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ABSTRACT 

Accurate identification of tumor boundaries during brain cancer surgery determines the quality of life of the patient. 

Different intraoperative guidance tools are currently employed during the resection tumor but having several limitations. 

Hyperspectral imaging (HSI) is arising as a label-free and non-ionizing technique that could assist neurosurgeons during 

surgical procedures. In this paper, an analysis between in-vivo and ex-vivo human brain tumor samples using HSI has been 

performed to evaluate the correlation between both types of samples. Spectral ratios of the oxygenated and deoxygenated 

hemoglobin were employed to distinguish between normal tissue, tumor tissue and blood vessels. A database composed 

by seven in-vivo and fourteen ex-vivo hyperspectral images obtained from seven different patients diagnosed with 

glioblastoma Grade IV, metastatic secondary breast cancer, meningioma Grade I and II, and astrocytoma (glioma) Grade 

II. 44,964 pixels labeled pixels were employed in this work. The proposed method achieved discrimination between 

different tissue types using the proposed spectral ratio. Comparison between in-vivo and ex-vivo samples indicated that 

ex-vivo samples generate higher hemoglobin ratios. Moreover, vascular enhanced maps were generated using the spectral 

ratio, targeting real-time intraoperative surgical assistance. 
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1. INTRODUCTION 

One of the main causes of mortality and morbidity in the population is caused by brain cancer, especially in children.1,2 

Brain tumors are divided into two groups depending on the cancer malignity: low-grade (LG), covering grades I and II, 

and high-grade (HG), including grades III and IV. An accurate identification of the boundaries between tumor and normal 

tissue during resection determine prolonged survival. Several intraoperative guidance tools are employed during surgery, 

such as intraoperative Image Guided Stereotactic (IGS) neuronavigation, intraoperative Magnetic Resonance Imaging 

(iMRI), or fluorescent tumor markers like 5-aminolevulinic acid (5-ALA). However, these technologies present several 

limitations.3,4  

Hyperspectral (HS) imaging (HSI) is a label-free and non-ionizing technology that combines conventional imaging and 

spectroscopy in one single mode, obtaining the spatial and the spectral information from a scene simultaneously by using 

halogen illumination.5 Different industrial applications employ this technology since many years6, while in the medical 

field the use of HSI has been widely investigated.7 Brain tumor identification has been investigated by this research group 

employing HSI.8 Spectral ratios have been used to discriminate between different types of tissues in a variety of imaging 

methods including diffuse reflectance spectroscopy9 and HSI.10 In HSI, the spectral band ratio R545/R560 has been applied 

for the identification of brain ischemia in rats. Fu et al. proposed the use of the ratio between 545 nm isosbestic band of 

oxy-Hb (oxygenated hemoglobin) and deoxy-Hb (deoxygenated hemoglobin), which is independent of changes in 

saturation and the 560 nm band, at which the largest difference between oxy-Hb and deoxy-Hb occurs.10 The ratio reflects 

a maximized difference between deoxy-Hb and oxy-Hb. Their study demonstrated the use of the R545/R560 spectral ratio 



 

 
 

 

on HSI for the identification of brain ischemia as well as the application of classification thresholds based on these ratios 

to distinguish infarcted from normal brain tissue.10  

In this work, the R545/R560 spectral ratio has been employed to perform a quantitative evaluation of the in-vivo and ex-

vivo tumor tissue samples, as well as to qualitatively evaluate the generation of heatmaps and vascular enhanced maps of in-

vivo tissue, targeting real-time surgical guidance.  

2. MATERIALS AND METHODS 

2.1 In-vivo and ex-vivo HS human brain cancer database 

The in-vivo and ex-vivo human brain images were acquired using an intraoperative HS acquisition system. This system 

was composed by a push-broom HS camera, an illumination system, and a scanning platform.11 The HS camera based on 

visible and near infrared (VNIR) covers the spectral range between 400 and 1,000 nm. It can capture 1,004 spatial pixels 

with a pixel pitch of 7.4 µm and 826 spectral bands with a spectral sampling of 0.73 nm and a spectral resolution of 2–3 

nm. The HS camera was coupled to the scanning platform, which provided the necessary movement to generate the HS 

cube, due to the push-broom technique. The illumination system was based on a quartz tungsten halogen (QTH) lamp of 

150 W connected to a cold light emitter through an optical fiber to avoid the high temperatures of the QTH lamp in the 

exposed brain surface.  

The HSI database was composed by seven in-vivo and fourteen ex-vivo HS images obtained from seven different patients 

diagnosed with glioblastoma Grade IV, metastatic secondary breast cancer, meningioma Grade I and II, and astrocytoma 

(glioma) Grade II. The HS images were acquired at the University Hospital of Las Palmas de Gran Canaria Doctor Negrin, 

Spain, from patients that underwent craniotomy for resection of intra-axial brain tumors. The study protocol and consent 

procedures were approved by the Comité Ético de Investigación Clínica-Comité de Ética en la Investigación (CEIC/CEI) 

of University Hospital Doctor Negrin and written informed consent was obtained from all subjects. The procedure to 

generate the database was as follows. Once craniotomy and opening of the dura was performed, the operating surgeon 

identified the approximate location of normal brain parenchyma and tumor, and the imaging operator captured the HS 

image. Next, the tumor tissue was resected and the ex-vivo tissue was captured within the operating theater. Finally, a 

biopsy of the tumor was analyzed by a pathologist, determining the tumor type and grade. Table 1 summarize the database 

where 44,964 pixels were labeled from in-vivo images with three different tissue classes: 10,977 pixels of tumor tissue 

(TT), 17,925 pixels of normal tissue (NT) and 16,062 pixels of blood vessels (BV).  

Table 1. Summary of the labeled dataset. (*) Image IDs without labeled pixels correspond to the ex-vivo HS tumor samples. 

Patient 
ID 

Image 
ID 

Image Size 
(height × width × bands) 

#Labeled Pixels 
Diagnosis 

NT TT HT 

P8 
C2 480 × 553 × 826 2,187 138 1,000 

Glioblastoma Grade IV 
C3* 158 × 196 × 826 - - - 

P15 

C1 376 × 494 × 826 1,251 2,046 4,089 

Glioblastoma Grade IV C2* 146 × 182 × 826 - - - 

C3* 326 × 270 × 826 - - - 

P21 

C1 452 × 334 × 826 2,663 1,221 2,325 

Secondary Breast C3* 215 × 223 × 826 - - - 

C4* 214 × 229 × 826 - - - 

P50 

C1 565 × 533 × 826 2,116 1,091 620 

Meningioma Grade I C2* 431 × 412 × 826 - - - 

C3* 518 × 693 × 826 - - - 

56 

C1 446 × 598 × 826 1,346 4,081 2,200 

Astrocytoma (glioma) Grade II C3* 228 × 197 × 826 - - - 

C4* 210 × 213 × 826 - - - 

57 

C1 440×535×826 1,773 771 1,263 

Secondary Breast C3* 159×140×826 - - - 

C4* 169×148×826 - - - 

P58 

C2 721×752×826 6,589 1,629 4,565 

Meningioma Grade II 
C3* 330×346×826 - - - 

C4* 455×338×826 - - - 

C5* 390×205×826 - - - 

Total 17,925 10,977 16,062  



 

 
 

 

The labelling was performed using a semiautomatic labelling tool based on Spectral Angle Mapper algorithm to generate 

the ground-truth maps.12 Ex-vivo images were not labeled. Figure 1 shows the in-vivo HS images used in this work together 

with their corresponding ground-truth maps. In these maps, normal, tumor and blood vessel pixels are represented in green, 

red, and blue color respectively. Black pixels correspond to the background labeled in the images (not employed in this 

work) and white pixels are the non-labeled pixels. Figure 2 shows the synthetic RGB images of the ex-vivo HS images 

where it is worth noticing that images from P21 and P56 were captured with different focus. This data was employed to 

determine if this focus differences could affect the results. 

P08C2 P15C1 P21C1 P50C1 

    

    
P56C1 P57C1 P58C2 

   

   

Figure 1. Synthetic RGB images and ground-truth maps of the in-vivo human brain HS images employed in this study.  
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Figure 2. Synthetic RGB images of the ex-vivo human brain tumor HS images employed in this study. 



 

 
 

 

2.2 Data pre-processing 

The HS images obtained with the HS intraoperative system were pre-processed applying data calibration, spectral noise 

reduction and band removal. The HS images were calibrated following Eq. (1), where CI is the calibrated image, RI is the 

raw image, and WI and DI are the white and dark reference images, respectively. The white reference image was acquired 

using a standard white reference tile that reflects the 99% of the incident light, in the same illumination conditions that the 

image was captured. The dark reference image was obtained by keeping the camera shutter closed. A spectral noise 

reduction algorithm was applied to the data by using a moving average filter for reducing the high-frequency noise with a 

window of five data points. Finally, due to the low performance of the HS sensor in the lower and higher spectral bands, 

the spectral ranges from 400 to 440 nm and from 909 to 1,000 nm were removed. At the end, the resulting HS cube was 

composer of 645 spectral bands in the spectral range comprised between 440 and 909 nm. The statistical analysis was 

performed using the absorbance values of the spectral signatures. Therefore, absorbance (A) was computed following Eq. 

(2), where R is the reflectance value and λ represent each wavelength. Figure 3 shows an example of a spectral signature 

at the different steps of the pre-processing chain. 

𝐶𝐼 =
𝑅𝐼 − 𝐷𝐼

𝑊𝐼 − 𝐷𝐼
 (1) 

𝐴(𝜆) = −log⁡(𝑅(𝜆)) (2) 

 

 
Figure 3. Example of a spectral signature in the different steps of the pre-processing chain. (A) Raw spectrum; (B) 

Calibrated spectrum; (C) Spectrum with the spectral noise reduction applied; (D) Final spectrum after lower/higher 

bands removal; (E) Final spectrum in converted to absorbance values.  

2.3 Diffuse absorbance spectral ratio processing framework 

The proposed method for computing the absorbance spectral ratio and perform the comparison between the in-vivo and 

ex-vivo tissue samples is composed by different stages as shown in Figure 4.  

First, the raw HS images captured with the intraoperative acquisition system (Figure 4.A) were pre-processed and 

converted to absorbance to perform the spectral analysis between the corresponding in-vivo and ex-vivo HS images (Figure 

4.B and C, respectively). Then, on the one hand, the in-vivo HS images were labeled to generate a ground-truth map 

(Figure 4.D) where the identification of the different tissue classes in the exposed brain surface is achieved (as explained 

in Section 2.1). On the other hand, a clustering algorithm was employed in the ex-vivo images to identify different regions 

in the tissue sample in an unsupervised way (Figure 4.E). Principal Component Analysis (PCA) was used to perform the 

segmentation of the ex-vivo tissue using the K-means unsupervised clustering algorithm. In order to determine the optimal 

number of clusters (K), three clustering evaluation methods were employed (Calinski Harabasz,13 Davies Bouldin,14 and 

Silhouette15) in each HS image, independently. This cluster evaluation was performed without taking account the 

background of the image (mainly composed by the white gauze where the tissue sample was placed). To achieve this, a 
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manually segmentation mask of each ex-vivo samples was created. After finding the optimal K value, the K-means 

algorithm was applied using this value to generate the ex-vivo clustering maps. The spectral signatures from such regions 

were then extracted for performing the analysis of the spectral signatures independently in each cluster and compare them 

with the corresponding labeled data from the in-vivo HS images (Figure 4.F). Additionally, such data was employed to 

perform a statistical comparison using the proposed R545/R560 spectral ratio method (Figure 4.G) 

Finally, HbRatio-based heatmaps of the in-vivo and ex-vivo samples were generated using the R545/R560 spectral ratio 

(Figure 4.H) and a qualitative evaluation of these samples was performed. In order to reduce noise in the heatmaps, a 

Gaussian smoothing filter was applied using a fixed sigma value (𝑠𝑖𝑔𝑚𝑎 = 1). In the in-vivo HbRatio-based heatmaps a 

qualitative evaluation of the different tissue structure was performed. In addition, an analysis of the distribution of 

R540/R560 in labeled blood vessel pixels was employed to automatically enhance their structures in the in-vivo images 

(Figure 4.I). The first and third quartiles of the distribution acted as the limits to produce these vascular enhanced maps. 

 
Figure 4. Block diagram of the proposed diffuse absorbance spectral ratio processing framework. 

3. EXPERIMENTAL RESULTS 

3.1 Unsupervised clustering of ex-vivo tumor samples  

The K-means algorithm was applied to the ex-vivo HS images in order to segment the samples into different clusters. 

Cluster evaluation was performed in each HS image. P08C3 is composed by three pieces and each piece was consider as 

an independent image for the analysis. After applying the three cluster evaluation methods, the optimal number of clusters 

obtained was two in almost all HS ex-vivo image, except for P50C3 (six clusters), and P58C4 and P58C5 (five clusters). 

Figure 5 shows the ex-vivo segmentation maps. Additionally, it is worth noticing that P21C3 and P21C4, which were 

captured with different focus, obtained similar segmentation maps.  

3.2 Spectral comparison among in-vivo and ex-vivo samples 

The in-vivo and ex-vivo tissue spectral analysis was performed evaluating the absorbance values in the different tissue 

samples. Figure 6 shows the mean spectral signatures from each class (NT, TT, and BV) of the in-vivo HS images (solid 

lines) and the different clusters obtained in the corresponding ex-vivo HS images (dashed lines).  
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Figure 5. Ex-vivo segmentation maps applying K-means algorithm (colors are randomly assigned). 

It can be observed that in the in-vivo samples the absorbance values of BV pixels between 500 and 600 nm are higher than 

in tumor and normal tissue, having normal tissue the lowest absorbance values. The ex-vivo spectral signatures have 

different absorbance values depending on the clusters obtained in the HS images. This can be related to differences between 

tissue types in the resected sample, which can involve tumor and the surrounding healthy tissue in some cases. Ex-vivo 

spectral signatures from P21C3 and P21C4 (Figure 6.C) are overlapping indicating, in this case, that having a slightly 

different focus does not affect the spectral signature. However, in P56C3 and P56C4 (Figure 6.E) the amplitudes are similar 

but not overlapped, this can be produced due to both images have higher differences in focus than P21. 

 
Figure 6. Mean spectral signatures of the different classes labelled in the in-vivo samples (solid lines) and the different 

clusters (dashed lines) obtained from the corresponding resected ex-vivo tissue (from different captures). (A) P08, 

(B) P15, (C) P21, (D) P50, (E) P56, (F) P57, and (G) P58. TT: Tumor Tissue; NT: Normal Tissue; BV: Blood 

Vessels; CL: Cluster; C: Capture; S: Segment from the capture in the cases where there are several ex-vivo tissue in 

the same capture. 
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3.3 Statistical analysis of the R545/R560 spectral ratio between in-vivo and ex-vivo samples 

Figure 7 shows the boxplots of the R545/R560 spectral ratios obtained in the different tissue types. These results show 

that, in the in-vivo samples, NT achieved higher ratios followed by TT and BV. Additionally, it can be observed that higher 

ratio values were obtained in the ex-vivo data respect to the in-vivo data. However, ex-vivo data present high interquartile 

rages (IQR). From these results, it is possible to observe that lower ratio values involve higher hemoglobin (Hb) 

contributions. In this sense, it is possible to observe that in the in-vivo samples, as expected, the blood vessel class has the 

lowest ratio values, while the normal class has the highest. In the case of the tumor class, the ratio values are lower than 

the normal class due to the hypervascularization produced by the tumor. 

 
Figure 7. Boxplots of the R545/R560 spectral ratios from the different classes labelled in the in-vivo samples and the 

different clusters obtained from the corresponding resected ex-vivo tissue (from different captures). (A) P08, (B) 

P15, (C) P21, (D) P50, (E) P56, (F) P57, and (G) P58. TT: Tumor Tissue; NT: Normal Tissue; BV: Blood Vessels; 

CL: Cluster; C: Capture; S: Segment from the capture in the cases where there are several ex-vivo tissue in the same 

capture. 

3.4 In-vivo HbRatio-based heatmaps and vascular enhanced maps 

Using the R545/R560 spectral ratios and the first and third quartiles as threshold points, HbRatio-based heatmaps and 

vascular enhanced maps were generated as shown in Figure 8. A Gaussian smoothing filter was applied to the HbRatio-

based heatmaps in order to reduce the spatial noise in the results. In the vascular enhanced maps, blood vessels were. In 

general, well delimited using such spectral ratios. However, in some cases, background elements were identified as 

vascular, for example in P15C2 and P57C1. In any case, this background elements can be easily identified by the operating 

surgeon’s naked eye. 

4. CONCLUSION 

To the best of our knowledge, the work presented in this paper employs, for the first time, a discrimination of different in-

vivo human brain tissue structures based on Hb ratios using HSI. The ratio reflects a maximized difference between deoxy-

Hb and oxy-Hb. In addition, HbRatio-based heatmaps and vascular enhanced maps were obtained using the first and third 

quartiles of R45/R60 spectral ratio. This work analyzes the correlation between ex-vivo and in-vivo samples of human 

brain tissue that, to the best of our knowledge, has not been carried out in the literature. This correlation was performed 

after analyzing the optimal cluster values in the ex-vivo samples to extract the spectral signatures. 
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Figure 8. Synthetic RGB images, HbRatio-based heatmaps (before and after applying Gaussian smoothing filter) and 

vascular enhanced maps (obtained with first and third quartiles of R545/R560 spectral ratio) from the seven HS in-

vivo images from the seven different patients. 



 

 
 

 

This work would allow the development of a real-time intraoperative system for enhanced surgical guidance and blood 

flow monitoring. The system could be based on an HS camera that captures only the spectral bands used to calculate the 

Hb ratio, reducing the acquisition time and the high computation requirements for processing large number of spectral 

bands. By reducing the spectral range, the spatial resolution could increase, improving also the definition of the generated 

maps. In addition, the identification of the blood vessels in the enhanced vascular maps could help to improve the 

identification of tumor areas during surgical procedures, by reducing the number of classes to be differentiated by a 

machine learning classifier. This fact, in addition with the identification of the parenchymal area of the surgical scene 

could achieve a binary classification between tumor and normal tissue that have been demonstrated to be more precise 

than a four class-classification.8 For this reason, future works will involve the use of deep learning techniques to identify 

parenchymal areas in the HS images, as well as the use of the proposed enhanced vascular maps to identify blood vessel, 

allowing a later binary classification of the brain tissue between tumor and normal parenchymal tissue. 
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