still doubtful (52, 62). In contrast to previous 

hypotheses, isolated skeletal muscle mitochondria experiments simulating physiological 

conditions at rest, and low and intense aerobic exercise intensities indicated low 

mitochondria RONS production (62). In fact, only between 0.15% and 5% of the O2 

consumed by the mitochondria forms O2
-, depending on the mitochondrial isolation 

technique applied (63, 64). Interestingly, the relative contributions of different 

mitochondrial sites of RONS production may change depending on cellular bioenergetic 

condition (65). Although OXPHOS provides energy during aerobic exercise, 

mitochondrial superoxide supply may represent less during exercise than at rest in skeletal 

muscle, since mitochondrial RONS production in state 3 (ADP-stimulated) is lower than 

in state 4 (baseline) (49). Finally, the release of O2
- is regulated by the NADH/NAD+ ratio 
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(61), which decreases along with the proton motive force during situations of high ATP 

demand, such as muscle contraction during exercise (66).  

II. NOX activity in skeletal muscle. 

Although mitochondria were one of the first identified sources of free radicals in the 

cell, additional sources must be considered during exercise in skeletal muscle. 

Measurements of relative free radical concentrations in skeletal muscle fibers showed 

predominant non-mitochondrial sources in RONS production, emphasizing the 

importance of NOX and XO enzymes (28). Indeed, experiments of muscle fibers 

stimulated by mimicking muscle contraction increased cytosolic RONS production 

without altering mitochondrial redox status (67). Interestingly, administration of NOX 

inhibitor abolished RONS production, targeting this enzyme as an important source of 

RONS during skeletal muscle contraction (67). These findings are consistent with 

increased cytosolic O2
- production during contractile activity associated with stimulation 

of NOX activity in muscle fibers (68). Although there is only indirect evidence in skeletal 

muscle, cellular redox status may mediate crosstalk between NOX and mitochondria that 

modifies RONS production (69). 

Skeletal  muscle  NOX  family  members are essential modulators of redox 

homeostasis that using either NADH or NADPH as electron donors (44, 45). Therefore, 

the term “NAD(P)H oxidase” is used for the expression of NOX isoforms in skeletal 

muscle. As has been demonstrated in several tissues, NOX is an enzyme system of 

multiple isoforms that reduces O2 and generates O2
- and H2O2 (70, 71). NOX isoforms 

are distributed in the sarcolemma, the transverse tubules, the sarcoplasmic reticulum, and 

even in the mitochondria (28). NOX2 and NOX4 are considered by some authors as the 

main sources of RONS during exercise (29), which are located in the sarcoplasmic 

reticulum, the transverse tubules and the plasma membrane (10) likely depending on the 
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muscle fibers type (72). Rapidly activated by various stimuli (e.g., mechanical forces, 

hypoxic environment, and cytokines), regulation of NOX activity is essential to maintain 

adequate levels of RONS (73). Moreover, crosstalk between NOX and XO has been 

observed since NOX inhibition prevented XO activation in pig heart muscle (74). 

III. XO-mediated RONS production. 

The enzyme XO catalyses in the presence of O2 the oxidation of hypoxanthine to 

xanthine and of xanthine to uric acid during purine catabolism and generates O2
- and H2O2 

(75). Intense exercise may increase XO activity by breaking down ATP and triggers XO-

induced activations of skeletal muscle signalling pathways (76). Application of XO 

inhibitors (77) or decreased XO-mediated oxidative stress (78) prevents exercise-induced 

activation of redox-sensitive MAPK and NF-κB signalling pathways. However, further 

research is required to determine the role XO plays in exercise induced RONS production. 

5.1.7. RONS: direct and indirect measures. 

Unfortunately, direct measurement of RONS sources represent a great challenge due 

to their high reactivity and short half-life. Therefore, human evidence is limited by the 

lack of identified biomarkers, available measuring techniques or potential tissue auto-

oxidation during sample handling (10). Novel techniques such as fluorescent probes or 

electron spin resonance (ESR) spectroscopy allow obtaining structural information and 

kinetic information on the formation and decline of generated reactive radicals (8). ESR 

accurately detects the presence of unpaired electrons, but the accumulation of reactive 

species is too low to be measured under in vivo conditions. Although the use of these 

techniques is unsafe in humans since it interferes with the biological system under 

investigation, there are animal experiments that add "trap" agents to react with reactive 

radicals and generate stable radicals that can be detected. However, increased RONS 

production in isolated measurements does not necessarily lead to oxidative stress. 
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Therefore, indirect measurement of RONS overproduction (such as decreased antioxidant 

agents or increased oxidatively modified molecules) or cellular redox balance (e.g., 

GSH/GSSH ratio) are used to overcome these difficulties and assess cellular oxidative 

stress (See supplementary Fig. 3).  

Since metabolic and mechanical factors can damage skeletal muscle as a result of 

intense and prolonged training, skeletal muscle metabolites (e.g., creatine kinase or 

lactate dehydrogenase) and markers of oxidative stress (e.g., superoxide dismutase or 

catalase) are collectively analysed as indicators of the state of muscle tissue (101). 

Finally, to avoid the individual limitations of each type of measurement and to obtain a 

complete picture of skeletal muscle status, the use of more than one of these signals is 

recommended to provide a better estimate of skeletal muscle oxidative stress. 

 

Supplementary Figure 3. Classes of biomarkers used to assess cellular oxidative stress in tissues. These categories 

include the measurement of oxidant production, cellular levels of antioxidants, oxidation products, and the 

antioxidant/pro-oxidant balance. 8-OH-dG, 8hydroxydeoxyguanosine; GSH/GSSG, ratio of reduced glutathione to 

oxidized glutathione. Extracted from Powers and Jackson (2008) (10) 

5.1.8. Antioxidant administration on redox adaptations and sports performance. 

The late 1970s witnessed the discovery that muscular exercise increases oxidative 

damage in animals (79) and humans models (80). Maintenance of RONS levels occurs 

through the antioxidant system, including enzymatic (i.e., catalase, superoxide dismutase 
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(SOD), glutathione peroxidase (GPX)) and non-enzymatic antioxidants (i.e., vitamin C, 

vitamin E, Glutathione, carotenoids, a-Lipoic acid, Bilirubin, acid uric, Coenzyme Q10) 

(81). Although RONS have essential roles in normal cell function and homeostasis, 

oxidative stress occurs when RONS levels exceed the ability to be neutralized by the 

antioxidant system. Since the 1980s, some pioneering studies have suggested that the 

administration of antioxidants such as vitamin E could minimize muscle damage caused 

by exercise (82).  

Although the evidence in humans is conflicting, recent studies have indicated that 

supporting endogenous antioxidant systems with additional oral doses of antioxidants is 

a non-invasive strategy to interfere with exercise-induced changes by affecting RONS-

mediated cell signalling, altering adaptations such as vasodilation, insulin signalling, 

mitochondrial biogenesis (83, 84). Exposure of RONS-scavenging dietary antioxidants 

vitamins C and E in isolated muscle fibers or intact animals muscle improves performance 

delaying muscle fatigue (41), but hampered redox cellular adaptations in exercised human 

skeletal muscles without affecting exercise performance (85, 86). Similarly, the intake of 

antioxidants (α-lipoic acid, vitamins C and E) decreased the glycolytic rate, mitigating 

the increase in the AMP/ATP ratio and the reduction in the NAD+/NADH.H+ ratio 

without effects on performance in hypoxia (87).  

Administration of the antioxidant N-acetylcysteine (NAC) appears to increase the 

time to voluntary fatigue, improving human performance at submaximal intensity, 

although these findings are inconsistent during maximal intensity (10). In fact, 

supplementation with NAC antioxidants interrupts the inflammatory response of skeletal 

muscle probably by attenuated activation of redox-sensitive signalling pathways (88). In 

most studies, researchers administered a single antioxidant rather than a cocktail of 

antioxidants. However, our research group have observed that a polyphenols antioxidants 
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cocktail exert a notable ergogenic effect, increasing muscle power during fatigue, 

enhancing peak VO2 and brain oxygenation (89). The effect of different isolated 

antioxidant supplements or cocktails on exercise-mediated adaptations requires further 

investigation in humans. In addition, antioxidant consumption could also improve post-

exercise recovery (90), which could be induced by increased AMPK-mediated signalling 

after sprint exercise in human skeletal muscle (91). 

As previously mentioned, a certain degree of oxidative stress could be necessary to 

induce the hormetic response, since RONS act as mediators for the correct functioning of 

the cell signalling process (84). Interestingly, this concept was stated by Hippocrates over 

2.000 years ago: "If we could give each individual the proper amount of nutrition and 

exercise, not too little and not too much, we would find the surest path to health". 

Evidence has accumulated over the years indicating that redox signalling plays a role in 

some of the health benefits of training, however the mechanism of action remains unclear. 

5.1.9. Landmark studies on RONS, exercise and skeletal muscle. 

During the 1980s, the discovery that physical exercise increased oxidation biomarkers 

in humans (79, 80) led to the redox biology research on skeletal muscle and the concept 

oxidative stress was defined for the first time (92). Importantly, skeletal muscle was 

identified as a source of free radicals (93) capable of adapting antioxidant enzymes 

capacity with training (94). 

Similar to previous animal findings, the contribution of reactive oxidants species to 

muscle fatigue during exercise in humans was reported in the 1990s (95). This was 

confirmed by O'Neill et al. (96) observation that HO- produced by skeletal muscle 

contraction increased in a dependent manner of maximal force produced. In recent 

decades, research in redox biology applied to exercise has focused on reactive radicals as 
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molecules necessary for muscle adaptations, redefining the concept of oxidative stress 

(97). Overwhelming evidence has revealed that RONS play important regulatory roles in 

skeletal muscle for the regulation of cell signalling pathways (98), gene expression (99), 

and physical performance (10, 100). Therefore, physical exercise represents an optimal 

model to study redox biology, allowing the investigation of RONS-mediated cellular 

processes. 

5.1.10. Incremental exercise to exhaustion and maximal oxygen consumption. 

The analysis of the human cardiovascular and pulmonary response to physiological 

stress caused by exercise has been in constant evolution since pioneering studies more 

than a century ago established the use of exercise tests accompanied by blood pressure 

measurements to assess adequate cardiac function (101). Using this test, A. V. Hill 

established the relationship between oxygen consumption and load intensity, defining 

terms such as "maximal O2 intake", "O2 requirement" and "steady-state exercise" by 

performing spirometry measurements during incremental exercises (102). Although other 

criteria have been proposed to consider the plateau observed as VO2max, the concept of 

a “plateau” in the VO2/intensity relationship was defined as an increase in VO2 of less 

than 150 mL/min with increasing exercise intensity (103). For this finding, Taylor et al. 

(1955) used a discontinuous protocol of 3 min of constant-intensity exercise bouts on 

successive days. Continuous exercise protocols were developed for the combined 

assessment of VO2max and cardiorespiratory fitness, but differences were observed 

between the results obtained using continuous and discontinuous protocols (104).  

Decades later, technological progress led to the improvement of continuous tests up 

to the subject's tolerance limit (volitional exhaustion), which highlighted the importance 

of this criterion for the correct performance of this test (105, 106). In addition, the 

duration of the continuous protocols has been considered a critical variable to achieve 
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real VO2max values. One factor that determines the duration of the test is the rate at which 

the intensity increases over time or the slope of the ramp, usually expressed in watts/min. 

The classically proposed ideal selection of work rate should increase to bring subjects to 

their tolerance limit in approximately 10 min (106). However, a more recent review of 

data indicate that even durations between 5 and 26 minutes could be optimal for reaching 

VO2max in healthy subjects when an adequate warm-up is performed (107). Contrary to 

the VO2peak observed at a certain intensity, observing a plateau in VO2 during 

incremental tests to exhaustion was classically associated with reaching VO2max. 

However, difficulties in detecting plateau have been reported depending on the specific 

exercise protocol, population studied, subject experience, and data processing (108). 

Therefore, including a verification test a few minutes after finishing the incremental test 

has become essential to guarantee that VO2max has been reached during this test (108).  

The most widely used test to examine locomotor and cardiopulmonary fitness is the 

incremental exercise to exhaustion (109), accepted as the "gold standard" for determining 

maximal oxygen uptake (VO2max) in humans (110). Although general international 

guidelines are available from the ACSM (111), accurate measurement of VO2max 

requires the performance of procedures that ensure quality control of the measurements. 

This includes combustion tests, the use of standardized incremental exercise protocols 

with a verification phase preceded by an adequate familiarization test, and the correct 

processing and interpretation of the data (108). Determining the maximum consumption 

of O2 allows knowing and guaranteeing the appropriate functioning of the person's 

external and internal respiration. External respiration refers to the ventilatory movement 

of air in and out of the lungs accompanied by the exchange of O2 and CO2 between the 

alveoli and capillaries. On the other hand, the exchange between capillary blood and 

active muscle of O2 and CO2 is known as internal respiration. In addition, this test allows 
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the evaluation of the circulatory system, which acts as an intermediary transporting O2 

and CO2 in the blood in both processes. Maximal oxygen consumption (VO2max) has 

predictive value for clinical outcomes and all-cause mortality.  

Reaching VO2max implies that the individual's physiological cardiopulmonary limit 

(also called maximal aerobic capacity) has been reached, explained by Fick's equation in 

1870 as the product of the amount of blood the heart pumps in a minute, known as cardiac 

output (heart rate x stroke volume), and arteriovenous oxygen difference (C(a-v) O2) at 

maximal effort during exercise. During exercise, cardiac output increases, facilitating 

increased O2 consumption. Energy needs increases the extraction of O2 in the muscles, 

widening the arteriovenous difference in oxygen concentration.  In addition, blood flow 

is redistributed to active skeletal muscles from inactive tissues, increasing O2 supply to 

facilitate O2 consumption.  

In short, VO2max is the maximum amount of O2 that the body can uptake, transport, 

and use in a given amount of time. The measurement of the difference between the inhaled 

and exhaled oxygen content allows knowing the amount of oxygen consumed in a certain 

time, commonly expressed in absolute (litres per minute) or relative (in relation to weight) 

values. In the field of sports science, VO2max is considered the best predictor of specific 

sport performance in trained non-elite athletes (112). Moreover, having a high VO2max 

is necessary to compete in high categories in different sports, although the ability of 

VO2max to predict performance decreases in homogeneous groups of athletes (for 

example, elite level) (113, 114). The reduction in PIO2 at altitude reduces the oxygen 

saturation in the blood, oxygen delivery and VO2max, affects muscle and heart 

metabolism and decreases sports performance (115). 
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5.1.11. Fatigue-induced task failure in skeletal muscle. 

Exercise-related muscle contraction generates electrostatic events associated with 

motor neuron activation, calcium release-reuptake in muscle fibers, mechanical stress on 

bone, decreased energy availability in the cell and increased production of RONS (116, 

117). Exercise-induced fatigue is defined as a reversible reduction in force- or power-

generating capacity and has classically been elicited by "central" and/or "peripheral" 

mechanisms. The repeated and intense use of the muscles leads to a decrease in physical 

performance that is recognized as muscle fatigue, changing muscle properties such as the 

action potential and the accumulation of extracellular and intracellular metabolites. 

Although the mechanisms leading to fatigue during incremental testing to exhaustion are 

still being studied, fatigue increases in parallel with exercise intensity and is exacerbated 

when O2 demand exceeds O2 delivery (118), requiring a greater supply of energy from 

glycolysis and phosphagens. This lead to partial energy depletion, accumulation of 

metabolites, electrolyte alterations and augmented production of RONS (91, 119). 

Classically, lactate accumulation and muscle acidification have been pointed out as 

the main mechanisms eliciting muscle fatigue (120) by reducing muscle ability to 

generate tension, depressing both aerobic and anaerobic metabolism (121). However, 

lactic acid has been found to have beneficial effects on the performance of fatigued rat 

muscles, preserving muscle excitability when muscles become depolarized (122). Human 

experiments suggested that the main mechanism causing task failure during incremental 

exercise to exhaustion is not lactate and H+ accumulation, nor PCr and ATP depletion 

(117). In fact, a higher mean power output can be achieved after 60s than 10s of post-

exercise ischaemia despite hypothetically worse metabolic conditions (lower PCr and pH, 

and higher muscle lactate).  
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Consequently, greater importance of central versus peripheral mechanisms was 

demonstrated by observing that at the end of incremental exercise to exhaustion (when 

reaching fatigue) a functional reserve remains in the muscles to generate power, 

regardless of the fraction of inspired oxygen (FIO2) (117). Furthermore, the increase in 

plasma lactate concentration after incremental exercise to exhaustion have been linked to 

increased systemic total oxidative status (123). Therefore, exercise-caused fatigue has 

been considered as a mechanism to avoid exceeding a critical threshold of peripheral 

muscle fatigue to safeguard organ systems from damage (124).  

5.1.12. Effect of oxidative stress on muscle fatigue. 

Knowledge of muscle redox status is crucial in understanding muscle fatigue during 

exercise. The conventional explanation of fatigue caused by the accumulation of 

intracellular lactate and hydrogen ions that alters contractile proteins has lost relevance 

due to recent findings. Recent evidence of decreased performance due to repeated or 

intense use of muscle fibers has increased interest in RONS-mediated adaptations. 

Muscle fatigue has been approached from a mechanistic point of view as a multifactorial 

consequence characterized by ionic changes in the action potential, calcium regulation 

mechanisms, and cellular adaptations induced by RONS (reviewed elsewhere (41)).  

Certainly, remarkable advances have been made in understanding the effects of 

RONS during skeletal muscle fatigue induction on myofibrillar function and Ca2+ 

regulation (119). In fact, RONS-mediated loss of skeletal muscle function is associated 

with decreased Ca2+ sensitivity of muscle fibers (125). RONS have a major impact on 

force production in skeletal muscle, as an optimal redox state of skeletal muscle is 

necessary for adequate muscular force production, and redox imbalance leads to a loss of 

force production observed in muscle fatigue (126) (see supplementary Fig. 4). Force 

production is an example of RONS-mediated hormesis in skeletal muscle, as moderate 
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increases in RONS enhance force generation, while force production is decreased by 

excessive RONS levels or by the use of RONS scavengers. Although exhaustive physical 

exercise, such as exercise to exhaustion, causes oxidative stress, exercise performed at a 

medium-low relative intensity does not produce oxidative muscle damage (127). 

 

Supplementary Figure 4. Cellular redox state and skeletal muscle force production. Maximal force production in 

skeletal muscle requires an optimal redox state. Movement away from the optimal redox state (an increase in reduction 

or oxidation) results in a decrease in maximal isometric force production. Extracted from Powers et al. (2020) (128). 

5.1.13. Effect of hypoxia on performance and adaptations to exercise. 

The use of prolonged exposure to hypoxia in sports was popularized after the 

observation of upregulation of the hormone erythropoietin (commonly known as EPO) 

that triggers the proliferation and differentiation of red blood cells, improving the 

performance in certain sports (129). Exposure to hypoxia promotes several adaptations, 

such as increased ventilation, boosted utilization of anaerobic rather than aerobic 

metabolism, and increases the O2-carrying capacity of the blood (130). Reductions in the 

FIO2 reduce arterial oxygen content and impair exercise capacity and VO2max (115). 

Several mechanisms explain the one-third reduction in VO2max observed in severe acute 

hypoxia, namely as reduced PIO2, impaired pulmonary gas exchange, and reduced 

maximal cardiac output and maximal muscle blood flow (131). The lower VO2max 
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achieved in severe hypoxia implies that the same absolute intensity is perceived as a 

higher relative intensity. In fact, when exercise-induced fatigue is reached the muscle 

activation is lower in hypoxia than in normoxia (116).  

Although low oxygen levels could presumably be favourable for low RONS 

production, exposure to hypoxia may alter the antioxidant response and RONS-sources, 

leading to oxidative damage (132) and subsequent induction of the main regulators of the 

antioxidant response (133). The paradox of increased RONS production during hypoxia 

was demonstrated by applying high-precision cellular redox state assessment methods 

and observing accumulation of oxidation products (134). Indeed, exposure to lower 

oxygen levels can increase RONS production in a hypoxic dose-dependent manner 

(intensity and duration) (135).  Enhanced hypoxia-induced oxidative stress is mediated 

by increased RONS production by several RONS-generating systems (mitochondrial 

electron transport chain, XO, and NOS) and impaired antioxidant (enzymatic and non-

enzymatic) capacity (135, 136). 

Severe hypoxia exacerbated 30s all-out sprint exercise-induced changes in metabolite 

accumulation and RONS production (137, 138). Compared to normoxia (sea level), high-

intensity sprint exercise in severe acute hypoxia (e.g., 5.300 m above sea level) elicited a 

higher glycolytic rate, greater reductions in the NAD/NADH+ ratio, lower muscle pH, 

and increased protein carbonylation, suggesting greater RONS production in hypoxia 

(138). The increased lactate accumulation observed during sprint exercise in severe acute 

hypoxia may be explained by a different mechanism of activation of the pyruvate 

dehydrogenase (137). In short, high intensity exercise performed in severe acute hypoxia 

modify different skeletal muscle signalling pathways (138). Accordingly, exercise and 

post-exercise recovery in hypoxia alter exercise adaptations to oxidative stress compared 

to normoxic conditions (139, 140). However, the mechanism behind the increased 
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oxidative stress is still under scrutiny, as exercise to exhaustion could produce similar 

changes in metabolites (muscle lactate, phosphocreatine, and ATP) in normoxia and 

severe acute hypoxia, although remarkably lower femoral vein PO2 (and probably 

intracellular PO2) during exercise observed in severe acute hypoxia (117). Nevertheless, 

oxidative stress seems to be exacerbated by exercise as indicated by the fact that exercise 

to exhaustion in hypoxia exerts greater increase in markers of oxidative stress than 

exposure to hypoxia without exercise (141). 

5.1.14. Redox balance during ischaemia-reperfusion. 

Ischaemia is the reduction of blood flow (hypoperfusion) to certain organs/tissues of 

the body that causes a decrease in the amount of oxygen (hypoxic ischaemia) and 

nutrients in the affected area followed by a burst of RONS produced upon reperfusion. 

Ischaemia may also impair the elimination of metabolites from the affected tissues. The 

production of RONS after an ischaemia-reperfusion (IR) phenomenon observed in 

different conditions (e.g., atherosclerosis) causes tissue damage (for example, heart, liver, 

and brain) that can lead to serious complications in organ transplants, extremity injuries 

and myocardial infarction, among others. In skeletal muscle, a prolonged ischaemia 

followed by reperfusion can lead to cell apoptosis (142) and decrease myofibrillar 

sensitivity to Ca2+, thus compromising muscle contractile function (143). Then, early re-

opening of blood flow to the ischaemic area helps to preserve tissue function. 

Decreased O2 supply due to arterial blood flow obstruction induces the use of 

anaerobic metabolism and leads to decreased ATP production, probably due to impaired 

enzyme activity by osmotic and cellular pH changes (Ca2+ and H+ accumulation) due to 

dysfunction in the electron transport chain in mitochondria and in sodium/potassium and 

calcium pumps (a detailed review can be found elsewhere (75)). Subsequent reperfusion 

of ischaemic tissue after redox alteration increases the generation of RONS and induces 
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oxidative stress and a local inflammatory response causing damage to cellular structures 

due to the so-called ischaemia-reperfusion phenomenon. The intake of antioxidants has 

been proposed for cardio-protection against oxidative stress caused by ischaemia-

reperfusion injury (143, 144). RONS overproduction after ischaemia reperfusion seems 

to peak during the first 5 minutes (145). Furthermore, oxygen does not immediately drop 

to zero when ischaemia is applied, and in fact the little O2 trapped during the ischaemia 

period is used and can generate RONS. Indeed, Electron paramagnetic resonance (EPR) 

experiments have shown that free radicals are generated in mammals not only during the 

reperfusion phase, but also in small amounts during ischaemia (146). However, the levels 

of RONS generated during ischaemia appear to be low in relation to reperfusion and the 

physiological importance of these remains uncertain.  

Although not fully elucidated in skeletal muscle, mechanisms of oxidative stress 

induction from different sources of RONS (XO, NOX, NOS, mitochondrial electron 

transport chain, etc.) during ischaemia-reperfusion have been reviewed elsewhere (147). 

For example, proteolytic attack triggered by calcium dysregulation on xanthine 

dehydrogenase and limited levels of O2 and ATP during ischaemia in skeletal muscle 

induce hypoxanthine accumulation and diminish the activity of xanthine oxidase to 

convert hypoxanthine into xanthine (148). Upon reperfusion, O2 availability increase, and 

hypoxanthine is abruptly converted by the reaction of xanthine oxidase, producing even 

greater RONS formation during reperfusion than during ischaemia. 

Even during the high intensity exercise in severe hypoxia muscle blood flow is not 

completely interrupted, muscle O2 reserves are not completely exhausted, oxidative 

phosphorylation is not inhibited, the ATP is not completely consumed, and mitochondrial 

respiration is not impaired (149). The complete interruption of muscle blood flow 

produced during ischaemia limits oxygen consumption and increase RONS production, 
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likely leading to mitochondrial dysfunction by increased mitochondrial permeability 

transition pore (150). Greater reduction of blood flow (greater intensity of ischaemia) 

could increase the production of free radicals (146). Especially after post-exercise 

ischaemia, insufficient production of ATP to meet the demand for ATP impairs the 

activities of the sodium-potassium and calcium pumps, and an increase in intracellular 

lactate and H+ occurs (117). In fact, only one minute of ischaemia after incremental 

exercise to exhaustion increased muscle lactate and decreased phosphocreatine and pH 

(117) (see supplementary Fig. 5). The adaptative regulation of metabolism generates 

metabolites that alter gene expression, modifying chromatin and regulating transcription 

and translation processes. Metabolome can dynamically adjust gene activity due to 

metabolism-dependent changes in chromatin structure, metabolite-induced changes in the 

activity of transcription factors and cofactors, and small molecule feedback loops at the 

molecular level of RNA transcription (151). When ischaemia ends and reperfusion 

begins, a burst of RONS (primarily superoxide) arises from different RONS production 

sources, such as the mitochondria (152) or XO activity (153). Antioxidants administration 

may protect proper skeletal muscle contractile function after IR injuries (154). 



Introduction | Ángel Gallego Sellés 

58 
 

 

Supplementary Figure 5. Muscle metabolites after incremental exercise to exhaustion. Muscle ATP (A), 

phosphocreatine (PCr) (B), lactate (C) and pH (D) under resting conditions before (PRE) exercise, and 10 s (POST) 

and 60 s (1-min) after the end of an incremental exercise to exhaustion either in normoxia (PIO2 = 143 mmHg) or 

hypoxia (PIO2 = 73 mmHg) performed in random order. At exhaustion, a cuff was instantaneously inflated at 300 

mmHg around the thigh of one leg to impede recovery. A muscle biopsy was obtained 10 and 60 s after the end of the 

sprint, while the occlusion was maintained, from the musculus vastus lateralis of the occluded leg. A 60 s biopsy was 

also obtained simultaneously from the non-cuffed leg (circles in the graphs); ∗ P<0.05, compared with PRE; §ANOVA 

time effect POST vs.1-min occlusion; P<0.05. Extracted from Morale-Alamo et al. (2015) (117) 

5.1.15. Application of ischaemic preconditioning in redox research. 

At certain levels that are not harmful to the cell, RONS functions as a mediator for 

different cell signalling cascades related to the adaptive response. Ischaemic 

preconditioning (IPC) is an experimental technique that involves the application of 

repeated cycles of IR at a non-injurious intensity to elicit an adaptive response that confers 

effective protection to tissues affected by IR injury (e.g., prolonged coronary occlusion). 
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For example, application of IPC to the myocardium decreases oxidative damage during 

prolonged pathologic exposure typical of IR injury (155), resulting in cardio-protection 

by reduced infarct size, attenuated arrhythmias, and preserved cardiac function (143, 

156). The underlying hormesis mechanisms of IPC involve moderate levels of RONS 

(157), opening of mitochondrial permeability transition pore and ATP-sensitive K+ 

channels (158), optimal regulation of Ca2+ (156). The application of IPC in skeletal 

muscle could provide protective effects such as reduction in infarct size (159) through 

decreased consumption of ATP during ischaemia (160), lower generation of oxidative 

products and mediators of the inflammatory response (161). In addition, direct IPC (in 

the target tissue) and remote IPC (in a remote tissue) may increase the expression of 

endogenous antioxidant enzymes in skeletal muscle (162). 

Apart from IPC, other clinical alternatives have been proposed for the treatment of 

ischaemia-reperfusion injury. The advance of other clinical treatments and the lack of 

practical application of IPC due to the difficulty in anticipating myocardial infarctions or 

extremity injuries has led to the use of ischaemic postconditioning (IPostC), which is 

more likely than preconditioning to be feasible as a clinical application to patients 

undergoing acute myocardial infarction (163). IPostC involves a series of brief cycles of 

ischaemia and reperfusion applied immediately at initiation of reperfusion in the organ 

previously subjected to ischaemia, also reducing infarct size and preserving endothelial 

function (164) likely by similar mechanisms than IPC (165). On the other hand, some 

pharmacological strategies such as the intake of antioxidants or NOX and XO inhibitors 

could improve the prognosis of RONS-related I/R injury (155). Finally, regular exercise 

provides a well-documented cardioprotective effect as a reducer of risk factors for 

cardiovascular diseases such as obesity and hypertension (166). As the sources of RONS 

production could be similar during ischaemia and exercise (153), the implementation of 
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short-term ischaemia after exercise could boost the signals produced during exercise to 

induce a greater accumulation of metabolites and RONS generation, enhancing exercise-

induced signalling and augmenting the adaptive exercise-mediated response. 

5.1.16. Sedentary lifestyle, metabolic syndrome, and oxidative stress. 

Physical inactivity is one of the most important public health problems of the 21st 

century (167), becoming the 4th leading risk factor for mortality. Prolonged physical 

inactivity leads to cardiovascular disease (CVD), diabetes, cancer, hypertension, obesity, 

depression, and osteoporosis (168, 169). Physical inactivity induces oxidative stress by 

multifactorial mechanisms leading to muscle atrophy through decreased protein synthesis 

and increased protein degradation (170). The coexistence of several important CVD risk 

factors is a characteristic of the metabolic syndrome (171), which is associated with a 

higher risk of CVD and all-cause mortality, morbidity, and hospital stay (172, 173). 

Regular exercise markedly impacts the function of many tissues that affect metabolic 

homeostasis throughout the body. In general, physically active and fit persons have 

approximately 20% to 35% lower relative risk of all-cause death compared inactive and 

unfit persons (168). The identification of signals induced by the high production of RONS 

produced in skeletal muscle during strenuous exercise could significantly improve our 

understanding of muscle redox regulation, helping to combat oxidative stress-related 

diseases and optimize athletic performance. 

Recent government recommendations highlight the importance of improving physical 

fitness for better health, staying physically active and reducing sedentary behaviour (169). 

Moreover, sedentary time increases the likelihood of developing different risk factors 

involved in the metabolic syndrome, independently of the fitness level (174). Three 

abnormal factors out of five characterize a person with metabolic syndrome: elevated 

blood pressure (≥ 130/85 mm Hg systolic/ diastolic blood pressure), elevated triglycerides 
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(≥ 150 mg/dL) and low high-density lipoprotein cholesterol (< 40/50 mg/dL in 

men/women), elevated fasting glucose (≥ 100 mg/dL) and central obesity (waist 

circumference ≥ 102/88 cm in men/women) (175). This cluster of risk factors increase 

the risk for cerebral and cardiovascular events (176). Oxidative stress is considered to 

play an important role in the pathogenesis of metabolic syndrome (177, 178). For a 

comprehensive description of the effect of oxidative stress on the human body, see 

supplementary Figure 6. 

A blunted ability to resist and repair oxidative damage and high levels of prooxidants 

have been related to the pathogenesis of diseases such as cancer, atherosclerosis, 

neurodegenerative diseases, hypertension, diabetes mellitus, cardiovascular diseases and 

aging (179). Furthermore, inflammation associated with chronic diseases is closely 

related to oxidative stress (179). Metabolic syndrome further potentiates elevated 

oxidative stress in obese adults determined by higher levels of RONS and lower 

antioxidant capacity, accompanied by higher systemic inflammation (178).  

Increased systemic oxidative stress by advanced oxidation protein products are 

associated with increased presence of metabolic syndrome risk factors (177) and lower 

aerobic capacity and impaired skeletal muscle energy metabolism (180). Additional free 

radical production is generated from endogenous (inflammation, infection, cancer, etc.) 

and exogenous (poor diet, alcohol consumption, smoking, etc.) sources. Physical training 

is an effective treatment to reduce oxidative stress and risk factors associated with 

metabolic syndrome (181), reducing inflammation, blood pressure, and improving 

muscle metabolism (182). Additional effects of regular physical exercise are improved 

dyslipidemia and lipid profile (183), increased bone density (184), enhanced weight loss 

and maintenance (185), and extended life expectancy (186). Regular practice of exercise 

modifies the basal state and the response to an acute session of exercise, reducing the 
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overregulation caused immediately after exercise of oxidative stress that targets lipids, 

increasing antioxidant defences and decreasing protein oxidation processes (187, 188). 

The model used in this thesis is incremental exercise to exhaustion with the aim of 

producing oxidative stress in skeletal muscle and possibly in other tissues, allowing the 

study of the activation of various signals mediated by RONS. 

 

Supplementary Figure 6. Sources of free radicals and their effects on the human body. Extracted from Sharifi-Rad et 

al. (2020) (189). 

5.1.17. RONS generation and aging. 

The free radical theory of aging was originally described in the 1950s by Denham 

Harman (4). Since then, the accumulation of damage induced by oxidative stress has been 

highlighted as the main responsible for the progressive loss of function of tissues and 

organs associated with age (190). Back in 1990, Zerba et al. identified that advancing age 
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produces greater susceptibility to muscle injuries in a mechanism associated with the 

increased production of RONS (191). The benefit of exercise are also observed when 

aging occurs under active lifestyle, presenting lower levels of oxidative stress at rest and 

a higher antioxidant response to physical exercise (192, 193).  

Improving cardiovascular fitness even in sedentary middle-aged people increases 

resistance to oxidative stress (194). Moreover, regular exercise in old people increase the 

activity of antioxidant enzymes (195) and slows the age-related decline in antioxidant 

capacity, reaching antioxidant levels comparable to those seen in inactive youth (196). 

Furthermore, ensuring adequate levels of endogenous antioxidants through diet could 

reduce not only oxidative damage due to exercise, but also alter the threshold for age-

related reduction in muscle mass and exercise capacity (197). 

5.1.18. RONS-mediated hormetic adaptation induced by exercise. 

As an easily accessible, lack of adverse effects, and low-cost polypill, many people 

start exercising with the goal of improving health and gaining the benefits of exercise to 

prevent and/or treat almost every chronic disease and improving fitness (198). However, 

despite decades of research, controversy still exists as to whether exercise-induced RONS 

production is a double-edged sword for health (128). Therefore, the development and 

characterization of an ischaemia/reperfusion model is necessary for the study of muscle 

signalling induced by free radicals and physical exercise, the objective of this thesis. 

Moderate levels of RONS production during exercise promote positive physiological 

adaptation in active skeletal muscles, whereas damage to macromolecular structure 

associated with high degrees of oxidative stress may be achieved during prolonged, high-

intensity exercise. Exercise modulates any beneficial or detrimental effects mediated by 

RONS, in a relationship from physical inactivity to overtraining. For example, DNA 
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damage can occur after exhaustive exercise, especially if the exercise is performed at a 

high intensity (199). However, this transient DNA damage is also repaired by exercise-

stimulated antioxidant systems (199). In fact, there is no consistent evidence to support 

that prolonged high-intensity exercise results in tissue damage and impaired 

physiological function (128). Although physical exercise per se induces the production 

of RONS, regular practice of physical activity leads to a better training status, reduces 

oxidative damage markers and increase antioxidants agents (as reviewed elsewhere 

(200)). As mentioned above, excessive antioxidant capacity could excessively reduce 

RONS production after exercise, impairing the exercise-induced hormesis response and 

inhibiting adaptations. The repeated production of RONS during exercise sessions 

paradoxically acts as mild stressors that trigger a biomolecular hormetic response through 

redox-sensitive signalling pathways (See supplementary Fig. 7). Therefore, identifying 

and understanding the major signalling pathways and antioxidant enzymes stimulated by 

exercise could lead to their use as targets to regulate the hormetic adaptive response to 

exercise. 

Repeatedly facing situations of non-pathological oxidative stress through regular 

physical exercise elicits a beneficial effect of adaptation by hormesis, which induces a 

beneficial adaptive response in the antioxidant response observed in more trained subjects 

(187, 196, 201). Therefore, long-term regular practice of physical exercise increases 

antioxidant systems and decreases protein oxidation processes at rest, and attenuates the 

immediate response to oxidative stress that occurs in an acute exercise session (187) and 

likely in pathological situations of oxidative. Moreover, higher levels of physical activity 

have been associated with reduced all-cause mortality, with increased risk reduction per 

time for vigorous exercise compared to moderate-intensity activities (202). In agreement, 

recent evidence suggests that vigorous exercise produces a greater decrease in the level 
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of oxidative stress, which is likely to provide even greater health benefits (128). 

Consequently, more evidence is needed to understand the effects of high-intensity 

exercise on the adaptive hormetic response and the production of oxidative stress markers 

(199). 

 

Supplementary Figure 7. Multi-dimensional model showing multiple factors to be considered when assessing the 

degree of oxidative damage when applied to the exercise model. IS, insufficient; RONS, reactive oxygen and nitrogen 

species; S, sufficient. Extracted from Tryfidou et al. (2020) (199) 

5.1.19. Oxidative stress, myokine and exercise-induced adaptations. 

More than 1000 post-translational signalling events are altered in skeletal muscle with 

a single exercise session in human skeletal muscle (203). Acute exercise has an impact 

on the control of metabolism, mRNA transcription, and protein translation (204). The 

effect of integrating successive sets of acute exercise leads to chronic molecular changes 
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produced by long-term training (204). Part of the well-recognized health benefits are 

mediated by exercise-mediated release of cytokines (called exerkines). Cytokines are 

released from many organs (such as adipose tissue, the heart, and the brain), but there has 

been particular interest in cytokines released from skeletal muscle for their exercise-

associated health effect (205). The health benefits of exercise occur not only in skeletal 

muscle in an autocrine manner, but also affect different organs/tissues, producing 

endocrine adaptations in the body. In fact, certain cytokines produced by skeletal muscle 

(called myokines (206)) play a fundamental role in the communication of skeletal muscle 

with numerous organs. This is of particular interest as emerging evidence suggests that 

plasma redox status (at the systemic level) does not reflect skeletal muscle redox-sensitive 

protein signalling (207). The advancement of knowledge in this matter is due to the 

approach with a multifocal approach (in vitro and in vivo) to solve possible 

inconveniences and individual methodological problems to know what happens in human 

skeletal muscle during exercise (see supplementary Fig. 8) 

Although muscles are known to release more than 300 myokines (208) that drive 

adaptations throughout the body, the number of identified myokines continues to increase 

(209). Some of the adaptations produced by myokines in the body are associated with the 

regulation of metabolism, induction of signalling pathways, alteration of enzymatic 

activity, modification of hormonal regulation and moderation of gene expression (210). 

Myokines are still under study due to their recent identification, but RONS have been 

identified as import regulators of numerous myokines (211).  
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Supplementary Figure 8. Advantages and disadvantages of various approaches to the study of fatigue. Extracted from 

Allen et al. (2007) (41) 
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5.2. Introduction of article 1 

During exercise reactive oxygen (ROS) and nitrogen species (RNS) (collectively called 

RONS) are produced depending on the fitness level, the energy substrates oxidized and 

the characteristics of exercise (212-215). Although in some circumstances, RONS may 

cause oxidative damage, RONS also stimulate signalling pathways essential for the 

adaptive response to exercise (212, 216). One of the main transcription factors involved 

in RONS-mediated regulation of gene expression is the nuclear factor erythroid-derived 

2-like 2 (Nrf2), as shown in Nrf2-null mice (Nrf2-/-) (217-219). In mice skeletal muscle, 

total Nrf2 protein expression has been reported to increase after 90 min of continuous 

running (220) and nuclear Nrf2 protein content after 6 h of continuous running (221). In 

humans, unchanged and reduced Nrf2 mRNA levels have been reported in skeletal 

muscle biopsied 3-4 hours after exercise (222-225). However, the changes in Nrf2 protein 

levels and associated signalling events in response to acute exercise and recovery have 

not been determined in human skeletal muscle. This is relevant because reduced Nrf2 

expression has been associated with lower exercise performance in animal models of 

chronic disease (226). 

 The RONS produced during exercise are accompanied by intramuscular changes 

in oxygen pressure (PO2), metabolites and signalling molecules (Ca2+, Pi, Cr, PCr, H+, 

NADH.H+, etc.), which return to pre-exercise levels with different time courses (227, 

228). Such changes in metabolite accumulation and RONS production are exacerbated 

when the exercise is performed in hypoxia (229, 230), leading to specific adaptations 

(231-233). Animal and cell culture experiments indicate that skeletal muscle Nrf2 

signalling is upregulated by hypoxia (234, 235). Nevertheless, it remains unknown 

whether metabolite accumulation and muscle oxygenation influence Nrf2 signalling in 

response to acute exercise.  
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 Nrf2 signalling is principally regulated by Kelch-like ECH-associated protein 1 

(Keap1), which under basal conditions binds to Nrf2 promoting its ubiquitination and 

proteasomal degradation (236). Keap1 is a cysteine-rich protein sensitive to modification 

by electrophiles and oxidants, which cause conformational changes of Keap1 that 

stabilize the Keap1-Nrf2 interaction, preventing Nrf2 proteasomal degradation. Under 

lower availability of free Keap1, the newly formed Nrf2 accumulates and translocates to 

the nucleus where it binds with antioxidant response elements (AREs) to regulate the 

transcription of more than 250 genes involved in the xenobiotic and antioxidant response, 

mitochondrial biogenesis, metabolism, detoxification, cytoprotection, inflammation, 

autophagy, and cell differentiation (236). Although it is well established that exercise 

increases in the gene expression of some antioxidant enzymes (222, 228, 237), the acute 

effects of exercise on the protein levels of Keap1, superoxide dismutase isoenzyme 1 

(SOD1), superoxide dismutase isoenzyme 2 (SOD2), and Catalase in skeletal muscle 

remain unknown. Moreover, the process of activation/deactivation of Nrf2 signalling in 

skeletal muscle with contractile activity has not been investigated. 

 Given the intrinsic difficulty in assessing RONS production in human skeletal 

muscle and the low specificity and sensitivity of the oxidative markers at use, we 

examined potential changes in RONS production by assessing the phosphorylation 

changes known to be mediated by RONS. This is the case of the phosphorylation of Nrf2 

at its Serine 40 by protein kinase Cδ (PKCδ), a ROS-sensitive kinase (238). Likewise, we 

determined the phosphorylation of Ca2+/calmodulin-dependent protein kinase II 

(CaMKII) at its threonine 187. CaMKII is activated by oxidation and 

autophosphorylation (239), and effect likely amplified by ROS-induced inhibition of 

phosphatases (240). During high-intensity exercise, Thr287 CaMKII phosphorylation is 

blunted by the administration of antioxidants before exercise (216). Likewise, 
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overexpression of antioxidant enzymes prevents Thr287 CaMKII phosphorylation in other 

experimental models (241, 242). As downstream indicators of Nrf2 signalling, we 

determined the protein expression levels of Catalase, and SOD1 and SOD2. Animal data 

and cell culture experiments indicate that the gene expression of Catalase (236), SOD1 

(243), and SOD2 (244) are stimulated by Nrf2, while the physiological ROS-induced 

expression of Catalase is blunted in Nrf2-/- mice (217, 245). We also measured Thr172 

AMPKα phosphorylation as a marker of metabolic stress, since this enzyme is activated 

principally depending on the AMP/ATP ratio (246), and is necessary to enhance the 

expression of SOD2 in response to training (247). Besides, due to the short half-live of 

RONS and the fast recovery of the energy metabolism upon cessation of exercise, a new 

experimental model was developed in humans, to impede early recovery through the 

instantaneous application of complete post-exercise ischaemia with a pneumatic cuff in 

one leg only, using the contralateral leg as a control.  

 Since Nrf2/Keap1 signalling is expected to be activated by exercise models 

eliciting redox perturbations, we used an exercise protocol that allows the achievement 

of maximal oxygen uptake (VO2max) in 10-15 minutes and elicits a marked activation of 

the glycolysis close to exhaustion (213, 248), resulting in oxidative stress (249).   
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5.3. Introduction of article 2 

The transcription factor nuclear factor kappa-light-chain-enhancer of activated B 

cell (NF-κB) regulates over 150 genes involved in inflammation, immunity, cell 

proliferation, apoptosis (250-253), and muscle metabolism (253-256). NF-κB is activated 

by extracellular signals, mostly cytokines, as well as intracellular changes in calcium 

(257) and reactive oxygen and nitrogen species (RONS) (258-260). Although these 

signals are present in contracting muscles, contradicting findings have been reported 

regarding the effect of exercise on NF-κB activation and signalling. Exercise activates 

NF-κB in rodents, although this response is not homogeneous in all exercised muscles 

(261) and associated with muscle damage (262, 263). In humans, increased (264, 265 ), 

unchanged (266) and decreased (267) NF-κB signalling has been reported after acute 

endurance (264, 266) and resistance (265, 267) exercise. Part of these discrepancies could 

be accounted for by differences in exercise protocol, characteristics of the subjects and 

collection timing of the muscle biopsies, which may influence metabolite accumulation 

and redox balance. It remains unknown whether a certain level of metabolite 

accumulation and RONS production is necessary to trigger an acute signalling response 

by NF-κB.  

 RONS production and metabolite build-up is exacerbated when the exercise is 

performed in hypoxia (229, 230).  Cell culture experiments indicate that NF-κB (254, 

268-270) is stimulated by hypoxia and RONS. Nevertheless, whether metabolite 

accumulation and muscle oxygenation influence the NF-κB signalling response to 

exercise remains unknown. There is some experimental evidence in rodent muscle 

indicating that the exercise activation of NF-κB is produced through phosphorylation and 

activation of IKK by the RONS-sensitive upstream kinases ERK1/2 and p38 mitogen-

activated protein kinase (p38 MAPK) (261, 271). However, data in humans are not 
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conclusive (266). In turn, NF-κB activation has been shown to induce the expression of 

some antioxidant enzymes, like Gpx1 and Trx1 (272-274), although information about 

this effect in human skeletal muscle in vivo is lacking. Glutathione reductase (GR) 

catalyses the reduction of the oxidised glutathione (GSSG) to reduced glutathione (GSH), 

and its activity is increased by oxidative stress in skeletal muscle (275) and by activation 

of Nrf2 signalling (276). GR expression may be increased to facilitate the restoration of 

GSH during exercise conditions eliciting oxidative stress, and hence and increased 

expression of GR could be used as a biomarker of oxidative stress. Nevertheless, no 

previous study has determined the effects of intense exercise on the protein levels of GR 

in humans. 

           It has been reported that thioredoxin reductase 1 (TrxR1) may facilitate NF-κB 

signalling (277). TrxR1 has been shown to be unchanged in human skeletal muscle after 

prolonged aerobic exercise (278) and increased after repeated sprint exercise (279). 

Whether skeletal muscle TrxR1 expression increases during incremental exercise to 

exhaustion in normoxia and hypoxia remains unknown. 
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6. AIMS AND HYPOTHESIS 

6.1. Aims and hypothesis of article 1. 

 Therefore, the primary purpose of this study was to determine whether Nrf2 is 

upregulated by acute exercise in human skeletal muscle and the role that Keap1 protein 

plays in this process. Another aim was to determine whether the level of oxygenation 

during the exercise influences the Nrf2 signalling response, as well as the role played by 

muscle oxygenation and metabolite accumulation in the early recovery after exercise.  

We hypothesised that Nrf2 protein amount and its downstream-regulated proteins 

Catalase, SOD1, and SOD2 would be increased in response to exhaustive exercise, and 

more markedly during exercise in hypoxia than normoxia. We also hypothesised that 

these changes would revert to pre-exercise levels within one minute of the cessation of 

exercise in the leg recovering with free circulation. At the same time, Nrf2-depending 

signalling would increase further in the ischaemic leg due to the additional accumulation 

of metabolites and the reduction of PO2 to anoxic levels. 

6.2. Aims and hypothesis of article 2. 

The primary aim of this study was to determine whether NF-κB signalling is 

activated by acute exercise to exhaustion in human skeletal muscle and whether muscle 

oxygenation and metabolite accumulation play a role in this process. Another aim was to 

determine the time course of NF-κB signalling during the early recovery and ascertain 

whether NF-κB signalling remains activated by post-exercise ischaemia application.  

We hypothesized that NF-κB signalling is more markedly activated during 

exercise in severe acute hypoxia and further activated during post- exercise ischaemia 

and would be accompanied by upregulation of antioxidant enzymes regulated by NF-κB. 

We also hypothesized that NF-κB signalling would return to pre-exercise levels within 

one minute of the termination of exercise when the muscles recover without occlusion. 
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7. METHODS 

7.1. Subjects. 

Eleven young men volunteered to participate in this study (means ± SD; age: 21.5 

± 2.0 years, body mass: 72.3 ± 9.3 kg, height: 174 ± 8 cm, and body fat: 16.1 ± 4.9%). 

The inclusion criteria were: a) age between 18 and 35 years, b) sex: male, c) body mass 

index: < 30 kg.m-2 all, d) normal 12-lead electrocardiogram, and e) having a physically 

active lifestyle exercising regularly 2-4 times a week, but without following a specific 

training program; and the exclusion criteria: a) smoking, b) any disease o allergy, c) any 

medical contraindication for exercise, d) being under any medical treatment (280). All 

volunteers signed a written consent after receiving information about the aims and 

potential risk of the study. The study commenced after approval by the Ethical Committee 

of the University of Las Palmas de Gran Canaria and was carried out according to the 

Declaration of Helsinki. Subjects were asked to avoid ingesting caffeine and taurine-

containing drinks, alcohol and exercise 24 h before the experiments. Besides, they 

recorded their dinner on the day before the first experimental session to repeat a similar 

diet on subsequent experimental sessions. Subjects were asked to maintain their usual diet 

until the end of the study. 

7.2. Study design. 

Although this research was initially designed to determine the mechanisms that 

limit performance during whole-body exercise in humans previously published (1, 281-

283), it was also planned to analyse the main signalling pathways activated by cellular 

stress during exercise and post-exercise ischaemia. In a recent paper, we focussed on Nrf2 

mechanisms of activation/deactivation during exercise and recovery (280). The present 

paper contains novel results regarding the mechanisms regulating NF-κB signalling 

during exercise in normoxia and severe acute hypoxia.  
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7.3. Pre-test and familiarization. 

Anthropometric and DEXA body composition assessments were performed 

(Hologic QDR-1500, software version 7.10, Hologic Corp., Waltham, MA, USA) (1) 

during the first visit to the laboratory, followed by familiarization with the exercise 

protocol. This was continued by two sessions to determine their maximal power at 

exhaustion (Wmax), the peak oxygen consumption (VO2peak), and maximal heart rate 

(HRmax) in normoxia (Nx; FIO2 = 0.21; PIO2 ~143mmHg) and hypoxia (Hyp; FIO2 = 

0.104; PIO2 ~73mmHg) using a ramp incremental exercise test to exhaustion on a Lode 

Excalibur Sport 925900 (Groningen, The Netherlands) (1). VO2 was measured breath-

by-breath with a metabolic cart (Vmax N29; Sensormedics, Yorba Linda, CA, USA) 

which was calibrated according to the manufacturer’s instructions, using high-grade 

calibration gases (Carburos Metálicos, Las Palmas de Gran Canaria, Spain) (1). The 

accuracy and precision of the metabolic cart was determined using a butane combustion 

test as previously described (284). The highest 20s-averaged VO2 registered during the 

test was taken as the VO2peak (285).  

7.4. Main experiments. 

Two main experimental sessions including one incremental exercise to exhaustion 

(Lode Excalibur Sport 925900, Groningen, The Netherlands), one performed in normoxia 

(Nx; FIO2 = 0.21; barometric pressure 735–745 mmHg) and another in hypoxia (Hyp; 

FIO2 = 0.104; barometric pressure 735–745 mmHg) were carried out on separate days and 

random order (Fig. 1). During the tests, subjects were requested to maintain a pedalling 

rate close to 80 rpms. In both sessions, exhaustion (also task failure hereafter) was defined 

by the subject stopping pedalling suddenly or a pedalling rate below 50 rpm despite strong 

verbal encouragement for 5 s. The duration of the incremental exercise test to exhaustion 

was 15±3 min in normoxia and 12±4 min in hypoxia. 
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Figure 1. Schematic illustration of the experimental protocol. Eleven subjects performed an incremental exercise to 

exhaustion either in normoxia (Nx; FIO2 = 0.21) or in severe normobaric hypoxia (Hyp; FIO2 = 0.104) in random order. 

A resting skeletal muscle biopsy was obtained from the m. vastus lateralis before warm-up, followed by an incremental 

exercise test until exhaustion. Immediately at exhaustion, one leg was occluded at 300 mmHg and maintained during 

60 s. Subsequent biopsies were taken from the occluded leg at 10 s and 60 s of occlusion in both trials (Nx and Hyp). 

In the test performed in hypoxia, the biopsies were taken bilaterally from the occluded leg and the leg recovering with 

free circulation 60 s after exercise cessation, while the subjects recovered breathing normoxic air. 

 

 On the main experimental days, volunteers reported to the laboratory at 08.00 h, 

following an overnight fast. On the Nx day, a first basal muscle biopsy was obtained from 

the m. vastus lateralis of one of the two thigs, assigned randomly. This biopsy was 

labelled as Pre Nx. The needle was directed distally for the first biopsy, with 45° 

inclination (286). Then a 5 mm incision was performed in the contralateral leg to obtain 

fast post-exercise muscle biopsies from both legs. Both incisions were covered with 

temporary plasters easy to remove at exhaustion. After that, a cuff (SCD10, Hokanson, 

Bellevue, WA, USA) connected to a rapid cuff inflator (Hokanson, E20 AG101) was 

placed around the thigh biopsied first and taped as close as possible to the inguinal crease. 

Then, the subjects moved to the cycle ergometer, and after verification of proper 

connections and readings from the instruments, and a two-min data collection phase, the 
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exercise test in normoxia was started at 80 W for two min and increased by 30 W every 

2 min until task failure. At this moment, the cuff was inflated instantaneously at 300 

mmHg, and a countdown started to obtain a second biopsy (labelled as Post Nx, second 

biopsy) exactly 10 s after exhaustion, i.e., after 10 s of complete ischaemia. For this 

second biopsy, the needle was introduced perpendicular to the thigh. Then, the subject 

rested quietly on the cycle ergometer while maintaining the cuff inflated, and exactly 60 

s after the end of the exercise, the needle was introduced with 45° inclination towards the 

head to obtain the third biopsy (named as Oc1m Nx) (286). This last biopsy allowed 

assessing muscle signalling changes during 60-s ischaemia, while metabolites from the 

anaerobic metabolism build-up and mitochondrial PO2 decreased to zero (1).  

 On the Hyp day, the first muscle biopsy was obtained while the subjects were 

breathing normoxic room air (Pre Hyp biopsy). The exercise test in hypoxia began with 

a 2-min recording period at rest (PIO2 ~73 mmHg; AltiTrainer200, SMTEC, Nyon, 

Switzerland), followed by 2 min at 60 W, and increments of 20 W every 2 min until task 

failure. At this point, the cuff was instantaneously inflated, and the subjects switched to 

breath normoxic room air for the rest of the test. On the 10th s after the end of the exercise, 

the second biopsy was obtained (Post Hyp biopsy). Thereafter, the volunteers were moved 

to a stretcher while maintaining the cuff inflated to obtain the third muscle biopsy (Oc1m 

Hyp biopsy) exactly after 60 s of ischaemia. Simultaneously with the third, a fourth 

biopsy was taken from the contralateral thigh (FC1m), recovering with free circulation in 

normoxia during 60 s. This means that one leg recovered for 60 s in ischaemia and the 

other did so with an intact circulation.  All biopsies were immediately frozen in liquid 

nitrogen and stored at −80°C. We failed to obtain the biopsy corresponding to OC1M in 

two volunteers. In addition, due to scarce biopsy material, some assessments could not be 

done at all points for all subjects. 
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7.5. Muscle Metabolites, Protein extraction and Western blotting. 

Muscle metabolites and protein extracts were analysed as reported elsewhere (1), 

and total protein content was quantified using the bicinchoninic acid assay (287). Briefly, 

~10 mg of muscle were ground by stainless steel balls during one minute in a Mikro-

Dismembrator S (Sartorius, Goettingen, Germany) and immediately homogenised in urea 

lysis buffer (6 M urea, 1% SDS) and 50X Complete protease inhibitor (Cat. 

#11697498001) and 10X PhosSTOP phosphatase inhibitor (Cat. #4906837001) cocktails 

(Roche, Basel, Switzerland). Almost equal final concentration in all muscle protein 

extracts was acquired by following an individual adjustment of the extract volume using 

a volume calibration curve. Then, the lysate was centrifuged for 12 min at 25,200 g at 16° 

C. The resulting supernatant was diluted with electrophoresis loading buffer (160 mM 

Tris-HCl, pH 6.8, 5.9 % SDS, 25.5% glycerol, 15% β-mercaptoethanol-bromophenol 

blue). 

The optimal amount of total protein to be loaded and the antibody concentration 

for each assay was determined by loading protein from control and experimental samples 

in different amounts ranging from 2 to 35 μg. After verification of linearity within this 

range, equal amounts of protein of each sample (5-30 ug) were electrophoresed on SDS-

PAGE gels using the system of Laemmli and transferred to Immun-Blot polyvinylidene 

fluoride (PVDF) membranes for protein blotting (Bio-Rad Laboratories, Hercules, CA, 

USA) (Supplementary Table 1). Control samples (whole skeletal muscle lysates from 

healthy young men) were prepared and run as the experimental samples. A total protein 

staining technique (Reactive Brown 10, Sigma Aldrich, St. Louis, MO, USA) was used 

to accurately quantify the variability of the assays and ensure optimal loading and transfer 

efficiency. For protein expression determination, the samples from each subject were run 

together onto the same gel intercalated with four control samples. 
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 Membranes were blocked for one hour in either 4% bovine serum albumin or 2.5-

5% non-fat dried milk powder (blotting grade blocker) diluted in Tris-buffered saline 

containing 0.1% Tween 20 (TBS-T) (BSA-or Blotto-blocking buffer) and incubated 

overnight for 12-15 h at 4ºC with primary antibodies. Antibodies were diluted in 4% 

BSA-blocking buffer, 2.5 or 5 % Blotto-blocking buffer. After incubation with primary 

antibodies, the membranes were incubated with an HRP-conjugated anti-rabbit or anti-

mouse antibody (diluted 1:5000 to 1:20000 in 5% Blotto blocking buffer) and subsequent 

chemiluminescent visualization using Clarity™ Western ECL Substrate (Bio-Rad 

Laboratories, Hemel Hempstead, Hertfordshire, UK) using a ChemiDocTM Touch 

Imaging System (Bio-Rad Laboratories, Hercules, CA, USA). Finally, band 

densitometric data were quantified in an exposition prior to saturation of the signal with 

the Image Lab © software 6.0.1 (Bio-Rad Laboratories, Hercules, CA, USA) as arbitrary 

units (a.u). Since loading was homogeneous in all membranes, no further corrections were 

performed. Representative immunoblots are depicted in Fig. 2. 
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Figure 2A. Representative Western Blot Images from Study 1. Protein expression levels for studied proteins and their 

regulatory phosphorylations and the total amount of protein loaded (Reactive Brown staining) from a single participant. 

From top to bottom: pThr287 CaMKII, pThr172 AMPKα, AMPKα total, pSer349 p62 / SQSTM1, p62 / SQSTM1 total, 

pSer40 Nrf2, Nrf2, Keap1, Catalase, SOD1, SOD2 and Reactive Brown (as protein loading control). Nx; test performed 

in normoxia (FIO2 = 0.21, PIO2: 143 mmHg), Hyp; test performed in severe acute normobaric hypoxia (FIO2 = 0.104, 

PIO2: 73 mmHg); Pre, before exercise; Post, 10 s after the end of exercise with ischaemic recovery; Oc1m, 60 s after 

the end of exercise with ischaemic recovery; FC1m, 60 s after the end of exercise without ischaemic recovery (free 

circulation); CT, control sample. Arrows indicate estimated molecular weights. 
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Figure 2B. Representative Western Blot Images from Study 2. Immunoblots of all proteins studied, their regulatory 

phosphorylations and total amount of protein loaded (Reactive Brown Staining) for a single study participant. Images 

from top to bottom: pThr287 CaMKII, Total CaMKII, pThr180/Tyr182 p38 MAPK, pThr202/Tyr204 ERK1/2, NF-κB p105, 

NF-κB p50, NF-κB p65, pSer536 NF-κB p65, pSer32/36 IκBα, Total IκBα, pThr19/Ser23 IκBß, Total IκBß, pSer176/180 

IKKα/β, Total IKKβ, Total IKKα, GR, Txr1, Gpx1, TrxR1 and Reactive Brown (as total protein loading control). 

Detailed description of experimental phases is included in Figure 1. CON, non-intervention healthy human sample 

included in quadruplicate onto each gel as a loading control. Normoxia; test performed with FIO2 = 0.21, Hypoxia; test 

performed with FIO2 = 0.104; Pre, before exercise; Post, 10 s after the end of exercise with ischaemic recovery; Oc1m, 

60 s after the end of exercise with ischaemic recovery; FC1m, 60 s after the end of exercise without ischaemic recovery. 

The molecular weight standard markers closest to the migration of the band are indicated on the right side of the panel. 

7.6. Materials 

The Protein Plus Precision All Blue Standards were acquired from Bio-Rad 

Laboratories (Hemel Hempstead Hertfordshire, UK). The antibodies employed in this 

investigation were obtained from different manufacturers.  

The corresponding catalogue numbers from Abcam (Cambridge, USA) were as 

follows: pSer40 Nrf2 (no. ab76026), Nrf2 (no. ab62352), Keap1 (no. ab119403), SOD1 

(no. ab16831), Sequestosome 1 (SQSTM1 / p62) (no. ab56416) and SQSTM1 / p62 

(pSer349) (no. ab211324), IĸB beta total (no. ab109509) and Gpx1 (no. ab108429). The 

antibodies purchased from Cell Signalling Technology (Danvers, MA, USA) were: Thr287 

CaMKII (no. 12716), AMPKα (no. 2532), Thr172 AMPKα (no. 2535), Catalase 

(no.14097) and SOD2 (no. 13141), pThr287 CaMKII (no. 12716), Total CaMKII (no. 

4436), pThr180/Tyr182 p38 MAPK (no. 9211), pThr202/Tyr204 ERK 1/2 (no. 9106), Total 

ERK 1/2 (no. 9102), NF-κB p105 and p50 (no. 13586), Total NF-κB p65 (no. 3034), 

pSer536 NF-κB p65 (no. 3033), pSer32/36 IκBα (no. 9246), Total IκBα (no. 9242), 

pThr19/Ser23 IκBß (no. 4921), pSer176/180 IKKα/β (no. 2697), Total IKKα (no. 2682), Total 

IKKβ (no. 2370) and Trx1 (no. 2429).  
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Other antibodies were purchased from Proteintech (Rosemont, USA): GR (no. 

18257-1-AP) and TxrR1 (no. 11117-1-AP). The secondary HRP-conjugated goat anti-

rabbit (no. 111-035-144) and the HRP-conjugated goat anti-mouse (no.115-035-003) 

antibodies were acquired from Jackson ImmunoResearch (West Grove, PA, USA). A 

CaMKII δ isoform-specific antibody (anti- CaMKII delta isoform no. A010-55AP; 

Badrilla) was employed to distinguish between the γ and δ isoforms, as previously 

described (288). For more details, check supplementary Table 1. 

7.7. Statistical analysis 

The Gaussian distribution of variables was determined with the Shapiro–Wilks 

test, and when required, data were transformed logarithmically before further analysis. 

The main effects and interactions were assessed using a two-way 3 x 2 repeated-measures 

ANOVA with time (Pre, Post, and Oc1m) and FIO2 (Normoxia and hypoxia) as within-

subject factors. Additionally, when no significant differences were observed between the 

postexercise conditions, the average of the means of the two Pre conditions was compared 

with those of post-exercise conditions (Post normoxia, Oc1m normoxia, Post hypoxia and 

Oc1m. For this purpose, a contrast analysis in a two way within repeated measures 

analysis was performed using R (R Foundation for Statistical Computing, Vienna, 

Austria). The differences between the occluded and non-occluded leg were determined 

using a paired t-test. The Mauchly’s test of sphericity was applied before the ANOVAs.  

In the case of violation of the sphericity assumption, the degrees of freedom were 

adjusted according to the Huynh and Feldt test. When significant main or interaction 

effects were detected, pairwise comparisons at specific time points were adjusted for 

multiple comparisons using the Holm-Bonferroni procedure. Linear relationships 

between variables were examined using a linear mixed model, and the Likelihood Ratio 

Test for the random effects (LRT) was computed and reported with the marginal and 
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conditional r-squared values. Unless otherwise stated, results are reported as the mean ± 

standard deviation (SD). Statistical significance was set at p < 0.05. Statistical analyses 

were performed using IBM SPSS Statistics v.21 for Mac (SPSS Inc., Chicago, IL, USA) 

and jamovi v1.8.1. (Jamovi project, 2021).  
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8. RESULTS 

8.1. Muscle metabolites. 

During the incremental exercise to exhaustion, subjects reached 287.3 ± 39 and 

177.3 ± 36.4 W in normoxia and hypoxia, respectively (p <0.001). The effects of 

metabolite accumulation in both conditions have been reported previously (1). Briefly, 

muscle lactate, phosphocreatine (PCr) and ATP changed similarly after IE. Muscle lactate 

increased only at Oc1m (25%; p < 0.05), and PCr was reduced by a 94 and 48% in Oc1m 

and FC1m, respectively (p < 0.005). Femoral vein PO2 was 21.1± 2.0 and 10.6±2.8 

mmHg at Wmax, in Nx and Hyp, respectively (p < 0.001). 

8.2. Results of article 1. 

8.2.1. Muscle signalling. 

 

I.  CaMKII, AMPK and p62. 

pThr287 CaMKII expression was increased by 1.7-fold after IE, remaining at this 

level after one minute of occlusion (1.9-fold above Pre), with a similar response in Nx 

and Hyp (ANOVA FIO2 effect p = 0.83, time effect p = 0.001, FIO2 by time interaction p 

= 0.9) (Fig. 3A). Solely in the leg recovering with free circulation, pThr287 CaMKII levels 

returned to pre-exercise values one minute after the end of the IE. 

Compared to Pre, pThr172 AMPKα expression was increased by 2.4 and 3.0-fold 

at Post and Oc1m (Post vs Oc1m p = 0.07; ANOVA time effect p < 0.001), with a similar 

response in Nx and Hyp (ANOVA FIO2 effect p = 0.71, FIO2 by time interaction p = 0.68, 

Fig. 3B). After the IE performed in Hyp, no significant differences were observed 

between the occluded and non-occluded leg one min after exercise (p = 0.19) (Fig. 3B).  



Results | Ángel Gallego Sellés 

92 
 

Compared to Pre, AMPKα total expression was reduced by 25 and 27 % at Post 

and Oc1m (ANOVA time effect p = 0.007), with a similar response in Nx and Hyp (FIO2 

effect p = 1.0, ANOVA FIO2 by time interaction p = 0.72, Fig. 3C). One minute after the 

end of the IE, AMPKα total expression returned to the pre-exercise levels only in the non-

occluded leg (Fig. 3C).  

The ratio pThr172 AMPKα / AMPKα total was increased by 4.5 and 4.0-fold at 

Post and Oc1m (Post vs Oc1m p = 0.38; ANOVA time effect p < 0.004), with a similar 

response in Nx and Hyp (ANOVA FIO2 effect p = 0.71, FIO2 by time interaction p = 0.42, 

Fig. 3D). After the IE performed in Hyp, the pThr172 AMPKα / AMPKα total ratio tended 

to be 52 % lower in the leg recovering without occlusion (p = 0.057) (Fig. 3D). 

The protein expression of pSer349 p62 showed a tendency to increase with time 

(ANOVA time effect p = 0.051). When the mean of the two Pre conditions was compared 

to the mean of Post and Oc1m conditions, pSer349 p62 protein was 26 % higher after 

exercise (p = 0.04). Following the IE performed in Hyp, pSer349 p62 protein was 41 % 

lower in the leg recovering without occlusion compared with the occluded leg (p = 0.026), 

and similar to that observed at Pre (Fig. 3E). No significant changes in p62 total protein 

were detected by the with raw data ANOVA (FIO2 effect p = 0.84, time effect p = 0.07, 

FIO2 by time interaction p = 0.50). A secondary analysis was carried out to compare the 

mean of the two Pre conditions with the mean of the two post-exercise conditions (Post 

and Oc1m), which showed that p62 was reduced by ~20% after exercise (p = 0.02) (Fig. 

3F). The ratio pSer349 p62 / p62 total was increased by 1.8 and 1.5-fold at Post and OC1m 

(Post vs Oc1m p = 0.17; ANOVA time effect p = 0.029), with a similar response in Nx 

and Hyp (FIO2 effect p = 0.34, ANOVA FIO2 by time, p = 0.19, Fig. 3G). Following the 

IE performed in Hyp, the ratio pSer349 p62 / p62 total was 43 % lower in the leg recovering 

without occlusion (p = 0.017), and similar to that observed before the exercise (Fig. 3G). 
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After the IE performed in Hyp, the pSer349 p62 / p62 total ratio increased by 1.5-fold 

during the period of ischaemia (p = 0.026). There was a strong association between the 

ratio pThr172 AMPKα / AMPKα total and the ratio pSer349 p62 / p62 total across 

conditions (r = 0.83, p = 0.02, n = 8, each point represents the mean of the subjects 

studied) (Fig. 3H). 
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Figure 3.  Skeletal muscle intracellular CaMKII, AMPKα and p62 signalling in response to incremental exercise to 

exhaustion in normoxia and severe hypoxia and the application of immediate ischaemic or non-ischaemic recovery.  

Protein expression levels of pThr287 CaMKII (A), pThr172 AMPKα (B), AMPKα total (C), pThr172 AMPKα / AMPKα 

total ratio (D), pSer349 p62 (E), p62 total (F), pSer349 p62 / p62 total ratio (G), and association between the ratio of 

pThr172 AMPKα / AMPKα total and the ratio of pSer349 p62 / p62 total (H). Nx; test performed in normoxia (FIO2 = 

0.21, PiO2: 143 mmHg), Hyp; test performed in severe acute normobaric hypoxia (FIO2 = 0.104, PiO2: 73 mmHg); Pre, 

before exercise; Post, 10 s after the end of exercise with ischaemic recovery; Oc1m, 60 s after the end of exercise with 

ischaemic recovery; FC1m, 60 s after the end of exercise in leg recovering without occlusion (free circulation); p62 / 

SQSTM1 (shortened to p62). n = 11 in all conditions except for Oc1m Nx (n = 9), Post Hyp (n = 10), and Oc1m Hyp 

(n = 10). In (H), large symbols represent the mean of the subjects studied in each condition. The correlation coefficients 

and regression line has been calculated using the individual values (small white circles, n = 73).  A detailed description 

of the experimental phases is explained in Fig. 1. The statistical analysis was performed with logarithmically 

transformed data for the pThr172 AMPKα / AMPKα total ratio and p62 total. The values shown are means ± standard 

errors and expressed in arbitrary units (a.u.). † p < 0.05 vs Pre Nx; * p < 0.05 vs Pre Hyp; # p < 0.05 vs Post Hyp; § p < 

0.05 vs Oc1m Hyp. 

 

II. Catalase, SOD1 and SOD2 antioxidant enzymes. 

Catalase protein expression was increased by 2.3 and 2.8-fold immediately after 

IE (Post) and after one minute of ischaemic recovery (Oc1m), respectively, with a similar 

response in Nx and Hyp (ANOVA time effect p = 0.001, FIO2 by time interaction p = 

0.12). Since the level of Catalase tended to be lower in the Pre value obtained the day of 

the experiment in Hyp (p = 0.10), we additionally analysed the experiment performed in 

Hyp separately. During the IE in Hyp, compared to Pre, Catalase expression levels were 

elevated 1.9-fold and 3.3-fold immediately after the IE (Post) and after one minute of 

occlusion (Oc1m), respectively. From the end of the IE in Hyp, the level of Catalase 

doubled during the occlusion (Post vs Oc1m, p = 0.018) (Fig. 4A). One minute after the 

IE in Hyp, Catalase protein levels were reduced by 56 % in the non-occluded leg (FC1m), 

remaining 1.5-fold above Pre levels (p = 0.048) (Fig. 4A). 
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Although no significant changes were observed in SOD1 protein levels with 

exercise nor ischaemia, SOD1 tended to decrease and increase after the IE in Nx and Hyp, 

respectively (ANOVA FIO2 effect p = 0.58; time effect p = 0.86, FIO2 by time interaction 

p = 0.053). To reduce variability between starting values on the testing day, we also 

repeated the analysis for fold changes regarding the pre-exercise value of each day. This 

analysis showed that SOD1 was reduced and increased after the IE in Nx and Hyp, 

respectively (ANOVA FIO2 effect p = 0.002, time effect p = 0.90, FIO2 by time interaction 

p = 0.044). The mean value of the Post and Oc1m for each subject after the IE in Nx and 

Hyp was compared using a paired Student´s t-test. This analysis found a 30 % higher 

SOD1 protein content after exercise + occlusion in Hyp than in Nx (p = 0.001). In both 

experiments, SOD1 remained unchanged from the 10th to 60th s of ischaemia.  One min 

after IE in Hyp, no significant differences were observed in SOD1 expression between 

the occluded and the non-occluded leg from 10th to 60th s (p = 0.11) (Fig. 4B). No 

significant changes were observed in SOD2 protein levels with exercise nor ischaemia 

(ANOVA FIO2 effect p = 0.34; time effect p = 0.45, FIO2 by time interaction p = 0.22) 

(Fig. 4C). The protein expression of SOD1 and SOD2 were positively associated (r = 

0.84, p = 0.02, n = 8, with each point representing the mean of the subjects studied). 
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Figure 4.  Skeletal muscle intracellular Catalase, SOD1 and SOD2 protein levels in response to incremental exercise 

to exhaustion in normoxia and severe hypoxia and the application of immediate ischaemic or non-ischaemic recovery.  

Protein expression levels of Catalase (A), SOD1 (B), and SOD2 (C). Nx; test performed in normoxia (FIO2 = 0.21, 

PiO2: 143 mmHg), Hyp; test performed in severe acute normobaric hypoxia (FIO2 = 0.104, PiO2: 73 mmHg); Pre, before 

exercise; Post, 10 s after the end of exercise with ischaemic recovery; Oc1m, 60 s after the end of exercise with 

ischaemic recovery; FC1m, 60 s after the end of exercise in leg recovering without occlusion (free circulation). A 

detailed description of the experimental phases is explained in Fig. 1. The statistical analysis was performed with 

logarithmically transformed data for Catalase and SOD2 and with fold-change data for SOD1. The values shown are 

means ± standard errors and expressed in arbitrary units (a.u.). n = 11 in all conditions except for Oc1m Nx (n = 9), 

Post Hyp (n = 10), and Oc1m Hyp (n = 10). † p < 0.05 vs Pre Nx; * p < 0.05 vs Pre Hyp; # p < 0.05 vs Post Hyp; § p < 

0.05 vs Oc1m Hyp; Ø p < 0.05 vs Oc1m Nx. 
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III. Nrf2/Keap1 signalling. 

The levels of phosphorylated Nrf2 at Ser40 were increased in Post and Oc1m 

compared to Pre by 1.5 and 1.6-fold, respectively, with a similar response in Nx and Hyp 

(ANOVA FIO2 by time, p = 0.7; ANOVA time effects p < 0.01, Fig. 5A). The exercise-

elicited increase of pSer40 Nrf2 was maintained at the same level after one min of 

ischaemia, while it recovered to pre-exercise values in the non-occluded leg. Similar 

changes were observed in the expression of Nrf2 total protein (Fig. 5B). Although no 

statistically significant changes were observed in the pSer40 Nrf2 / Nrf2 total ratio 

between Nx and Hyp, 1 min after IE in Hyp, this ratio was higher in the occluded 

compared to the non-occluded leg (p = 0.02) (Fig. 5C). 

Compared to Pre, Keap1 expression was diminished by 23 and 29 % at Post and 

Oc1m, respectively (ANOVA time effects p = 0.015; ANOVA FIO2 by time interaction 

p = 0.52). One minute after exercise, Keap1 recovered pre-exercise values in the non-

occluded leg (Fig. 5D).  

The Nrf2 total protein / Keap1 ratio was augmented by 3.3-fold (p = 0.02) at Post, 

remaining at this level (3.4-fold above Pre) after one min of occlusion. This response was 

similar for the exercise performed in Nx and Hyp (ANOVA time effects p = 0.002; FIO2 

by time interaction p = 0.45). One minute after the end of the IE, Nrf2 total protein / 

Keap1 ratio returned to the pre-exercise levels in the non-occluded leg (Fig. 5E).  
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Figure 5.  Skeletal muscle intracellular Nrf2 and Keap1 signalling in response to incremental exercise to exhaustion in 

normoxia and severe hypoxia and the application of immediate ischaemic or non-ischaemic recovery.  Protein 

expression levels of pSer40 Nrf2 (A), Nrf2 total (B), pSer40 Nrf2 / Nrf2 total ratio (C), Keap1 (D), Nrf2 Total / Keap1 

ratio (E). Nx; test performed in normoxia (FIO2 = 0.21, PiO2: 143 mmHg), Hyp; test performed in severe acute 

normobaric hypoxia (FIO2 = 0.104, PiO2: 73 mmHg); Pre, before exercise; Post, 10 s after the end of exercise with 

ischaemic recovery; Oc1m, 60 s after the end of exercise with ischaemic recovery; FC1m, 60 s after the end of exercise 

in leg recovering without occlusion (free circulation). A detailed description of the experimental phases is explained in 

Fig. 1. The statistical analysis was performed with logarithmically transformed data for all proteins except for Keap1. 

The values shown are means ± standard errors and expressed in arbitrary units (a.u.). n = 11 in all conditions except 

for Oc1m Nx (n = 9), Post Hyp (n = 10), and Oc1m Hyp (n = 10). † p < 0.05 vs Pre Nx; * p < 0.05 vs Pre Hyp; # p < 

0.05 vs Post Hyp; § p < 0.05 vs Oc1m Hyp. 
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8.2.2. Linear associations 

Phosphorylated CaMKII at Thr287 is closely associated with Nrf2 and Keap1 

proteins. As illustrated in Fig. 6, pThr287 CaMKII protein levels were positively 

associated with those of pSer40 Nrf2 expression (r = 0.93, p = 0.003), Nrf2 total protein 

(r = 0.87, p = 0.01), and the Nrf2 total protein/Keap1 ratio (r = 0.90, p = 0.005, and 

negatively with Keap1 (r = -0.93, p = 0.003) across conditions (r = 0.90, p = 0.005, n = 

8, in all instances each point represents the mean of the subjects studied). There was a 

close negative association between the protein expression levels of Nrf2 and Keap1 across 

conditions (r = -0.81, p = 0.03, n = 8, each point represents the mean of the subjects 

studied). Nrf2 signalling during exercise is closely associated with Catalase protein 

expression but not with SOD1 or SOD2 protein levels 
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Figure 6.  Associations between levels of phosphorylated CaMKII, Nrf2 and Keap1 protein expression across 

experimental phases.  pThr287 CaMKII and pSer40 Nrf2 (A) pThr287 CaMKII and Nrf2 total (B), pThr287 CaMKII and 

Nrf2 / Keap1 ratio (C), pThr287 CaMKII and Keap1 (D). A description of the experimental phases is explained in Fig. 

1. Nx; test performed in normoxia (FIO2 = 0.21, PiO2: 143 mmHg), Hyp; test performed in severe acute normobaric 

hypoxia (FIO2 = 0.104, PiO2: 73 mmHg); Pre, before exercise; Post, 10 s after the end of exercise with ischaemic 

recovery; Oc1m, 60 s after the end of exercise with ischaemic recovery; FC1m, 60 s after the end of exercise in leg 

recovering without occlusion (free circulation). n = 11 in all conditions except for Oc1m Nx (n = 9), Post Hyp (n = 10), 

and Oc1m Hyp (n = 10). Large symbols: each point is representing the mean of the subjects studied in each condition. 

Correlation coefficients and regression lines have been calculated using the individual values (small white circles, n = 

73). The values shown are means ± standard errors and expressed in arbitrary units (a.u.). Statistical significance was 

set at p < 0.05. 

  



Results | Ángel Gallego Sellés 

101 
 

Catalase protein expression was closely associated with Nrf2 total protein 

expression (r = 0.94, p = 0.002), pSer40 Nrf2 (r = 0.92, p = 0.04), Keap1 (r = -0.90, p = 

0.005), and the Nrf2 total protein / Keap1 ratio (r = 0.96, p < 0.001, in the four cases n = 

8, with each point representing the mean of the subjects studied) (Fig. 7). 

 

Figure 7.  Associations between levels of Catalase, Nrf2 and Keap1 protein expression across experimental phases.  

Nrf2 total and Catalase (A), pSer40 Nrf2 and Catalase (B), Keap1 and Catalase (C) and Nrf2 / Keap1 ratio and Catalase 

(D). A description of the experimental phases is explained in Fig. 1. Nx; test performed in normoxia (FIO2 = 0.21, PiO2: 

143 mmHg), Hyp; test performed in severe acute normobaric hypoxia (FIO2 = 0.104, PiO2: 73 mmHg); Pre, before 

exercise; Post, 10 s after the end of exercise with ischaemic recovery; Oc1m, 60 s after the end of exercise with 

ischaemic recovery; FC1m, 60 s after the end of exercise without ischaemic recovery (free circulation). n = 11 in all 

conditions except for Oc1m Nx (n = 9), Post Hyp (n = 10), and Oc1m Hyp (n = 10). Large symbols: each point is 

representing the mean of the subjects studied in each condition. Correlation coefficients and regression lines have been 

calculated using the individual values (small white circles, n = 73). The values shown are means ± standard errors and 

expressed in arbitrary units (a.u.). Statistical significance was set at p < 0.05. 
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No associations were observed between Nrf2 total protein and SOD1 (r = -0.39, p 

= 0.38); pSer40 Nrf2 protein and SOD1 (r = -0.19, p = 0.67), Nrf2 total protein / Keap1 

ratio and SOD1 (r = -0.37, p = 0.41), and pThr287 CaMKII and SOD1 (r = -0.28, p = 

0.54, in the four cases n=8, with each point representing the mean of the subjects studied). 

No associations were observed between Nrf2 total protein and SOD2 (r = -0.53, p = 0.22), 

pSer40 Nrf2 protein and SOD2 (r = -0.39, p = 0.39), Nrf2 total protein / Keap1 ratio and 

SOD2 (r = -0.50, P=0.22), and pThr287 CaMKII and SOD2 (r = -0.39, p = 0.38, in the 

four cases n=8, with each point representing the mean of the subjects studied).   
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8.3. Results of Article 2. 

8.3.1. Muscle signalling. 

 

I. pThr287 CaMKII muscle isoforms. 

Compared to Pre, pThr287 CaMKII βΜ was increased by 1.6 and 2.0-fold after IE and 

one minute of occlusion, respectively, with a similar response in Nx and Hyp (FIO2 effect 

p = 0.96, time effect p = 0.005, FIO2 x time interaction p = 0.92). pThr287 CaMKII βΜ 

returned to pre-exercise values after one-minute recovery with open circulation (Fig. 8A). 

Compared to Pre, pThr287 CaMKII δA was increased by 1.3 and 1.5-fold after IE and one 

minute of occlusion, respectively, with a similar response in Nx and Hyp (FIO2 effect p 

= 0.74, time effect p = 0.014, FIO2 x time interaction p = 0.93). pThr287 CaMKII δA 

returned towards pre-exercise values after one-minute recovery with open circulation (p 

= 0.24, compared to Pre levels) (Fig. 8B). Compared to Pre, pThr287 CaMKII γ was 

increased by 1.3 and 1.4- fold after IE and one minute of occlusion, respectively (FIO2 

effect p = 0.16, time effect p = 0.022, FIO2 x time interaction p = 0.72). One minute after 

IE, the level of pThr287 CaMKII γ was similarly elevated in both legs (p = 0.10) (Fig. 8C). 

Compared to Pre, pThr287 CaMKII δD was increased by 2.0 and 2.5-fold after IE and one 

minute of occlusion, respectively, with a similar response in Nx and Hyp (FIO2 effect p 

= 0.75, time effect p < 0.001, FIO2 x time interaction p = 0.79). pThr287 CaMKII δD 

returned to pre-exercise values after recovery for one min with open circulation (p = 0.73 

compared to Pre) (Fig. 8D).  

 Total CaMKII δD was increased by 1.6 and 2.4-fold after IE and one minute of 

occlusion, respectively (time effect p < 0.001), with a similar response in Nx and Hyp 

(FIO2 effect p = 0.09, FIO2 x time interaction p = 0.62) (Fig. 8E). Total CaMKII δD 

returned to pre-exercise values after one-minute recovery with open circulation (p = 0.13 

compared to Pre). One min after exercise, total CaMKII δD was 46% lower in the leg with 
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free circulation compared with the occluded leg (p = 0.014) (Fig. 8E). No significant 

changes were observed in the total expression of the other CaMKII isoforms (Fig. 9). 
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Figure 8.  CaMKII isoforms phosphorylation and total CaMKII δD signalling in human skeletal muscle in response to 

incremental exercise to exhaustion in normoxia and severe hypoxia, and post-exercise ischaemia. Levels of protein 

expression of (A) pThr287 CaMKII βM, (B) pThr287 CaMKII γ, (C) pThr287 CaMKII δA, (D) pThr287 CaMKII δD and (E) 

Total CaMKII δD. Nx:  normoxia session (FIO2 = 0.21, PIO2 = 143mmHg); Hyp: severe normobaric hypoxia session  

(FIO2 = 0.104, PIO2 = 73 mmHg); Pre: before exercise; Post: 10 s after exercise cessation during ischaemic recovery; 

Oc1m: 60 s after exercise cessation during ischaemic recovery; FC1m: 60 s after exercise cessation during recovery 

with free circulation. n = 11 for all conditions except for Oc1m Nx (n = 9), Post Hyp (n =10) and FC1m (n=10). See 

Fig. 1 for a detailed description of the experimental phases. The statistical analysis was performed with logarithmically 

transformed data for pThr287 CaMKII βM, pThr287 CaMKII δA and Total CaMKII δD. Values presented are means ± 

standard errors and expressed in arbitrary units (a.u.). † p < 0.05 vs. Pre Nx; * p < 0.05 vs. Pre Hyp; § p < 0.05 vs. 

Oc1m Hyp. 
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Figure 9. Total CaMKII isoforms signalling in human skeletal muscle in response to incremental exercise to exhaustion 

in normoxia and severe hypoxia, and post-exercise ischaemia.  Levels of protein expression of (A) Total CaMKII βM, 

(B) Total CaMKII δA, and (C) Total CaMKII γ. Total CaMKII δD is included in Fig. 2E. Nx: normoxia session (FIO2 = 

0.21, PIO2 = 143 mmHg); Hyp: severe normobaric hypoxia session (FIO2 = 0.104, PIO2 = 73 mmHg); Pre: before 

exercise; Post: 10 s after exercise cessation during ischaemic recovery; Oc1m: 60 s after exercise cessation during 

ischaemic recovery; FC1m: 60 s after exercise cessation during recovery with free circulation. n = 11 for all conditions 

except for Oc1m Nx (n = 9). See Fig. 1 for a detailed description of the experimental phases. Values presented are 

means ± standard errors and expressed in arbitrary units (a.u.). No statistically significant effects were detected. 

 

II. p38 MAPK, ERK1/2 signalling.  

No significant changes were observed in p38 MAPK phosphorylation at Thr180/Tyr182 

(FIO2 effect p = 0.95, time effect p = 0.54, FIO2 x time interaction p = 0.25) (Fig. 10A). 

Compared to Pre, phospho-Thr202/Tyr204 ERK1/2 was reduced 17 and 24 % after IE, and 

after one minute of occlusion (time effect p = 0.007), with a similar response in normoxia 

and hypoxia (FIO2 effect p = 0.92, FIO2 x time interaction p = 0.62). After one min of 

recovery, phospho-Thr202/Tyr204 ERK1/2 was similar in both legs, regardless of the 

recovery with open or occluded circulation (p = 0.71) (Fig. 10B). 
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Figure 10.  p38 MAPK and ERK1/2 phosphorylation signalling in human skeletal muscle in response to incremental 

exercise to exhaustion in normoxia and severe hypoxia, and post-exercise ischaemia.  Levels of protein expression of 

(A) pThr180/Tyr182 p38 MAPK and (B) pThr202/Tyr204 ERK1/2. Nx: normoxia session (FIO2 = 0.21, PIO2 = 143mmHg); 

Hyp: severe normobaric hypoxia session (FIO2 = 0.104, PIO2 = 73 mmHg); Pre: before exercise; Post: 10 s after exercise 

cessation during ischaemic recovery; Oc1m: 60 s after exercise cessation during ischaemic recovery; FC1m: 60 s after 

exercise cessation during recovery with free circulation. For panel (A), n = 11 for all conditions except for Oc1m Nx 

(n = 9), Post Hyp (n =10) and FC1m (n=10) and for panel (B), n = 11 for all conditions except for Oc1m Nx (n = 9). 

See Fig. 1 for a detailed description of the experimental phases. The statistical analysis was performed with 

logarithmically transformed data for pThr180/Tyr182 p38 MAPK. Values presented are means ± standard errors and 

expressed in arbitrary units (a.u.). † p < 0.05 vs. Pre Nx; * p < 0.05 vs. Pre Hyp; # p < 0.05 vs. Post Hyp; § p < 0.05 vs. 

Oc1m Hyp. 

III. NF-ĸB signalling.  

Compared to Pre, p105 was increased by 1.9 and 2.1-fold after IE, and after one 

minute of occlusion (time effect p < 0.001), with a similar response in normoxia and 

hypoxia (FIO2 effect p = 0.91, FIO2 x time interaction p = 0.58) (Fig. 11A). p105 returned 

to pre-exercise values after one minute of recovery with open circulation (p = 0.44, Fig. 

11A). Consequently, one min after exercise p105 was 47% lower in the leg with free 

circulation compared with the occluded leg (p = 0.011). p50 followed a similar pattern, 

increasing by 1.3 and 1.5-fold after IE, and after one-minute occlusion (time effect p = 

0.005), respectively, with a similar response in normoxia and hypoxia (FIO2 effect p = 

0.72, FIO2 x time interaction p = 0.32) (Fig. 11B). p50 returned to pre-exercise values 

after one minute of recovery with open circulation (p = 0.45, Fig. 11B). Compared to the 

occluded leg, p50 was 33% lower in the leg recovering with free circulation (p = 0.003).  

 The total amount of p65 was unchanged immediately after IE, increasing by 11 % during 

ischaemia, compared to the immediate post-exercise value (p = 0.014); time effect p = 

0.032), with a similar response in normoxia and hypoxia (FIO2 effect p = 0.52, FIO2 x 

time interaction p = 0.14) (Fig. 11C). p65 returned to pre-exercise values after one-minute 
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recovery with open circulation (p = 0.057, Fig. 11C). One min after exercise, p65 was 

similar in the leg recovering with free circulation and the ischaemic leg (p = 0.087).   

 The p65+p50 was increased 1.2 and 1.4-fold after IE, and after one minute of 

occlusion (time effect p = 0.006), respectively, with a similar response in normoxia and 

hypoxia (FIO2 effect p = 0.73, FIO2 x time interaction p = 0.37) (Fig. 11D). p65+p50 

returned to pre-exercise values after one-minute recovery with open circulation (p = 0.80, 

Fig. 11D). Compared to the occluded leg, p65+p50 was 29 % lower in the leg recovering 

with free circulation (p < 0.001). During the one min of ischaemia, p65+p50 was 

increased by 17 % (p = 0.046). 

Phospho-Ser536 p65 was unchanged immediately after IE and was increased 1.6-

fold in the leg recovering with ischaemia, compared to the immediate post-exercise value 

(p = 0.023); time effect p = 0.006), with a similar response in normoxia and hypoxia (FIO2 

effect p = 0.97, FIO2 x time interaction p = 0.55) (Fig. 11E). One min after exercise, 

Phospho-Ser536 p65 was similar in the leg recovering with free circulation and the 

ischaemic leg (p = 0.19) (Fig. 11E).   
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Figure 11.  NF-κB signalling in human skeletal muscle in response to incremental exercise to exhaustion in normoxia 

and severe hypoxia, and post-exercise ischaemia.  Levels of protein expression of (A) NF-κB p105, (B) NF-κB p50, 

(C) Total NF-κB p65, (D) NF-κB p65+p50 dimer and (E) pSer536 NF-κB. Nx: normoxia session (FIO2 = 0.21, PIO2 = 

143mmHg); Hyp: severe normobaric hypoxia session (FIO2 = 0.104, PIO2 = 73 mmHg); Pre: before exercise; Post: 10 

s after exercise cessation during ischaemic recovery; Oc1m: 60 s after exercise cessation during ischaemic recovery; 

FC1m: 60 s after exercise cessation during recovery with free circulation. For panels (A), (B), (D) n = 11 for all 

conditions except for Oc1m Nx (n = 9), Post Hyp (n = 10) and FC1m (n = 10), for panel (C) n = 11 for all conditions 

except for Oc1m Nx (n = 9) and for panel (E) n = 11 for all conditions except for Post Nx (n=10), Oc1m Nx (n = 9), 

Post Hyp (n = 10) and FC1m (n = 10), See Fig. 1 for a detailed description of the experimental phases. The statistical 

analysis was performed with logarithmically transformed data for NF-κB p105, Total NF-Κb p65 and NF-κB p65+p50 

dimer. Values presented are means ± standard errors and expressed in arbitrary units (a.u.). † p < 0.05 vs. Pre Nx; * p 

< 0.05 vs. Pre Hyp; # p < 0.05 vs. Post Hyp; § p < 0.05 vs. Oc1m Hyp. 

IV. IĸB signalling. 

 No significant changes were observed in the total amount of IĸBα protein (FIO2 

effect p = 0.83, time effect p = 0.07, and FIO2 x time interaction p = 0.47) (Fig. 12A), 

while its phosphorylation remained below the detection levels in all conditions. However 

the average of the post-exercise conditions was 20% lower than the average of the two 

Pre conditions (p = 0.008). During the one-min ischaemia the total amount of IĸBα 

protein was reduced by 13 % when compared to POST (p = 0.019, t-test) (Fig. 12A).  

Compared to Pre, IĸBβ Thr19/Ser23 phosphorylation was increased by 2.8 and 3.1-

fold immediately after IE and after one minute of occlusion, respectively, (time effect p 

= 0.01) (Fig. 12B). The response was similar in normoxia and hypoxia (FIO2 effect p = 

0.78, FIO2 x time interaction p = 0.73). IĸBβ Thr19/Ser23 phosphorylation returned to pre-

exercise values after one min of recovery with free circulation (p = 0.26, Fig. 12B).  

Compared to the occluded leg, IĸBβ Thr19/Ser23 phosphorylation was 54% lower in the 

leg recovering with free circulation (p = 0.026).  The total amount of IĸBβ protein was 

increased by 4.5 and 5.8-fold immediately after IE and after one minute of occlusion, 

respectively, (time effect p < 0.001) (Fig. 12C). The response was similar in normoxia 
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and hypoxia (FIO2 effect p = 0.78, FIO2 x time interaction p = 0.68). Compared to the leg 

recovering in ischaemia, IĸBβ total protein was slightly reduced by 63% in the leg 

recovering with a free circulation (p = 0.015, Fig. 12C). However, one minute after the 

end of exercise, the total amount of IĸBβ protein was 3.9-fold higher than pre-exercise 

values in the leg recovering with free circulation (p = 0.005).   
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Figure 12.  IκB signalling in human skeletal muscle in response to incremental exercise to exhaustion in normoxia and 

severe hypoxia, and post-exercise ischaemia.  Levels of protein expression of (A) Total IκBα, (B) pThr19/Ser23 IκBß, 

and (C) Total IκBß. Nx: normoxia session (FIO2 = 0.21, PIO2 = 143mmHg); Hyp: severe normobaric hypoxia session 

(FIO2 = 0.104, PIO2 = 73 mmHg); Pre: before exercise; Post: 10 s after exercise cessation during ischaemic recovery; 

Oc1m: 60 s after exercise cessation during ischaemic recovery; FC1m: 60 s after exercise cessation during recovery 

with free circulation. For panels (A) and (C), n = 11 for all conditions except for Oc1m Nx (n = 9) and for panel (B), n 

= 11 for all conditions except for Oc1m Nx (n = 9), Post Hyp (n =10) and FC1m (n = 10). See Fig. 1 for a detailed 

description of the experimental phases. The statistical analysis was performed with logarithmically transformed data 

for Total IκBß. Values presented are means ± standard errors and expressed in arbitrary units (a.u.). † p < 0.05 vs. Pre 

Nx; * p < 0.05 vs. Pre Hyp; # p < 0.05 vs. Post Hyp; § p < 0.05 vs. Oc1m Hyp. 

V. IKK signalling. 

Compared to Pre, IKKα/β Ser176/180 phosphorylation was increased by 1.8 and 2.0-

fold immediately after IE and after one minute of occlusion, respectively, (time effect p 

= 0.04) (Fig. 13A). The response was similar in normoxia and hypoxia (FIO2 effect p = 

0.67, FIO2 x time interaction p = 0.34). IKKα/β Ser176/180 phosphorylation returned to pre-

exercise values after one min of recovery with a free circulation (p = 0.87, Fig. 13A).  

Compared to the occluded leg, IKKα/β Ser176/180 phosphorylation was 61% lower in the 

leg recovering with free circulation (p = 0.019, Fig. 13A). IKKβ total protein did not 

change significantly (FIO2 effect p = 0.67, time effect p = 0.34, and FIO2 x time interaction 

p = 0.81) (Fig. 13B).  Compared to Pre, IKKα total protein was increased by 2.6 and 3.5-

fold immediately after IE and after one minute of occlusion, respectively, (time effect p 

< 0.001) (Fig. 13C). The response was similar in normoxia and hypoxia (FIO2 effect p = 

0.24, FIO2 x time interaction p = 0.40). IKKα total protein returned to pre-exercise values 

after one min of recovery with free circulation remaining 1.9-fold above Pre (p = 0.008, 

Fig. 13C).  Compared to the occluded leg, IKKα total protein was 44% lower in the leg 

recovering with free circulation (p = 0.03).  
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Figure 13.  IKK signalling in human skeletal muscle in response to incremental exercise to exhaustion in normoxia and 

severe hypoxia, and post-exercise ischaemia.  Levels of protein expression of (A) pSer176/180 IKKα/ß, (B) Total IKKß, 

and (C) Total IKKα. Nx: normoxia session (FIO2 = 0.21, PIO2 = 143mmHg); Hyp: severe normobaric hypoxia session 

(FIO2 = 0.104, PIO2 = 73 mmHg); Pre: before exercise; Post: 10 s after exercise cessation during ischaemic recovery; 

Oc1m: 60 s after exercise cessation during ischaemic recovery; FC1m: 60 s after exercise cessation during recovery 

with free circulation. For panels (A) and (B), n = 11 for all conditions except for Oc1m Nx (n = 9), Post Hyp (n =10) 

and FC1m (n = 10) and for panel (C), n = 11 for all conditions except for Oc1m Nx (n = 9). See Fig. 1 for a detailed 

description of the experimental phases.  The statistical analysis was performed with logarithmically transformed data 

for Total IKKα. Values presented are means ± standard errors and expressed in arbitrary units (a.u.). † p < 0.05 vs. Pre 

Nx; * p < 0.05 vs. Pre Hyp; # p < 0.05 vs. Post Hyp; § p < 0.05 vs. Oc1m Hyp. 
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VI. GR, Trx1, Gpx1 and TrxR1 antioxidant enzymes. 

Compared to Pre, glutathione reductase (GR) protein expression was increased by 

2.1 and 2.2-fold immediately after IE and after one minute of occlusion, respectively, 

(time effect p = 0.002) (Fig. 14A). The response was similar in normoxia and hypoxia 

(FIO2 effect p = 0.46, FIO2 x time interaction p = 0.53). GR protein expression returned 

to pre-exercise values after one min of recovery with a free circulation (p = 0.15, Fig. 

14A).  Compared to the occluded leg, GR protein expression was 52% lower in the leg 

recovering with free circulation (p = 0.059, Fig. 14A). 

 Compared to Pre, thioredoxin 1 (Trx1) protein expression was reduced by 10 and 

17% immediately after IE and after one minute of occlusion, respectively, (time effect p 

= 0.012) (Fig. 14B). The response was similar in normoxia and hypoxia (FIO2 effect p = 

0.51, FIO2 x time interaction p = 0.77). After one min of recovery, Trx1 protein expression 

was similar in the legs recovering with ischaemia and free circulation (p = 0.083, Fig. 

14B). 

 No significant changes were observed in protein expression levels of glutathione 

peroxidase 1 (Gpx1) (FIO2 effect p = 0.11, time effect p = 0.52; FIO2 x time interaction p 

= 0.50) (Fig. 14C). No significant changes were observed in protein expression levels of 

thioredoxin reductase 1 (TrxR1) (FIO2 effect p = 0.27, time effect p = 0.99; FIO2 x time 

interaction p = 0.48) (Fig. 14D).  



Results | Ángel Gallego Sellés 

115 
 

 

Figure 14.  Skeletal muscle intracellular GR, Trx1, Gpx1 and TrxR1 protein levels in response to incremental exercise 

to exhaustion in normoxia and severe hypoxia, and post-exercise ischaemia.  Levels of protein expression of (A) GR, 

(B) Trx1, (C) Gpx1 and (D) TrxR1. Nx: normoxia session (FIO2 = 0.21, PIO2 = 143mmHg); Hyp: severe normobaric 

hypoxia session (FIO2 = 0.104, PIO2 = 73 mmHg); Pre: before exercise; Post: 10 s after exercise cessation during 

ischaemic recovery; Oc1m: 60 s after exercise cessation during ischaemic recovery; FC1m: 60 s after exercise cessation 

during recovery with free circulation. For panel (A), n = 11 for all conditions except for Oc1m Nx (n = 9) and Post Hyp 

(n = 10) and for panels (B), (C) and (D), n = 11 except for Oc1m Nx (n = 9). See Fig. 1 for a detailed description of the 

experimental phases. The statistical analysis was performed with logarithmically transformed data for GR. Values 

presented are means ± standard errors and expressed in arbitrary units (a.u.). † p < 0.05 vs. Pre Nx; * p < 0.05 vs. Pre 

Hyp; # p < 0.05 vs. Post Hyp. 
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8.3.2. Linear associations 

Positive linear associations were observed between pThr287 CaMKII δD and 

pSer176/180 IKKα/β (R2 marginal = 0.52, R2 conditional = 0.74, intercept and slope random 

effect LRT p < 0.001), Total IKKα (R2 marginal = 0.58, R2 conditional = 0.92, intercept 

and slope random effect LRT p < 0.001), NF-κB p105 (R2 marginal = 0.55, R2 conditional 

= 0.83, intercept and slope random effect LRT p = 0.001), Total IĸB β (R2 marginal = 

0.46, R2 conditional = 0.79, intercept and slope random effect LRT p < 0.001), Phospho-

Ser536 p65 (R2 marginal = 0.07, R2 conditional = 0.46, intercept and slope random effect 

LRT P<0.001) p50+p65 (R2 marginal = 0.40, R2 conditional = 0.84, intercept and slope 

random effect LRT p = 0.004) and GR (R2 marginal = 0.42, R2 conditional = 0.90, 

intercept and slope random effect LRT p < 0.001). (Figure 15A, B, C, D, E, F and G).   
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Figure 15.  Linear relationships between pThr287 CaMKII δD and protein markers.  (A) pThr287 CaMKII δD and 

pSer176/180 IKK α/β, (B) pThr287 CaMKII δD and Total IKKα, (C) pThr287 CaMKII δD and NF-κB p105, (D) pThr287 

CaMKII δD and Total IκB ß, (E) pThr287 CaMKII δD and pSer536 NF-κB p65, (F) pThr287 CaMKII δD and p65+p50 NF-

κB, and (G) pThr287 CaMKII δD and GR. Linear relationships were assessed using a linear mixed model. The Likelihood 

Ratio Test for the random effects (LRT) was calculated and reported with the marginal (R2 marginal) and conditional 

(R2 conditional) r-squared values (n = 73-75).  
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A positive linear association was observed between p50 and its precursor p105 

(R2 marginal = 0.45, R2 conditional = 0.85, intercept and slope random effect LRT p = 

0.04), while pSer176/180 IKKα/β was linearly associated with Total IĸBβ with GR (R2 

marginal = 0.30, R2 conditional = 0.74, intercept and slope random effect LRT p < 0.001) 

(Figure 16A and B).  

 

Figure 16.  Additional linear relationships between (A) NF-κB p105 and NF-κB p50, and (B) Total IκBß and GR. 

Linear relationships were assessed using a linear mixed model. The Likelihood Ratio Test for the random effects (LRT) 

was computed and reported with the marginal (R2 marginal) and conditional (R2 conditional) r-squared values (n = 73-

75). 
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9. DISCUSSION 

9.1. Discussion of Article 1. 

This study shows that Nrf2 signalling is activated by exercise to exhaustion in 

human skeletal muscle. To our knowledge, this is the first study examining the response 

of the Nrf2 signalling to intense acute exercise in human skeletal muscle and its 

relationship with metabolite accumulation and the level of FIO2. In contrast with our 

hypothesis, the degree of activation of Nrf2 signalling was essentially similar in normoxia 

and hypoxia, despite a 50 % lower femoral vein PO2 during the exercise in severe acute 

hypoxia. Increased Nrf2 signalling was achieved by enhancing the total Nrf2 protein 

content while reducing that of Keap1, the main inhibitor of Nrf2 signalling. The 

combination of the increase and reduction of Nrf2 and Keap1, respectively, resulted in a 

substantial elevation of the Nrf2-to-Keap1 ratio, facilitating the nuclear translocation of 

Nrf2 and subsequent upregulation of the antioxidant enzyme Catalase, whose expression 

was closely associated to that of Nrf2. No association was observed between Nrf2 

signalling and SOD1 and SOD2 protein expressions. While SOD2 did not change 

significantly during either exercise or ischaemia, SOD1 protein expression was 

downregulated and upregulated during exercise in normoxia and hypoxia, respectively 

(see Fig. 17 for a graphical summary).  
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Figure 17. Schematic model of the regulation of Nrf2 and Keap1 signalling in human skeletal muscle immediately after 

incremental exercise to exhaustion in normoxia and severe hypoxia. Under basal conditions, Keap1 continuously 

targets Nrf2 for ubiquitination and degradation, allowing for minimal levels of Nrf2. The production of RONS during 

exhaustive exercise stimulates the activation of AMPK and CaMKII. Concomitantly, CaMKII acts indirectly as an 

upstream AMPK activator (by an unknown mechanism). AMPK promotes the increase of Nrf2 levels by two main 

mechanisms. Firstly, by phosphorylating p62 at Ser349, which stimulates the p62-mediated degradation of Keap1 via 

autophagy; secondly, by phosphorylating and blocking its GSK3-β, which activates β-TrCP (an E3 ubiquitin-protein 

ligase) which tags Nrf2 for proteasomal degradation (not measured here). RONS may also activate PKCδ which 

phosphorylates Nrf2 at its Serine 40 promoting its nuclear translocation and genes transactivation. The lowered levels 

of Keap1 and the reduced amount of p62 observed here are suggestive of co-degradation following exercise. Overall, 

the augmented Nrf2 total and phosphorylated protein expression together with the rise in the Nrf2-to-Keap1 ratio 

elicited by exhausting exercise should be sufficient to enhance the Nrf2-mediated antioxidant response. A central role 

of Catalase is manifested by a remarkable increase in its protein content following exercise, which was exacerbated 

during exercise in severe acute hypoxia, likely as a response to increased H2O2 production, by superoxide dismutases. 

This process is facilitated in hypoxia due to the upregulation of SOD1. No acute changes in SOD2 protein expression 
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were observed. Most changes evoked by the exhaustive exercise bout were almost entirely reverted to baseline in less 

than 60 s by an O2-dependent mechanism. Activating / inhibiting actions are represented by blue / red connecting lines 

(dashed if the effect is indirect). Changes on cellular locations are presented with black dashed lines. The arrows and 

symbols depicted inside dashed grey boxes and located beside the specific markers illustrate the overall protein 

expression changes in this investigation, as follows: Thin arrows in green (phosphorylated form) and black (total form) 

depict the overall direction of the outcomes (increase / decrease) for the particular muscle protein; thick arrows in 

darker green represent the overall effect on stimulation / inhibition of Nrf2 signalling; the symbol § indicates a 

significant difference between the biopsies taken 60 s after the end of the exercise, i.e., between the legs recovering 

with and without ischaemia. A differential modulation due to FIO2 is illustrated by the presence of arrows in red 

(normoxia) and blue (severe hypoxia). The size of each arrow is commensurate with the magnitude of the change. 

Abbreviations not defined in the text: ARE, antioxidant response element.  

 

 Contrary to our hypothesis, the application of immediate ischaemia at exhaustion 

did not amplify the changes elicited by the bout of intense exercise until exhaustion in 

pThr287 CaMKII, pThr172 AMPKα, Nrf2 nor Keap1. Nonetheless, Catalase protein 

expression was further increased after the application of ischaemia at exhaustion in 

hypoxia. By using a novel experimental approach in humans, we have demonstrated that 

Nrf2, Keap1 and Catalase have a fast turnover in exercised human skeletal muscle, 

recovering pre-exercise levels within one minute after the end of a bout of intense exercise 

by an O2-dependent mechanism. Interestingly, during recovery with free circulation after 

exhausting exercise in hypoxia, SOD1 increased while Catalase was reduced, revealing a 

different regulation of these two critical antioxidant enzymes in response to exercise.   

9.1.1. Skeletal muscle Keap1 protein levels are reduced during intense exercise.  

The present investigation demonstrates for the first time that exhaustive exercise 

reduces the amount of Keap1 protein in human skeletal muscle. Keap1 is a substrate 

adaptor protein for the Cul3 RING-box 1 (RBX1) E3 ubiquitin ligase which ubiquitinates 

Nrf2 for proteasomal degradation in response to oxidants and electrophiles (289-291). 

Heavy metals and several oxidative and electrophilic agents may induce thiol 
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modifications in Keap1 which impair Nrf2 ubiquitination, resulting in Nrf2 protein 

accumulation (236). These type of Keap1 modifications have been observed in cells 

treated with oxidised lipids (292), H2O2 (293), and nitric oxide (293, 294).   

 The drop in Keap1 levels could be due to reduced synthesis of the protein, 

increased degradation, or both. Our results provide evidence for increased proteasomal 

and autophagic degradation of Keap1 during exercise, likely triggered by its oxidative 

modification by RONS (212-214). Although oxidative stress markers were not directly 

assessed in this investigation, the increased Thr287 CaMKII phosphorylation supports this 

explanation (216). Likewise, the observed augmented levels of Ser40 Nrf2 

phosphorylation combined with the reduction of Keap1 levels and the close negative 

association between Thr287 CaMKII phosphorylation and Keap1 are also compatible with 

increased RONS-mediated signalling.   

 Due to the experimental limitations imposed by the small amount of tissue 

available, the rate of Keap1 transcription and translation were not measured here. 

Nevertheless, a reduction of the Keap1 mRNA expression with the exercise is unlikely, 

given that the amount of Nrf2 protein and Ser40 Nrf2 phosphorylation was increased and 

the fact that Nrf2 is a positive modulator of Keap1 gene expression (295). Although 

several microRNAs (miRs) have been reported to downregulate Keap1 mRNA in cancer 

cells (miR-23a (296); miR-141 (297, 298), miR-421 (299), miR-432 (300), and miR-200a 

(301)),  myocardium (miR-200a (302); miR-26b (303)), retinal pigment epithelium cells 

(miR-626 (304)), and oligodendrocyte precursor cells (miR-146b-5p (305)), only miR-

23a has been reported to be altered by exercise in skeletal muscle (306). D'Souza et al. 

(306) reported a reduction of vastus lateralis miR-23a expression levels in muscle 

samples obtained within 5 min after the end of a high-intensity intermittent exercise 

session in men. In any case, a potential reduction of miR-23a would facilitate rather than 
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repress Keap1 translation. Nevertheless, the fast dynamics of Nrf2 and Keap1 protein 

levels within the first minute after the exercise complicates the interpretations of D'Souza 

et al. (306) findings in light of the current investigation. Given the substantial number of 

miRs with potential inhibitory effects on Keap1 mRNA translation, further investigations 

should address this issue.  

9.1.2. Skeletal muscle total Nrf2 and its Ser40 phosphorylation are increased by 

exhaustive exercise in humans with similar responses in normoxia and severe 

acute hypoxia. 

Nrf2 abundance was elevated at exhaustion suggesting increased de novo synthesis 

or reduced proteasomal degradation during exercise. The observed activation of AMPKα 

may have prevented the degradation of Nrf2 by stimulating the p62-mediated autophagy 

of Keap1 (307-309) or by phosphorylating and inhibiting glycogen synthase kinase-3-β 

(GSK3-β) / β-transducin repeat-containing E3 ubiquitin-protein ligase (β-TrCP) which 

tags Nrf2 for proteasomal degradation (310, 311). In agreement with p62-mediated 

autophagy of Keap1 elicited by AMPK phosphorylation of its serine 349 (309), the 

fractional phosphorylation of p62 was closely associated with that of Thr172 AMPKα in 

the present investigation. Besides, p62 protein was significantly reduced after exercise, 

suggesting co-degradation with Keap1 (312). Although AMPK may phosphorylate 

several serine residues in Nrf2, the role of these phosphorylations in regulating in vivo 

Nrf2 stabilization, nuclear translocation and transactivation properties remains unknown 

(313). The fact that Keap1 protein content was lowered supports a reduction of Nrf2 

proteasomal degradation during intense exercise, as indicated by the inverse association 

between the two observed here. Nevertheless, the marked increase of the Nrf2-to-Keap1 

ratio also indicates stimulation of Nrf2 de novo synthesis.  
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 It must be emphasized that the level of hypoxia utilized here is close to the limit 

that humans can tolerate without altitude acclimatization (314). RONS production in 

skeletal muscle is exacerbated by exercise in hypoxia, likely due to higher activation of 

the anaerobic metabolism (230). In fact, we have previously shown increased protein 

carbonylation in human skeletal muscle during prolonged sprint exercise performed at 

this level of hypoxia (230). Despite the latter, and in contrast with our hypothesis, Nrf2 

accumulation and Keap1 reduction were similar at exhaustion in normoxia and hypoxia, 

indicating that the stimulation of Nrf2 signalling was already maximal in normoxia or 

that the additional reduction in cellular PO2 during exercise in hypoxia was not sufficient 

as to stimulate Nrf2 accumulation or Keap1 reduction further.  

   Serine40 phosphorylation of Nrf2 by the ROS-sensitive protein kinase Cδ (PKCδ) 

(238) is thought to facilitate its nuclear translocation (315) and gene transactivation (316), 

although experimental evidence is not conclusive (236). Nrf2 is also phosphorylated in 

other serine residues by AMPK (313). AMPK is principally activated by the increase of 

the AMP/ATP ratio (317), but both PKC and AMPK may be activated by RONS during 

intense exercise (238, 248). The present investigation shows that pSer40 Nrf2 expression 

is increased during high-intensity exercise to a similar extent when the exercise is 

performed in normoxia and severe acute hypoxia. This may have facilitated nuclear 

translocation and gene transactivation, as supported by the increased protein expression 

of Catalase. 

9.1.3. Catalase protein expression is increased during incremental exercise to 

exhaustion.  

No previous study has determined acute changes in Catalase protein expression with 

acute exercise in humans. In agreement with our results, an increase in protein Catalase 

expression has been reported in mice skeletal muscle immediately after 60 min treadmill 
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running at moderate and high intensity (247). The few studies measuring this protein in 

humans have focussed on basal levels, reporting either an increased expression of the 

protein (318) or no change (247). Three days after a 20 min high-intensity intermittent 

exercise session, basal levels of Catalase and SOD2 protein expression were increased in 

the human vastus lateralis muscle (319). Likewise, increased SOD2 mRNA expression 

has been reported in human skeletal muscle 3 hours after high-intensity and prolonged 

continuous exercise for 50 min (228). 

 Catalase is localized principally in peroxisomes but is also present in mitochondria 

(320). The fast increase in Catalase protein expression (within minutes of exercise and 

within seconds during ischaemia after the incremental exercise in hypoxia) is likely 

necessary to counteract an increased H2O2 produced during exercise and ischaemia. 

Interestingly, cardiomyocyte overexpression of either Catalase or SOD2 results in 

increased lethality when transgenic mice are submitted to a forced-swimming program 

(321). In these mice, the overexpression of SOD2 increases H2O2 production exceeding 

the detoxifying capacity of Catalase and peroxidases during exercise, leading to 

pathological levels of oxidative stress (321). Overexpression of Catalase may result in 

hampering of signalling events necessary for the normal adaptation to exercise (322), 

causing maladaptation and increased dead in transgenic mice submitted to repeated forced 

swimming (321). Here we have observed a transient increase of Catalase expression 

partly reverted within seconds after exercise and no significant changes of SOD2. Thus, 

our results indicate that the level of Catalase in finely tuned in human skeletal muscle 

depending on redox conditions. This experimental observation concurs with the proposed 

role of H2O2 as a crucial signal driving the skeletal muscle adaptations to exercise (322).  

 Nevertheless, SOD2 protein content is increased after endurance training in 

human skeletal muscle (247, 323), but in similar proportion to the gain in mitochondrial 
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volume. Mice overexpressing Catalase and SOD2, have a much larger abundance of these 

proteins per gram of mitochondrial protein. This likely hampers the physiological 

response to exercise-induced oxidative stress and maladaptation, and death of a large 

proportion of these mice is seen when submitted to a rigorous swimming program (323). 

 Our results indicate that skeletal muscle can increase the amount of critical 

antioxidant enzymes acutely, likely via RONS-stimulated Nrf2 activation. When the 

exercise is stopped the excess antioxidant capacity build-up during the exercise is to a 

large extent, if not wholly, reversed to restore the redox balance to pre-exercise avoiding 

the risks of excessive reductive capacity (324).   

9.1.4. Catalase and SOD1 are differentially regulated in response to exercise.  

Previous studies indicate that SOD1 is constitutively expressed with limited 

regulation by external stimuli (325). SOD1 is located in the cytoplasm, nucleus and outer 

mitochondrial membrane, while Catalase is a predominantly an extramitochondrial 

protein, but also found in the mitochondrial matrix (321, 325). SOD1 was slightly 

increased during exercise in hypoxia, facilitating the dismutation of superoxide generated 

by extramitochondrial oxidases (326). This response concurs with the observed increased 

RONS production during high-intensity exercise in hypoxia (214), which has a significant 

cytoplasmatic component (322, 326). In the presence of higher levels of SOD1, the 

production of H2O2 is likely increased during exercise in severe hypoxia, requiring a 

higher amount of Catalase to avoid unchecked oxidative damage. In agreement with this 

explanation, it has been reported that H2O2 may induce SOD1 gene transcription by an 

Nrf2-independent mechanism (327). Besides, it has been shown that H2O2 promotes 

SOD1 nuclear localization, where it acts as a transcription factor promoting the 

expression of antioxidant enzymes (328). The remarkable acute increase of atalase 

expression after exercise in hypoxia and during ischaemia is likely necessary to 
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counteract an excessive H2O2 production during exercise and after the application of 

ischaemia (329, 330). The fact that the antioxidant enzymes increased in response to 

exercise and ischaemia are located mostly outside the mitochondria is compatible with a 

predominant extramitochondrial production of RONS during exercise (326), which may 

be even more marked during exercise hypoxia and ischaemia.   

9.1.5. Keap1 levels recover rapidly after the cessation of contractile activity in an O2-

dependent mechanism.  

In the present study, subjects performed exercise until their limit, and upon 

exhaustion, a pneumatic cuff was instantaneously inflated to 300 mmHg to fully occlude 

the circulation in less than 2 seconds in one leg, while the other leg recovered without 

circulatory restraints. During the first 3-5 s of the occlusion, the O2 stores (O2 trapped in 

capillary blood and bound to myoglobin) are depleted by oxidative phosphorylation, 

which is strongly stimulated (1, 213). This was evidenced by the fast reduction and 

plateauing of muscle oxygenation measured by near-infrared spectroscopy (NIRS), as 

previously reported (1). The first post-exercise muscle biopsy was obtained at the 10th 

second after the end of the exercise, preventing potential effects of early oxygenation at 

exhaustion on muscle signalling. Then, the leg biopsied first remained occluded and, at 

the 60th s another two muscle biopsies were obtained from the occluded and non-occluded 

leg simultaneously. This allowed a direct comparison of the occluded and non-occluded 

leg. During the 60 s of occlusion, the energy metabolism remained active in the occluded 

leg, utilizing the energy supplied by the glycolysis, leading to a higher accumulation of 

lactate, H+, Pi and Cr. In contrast, the concentration of ATP remained at the same level 

reached at exhaustion, i.e. ~80% of the concentration observed before exercise (1). 

Despite the increased build-up of glycolytic metabolites during the 60 s occlusion, no 

further increase of Nrf2 or reduction of Keap1 was detected in the occluded leg. Although 
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we cannot rule out some RONS production from the 10th to the 60th of ischaemia (329, 

330), its magnitude should have been small as indirectly indicated by stability during this 

period of both pThr287 CaMKII, pSer40 Nrf2 and Keap1, which are sensitive to RONS. 

 In the leg recovering with free circulation, Nrf2, Keap1 and the Nrf2-to-Keap1 

ratio returned to pre-exercise levels within 60 s after the end of exercise, even though 

muscle lactate and H+ remained at the same level reached at exhaustion (1). In contrast, 

Pi and Cr were reduced, and PCr increased during the 60 s of recovery with free 

circulation, without reaching pre-exercise values. This also indicates that the glycolytic 

metabolites accumulated during exercise do not play an essential role in either eliciting 

or maintaining Nrf2 activation. Nevertheless, the massive increase of Pi, which led to 

almost depletion of PCr during ischaemia may have inhibited the phosphatases (240), 

keeping the phosphorylation levels during ischaemia.  

 The principal difference between ischaemic and free circulation recoveries is the 

presence of O2. Femoral vein PO2, a surrogate of mean capillary PO2, is rapidly increased 

after the cessation of contractile activity as it was reflected by the NIRS signal captured 

at the end of exercise in the perfused leg (1). The production of ATP by oxidative 

phosphorylation is likely mandatory to reactivate the de novo synthesis of Keap1. Despite 

the shortage of energy during ischaemia, mainly when applied at exhaustion following 

exercise in severe acute hypoxia, Catalase protein content was almost doubled after the 

IE in Hyp, indicating, that even in ischaemia the synthesis of some proteins is still active 

(331). The reason why Nrf2 levels were not reduced to pre-exercise values during 

ischaemia may be, in part, explained by the attenuation of global protein degradation in 

anoxia (332). In the leg recovering with free circulation, Nrf2 was reduced to the pre-

exercise level already after one minute, likely through proteasomal and autophagy 

degradation facilitated by the fast increase of Keap1 protein expression during recovery. 
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Our results do not support an elevated production of RONS during the early recovery 

period following exhaustive exercise; otherwise, Nrf2 signalling would not have returned 

to pre-exercise values in the leg recovering with free circulation. Nevertheless, we cannot 

rule out an increased mitochondrial ROS production several hours after the end of the 

exercise, as observed in mice (333).  

 It has been suggested that once modified by oxidants or electrophiles, Keap1 is 

committed to p62-mediated autophagy (312). During recovery following exercise, Keap1 

is likely newly translated by Nrf2-mediated induction of Keap1 which has an ARE gene 

promoter (236, 295). Besides, part of the oxidized Keap1 may have been regenerated by 

thioredoxin reductase 1 (236) during the one-minute recovery with open circulation. It 

remains to be determined whether the application of post-exercise ischaemia could be 

used to enhance Nrf2-mediated adaptation, as observed in tissues submitted to repeated 

episodes of ischaemia-reperfusion (331, 334).  
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9.2. Discussion of article 2. 

This study shows that during incremental exercise to exhaustion, NF-κB 

signalling is activated to a similar extent in normoxia and severe acute hypoxia in human 

skeletal muscle. Importantly, NF-κB signalling remains stimulated during post-exercise 

ischaemia. However, most components of the NF-κB signalling pathway return to pre-

exercise levels within one minute after the finalization of the exercise when the muscles 

recover with a free circulation, demonstrating the O2-dependency of this process. These 

responses are closely associated with the activating phosphorylation of CaMKII δD and 

involve an increase of the protein expression of IKKα, IĸBβ, and glutathione reductase 

protein levels in skeletal muscle (Fig. 18). These findings highlight the importance of 

obtaining the muscle biopsies as close as possible to exhaustion and the usefulness of 

applying immediate post-exercise ischaemia to impede the recovery of this signalling 

cascade with the cessation of muscle contractile activity.  
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Figure 18. Schematic model of the measured mechanisms regulating NF-κB signalling in human skeletal muscle in 

response to exhaustive exercise in normoxia and severe hypoxia. Extracellular and intracellular signals such as Ca2+, 

lactate, H+, Pi, AMP and RONS evoked by an incremental exercise to exhaustion largely activated CaMKII. CaMKII 

activation reduces the inhibitory action of IκB proteins via phosphorylation, which targets them for proteasomal 

degradation by a direct or indirect mechanism (through CaMKIIδD-mediated activation of IKKβ). This was 

accompanied by an increase in the total levels of IKKα, which should favour the nuclear translocation of the p65-p50 

heterodimer and transcriptional regulation of NF-κB-responsive genes. The phosphorylation levels of the RONS-

sensitive upstream kinases ERK1/2 and p38 MAPK were not elevated by the exhausting exercise test.. Overall, the 

activation in NF-κB signalling was associated with increased and decreased GR and Trx1protein content, respectively. 

No changes were found for Gpx1 and TrxR1 after incremental exercise.  Several key markers increased by exercise 

were rapidly downregulated within 60 s when the leg recovered with free circulation, demonstrating a fast regulation 

of NF-κB at exercise cessation which depends on muscle reoxygenation. None of the proteins studied were 

differentially modulated by performing exercise either in normoxia or severe hypoxia. Stimulating/inhibiting effects 

are represented by blue/red connecting lines (dashed if the effect is indirect). Known actions not observed in the present 

investigation are shown in grey. Changes in cellular locations are depicted with black dashed lines. The arrows in 

yellow shown beside the specific markers, illustrate the magnitude of the overall protein expression changes 

(increase/decrease) in this investigation.   
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9.2.1. NF-κB signalling is activated during exercise to exhaustion in human skeletal 

muscle. 

NF-κB proteins consist of five members, including p65 protein (or RelA), RelB, 

c-Rel, p50 protein (or mature NF-κB1), and p52 protein (or mature NF-κB2), which form 

dimeric complexes that transactivate several target genes via binding to the κB enhancer 

(251, 260). NF-κB may be activated through the canonical and noncanonical pathways 

(335). Canonical NF-κB activity depends on the heterodimer p65-p50 that consists of the 

transcriptional activator (p65 protein) and the protein p50, which is produced by 

constitutive proteasomal processing of the precursor p105 (or NF-κB1 precursor protein) 

(336). The present investigation shows that the protein levels of p50 and its precursor 

p105 are elevated in human skeletal muscle by intense exercise indicating that exercise 

promotes upregulation of the transcription and translation of p105 and its subsequent 

proteasomal processing to produce p50. Interestingly, p50 and p105 increases with 

exercise were similar when the exercise was performed in normoxia and a simulated 

altitude of 5300 m above sea level. In contrast with our results, no changes in p50 and 

IκBα proteins were observed after 40 min of bicycling exercise at 70% of VO2max (264). 

This disagreement is likely explainable by the fact that in Tantiwong et al. (264), the 

exercise was of moderate-intensity and not carried out until exhaustion or that the post-

exercise muscle biopsy was slightly delayed since the subjects were moved from the cycle 

ergometer to a stretcher before taking the post-exercise muscle biopsy. Thus, it is critical 

to consider the timing of the post-exercise biopsies when interpreting skeletal muscle 

signalling responses, which should be reported in all studies. 

 Under resting conditions, NF-κB is bound to an inhibitor of κB proteins (IκBα, β, 

and ε), which keep NF-κB in the cytosol. Upon stimulation, IκBs are phosphorylated by 

IκB kinase (IKK), a trimeric enzyme constituted by two catalytic (IKKα and IKKβ) and 
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one regulatory subunit (IKKγ). Their phosphorylation targets IκBs, and particularly IκBα, 

for proteasomal degradation, releasing its inhibitory action on NF-κB (337, 338). In 

agreement, IĸBα protein was reduced at the end of the incremental exercise and further 

reduced during ischaemia. However, in contrast with our hypothesis, these effects were 

not exacerbated when the exercise was carried out in severe acute hypoxia.  

As a novelty, we have measured exercise-induced IĸBβ Thr19/Ser23 

phosphorylation changes in human skeletal muscle. We have shown that IĸBβ Thr19/Ser23 

phosphorylation increases remarkably in response to exercise to exhaustion, parallel with 

its upstream kinase IKKα/β, which was also phosphorylated and activated in response to 

exercise. The level of phosphorylation at Ser176/180 of IKKα/β and Thr19/Ser23 of IĸBβ 

were maintained in the leg recovering with ischaemia while it returned within 1 min after 

the cessation of exercise to pre-exercise levels in the leg recovering with free circulation. 

As expected, this response was paralleled by the changes in phospho-Thr19/Ser23 IĸBβ 

and phospho-Ser536 p65, which are known targets of IKKα (339). 

Our results concur in part with two previous studies (265, 266). Firstly, in partial 

agreement with our results, Vella et al. (265) observed a reduction of total IĸBα and 

increase of phospho-Ser536 p65, but their first post-exercise biopsy was done 2 h after a 

single bout of resistance exercise. This finding by Vella et al. (265) could arise from the 

increased mitochondrial ROS production observed during the first hours after exercise 

(279). Secondly, Petersen et al. (266) obtained muscle biopsies from eight well-trained 

men (VO2max 65 ml.kg-1.min-1) after 45 min of exercise at 71 % of VO2max and after 

exhaustion, since their subjects resumed exercise at 92% of VO2max until exhaustion 

immediately after the withdrawal of the 45 min biopsy. Opposed to Vella et al., (265) 

Petersen et al. did not see significant changes in p65 Ser536 phosphorylation immediately 

after exercise (in agreement with our findings), while  IĸBα was reduced by 14% after 45 
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min of exercise and by 7% at exhaustion (the reduction observed at exhaustion was not 

statistically significant p = 0.06). Also in agreement with our results, Parker et al. (340) 

reported decreased IĸBα immediately after acute sprint interval exercise compared to less 

intense exercise modalities. Overall, the present findings and previous studies indicate 

that both the intensity of exercise and exhaustion favour the reduction of the inhibitor 

protein IκBα, facilitating the activation of NF-κB. 

 Exercise-related skeletal muscle changes in IĸBβ protein levels have not been 

previously reported, and the role that this NF-κB inhibitor may play in skeletal muscle 

physiology remains unknown. Here we have demonstrated a differential regulation of 

IĸBα and IĸBβ in human skeletal muscle: while the total amount of IĸBα is reduced with 

exercise and ischaemia, IĸBβ increases. A differential temporal regulation of IĸBs has 

been reported in cell cultures (341) and ageing hearts in mice (342). In the present 

investigation, we have shown that both the phosphorylated and total form of IĸBβ protein 

are remarkably increased during high-intensity exercise, remaining elevated during 

ischaemic recovery. While phospho-Thr19/Ser23 IĸBβ returns to pre-exercise levels within 

1 min of recovery with free circulation, the total amount of IĸBβ remained elevated 1 min 

after IE. This increase of IĸBβ with exercise may act as a negative feedback loop to 

impede excessive NF-κB activation. In addition, the increased expression of IĸBβ may 

contribute to the transcriptional specificity of NF-κB through the formation of the 

appropriate homo/heterodimers and the subsequent gene regulation (339, 343). In this 

regard, cell experiments have also shown that IĸBβ is a crucial mediator of the 

mitochondrial stress response (344) and is essential for the antioxidant response (343). 

Moreover, overexpression of IĸBβ protects the liver against the ischaemia-reperfusion 

injury (345). Thus, the linear association observed in the present investigation between 
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IĸBβ and GR protein expression is compatible with a role of IĸBβ in the enhancement of 

skeletal muscle antioxidant capacity with regular, intense exercise (318, 346-348).  

9.2.2. The total amount of IKKα but not IKKβ is acutely increased in response to 

exercise with a similar response in normoxia and severe acute hypoxia. 

The effect of exercise on the protein levels of IKKα and IKKβ has not been 

previously studied in human skeletal muscle. Here we have observed differential 

regulation of these two catalytic subunits. In addition, we have detected a marked increase 

in the level of phosphorylation of IKKα/β Ser176/180, which was reverted within one min 

after the end of exercise. The latter may explain why no significant changes in IKKα/β 

Ser176/180 phosphorylation were observed immediately after a session of strength training 

(349). In agreement with our results, increased IKKα/β Ser176/180 phosphorylation has 

been reported immediately after a single session of resistance, but not endurance exercise 

(2h at 60% of VO2max) (350). 

The activation of IKKs is necessary for the canonical stimulation of NF-κB 

signalling. In turn, IKKs phosphorylate p65 at Ser536 (351), which is necessary for its 

nuclear localization and protein stability and transcriptional activity (352, 353). The 

present investigation shows that post-exercise ischaemia promotes Ser536 p65 

phosphorylation. 

IKKs may be activated by autophosphorylation (339) and several upstream IKKs 

(339), among which only p38 and ERK1/2 have been mechanistically associated with 

contraction-induced NF-κB signalling in rodent muscle by inhibiting the two kinases 

pharmacologically (261). In agreement with our results, it has been shown that ERK1/2 

does not seem essential for NF-κB activation in cultured skeletal muscle cells (270). Here, 

no increase in p38 MAPK phosphorylation was detected, in agreement with previous 

studies (354, 355). Nevertheless, increased p38 phosphorylation has been observed after 
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repeated sprints (228, 355) or prolonged continuous exercise (228, 266, 356, 357), high-

intensity repeated exercise (358), and intermittent exercise of moderate-intensity (359).  

 CaMKII has been shown to reduce IκB and activate NF-κB signalling (360). More 

recently, direct phosphorylation of IKKβ by the delta isoform of CaMKII has been shown 

in cardiac fibroblasts (361). In agreement, the present work shows a linear association 

between CaMKIIδD and the phosphorylated form of IKKα/β, supporting that CaMKII 

plays a similar role in skeletal muscle as reported in heart (360) and isolated 

cardiomyocytes (362). 

9.2.3. Most of the NF-κB signalling induced by incremental exercise to exhaustion is 

quickly reverted to pre-exercise levels at exercise cessation unless metabolic 

recovery and re-oxygenation are prevented by the immediate application of 

ischaemia. 

All exercise-induced changes in NF-κB signalling, except the reduction in total 

IκBα, were reverted to pre-exercise values within one minute from the end of exercise, 

showing that the deactivation of this signalling pathway is extremely fast, as previously 

shown in the heart (360). In the present study, we used a novel experimental design to 

specifically determine whether muscle contractions are necessary to maintain NF-κB 

signalling. Immediately at the end of exercise, a pneumatic cuff was swiftly inflated at 

300 mmHg to completely occlude the circulation in less than 2 seconds in one leg, while 

the contralateral leg recovered normally, i.e., with an intact circulation. At exhaustion, 

the muscle oxygenation was about 30 % lower in hypoxia than normoxia (1). 

Nonetheless, PCr and ATP were reduced, and lactate and H+ increased with similar 

responses at exhaustion in normoxia and hypoxia (1). Since no significant differences 

were observed in muscle metabolites at exhaustion between normoxia and hypoxia, our 
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results indicate that a lower oxygenation level per se does not elicit more NF-κB 

signalling.  

 The main differences between the contracting muscle at exhaustion and the 

muscle recovering under ischaemia were the interruption of Ca2+ transients due to the 

cessation of contractile activity, the absence of O2 during the ischaemic recovery and the 

lack of metabolic recovery. During the following 50s of ischaemia, lactate, H+, Pi and 

free creatine were increased, while no changes were observed in the concentration of 

ATP, which remained ~20% below the pre-exercise values (1). The Ca2+ transients 

elicited by muscle contractions are stopped at exhaustion in both legs. Since the increase 

of cytosolic Ca2+ has been shown to elicit NF-κB signalling in cells (257), it has been 

suggested that Ca2+-induced signalling could mediate the activation of NF-κB signalling 

in contracting muscles (261). This is supported by the linear association between CaMKII 

δD phosphorylation and several critical molecules involved in NF-κB signalling in the 

present investigation. 

Thus, the present findings indicate that the metabolites accumulated during the 

exercise and/or the lack of O2 may contribute to the maintenance of NF-κB signalling, 

likely by keeping CaMKII active. Interestingly, it has been reported that NF-κB 

contributes to stimulate glycolysis in C2C12 cells through activation of the glycolytic 

regulator hypoxia-inducible factor-1α (HIF-1α) (254). Thus, the acute activation of NF-

κB signalling during exercise and ischaemia may have contributed to upregulating the 

glycolytic energy production close to exhaustion and during the 60 s of ischaemia when 

the glycolysis provided more than 90% of the energy consumed (1).  

 In contrast, the recovery of ATP, PCr and the abundance of oxygen during 

recovery with open circulation may have facilitated CaMKII deactivation by the 
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phosphatases, leading to downregulation of part of NF-κB signalling within seconds after 

the cessation of contractile activity.  

9.2.4. RONS and NF-κB signalling during exercise and ischaemia in human skeletal 

muscle.  

Cell experiments have shown that NF-κB signalling may be stimulated by RONS 

(258, 259, 363-366) and hypoxia (268-270). RONS are produced in skeletal during 

exercise depending on exercise characteristics, the energy substrates oxidized, and fitness 

status (212-215, 275). This process is facilitated by exercise conditions eliciting a robust 

stimulation of the glycolysis (212, 216 , 367), as it occurs during exercise at high intensity 

and in hypoxia (212, 213, 367). Using data from the same research project, we have 

reported a strong activation of the nuclear factor erythroid-derived 2-like 2 (Nrf2)/Kelch-

like ECH-associated protein 1 (Keap1) signalling (280), which is activated by redox 

changes. The latter was associated with a remarkable increase of the antioxidant enzyme 

catalase, but not of superoxide dismutase 1 (Sod1) and Sod2 in the same biopsies studied 

here (280). Thus, both Nrf2/Keap1 and NF-κB pathways are activated by exhausting 

exercise and postexercise ischaemia, leading to an immediate increase of the antioxidant 

enzymes catalase (previously reported) (280) and GR, which is necessary to efficiently 

counteract superoxide and H2O2 (368). In contrast, Trx1 content in skeletal muscle was 

decreased in the present investigation. This concurs with the secretion of Trx1 by C2C12 

myotubes (369), and the observation of increased plasma levels of TRX1 60 min and 48 

h following high-intensity exercise (370). 

 In cells, hypoxia (1% O2) inhibits prolyl hydroxylase-1 (PDH-1), which results in 

IKKβ activation, leading to IκBα phosphorylation and subsequent degradation (268). 

Interestingly, hypoxia also facilitates the cellular response to cytokine-mediated 

stimulation of NF-κB (268). Despite a remarkably lower femoral vein PO2 (and 
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presumably in intracellular PO2) during exercise in severe acute hypoxia (1), no 

significant differences were observed between normoxia and hypoxia in any of the NF-

κB signalling molecules assessed here.  

In agreement with a RONS-dependent stimulation of NF-κB signalling during 

exercise, it has been reported that the administration before the exercise of allopurinol (a 

xanthine oxidase inhibitor) blunts NF-κB signalling by reducing RONS production in 

exercising rodents (271). However, in humans, only one study has determined the effect 

of antioxidants (N- acetylcysteine infusion) administered before prolonged aerobic 

exercise on NF-κB signalling in skeletal muscle and no significant interactions were 

observed compared with placebo (266). Thus, it remains to be determined whether 

antioxidants may prevent NF-κB signalling in exercising human skeletal muscles. 

 The present experiments demonstrate that ischaemia contributes to maintaining 

NF-κB signalling by impeding metabolite recovery and muscle re-oxygenation. 

Nevertheless, we have also observed that p65+p50 and pSer536 NF-κB p65 were increased 

and IκBα reduced during ischaemia, indicating that post-exercise ischaemia stimulates 

NF-κB signalling further. The latter might have been facilitated by reducing cellular PO2 

to anoxic levels. Thus, it seems that during incremental exercise to exhaustion in 

normoxia and severe acute hypoxia, NF-κB signalling is activated almost maximally and 

that further activation would require the application of post-exercise ischaemia to reduce 

muscle PO2 further or elicited a higher accumulation of metabolites. This finding implies 

that post-exercise ischaemia could be used to prolong the exercise-induced activation of 

NF-κB and the associated adaptive responses. 

9.2.5. NF-κB activation is associated with the fast increase of glutathione reductase. 

NF-κB activation has been associated with the induction of antioxidant enzymes 

in several experimental models. For example, in TNF-α treated Ewing’s sarcoma cells, 
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NF-κB activation increased both thioredoxin and MnSOD levels (272). Likewise, 

Glutathione S-transferase Pi, Metallothionein-3, NAD(P)H dehydrogenase [quinone]1, 

heme oxygenase-1 and glutathione peroxidase-1 have been shown to be induced by NF-

κB (274). Here, we show that the activation of NF-κB is positively associated with the 

protein expression levels of GR in human skeletal muscle. However, no similar 

association was observed for the other antioxidant enzymes tested.  
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10. CONCLUSIONS 

I. In human skeletal muscle, Nrf2 signalling is increased to a similar degree in normoxia 

and severe acute hypoxia after incremental exercise to exhaustion, through a 

mechanism related to Keap1 protein downregulation. This may have facilitated the 

nuclear translocation of Nrf2 and subsequent upregulation of the antioxidant enzyme 

Catalase, whose expression is closely associated to that of Nrf2. 

II. Similarly, NF-κB signalling is also activated after exercise to exhaustion in human 

skeletal muscle, regardless of FIO2. This activation is closely associated with the 

activating phosphorylation of CaMKII δD and involve an increase of the protein 

expression of IKKα, IĸBβ, and glutathione reductase in skeletal human muscle. 

III. Exercise-induced activation of Nrf2 and NF-κB signalling pathways regulates the 

expression levels of antioxidant enzymes in human skeletal muscle. Indeed, Catalase 

and glutathione reductase emerge as acutely upregulated essential antioxidants during 

exercise and post-exercise ischaemia. 

IV. Nrf2 and NF-κB signalling pathways remain stimulated by the application of post-

exercise ischaemia. These changes are almost completely reversed to pre-exercise 

levels in less than 60 seconds by an O2-dependent mechanism, as these changes are 

rapidly reversed at the end of the exercise when muscles recover with free circulation.  

V. This thesis highlights the importance of obtaining muscle biopsies as close as possible 

to the end of exercise and the usefulness of post-exercise ischaemia to capture these 

rapid response signals. A delay of only one minute in obtaining muscle biopsies can 

significantly affect the interpretation of whether Nrf2 and NF-κB signalling activation 

is induced by exercise in human skeletal muscle. 
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Regulation of Nrf2/Keap1 signalling in human skeletal muscle during 
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A B S T R A C T   

The Nrf2 transcription factor is induced by reactive oxygen and nitrogen species and is necessary for the adaptive 
response to exercise in mice. It remains unknown whether Nrf2 signalling is activated by exercise in human 
skeletal muscle. Here we show that Nrf2 signalling is activated by exercise to exhaustion with similar responses 
in normoxia (PIO2: 143 mmHg) and severe acute hypoxia (PIO2: 73 mmHg). CaMKII and AMPKα phosphorylation 
were similarly induced in both conditions. Enhanced Nrf2 signalling was achieved by raising Nrf2 total protein 
and Ser40 Nrf2 phosphorylation, accompanied by a reduction of Keap1. Keap1 protein degradation is facilitated 
by the phosphorylation of p62/SQSTM1 at Ser349 by AMPK, which targets Keap1 for autophagic degradation. 
Consequently, the Nrf2-to-Keap1 ratio was markedly elevated and closely associated with a 2-3-fold increase in 
Catalase protein. No relationship was observed between Nrf2 signalling and SOD1 and SOD2 protein levels. 
Application of ischaemia immediately at the end of exercise maintained these changes, which were reverted 
within 1 min of recovery with free circulation. While SOD2 did not change significantly during either exercise or 
ischaemia, SOD1 protein expression was marginally downregulated and upregulated during exercise in normoxia 
and hypoxia, respectively. We conclude that Nrf2/Keap1/Catalase pathway is rapidly regulated during exercise 
and recovery in human skeletal muscle. Catalase emerges as an essential antioxidant enzyme acutely upregulated 
during exercise and ischaemia. Post-exercise ischaemia maintains Nrf2 signalling at the level reached at 
exhaustion and can be used to avoid early post-exercise recovery, which is O2-dependent.   

1. Introduction 

During exercise reactive oxygen (ROS) and nitrogen species (RNS) 
(collectively called RONS) are produced depending on the fitness level, 
the energy substrates oxidized and the characteristics of exercise [1–4]. 
Although in some circumstances, RONS may cause oxidative damage, 
RONS also stimulate signalling pathways essential for the adaptive 
response to exercise [1,5]. One of the main transcription factors 
involved in RONS-mediated regulation of gene expression is the nuclear 
factor erythroid-derived 2-like 2 (Nrf2), as shown in Nrf2-null mice 

(Nrf2� /� ) [6–8]. In mice skeletal muscle, total Nrf2 protein expression 
has been reported to increase after 90 min of continuous running [9] and 
nuclear Nrf2 protein content after 6 h of continuous running [10]. In 
humans, increased, unchanged and reduced Nrf2 mRNA levels have 
been reported in skeletal muscle biopsied 3–4 h after exercise [11–14]. 
However, the changes in Nrf2 protein levels and associated signalling 
events in response to acute exercise and recovery have not been deter-
mined in human skeletal muscle. This is relevant because reduced Nrf2 
expression has been associated with lower exercise performance in an-
imal models of chronic disease [15]. 

The RONS produced during exercise are accompanied by 
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A B S T R A C T   

The NF-κB signalling pathway plays a critical role in inflammation, immunity, cell proliferation, apoptosis, and 
muscle metabolism. NF-κB is activated by extracellular signals and intracellular changes in Ca2+, Pi, H+, me-
tabolites and reactive oxygen and nitrogen species (RONS). However, it remains unknown how NF-κB signalling 
is activated during exercise and how metabolite accumulation and PO2 influence this process. Eleven active men 
performed incremental exercise to exhaustion (IE) in normoxia and hypoxia (PIO2:73 mmHg). Immediately after 
IE, the circulation of one leg was instantaneously occluded (300 mmHg). Muscle biopsies from m. vastus lateralis 
were taken before (Pre), and 10s (Post, occluded leg) and 60s after exercise from the occluded (Oc1m) and free 
circulation (FC1m) legs simultaneously together with femoral vein blood samples. NF-κB signalling was activated 
by exercise to exhaustion, with similar responses in normoxia and acute hypoxia, as reflected by the increase of 
p105, p50, IKKα, IκBβ and glutathione reductase (GR) protein levels, and the activation of the main kinases 
implicated, particularly IKKα and CaMKII δD, while IKKβ remained unchanged. Postexercise ischaemia main-
tained and stimulated further NF-κB signalling by impeding muscle reoxygenation. These changes were quickly 
reverted at the end of exercise when the muscles recovered with open circulation. Finally, we have shown that 
Thioredoxin 1 (Trx1) protein expression was reduced immediately after IE and after 1 min of occlusion while the 
protein expression levels of glutathione peroxidase 1 (Gpx1) and thioredoxin reductase 1 (TrxR1) remained 
unchanged. These novel data demonstrate that exercising to exhaustion activates NF-κB signalling in human 
skeletal muscle and regulates the expression levels of antioxidant enzymes in human skeletal muscle. The fast 
regulation of NF-κB at exercise cessation has implications for the interpretation of published studies and the 
design of new experiments.   

1. Introduction 

The transcription factor nuclear factor kappa-light-chain-enhancer of 
activated B cell (NF-κB) regulates over 150 genes involved in inflam-
mation, immunity, cell proliferation, apoptosis [1–4], and muscle 

metabolism [4–7]. NF-κB is activated by extracellular signals, mostly 
cytokines, as well as intracellular changes in calcium [8] and reactive 
oxygen and nitrogen species (RONS) [9–11]. Although these signals are 
present in contracting muscles, contradicting findings have been re-
ported regarding the effect of exercise on NF-κB activation and signal-
ling. Exercise activates NF-κB in rodents, although this response is not 
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