
 





Abstract

The integration on-board satellites of high-resolution sensors, such as spectroscopic or video

sensors, is becoming common in the space industry. These sensors provide a large amount

of information about the observed scene that is difficult to handle on-board, because

satellites have limited computational and storage resources. For these reasons, on-board

data compression is becoming mandatory for future space missions integrating this kind

of high-resolution sensors. At the same time, compression algorithms must meet some

requirements specifically imposed by the space environment, such as low complexity, low

power consumption or robustness to errors due to radiation, among others. This makes

challenging both to develop specific compression techniques for space missions and also to

implement them in electronic devices that must be qualified to work in the outer space.

This Thesis proposes new modular hardware solutions for the compression of generic data

and hyperspectral images on-board satellites. The goal is to provide several alternatives

of prediction-based preprocessors and entropy coders, which are the two main stages of

a compressor, that can be combined by the user. In this way, the optimal solution for

the final application can be selected depending on certain requirements, such as target

compression ratio, data quality after decompression, computational performance, hardware

occupancy or robustness against radiation-induced failures. The implementation of the

different prediction-based preprocessors and entropy coding alternatives is carried out on

FPGAs, which are becoming popular in the space industry due to their high computational

capabilities, low power consumption and the possibility of being reconfigured during the

mission lifetime, either to add new functionality or to repair errors caused by radiation.

Implementation results are provided for two recently available radiation tolerant FPGA

technologies, the BRAVE and Kintex UltraScale families, manufactured by NanoXplore

and Xilinx, respectively. Two different design methodologies have been combined, RTL

(using VHDL) and HLS, choosing one or the other depending on certain constraints,

such as computational performance requirements, logic resource utilization or design time

restrictions, among others.

Concerning algorithms, this Thesis focuses on the compression algorithms proposed by

CCSDS, an international organism in charge of publishing standards to be used in on-

board processing systems for space missions. For generic data compression, the CCSDS

121.0-B-3 lossless compression standard is proposed, while the CCSDS 123.0-B-1 and

CCSDS 123.0-B-2 standards are considered for the lossless and near-lossless compression,



respectively, of multi- and hyperspectral images. These compression standards have been

studied in detail, in order to detect existing data dependencies between internal tasks

and how to solve them. In this way, it is possible to parallelize certain computations of

the algorithm, which are then executed concurrently thanks to the possibilities offered by

FPGAs.

A fully compliant solution with the CCSDS 121.0-B-3 standard (i.e., unit-delay predictor

plus block-adaptive entropy encoder), has been developed in VHDL and successfully

mapped on the Xilinx Kintex UltraScale XCKU040 FPGA, obtaining a throughput of

176.3 and 163.7 MSamples/s when the input samples have a bit-depth of 8 and 16 bits,

respectively. This performance enables real-time processing for spectroscopic sensors

currently in orbit and for those planned for launch in the short to medium term. This

computational performance is achieved with a low area footprint, using only 4.2% of the

LUTs available on the device and with a minimum memory consumption (around 0.8%).

Regarding the CCSDS 123.0-B-1 lossless standard, it has also been completely developed

in VHDL and is comprised by both the 3D predictor defined in the standard and the

sample-adaptive encoder. Different architectures have been developed for the prediction

stage, taking into account data dependencies in the processing of each possible order of the

input image, with the aim of maximising the throughput without significantly affecting

logic resource utilization. When the input order is Band-Interleaved by Pixel (BIP), the

only one that allows processing of one sample per clock cycle, a maximum throughput of

151.6 MSamples/s is obtained for the XCKU040 FPGA, when compressing scenes acquired

by AVIRIS, which have a precision of 16 bits per pixel. Logic resource consumption is

considerably low (around 3% of the total LUTs available on the device), while the memory

consumption depends directly on the image size (e.g., 12 % of BRAMs of the XCKU040

FPGA are used for AVIRIS scenes).

The CCSDS 123.0-B-2 near-lossless algorithm has been fully developed in HLS to quickly

perform a design space exploration of the different predictor architectures, while at the

same time the existing restrictions in terms of available design time are overcome. A

design space exploration has been carried out to know which parts of the algorithm are the

most critical in terms of achieved compression ratio and hardware occupancy. The impact

of the different configuration parameters defined by the standard on the performance of

the hardware implementation has also been studied. This solution consumes the 7.2% of

LUTs and 14.2% of BRAMs available on the Kintex UltraScale XCKU040. A tailored

version of this approach was made for the CHIME instrument, composed of just the



CCSDS 123.0-B-2 predictor features that allow the highest possible compression ratio,

and the block-adaptive encoder. This approach, although it is not capable of providing

real-time compression, has an acceptable hardware footprint (the 6.0% of LUTs and 28.5%

of BRAMs available on the Xilinx XCKU040 FPGA). As it can be seen from the results

obtained, the proposed implementations are feasible to be successfully implemented on

hardware available on-board satellites.

Finally, as part of this Thesis, the application of the CCSDS 123.0-B-2 algorithm for

monochromatic and RGB video compression has been evaluated, demonstrating the

versatility of the proposed modular compression solution, capable of compressing both three-

dimensional images and video sequences by using a single processing core. This solution

provides acceptable compression ratios for a real Remote Sensing scenario, obtaining a

video quality after decompression high enough to not perceive significant losses from a

visual point of view.

In conclusion, this work presents efficient compression solutions capable of handling

different types of data, including one-dimensional data, hyperspectral imagery and video

sequences, which can be embarked on-board satellites in future space missions. In this

way, flexible and high-performance compression approaches are provided, all with a low

use of computational and memory resources.





Resumen

La integración a bordo de satélites de sensores de alta resolución, como pueden ser sensores

hiperspectrales o de v́ıdeo, es cada vez más común por parte de la industria espacial. Estos

sensores proporcionan una gran cantidad de información acerca de la escena observada

que es dif́ıcil de manejar a bordo, debido a que los satélites cuentan con recursos tanto

computacionales como de almacenamiento limitados. Por estas razones, la compresión a

bordo de satélites se está convirtiendo en una necesidad para futuras misiones espaciales

que integren sensores de alta resolución. Al mismo tiempo, los algoritmos de compresión

deben cumplir una serie de requisitos impuestos espećıficamente por el entorno espacial,

como puede ser una baja complejidad, un reducido consumo de potencia o robustez

frente a errores debido a la radiación, entre otros. Todo esto hace que suponga un reto

tanto el desarrollo de técnicas de compresión espećıficas para misiones espaciales como su

implementación en dispositivos electrónicos que deben estar calificados para trabajar en el

espacio.

En esta Tesis se proponen nuevas soluciones hardware modulares para la compresión de

datos genéricos e imágenes hiperespectrales a bordo de satélites. La idea fundamental

radica en proporcionar varias alternativas de preprocesadores basados en predicción y

de codificadores entrópicos, que son las dos etapas básicas de que consta un compresor,

pudiendo ser combinadas por el usuario. De esta forma, se podrá seleccionar la opción

óptima para la aplicación final dependiendo de determinados requisitos, como puede

ser compresión objetivo, calidad de los datos después de la decompresión, prestaciones

temporales, ocupación en términos de área, o robustez frente a fallos provocados por la

radiación. Concretamente, dichas implementaciones se llevan a cabo en FPGAs, dispositivos

electrónicos que están adquiriendo cada vez más interés por parte de la industria espacial

debido a sus altas capacidades computacionales, reducido consumo de potencia y posibilidad

de ser reconfiguradas durante el ciclo de vida de la misión, bien para añadir nueva

funcionalidad o para reparar errores producidos por la radiación. En este sentido, cabe

destacar que se proporcionan resultados para dos tecnoloǵıas FPGA tolerantes a la radiación

recientemente disponibles en el mercado, como son las familias BRAVE y Kintex UltraScale,

proporcionadas por los fabricantes NanoXplore y Xilinx, respectivamente. Dos diferentes

metodoloǵıas de diseño han sido combinadas, RTL (utilizando VHDL) y HLS, eligiendo

una u otra en función de ciertas restricciones, como pueden ser requisitos de rendimiento

computacional, de utilización de recursos lógicos o limitaciones en el tiempo de diseño,

entre otras.



En lo que a algoritmos se refiere, se presta especial atención a los estándares de compresión

propuestos por el CCSDS, organismo encargado de publicar normas para ser empleadas en

los sistemas de procesamiento a bordo de misiones espaciales. Para la compresión de datos

genéricos, se propone el empleo del estándar de compresión sin pérdidas CCSDS 121.0-B-3,

mientras que los estándares CCSDS 123.0-B-1 y 123.0-B-2 se consideran para la compresión

de imágenes multi- e hiperspectrales sin o con pérdidas, respectivamente. Ambos estándares

de compresión han sido profundamente estudiados, para poder detectar las dependencias

de datos existentes entre tareas internas y cómo solucionarlas. De este modo, se consigue

paralelizar ciertos cómputos del algoritmo, que son ejecutados concurrentemente gracias a

las posibilidades ofrecidas por las FPGAs.

Se ha desarrollado en VHDL una solución conforme al estándar CCSDS 121.0-B-3 (unit-

delay predictor más block-adaptive encoder), mapeado satisfactoriamente en la FPGA

Kintex UltraScale XCKU040 de Xilinx, obteniendo un throughput de 176.3 y 163.7 MSam-

ples/s cuando las muestras de entrada tienen una precisión de 8 y 16 bits, respectivamente.

Estas prestaciones temporales permiten un procesamiento en tiempo real para los sensores

hiperespectrales que se encuentran actualmente en órbita y para los que está previsto

lanzar a corto o medio plazo. Este rendimiento computacional está unido a una baja

ocupación de área, usando únicamente un 4.2% de las LUTs disponibles en el dispositivo y

con un consumo de memoria prácticamente nulo (alrededor del 0.8%).

Respecto al estándar CCSDS 123.0-B-1, también ha sido completamente desarrollado en

VHDL y está compuesto tanto por el predictor 3D definido en el estándar, como por el

sample-adaptive encoder. Diferentes arquitecturas han sido desarrolladas para la etapa de

predicción, teniendo en cuenta las dependencias de datos existentes en el procesamiento de

cada orden posible de la imagen de entrada, con el objetivo de maximizar el throughput sin

que la ocupación de recursos lógicos se vea significativamente afectada. Cuando el orden de

entrada es Band-Interleaved by Pixel (BIP), el único que permite un procesamiento de una

muestra por ciculo de reloj, se obtiene un throughput máximo de 151.6 MSamples/s para

la FPGA XCKU040, cuando se comprimen escenas adquiridas por AVIRIS, que tienen una

precisión de 16 bits por ṕıxel. La utilización de recursos lógicos es considerablemente baja

(alrededor del 3% del total de LUTs disponible en el dispositivo), mientras que el consumo

de memoria depende directamente del tamaño de la imagen (por ejemplo, se utiliza el 12%

de BRAMs de la FPGA XCKU040 para escenas adquiridas por AVIRIS).

El algoritmo descrito en el estándar CCSDS 123.0-B-2 se ha desarrollado completamente

en HLS para realizar una exploración rápida del espacio de diseño y estudiar las diferentes



arquitecturas posibles del predictor, mientras que al mismo tiempo se evitan las restricciones

existentes en cuanto a tiempo de diseño disponible. Se ha realizado una exploración del

espacio de diseño para identificar qué partes del algoritmo son más cŕıticas en términos de

ratio de compresión y utilización del hardware. También se ha estudiado el impacto de los

diferentes parámetros de configuración definidos en el estándar en el rendimiento de la

implementación hardware. Esta solución consume el 7% de LUTs y el 14.2% de BRAM

disponibles en la Kintex UltraScale XCKU040. Se ha realizado una versión a medida de esta

solución para el instrumento del programa espacial CHIME, compuesta por la funcionalidad

del predictor propuesto en el estándar CCSDS 123.0-B-2 que permit́ıa alcanzar un mayor

ratio de compresión, y el block-adaptive encoder. Esta solución, aunque no es capaz de

proporcionar compresión en tiempo real, tiene una ocupación de hardware comedida (el

6% de LUTs y el 28.5% de BRAMs disponibles en la FPGA XCKU040 de Xilinx). Como

se puede comprobar a partir de los resultados obtenidos, las implementaciones propuestas

son viables para ser implementadas satisfactoriamente en hardware disponible a bordo de

satélites.

Adicionalmente, se ha evaluado el uso del algoritmo CCSDS 123.0-B-2 para la compresión de

v́ıdeo monocromático y RGB, obteniendo de esta forma una solución de compresión versátil,

capaz de comprimir tanto imágenes tridimensionales como secuencias de v́ıdeo obteniendo

un único núcleo de procesamiento. Esta solución proporciona ratios de compresión

aceptables para un escenario real de teledetección, obteniendo una calidad de v́ıdeo después

de la decompresión lo suficientemente alta para no percibir pérdidas significativas desde

un punto de vista visual.

En definitiva, este trabajo proporciona soluciones de compresión eficientes capaces de mane-

jar diferentes tipos de datos, incluyendo datos unidimensionales, imágenes hiperespectrales

y v́ıdeo, que puedan ser embarcadas a bordo de satélites en futuras misiones espaciales.

De esta forma, se dota a la misión espacial de técnicas de compresión flexibles y de alto

rendimiento, y todo ello con un bajo uso de recursos computacionales y de memoria.
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A.1 Introducción . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
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en Xilinx Kintex UltraScale XCKU040 . . . . . . . . . . . . . . . . . . . . 183

A.3 Relación entre el ratio de compresión y la calidad del v́ıdeo decomprimido,
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Chapter 1

Introduction

This Chapter presents the motivation and objectives of the Thesis, which is focused

on providing efficient hardware implementations for on-board data compression. The

main goal of the work is to develop different modular solutions to compress generic data,

hyperspectral images and video sequences on-board satellites using configurable hardware

devices and keeping in mind the main constraints existing on space missions (computational

resources, storage capacity and power consumption, among others). This Chapter also

provides some hints about the constraints to deal with when designing hardware for

space. This information is required to understand the problems involved and the solutions

provided.

1



2 Chapter 1. Introduction

1.1 Motivation

Remote Sensing applications have become very popular for the space industry during

the last decades, since high-resolution sensors allow to obtain useful information for

an important number of applications (e.g. environmental studies, climate, surveillance,

characterization, monitoring, detection, etc.) [1–7]. These kind of sensors, commonly used

in Earth Observation (EO) missions, are also gaining interest for space exploration, and

are currently considered by space agencies to study the Moon or the Mars surface [8, 9].

Among all sensors, those with the capability to obtain rich spectral information have been

used since the beginning because of their strengths for characterization and monitorization

applications. A proof of this is the number of satellites with multi- or hyperspectral sensors

on-board. The history starts with Landsat-1, launched by NASA in 1972, which can be

considered the first modern satellite for EO [10]. Landsat-1 integrated a Multispectral

Scanner System (MSS) that acquires four bands with wavelengths from 0.5 to 1.1 μm with

a spatial resolution of 80 m. The Landsat program has launched a total of nine satellites

and still continues. Landsat-9 has been recently launched on September 2021 and it will

join Landsat-8 in orbit. Other important missions by NASA are the Earth-Observing One

(EO-1) satellite, which embarked the Hyperion Imaging Spectrometer (decommissioned

on March 2017) [11]; and the Hyperspectral Infrared Imager (HyspIRI) mission, aims

to provide critical information on natural disasters and vegetation health [12]. HyspIRI

was launched in 2020 and includes an imaging spectrometer measuring from the visible

to short-wave infrared (i.e. from 380 nm to 2.5 μm) in 10 nm contiguous bands, with a

spatial resolution of 60 m.

In Europe, the Copernicus program has the main goal of providing real-time dynamic

monitoring of the environment. The space-based observation part of the program is

responsibility of the European Space Agency (ESA), which has launched a family of six

satellites, known as Sentinel [13]. Sentinel-2 integrates a Multispectral Instrument (MSI)

that acquires 13 spectral channels: the first four bands are the three RGB bands and a

Near Infrared (NIR) spectral channel, with a spatial resolution of 10 m; six bands, four of

them in the Visible and Near Infrared (VNIR) and 2 Short Wavelengths Infrared (SWIR)

bands (1.61 μm and 2.19 μm), with a spatial resolution of 20 m; and the last three bands

for atmospheric correction (443 nm, 945 nm and 1374 nm), with a 60 m spatial resolution.

The Copernicus Hyperspectral Imaging Mission for Environment (CHIME) is introduced

by ESA in the future Copernicus 2.0 program to provide routine hyperspectral observations
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for the monitorization of natural resources, including applications such as sustainable

agricultural and biodiversity management, soil properties characterization, sustainable

mining practices and environment preservation [14]. CHIME shall provide continuous

spectral data in VNIR and SWIR spectral domains, covering approximately 250 spectral

channels between 400 nm and 2.5 μm. The sensor will be used to acquire hyperspectral

images with a bit-depth of 16 bits per sample, what leads to input data rates up to 2

Gbps. This Thesis will provide an ad-hoc solution for compressing information acquired

by the CHIME instrument (see Chapter 5).

European space agencies have also launched different EO satellites as part of their national

programs. The National Centre for Space Studies (CNES) has launched seven satellites,

known as the SPOT family. SPOT-1, launched in 1986, is considered the world’s first

Remote Sensing satellite. A new French mission, denoted as HypXIM [15], is expected to

be launched in the time-frame 2022-2024, collecting a total of 210 spectral bands in the

range 400-2500 nm (VNIR and SWIR regions), with a spectral and spatial resolution of 10

nm and 8 m, respectively. PRISMA is a mission fully funded by the Italian Space Agency

(ASI) and launched in 2019 [16]. The Spaceborne Hyperspectral Applicative Land and

Ocean Mission (SHALOM) is a joint mission by the Israeli and the Italian space agencies

to develop a hyperspectral satellite that collects 275 bands with a spectral resolution of

10 nm and a spatial resolution of 10 m [17]. The Environmental Mapping and Analysis

Program (EnMAP) is a German hyperspectral satellite mission for Earth monitoring and

characterization, embarking a sensor that collects continuous spectral bands of 6-14 μm

width in the range 420-2450 nm, with a spatial resolution of 30 m [18].

Finally other Agencies (as Japanese and Chinese) has launched a number of similar

programs to the aforementioned ones [19–21]. Table 1.1 summarises the main features of

the most relevant current and future space missions that embark hyperspectral sensors,

including the number of bands collected and both the spatial and the spectral resolution.

Table 1.1 shows that high-resolution sensors are conceived for acquiring as many spectral

bands as possible with a high spatial and spectral resolution. This extra information in

the spectral domain is intended to obtain a high grade of information about the objective

under analysis. A first solution could be to acquire the information on-board and send it to

ground in a raw format to be then processed. However, the satellite downlink bandwidth

with ground stations usually is limited, as is the memory storage capacity on-board. In

this way, data compression emerges as the solution to dodge these constraints, reducing

the data volume prior to send it to ground.
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Table 1.1: Main features of current and future spacecraft
with on-board hyperspectral sensors

Sensor
Number Spectral Spectral Spatial

Launch
of bands Range(nm) Resolution(nm) Resolution(m)

HyspIRI (USA) 210 380–2500 10 60 2020
CHIME (Europe) 220 400-2500 10 20-30 2027-2029
PRISMA (Italy) 240 400-2500 10-12 30 2019

SHALOM (Italy/Israel) 275 400-2500 10 10 2022
HypXIM (France) 210 400-2500 10 8 2022-2024

EnMAP (Germany) 2̃00 420-2450 6-14 30 2020
HISUI (Japan) 185 400-2500 10-12.5 30 2019

Gaofen-5 (China) 330 400-2500 5-10 30 2018
Zhuhai-1 (China) 166 450-2500 10-20 30 2019

On the other hand, the demand of video sensors embarked on satellites is also increasing in

the last years since they provide extra information in the temporal domain. This interest

will grow exponentially in the near-future, mainly for applications such as monitorization,

including target detection and tracking, and exploration missions. Nowadays, some

commercial satellites provide video products for potential applications on ground. For

instance, SkySat is a constellation of 21 high-resolution imaging satellites (SkySat-1 was

launched in 2013) at different orbits and altitudes. They are able to collect video using a

panchromatic camera, which has a spatial resolution of approximately 1x2.5 km2 and with a

temporal duration between 30 and 120 seconds at 30 FPS [22]. The Jilin-1 Chinese satellite

constellation also provides high-definition video imaging, optical and hyperspectral imagery

[23]. High-definition RGB video is provided in real-time at 10 FPS, with a duration up to

120 seconds and a spatial resolution around 1 m, covering a scene of 19 km [24]. Academic

institutions are also working in CubeSat missions comprised by Commercial Off-The-Shelf

(COTS) components and including image and video sensors for EO. As an example, the

High-Resolution Image and Video CubeSat (HiREV), currently under development by the

Korea Aerospace Research Institute, will integrate a sensor for high-resolution (5 m per

pixel) color image and video [25]. Moreover, multi- and hyperspectral video is expected on

space missions in a short future, mainly due to the availability of the snapshot cameras.

In conclusion, it is expected that the new-generation imaging sensors boost in the next

years both the spatial and the spectral resolution, even collecting temporal information

for video applications. Nowadays, there is a huge amount of data being acquired on

satellites and this amount will be much higher in the short future. As mentioned before,

the limited downlink bandwidth in comparison with the size of the acquired data will

constitute a bottleneck for missions that integrate this kind of sensors, preventing the direct



Chapter 1. Introduction 5

transmission of raw data to ground [26]. Therefore, performing on-board compression is

becoming mandatory on space missions for Remote Sensing applications.

Data compression is still considered a challenge by the space industry. Very efficient and

low-complexity algorithms and processing platforms will be required on-board to compress

that huge amount of information in real-time. This has been a hot topic for the scientific

community during the last decades, mainly because the computational restrictions present

on-board satellites force the compression algorithms to meet certain design criteria. At

the same time, it is very important to preserve the quality of the reconstructed data after

decompression because it will be impossible to capture the same data twice.

This is the reason why the Consultative Committee for Space Data Systems (CCSDS), an

international organization comprised by the main space agencies in the world to define

a common procedure for developing space data and information systems, has published

different compression standards. The target of these algorithms has different data nature

(1D, 2D and 3D data) and compression techniques (i.e., lossless or lossy), but always

meet the condition of a reduced algorithmic complexity. These standards pretend to

establish a common framework for the development of on-board compression solutions

and to have an universal solution for the decompression of the information on ground.

Regarding one-dimensional data, image and hyperspectral image compression, the CCSDS

has published the following Recommended Standards: a) CCSDS 121.0-B-3 (Lossless

Data Compression) [27], b) CCSDS 122.0-B-2 (Image Data Compression) [28], c) CCSDS

122.1-B-1 (Spectral Preprocessing Transform for Multispectral and Hyperspectral Image

Compression) [29], d) CCSDS 123.0-B-1 (Lossless Multispectral and Hyperspectral Image

Compression) [30] and e) CCSDS 123.0-B-2 (Low-Complexity Lossless and Near-Lossless

Multispectral and Hyperspectral Image Compression) [31].

Although the algorithms proposed in these standards have been selected in order to be

feasibly implemented on the hardware available on-board satellites, the development of

these solutions is not trivial, and it is still challenging for both academic institutions

and space companies. The most common solution nowadays is to include in the system

an IP core (soft or hard, depending on the availability and mission requirements) that

implements the specific compression technique needed on-board. If there is not an IP

available, the solution is to perform the compression as a software application running on

a general-purpose microprocessor, though in this case the performance goals are very hard

to met.
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The main goal of this Thesis is to provide efficient compression solutions to be implemented

on space missions. The proposed solutions shall be able to manage data from different

nature, including one-dimensional data, hyperspectral images and video (panchromatic and

RGB). The proposed approaches have to achieve not only an acceptable compression ratio

without degrading the quality of the compressed information, but they also have to take

into account additional constraints that appear on-board satellites, such as throughput

to meet real-time requirements; low area utilization, to fit well on the available hardware

resources embarked on space missions; and low power consumption. The designed solutions

will be developed following a modular approach, based on the fact that many of these

standards have computational similarities. In particular, this Thesis will study the

CCSDS 121.0-B-3, the CCSDS 123.0-B-1 and the CCSDS 123.0-B-2 standard, from which

computational modules will be created that can be merged together to solve the problem

of one-dimensional data compression, multispectral and hyperspectral image compression

and video compression on-board satellites.

1.2 Application environment constraints

When dealing with on-board applications, there is a number of constraints to take into

account. The spacecraft is considered as a platform and a payload. For EO satellites,

the payload usually includes a hyperspectral sensor and/or a panchromatic/RGB camera,

together with the electronic circuits needed to acquire, process and store the information.

The platform consists in the satellite subsystems that supports the payload [32]. These

subsystems (such as electrical power distribution; telemetry, tracking and command;

thermal control; propulsion; etc.) are not covered in this Thesis. This Thesis will

cover part of the on-board data handling subsystem and, particularly, will be part of

the Processing, Formatting and Control Unit (PFCU) of the satellite, dealing with the

compression of the information generated by the different sensors that can be embarked

on it.

Usually on-board, depending of the mission, there are three different kind of sensors:

Panchromatic, VNIR and SWIR. Apart from the optics and focal plane arrays for each

sensor, the payload includes a specific processing element for each sensor, which provides

the information in a specific formatted stream. This formatted data are stored in a Mass

Memory Unit (MMU) or are directly processed on the fly. All the solutions provided in

this Thesis are able to process the information on the fly, and make it ready either to be
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sent to ground through the satellite downlink or to be stored in the MMU. Ancillary data,

telemetry information or other type of data could be also necessary to send to ground. For

the sake of saving downlink bandwidth, sometimes it is also necessary to compress this

kind of one-dimensional information [33, 34].

Electronic circuits used in space applications are typically several generations behind of

those used on ground, at least in terms of complexity and performance. However, this

has changed in the last years with the availability of very high performance technologies

and solutions, such as Field-Programmable Gate Arrays (FPGAs) or parallel processors.

This fact is transferring to the design for space applications the problems intrinsically

linked to the highly complex solutions of embedded systems with the aggravation of the

problems related to radiation and thus the needed robustness. This section deals with all

the related constraints that are important to consider in this Thesis. These topics may be

technological, methodological or may be related to the applications themselves.

1.2.1 Hardware on-board satellites

The traditional way to introduce high performance circuits on a satellite have been

Application-Specific Integrated Circuits (ASICs). An ASIC is a very efficient way to

perform different mission tasks related to the payload. This is because ASIC solutions

offer the best balance between performance and power consumption, since they are fully

optimized for a specific application and the technology used for their manufacturing is

thought for space applications (i.e., radiation tolerant). However, space is a very low

volume application and hence it is difficult to reach the break-even point because of the

high non-recurring engineering costs and manufacturing costs. The manufacturing time

is also high and very sensitive to the possibility of requiring a re-spin. These limitations

still exist even if a System-on-Chip (SoC) methodology (reusing already existing cores or

IPs) is followed. With the possibility of using high performance on-board processors (e.g.,

LEON3 or LEON4), the use of ASICs in space applications have decreased.

In the other hand, FPGAs are increasing their presence in the last years as part of space

payload processing circuits, because of their flexibility, high computational performance and

low power consumption. A main advantage of FPGAs is also their reduced cost compared

to ASICs [35], mainly recurring engineering costs and, to a lesser extent, non-recurring

engineering costs. The inherent flexibility of the RAM-based FPGAs allows to change all

or some parts of the functionality dynamically to adapt it to new requirements that can
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appear during the mission lifetime or even if corruption takes place because of radiation

effects. Besides, FPGAs encourage task parallelism, executing simultaneously different

operations if no data dependencies are presented, providing an advantage compared to the

sequential behaviour of embedded microprocessors.

Initially, the FPGAs used in the space sector were the ones fabricated with technologies

inherently robust to radiation effects, mainly antifuse but also based on flash memories.

Companies like Microsemi use this kind of programmable technology, which has a short

development time to space applications, hence they have been widely used during the

last decades. Lately, FPGAs based on SRAM technology are being predominant (the

same than in ground applications) because of their flexibility and early adoption of more

advanced manufacturing processes. In this way, Xilinx offers specific Radiation-Hardened

by Design (RHBD) devices to the space industry, which are manufactured according to

the special conditions that are present on a critical environment like the outer space (e.g.,

robustness against radiation or a wide range of temperature). These FPGAs are currently

dominating the space market, and they have been integrated in the last years in different

space payloads. Recently, NanoXplore, an European Company, has been designing and

manufacturing a new family of re-programmable devices also based on SRAM technology,

known as BRAVE. BRAVE FPGAs, which are supported by ESA and other European

space agencies, offer a family of radiation-hardened reprogrammable devices integrally

developed in Europe [36], avoiding dependencies with non-European technologies that

have dominated the space market during the last decades. Figure 1.1 shows the first device

of the family on the market, known as NG-MEDIUM.

Different hardening techniques are combined in space-graded FPGAs, in order to preserve

a proper behaviour under radiation effects. Some of these approaches are Error Detection

And Correction (EDAC) for dedicated memory blocks, Triple Modular Redundancy (TMR)

Figure 1.1: NanoXplore NG-MEDIUM FPGA
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flip-flops, Double Modular Redundancy (DMR) clock-tree, or a background scrubber to

preserve the integrity of the FPGA memory configuration.

The FPGA market was higher than 6.2 billion dollars in 2021, but the FPGA space

segment just represents the 3.7% (0.23 billion dollars, mainly for Xilinx and Microsemi

devices) [37]. Therefore, the availability of FPGAs in the ground segment is very wide

and FPGAs have much lower cost and higher computational capabilities in comparison

with RHBD FPGAs. This is the reason why during the last years COTS FPGAs (mainly

SRAM-based) are gaining interest for space applications (specially as for short-time and

low-orbit missions). Space qualification process takes a long time (commonly years) and it

is costly, implying radiation campaigns in specialised facilities. Sometimes, the mission

design process cannot wait this long time to decide the final device to be included in the

hardware processing payload, so a decision must be made taking into account mission

requirements (e.g., orbit, lifetime, etc.).

Nevertheless, radiation can cause bit flips in SRAM-based COTS FPGAs configuration

memory, which may derive in a modification of the design behaviour or even in a progressive

malfunction of the whole device, until reconfiguration is performed [38]. Mitigation

techniques must be introduced in SRAM-based COTS FPGAs to be used on space

missions, since they are not inherently robust to radiation. Some techniques, such as

scrubbing and hardware redundancy at different levels, are implemented as part of the

mapped design onto the FPGA to prevent or mitigate radiation effects and to preserve both

data integrity and system functionality. FPGAs can be also combined with microprocessors

in the same die, forming heterogeneous SoCs, which increase system capabilities in terms

of computational performance. To demonstrate their viability for short-time scientific

applications, the space industry is testing in-orbit these SoCs in SmallSats for Low-Earth

Orbit (LEO) missions, where the radiation effects are reduced [39].

The compression solutions presented in this Thesis target the main space-qualified FPGAs

available in the market. Hence, the design of these solutions will be technology-agnostic,

when possible, but architectural approaches developed for each compression solution will be

focused on efficiently exploit the strengths of these FPGAs, providing high performance and

reduced hardware occupancy. Special emphasis will be done on designs with NanoXplore

BRAVE family, since it is the European approach to FPGA space market and is widely

supported by ESA. In addition, it is remarkable that the implementation results provided

for the different compression approaches presented throughout this Thesis are the first in

the state-of-the-art for this novel family of devices.
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1.2.2 Design methodology

The FPGA design flow for the ESA missions has been addressed mainly by the ECSS-Q-ST-

60-02C ASIC and FPGA development regulation [40]. This norm is based on a Register-

Transfer Level (RTL) methodology with a classical design approach using Hardware

Description Languages (HDL), such as VHDL or Verilog, to describe a synchronous

digital circuit [41]. The gate-level equivalent netlist is obtained by performing a logic

synthesis using the appropriate EDA tools. Logic synthesis preserves the architectural

details of the RTL description, at the same time it tries to meet the required target

performance. A relevant aspect of the RTL descriptions is that they could be done as

technology-independent, getting rid of information about specific technology or components

libraries. In addition, the designer can provide information to the logic synthesis tool,

commonly denoted as synthesis directives, that can help to achieve the desired performance,

minimizing synthesis and place-and-route iterations.

Using the RTL methodology, the characterization and assessment of the final performance

of the circuits is not a difficult task. However, verification is a huge problem specially when

the design complexity increases. Further problems are also the design time, the impact

of possible design re-spins and the emerging interest of using heterogeneous SoCs, which

extend system capabilities in terms of computational performance.

For this reason, early modelling the functionality of the electronic system at a higher level

of abstraction is a must for many ESA projects, allowing to speed up the design time as

well as the verification, and reducing the re-design costs of complex electronics systems.

ESA has tried to support this functionality creating specific virtual platforms (e.g. ESA

SoCRocket Virtual Platform [42]), which allow to validate the design at early stages of the

development flow.

The High-Level Synthesis (HLS) design methodology, whose workflow is summarised in

Figure 1.2, provides an alternative to model complex electronic designs at a higher level

of abstraction than RTL. HLS starts from an algorithmic model of the functionality in

a high-level language, either with cycle-accurate information (i.e., using SystemC) or

without it (e.g., by employing hardware-friendly C/C++ descriptions), introducing an

extra layer in the design description hierarchy, to subsequently perform a transformation

of the algorithmic behaviour to its micro-architecture, comprised by a datapath and its

control unit represented at RTL [43]. Such transformation is automatically done by an

HLS tool, which guarantees the correctness of the hardware implementation and should



Chapter 1. Introduction 11

match the design constraints to achieve the goals in terms of timing, resources and power

consumption.

Main advantages of the HLS methodology are that verification is accelerated (although

formal verification methods are still not common in HLS tools) and the easy re-spin. An

extra reduction of the design time can also be achieved, if existing software descriptions

are reused as starting point for the HLS model. Different optimizations can be specified by

the user in the existing loops in the source code to accelerate throughput of the obtained

solution, such as introducing pipelining or unrolling directives [44]. Moreover, this design

flow considers the possibility of manually refining certain parts of the generated RTL

model, if particular targets in terms of clock-cycling accuracy are required.

HLS also offers much more flexibility to perform an exhaustive design space exploration,

evaluating different architectures at early stages of the development flow, which is specially

relevant for highly-parameterizable algorithms [45]. At the same time, HLS allows an easier

verification of the different design modules, since they can be treated as isolated units,

which are verified independently by using software-based testbenches. These latter features

make HLS models an interesting option for prototyping purposes [46], demonstrating

Figure 1.2: Overview of the HLS design methodology
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the viability of hardware implementations under high timing restrictions and providing a

preliminary logic resources utilization.

Currently, there is a wide range of HLS tools available in the market, including company-

specific and technology-agnostic alternatives. In the first group, Xilinx Vitis HLS (previ-

ously known as Vivado HLS) and Intel-Altera HLS Compiler are the main options, which

are fully optimized when targeting FPGA devices from these companies. On the other

hand, Mentor Catapult HLS or the open-source Bambu tool, developed at the Politecnico

di Milano, provide support for FPGAs from different manufacturers, loading the necessary

component models for the target technology [47]. In addition, the well-known mathemati-

cal suite MATLAB-Simulink provides a plug-in to generate equivalent RTL descriptions,

denoted as HDL Coder, which provides a reasonable performance for low-complexity

algorithms.

According to [48], where the authors perform a deep survey by analysing most of the

available HLS-related articles in well-known scientific databases, the average development

time using an HLS strategy is a third of the equivalent purely RTL description, requiring

the latter more lines of codes to implement the same functionality. The results in terms of

performance are clearly better for RTL, though differences in terms of maximum clock

frequency are minimum. The HLS approaches also consume more logic resources, withy a

penalty in average about 41%.

In this Thesis, both RTL and HLS design methodologies have been combined to develop

the different stages of the proposed modular on-board compression solutions, attending to

the necessities of each particular implementation. The factors that will take into account

to decide which design methodology is used in each case are the available development

time and the target throughput, imposed by the space mission requirements.

1.2.3 Hyperspectral sensors and image formats

Data acquisition by Remote Sensing hyperspectral instruments is done by collecting the

reflected light of the observed scene with an array of sensors, where each sensor records

the information of one pixel of the image. This information is not only in the spatial

domain, but also considers the spectral reflectance for that given pixel. Thus, hyperspectral

instruments must take into account both the spatial and the spectral dimensions, in addition

to the temporal domain, since acquiring a full hyperspectral cube generally requires a

scanning in a time-frame.
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Although there are a variety of methods to acquire the spectral information of each pixel

at different wavelengths, two of them are clearly distinguished: dispersive spectrometers

and spectral filters. The first type commonly uses a prism that split the light reflected

into the different wavelengths, which is coupled to the sensor that collects the pixel spatial

information [49]. The dispersive methods are classified in two main types: whiskbroom

and pushbroom. Whiskbroom scanners are comprised by a unique detector that receive the

light from the prism divided in different wavelengths. A whiskbroom spectrometer acquires

the information of one pixel with all the wavelengths at each time. The acquisition of

the complete image requires a scanning in two directions. The first one in the cross-track

direction to scan all the pixels that form the swath width and the other one in the along-

track direction (the satellite flight direction). On the other hand, pushbroom sensors are

formed by an array of detectors able to collect one line of pixels at a time in the along-track

direction [50]. The overview of both scanning types is shown in Figure 1.3.

The selection of the appropriate hyperspectral scanner is closely related to the mission

requirements. Whiskbroom scanners are simpler, since they are comprised by only one

detector, but they require of a rotation mirror to scan all the swath width. They have

longer swath width compared to a pushbroom one but will have higher requirements in the

detector in regards to the capturing time. Pushbroom scanners require a correct calibration

between adjacent pixels of one line (they are scanned by different detectors). In recent

missions, pushbroom scanners are preferred because it limit the number of moving parts

and have higher light integration times.

The second option of spectrometers are based on adding spectral filters before the detector.

Spectral filters based hyperspectral sensors are less popular and appear recently. The

main idea is to add one or more spectral filters to transmit the selected spectral bands

to the detector. The tunable filter could be fixed as simple as a wheel of filters or a

linear variable filter (LVF). In both cases, every wheel part of the LVF transmits only a

specific wavelength, absorbing the rest. Each filter in a wheel of filters should be changed

in a mechanical way to conform the whole hyperspectral cube by multiple exposures to

the same scene. A recent alternative is the use of electronically tunable filters, such as

Liquid Crystal Tunable Filter (LCTF) or Acousto-optic tunable filter (AOTF), comprised

by a unique optical filter whose sensibility to a wavelength is electronically/acoustically

controlled by applying a concrete frequency.

An additional alternative is a snapshot imager, which captures the whole scene in the

spatial and the spectral domain from a “shot” (i.e., simultaneously), not requiring spatial
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Figure 1.3: Hyperspectral scanners. a) Whiskbroom; b) Pushbroom
(extracted from [51])

displacements to compose the whole hyperspectral cube [52]. However, it acquires just a

reduced number of spectral channels, compared to the whiskbroom and the pushbroom

scanners. The sensors employed by snapshot imagers are comprised by a Bayer filter to

obtain the different spectral channels after demosaicing techniques [53].

Taking into account the different sensors in the market there are three possible arrangements

in the acquired images: a) Band-Sequential (BSQ) order, where the samples in a spectral

channel are processed before moving to the next one, typical of the spectrometers based

on spectral filters; b) Band-Interleaved-by-Pixel (BIP), where a pixel is processed with

all its spectral information (i.e., the different wavelengths) before handling the next one,

typical of the whiskbroom spectrometers; and c) Band-Interleaved-by-Line (BIL), in which

a complete line of samples in the spatial domain is processed before starting the next

band, typical of the pushbroom spectrometers. These samples arrangements are visually

summarised in Figure 1.4. The solutions to be provided in this Thesis should work with

all kind of image arrangements, with no impact in the system performance. In some cases

this can lead to specific architectures for each different sensor or to data input reordering.

System storage requirements is also a problem to be deal with because some orders will

be more memory demanding than others. This adds extraordinary complexity to obtain

efficient and general solutions.
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Figure 1.4: Samples arrangement in hyperspectral cubes. a) BSQ; b) BIP; c) BIL

1.2.4 Real-time video acquisition on satellites

A traditional approach to acquire video is the use of a panchromatic camera, which only

provides gray-scale information (i.e., brightness of the scene, without color) in the spatial

and the temporal domain, but not spectral data. Panchromatic information is commonly

wide in the visible range of the spectrum, providing both a high spatial resolution and

Signal-to-Noise Ratio (SNR). The resulting image/video is generated by using the total

light acquired by the sensor, without dividing it into different wavelengths.

Hybrid approaches are also used for video acquisition, combining panchromatic and

RGB/multispectral cameras through pansharpening fusion methods to take advantage of

the strengths of both devices (high spatial and spectral resolution, respectively) [54, 55].

Video is then obtained by taking consecutive shots of the same scene or leveraging of the

satellite movement in its orbit to record a wider scene, which is useful for target detection,

object tracking or monitorization of natural phenomena. The size of the scene acquired

by the camera in the spatial domain depends on both the sensor size, the focal length

and, consequently, the Field of View (FoV), having a wider FoV when the focal length

is shorter. The acquisition cadence is measured by using the Frames Per Second (FPS)

metric, considering as a frame an individual scene acquisition. Once the video has been

fully collected, it must be also preprocessed in a similar way as hyperspectral images,

but also dealing with specific situations that only appears in this kind of data, such as

temporal correlation or the parallax effect [56].
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1.3 On-board data compression

Compression of both hyperspectral images and video sequences is considered an efficient

technique for data reduction, since the acquired scenes contain redundant and correlated

information that can be removed (i.e., adjacent spectral channels and consecutive frames,

respectively). The main goal of compression techniques is to represent the acquired

data with the minimum amount of bits, without preventing its reconstruction after the

decompression process on ground.

Compression techniques can be either lossless or lossy. Lossless compression preserves

all the information presented in the original data, which can be fully recovered during

the decompression process. For this reason, lossless compression results interesting for

the scientific community since it maintains the fidelity of the data acquired by the sensor.

However, the compression ratio (CR, see Equation 1.1) of lossless compression techniques is

typically limited from 2 to 4, depending on the data correlation. On the other hand, lossy

compression yields higher compression ratios than lossless techniques by introducing losses

in the compression chain. As a consequence, the recovered information is not identical to

the the data captured by the sensor [57]. Lossy compression is a key enabler for deep-space

missions with high-resolution sensors on-board, in order to exchange information with

ground.

In an intermediate point we find near-lossless compression, which achieves higher com-

pression ratios than lossless techniques without reaching the levels of lossy compression.

Near-lossless compression is a good trade-off between compression ratios achieved, image

quality and algorithm complexity. Both lossy and near-lossless approaches can provide an

accurate control of the losses introduced. This is achieved by introducing a rate control

method, commonly based on a feedback loop, in the the processing chain. This rate control

determines the quantization step to be used to process the next group of input samples,

taking into account the compression ratio reached for the previous one and the compression

target specified by the user.

Regarding the nature of the compression algorithm, two main techniques clearly stand out

in the state-of-the-art: prediction-based and transform-based approaches. Compression

methods based on transforms reduce the redundant information present in the input data

by transforming the information from the spatial domain to an alternative representation,

such as the spectral dimension, in order to efficiently decorrelate the data. The transform

step is typically followed by a quantization and encoding stages. The quantizer is included
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since transform-based approaches are generally used for lossy compression, though some

reversible transforms can also be used for lossless compression. Transform-based methods

are widely used in ground applications, because of the high compression ratios they

achieve. On the other hand, prediction-based solutions are based on a calculation of the

current pixel value like a weighted sum of the pixels in the spatial, spectral or temporal

neighbourhood. Although the compression ratio achieved is worse than transform-based

algorithms, prediction-based approaches provide a good trade-off between compression

performance and algorithm complexity. For this reason, they are used as alternative to

transform-based in many applications that require low-complexity compression solutions,

and specifically on-board satellites. Both compression methods are further explained in

Section 2.3.

The compression efficiency, which depends on both the compression method and the nature

of the input data, is measured by using the CR, which is the relationship, represented in

bits, between the size of the acquired information (i.e., raw data) and the resulting size of

the compressed bitstream (see Equation 1.1). Alternatively, the compression performance

can be expressed in terms of bits per pixel (bpp) when referring to image and video

compression. This metric is obtained following Equation 1.2, and it takes into account the

total number of pixels of the image or video.

CR =
Size of the acquired data (bits)

Size of the compressed data (bits)
(1.1)

bpp =
Size of the compressed data (bits)

Npixels

(1.2)

In addition to the CR, different metrics have been defined to evaluate the performance of

the compression techniques, specially to analyse the impact of introducing losses when

lossy methods are used. A widely used metric is the Rate-Distortion (RD) ratio, which

is the relationship between the SNR or the Peak-Signal to Noise Ratio (PSNR) and

the CR. Other extended metric is the Mean Squared Error (MSE), which measures the

cumulative squared error between the compressed and the original data, so the lower the

MSE value, the lower the error. Equations 1.3 and 1.4 reflect how the MSE and the PSNR

are calculated, respectively:

MSE =
Σ | s(t)− ŝ(t) |

Size of the acquired data (bits)
(1.3)
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PSNR = 10 · log10 (2
D − 1)2

MSE
, (1.4)

where s(t) represents the sample processed at time t, ŝ(t) is its reconstructed equivalence

and D the bit-depth of the input samples.

In space applications, other relevant aspect that should be taken into account is the

robustness against errors during the compression or when data is transmitted to ground.

Different strategies can be adopted to provide robustness to the compression process, such

as data segmentation, avoiding error propagation from one portion of data to others in

case of corruption. In this sense, only a data segment is lost, making possible to correctly

reconstruct the rest of the compressed bitstream.

1.4 Thesis framework

This Thesis have an industrial oriented scope. The objectives, methodology, algorithms,

architectures and constraints of each proposed solution are determined by current and

future projects related to acquisition and processing of different kind of information

on-board satellites.

The research on compression of hyperspectral images for on-board satellites started with

the European Spatial Agency funded SHyLoC project, developed by the Group between

2015 and 2021 [58–60]. The goal of this project was to develop a pair of reusable IP

Cores fully-compliant the CCSDS 121.0-B-3 and 123.0-B-1 lossless compression standards.

The former corresponds to a a Lossless Data Compressor, while the latter is Lossless

Multispectral and Hyperspectral Image Compression architecture. This project could

be considered a landmark that impacted all later developments. The work presented in

this Thesis is partially an extension of these early developments. Some of the interfaces,

architectures or configurations are inherited from this project.

Other important project is CHIME [61], where the Group participated in the pre-

development stage (phase A/B1) of the mission. In this stage, the first hardware imple-

mentation of the CCSDS 123.0-B-2 standard available in the state-of-the-art was proposed

by following an HLS design flow, working together with a cloud detection algorithm [62].

Phases B2, C/D and E1 of this space program are currently under development, refining the
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proposed CCSDS 123.0-B-2 compression architecture at RTL and adapting its performance

for the specific mission constraints.

SHyLoC and CHIME projects have been done in collaboration, among others, with Thales

Alenia Space in Spain (TASiS) and Thales Alenia Space in France (TASiF), branches of

the European leader in satellite manufacturing.

The contributions presented in this Thesis regarding video compression on-board satellites

have been developed in the context of the H2020 EU-funded Video Imaging Demonstrator

for Earth Observation (VIDEO) project, which is focused on the development of a next-

generation instrument for Earth observation [63]. This instrument will have the capability

to perform high-resolution video monitoring on an extremely wide scene, with the purpose

of recognizing and tracking objects.

The work presented in this Thesis is a continuation of the research developed in two previous

theses of the Group. In [51], a solution was given to provide efficient lossy compression for

hyperspectral images on-board satellites. In addition, a first implementation of the CCSDS

123.0-B-1 lossless compression standard on FPGA is proposed, prioritizing low hardware

occupancy. Then, in [64] the HLS design methodology is introduced to quickly develop

functional solutions for lossy compression of hyperspectral images on-board satellites. One

of these solutions takes the CCSDS 123.0-B-1 lossless compression standard as starting

point, introducing the necessary steps (i.e., a quantizer and a bit-rate control) to perform

near-lossless compression.

As a general framework, other research of the Group should be mentioned regarding

low-complexity hardware implementations of compression techniques, specifically targeting

hyperspectral images acquired on-board satellites [65–67].
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1.5 Objectives of the Thesis

As it has been mentioned throughout this chapter, next-generation sensors integrated in

future space missions will acquire such quantity of data that on-board compression will

be mandatory to maintain high acquisition data rates and overcome the restrictions in

terms of available storage and downlink bandwidth. On-board compression requires not

only efficient algorithms that provide the desired ratio and reconstructed quality, but also

a suitable physical implementation on the available hardware that preserves the correct

behaviour of the implemented approach, which should coexist with other functionality in

the same payload.

We have seen that the quantity and types of sensors on-board a satellite are diverse

and the solutions for data compression should be easily adapted or configurable to each

particular mission. The limited on-board memory and resources will require compression

of data on the fly (i.e., in real-time) and thus specific low-complexity algorithms for

on-board compression. Although the solutions adopted are technology-agnostic, it will be

demonstrated on FPGAs, since they are an interesting platform for current and future

missions. This will imply the development of hardware architectures that exploit efficiently

the capabilities of FPGAs.

The use of FPGAs will speed-up the design process of the payload processing functions

in the PFCU. In this sense, the use of high-level methodologies will accelerate even more

the design and verification process. Although the use of high-level methodologies is

not extended on space applications, this Thesis will investigate the use of HLS when

the performance and the resources consumption required by the solution is considered

adequate for the target application.

The main objective of this Thesis is to provide modular solutions that can be adapted

to compress data acquired by high-resolution sensors on next-generation space missions

from different nature, including generic information, multi- and hyperspectral images, and

video sequences.

The flexibility provided by this modular scheme also allows to change the functionality of

the compression solution if new requirements appear during the mission lifetime. This is

achieved by replacing the appropriate processing stages to reduce hardware occupancy

and power consumption, to increase compression ratio or to accelerate throughput.

The specific objectives of this Thesis are detailed next:
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� Analyze the solutions provided by the CCSDS for compression of one-dimensional

data, 2D images, 3D multi- and hyperspectral images and video sequences. This

analysis will determine the best solutions to be implemented on space applications,

taking into account their complexity and the expected performance.

� Develop a design space exploration of the CCSDS algorithms object of study, pro-

viding architectural alternatives for their implementation, depending on the target

requirements in the real scenario.

� Provide efficient and modular solutions for high-throughput and low-occupancy data

compression on space-grade FPGAs. The focus is on the proposed CCSDS algorithms

for one-dimensional data and multispectral/hyperspectral image compression due to

their interest for future space missions: the CCSDS 121.0-B-3 [27] and the CCSDS

123 standard, including Issue 1 (only thought for lossless compression) [30] and the

recent Issue 2 (extending the functionality for near-lossless compression) [31].

� Propose the use of different design methodologies, such as RTL and HLS, depending

on the space mission constraints in terms of development time and performance.

The obtained results will be studied to remark the weaknesses and strengths of the

design methodologies followed.

� Propose different hardware configurations, depending on the compression require-

ments and the nature of the data to be compressed. Following this approach, multiple

compression chains can be defined by reusing modules that perform the prediction

and the entropy coding stages in an efficient way, taking into account data nature

and the final application.

� Demonstrate that the solutions are viable for a number of scenarios when implemented

on space-grade FPGAs. This will be done by performing an exhaustive verification

and also validation on-chip.

1.6 Document structure

The present document is structured in six chapters, including this introductory one,

dedicated to introduce the context of this Thesis and to present the main motivations and

goals. The rest of the chapters are briefly described next.
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1.6.1 Chapter 2: Satellite data compression algorithms and

their hardware implementation

This chapter summarises the state-of-the art in the field of algorithms for data, 3D imaging

and video compression, including also an study of their complexity to be implemented on

hardware. Compression algorithms are detailed and classified according to their purpose

and nature, and different hardware implementations are analysed. In this way, the work

done in this Thesis is contextualised.

1.6.2 Chapter 3: FPGA implementations of prediction-based

preprocessors for data decorrelation

In this chapter, different prediction-based approaches are presented as efficient architectures

to be implemented on space-grade FPGAs to serve as spatial and/or spectral decorrelator

of the data acquired. The alternatives under study are based on the CCSDS 121.0-B-3,

123.0-B-1 and 123.0-B-2 compression standards, providing an algorithmic background, an

architectural description and preliminary synthesis results for each proposed solution.

1.6.3 Chapter 4: Low-complexity hardware solutions for

entropy coding

Following a similar scheme that Chapter 3, this chapter describes different entropy coding

alternatives that allow to reduce the bitstream size by representing prediction residuals

with the lowest possible number of bits, ensuring at the same time a proper reconstruction

on the decompression side. The proposed hardware implementations, which are the block-

adaptive, sample-adaptive and hybrid encoders, are also based on the CCSDS 121.0-B-3,

123.0-B-1 and 123.0-B-2 compression standards, respectively. For each encoding option, the

theoretical basis is provided, followed by a detailed description of the developed hardware

implementation and some preliminary results in well-known space-grade FPGAs.
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1.6.4 Chapter 5: Modular solutions for on-board data

compression

This chapter is considered the core of this Thesis, since different modular solutions

are presented for on-board data compression on real space missions, providing different

approaches depending on target application requirements, such as acquired data nature,

compression performance, hardware occupancy, throughput or development time. The

proposed solutions combine a prediction-based preprocessor and an entropy coding stage,

presented in previous chapters, to comprise a full compression chain. The different

alternatives are compliant with the CCSDS standards and ensure a correct behaviour on

hardware available on-board satellites. In addition to the compression chain structure,

detailed results are provided to quantify the viability of the presented solutions in a real

scenario. Finally, a performance assessment is included to analyse the possibility of using

the CCSDS 123.0-B-2 compression algorithm to process panchromatic and RGB video

in future space missions, obtaining a versatile solution that can compress different data

depending on mission necessities.

1.6.5 Chapter 6: Conclusions

In the last chapter, all the contributions of this Thesis are summarised and the achieved

goals are also remarked. In addition, further research lines are proposed, which arise as an

extension of the presented work.





Chapter 2

Satellite data compression

algorithms and their hardware

implementation

This Chapter provides an overview on the main compression techniques employed in Remote

Sensing applications and, concretely, in space missions. A description of available solutions

in the state-of-the-art and CCSDS space standards for on-board data, hyperspectral image

and video compression is provided, including the theoretical basis and the use in space

missions, if applicable. Finally, hardware implementations of the analysed compression

solutions are presented for different technologies, including space-qualified electronics and

focusing on FPGAs.

25
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2.1 Outline

Developing efficient compression solutions for space poses a challenge, since the employed

algorithms must achieve the goal of reaching a high compression ratio together with an

acceptable quality after decompression. Moreover, these algorithms need to have a low

complexity to be executed on the available hardware resources on-board satellites and the

meeting required timing performance for a given mission. This challenge has motivated

academia and the space industry to conduct research on data, image and video compression

techniques for space applications. A summary of this research can be found in the scientific

literature elsewhere (e.g. [68, 69]).

The most relevant compression algorithms targeting space missions are described through-

out this chapter, as well as other compression techniques commonly used on ground, which

are potential candidates to be implemented on-board in future missions provided some

adaptations. Compression techniques proposed by the CCSDS are also introduced. Since

some of these standards are the core of the compression solutions proposed in this Thesis,

they will be thoroughly described in Chapters 3 and 4.

In general, compression algorithms are computationally complex, so they need to be

adapted in order to fit well in on-board processing systems. Therefore, in addition to

the compression methods, the available on-board hardware must be analysed, taking

into account certain constraints that appear in space missions, such as area, power

consumption and robustness against radiation effects. For this reason, the most relevant

hardware implementations of compression algorithms targeting space applications are

also presented in this chapter, highlighting their main features in terms of performance,

hardware occupancy and power consumption.

2.2 One-dimensional data compression algorithms

Different methods have been used on space missions to compress one-dimensional data

from different nature, including telemetry, geolocation or spectrograph measurements

[70]. In a nutshell, one-dimensional data compression algorithms are based on removing

the redundant information acquired and/or produced by the satellite, and representing

the decorrelated data with the minimal number of bits without preventing a correct

reconstruction on ground.



Chapter 2. Satellite data compression algorithms and their hardware implementation 27

Differential Pulse Code Modulation (DPCM) [71] is widely employed for lossy data

compression. Although there are other alternatives to implement decorrelation stages on a

data compression solution, DPCM is commonly used because it provides an acceptable

compression performance with low algorithmic complexity. This solution is comprised by

a linear predictor (i.e., estimating the value of the predicted sample by subtracting the

value of previously preprocessed samples) for data decorrelation and a uniform quantizer.

Lossless compression is also possible, if the quantizer is bypassed in the compression flow.

Its main advantage is a reduced computational burden, and the fact that it is also possible

to pipeline hardware implementations for parallelization purposes.

Regarding entropy coding stages, the use of coding redundancy techniques is also extended,

with or without a preceding decorrelation stage in the compression chain. In this approach,

a variable-length coding strategy is used, assigning the shortest codewords to the most

frequent symbols, and vice versa. The most common entropy coding methods based on

coding redundancy are the next:

• Huffman coding. Its basic idea is to exploit data statistics to assign variable-length

codewords to an alphabet of symbols with a known probability distribution [72].

Huffman coding first constructs an optimal code tree, with the highest probability

at the top and the lowest at the bottom, producing a node set with this information

that is constantly updated with new entries (normally, the sum of two existing

probabilities).

• Golomb-Rice coding. Golomb codes are based on the division between the input

sample s and a tunable parameter, obtaining in this way a quotient q and a reminder

r. The codeword is finally generated by concatenating q ’ones’, followed by a stop

bit and the r least significant bits of s. Rice codes work in a similar way, but

using power-of-two values as tunable parameter for the division computation [73].

Rice coding is the basis of the CCSDS 121 universal lossless compression standard

[27], where these codes are calculated simultaneously for a group of input samples,

selecting the one that provides the shortest codeword. The use of Rice codes eases

hardware implementations, since multiplication and division by a power-of-two can

be easily implemented using logic shifts.

• Run-Length Encoding. This approach replaces chains of repeated consecutive

bytes by a counter that represents the number of replays and the symbol under

coding [74]. However, this method achieves low compression ratios, if the data to
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be compressed do not contain long series of repeated symbols, though its simplicity

eases its hardware implementation with a reduced memory consumption.

• Arithmetic coding. This technique achieves higher compression ratios than Huff-

man coding, at the expense of higher complexity. It can be seen as a simple clustering

algorithm, dividing the interval of an input word, initially defined between 0 and 1,

into smaller segments which represent the probability of the word symbols. Then,

each new input symbol is assigned to an interval, repeating this procedure iteratively

until reaching the last input word [75]. The intervals are narrowed with every symbol

included, finally selecting any value inside the final interval to represent the input

word [76].

A common one-dimensional data compression approach is to combine DPCM with a

redudancy-based entropy coder stage in order to increase compression performance. For

example, DPCM combined with a Huffman encoder (Figure 2.1) is one of the most common

techniques used on-board satellites for data compression [70].

Quantizer

Predictor

Entropy
Coder-

q Codeword

Figure 2.1: Overview of a DPCM architecture combined with a Huffman encoder

The Fully Adaptive Prediction Error Coder (FAPEC) [77] is a low-complexity data

compressor specifically thought for space missions, which is able to achieve high compression

ratios under undesirable situations, such as the presence of noise or outliers. It can be

combined with a pre-processing stage to obtain higher performance. It is based on a

segmentation strategy, working with the statistical analysis of small data blocks and

providing in this way good adaptation to changing data statistics and robustness against

outliers. FAPEC generates a variable-length code for each prediction error, taking into



Chapter 2. Satellite data compression algorithms and their hardware implementation 29

account the coding tables previously created. It is an alternative to the Golomb-Rice coder

with the maximum code length limited to less than twice the bit length of the input values.

Another example is the Context-based, Adaptive, Lossless Image Codec (CALIC) [78],

which uses several modeling contexts to characterize a non-linear predictor that includes

an error feedback mechanism for correcting itself, taking into account a given context

previously employed.

Additionally, there are other well-known algorithms which can be used for one-dimensional

data compression, such as the Lempel-Ziv-Welch (LZW) [79], which initializes a dictionary

with 256 single characters and the string table of encoding. Then, data are read and

matched with the existing entries in the dictionary until a mismatch takes place. The code

of the entry which matches successfully is outputted, while the entry which mismatches

is added to the dictionary. The number of entries increases rapidly, and so does also the

matching probability. The dictionary is reset when more than 4096 entries have been

stored during the encoding process. LZW presents certain advantages when compared with

Huffman coding, since the dictionary is created on-the-fly at the same time the encoding

is performed, what makes it suitable for applications with real-time constraints, at the

expense of a high memory usage [80]. Other techniques, such as data subsampling, which

quantizes the data by deleting part of it, encoding then the quantized residuals [70], can

be also used for on-board one-dimensional data compression, depending on the specific

constraints of the space mission.

2.3 Hyperspectral image compression

Currently, multiple solutions can be found in the specialized literature to compress

hyperspectral images. The main feature of any hyperspectral compression technique is to

exploit redundancies among adjacent samples in both the spatial and the spectral domains,

with the goal of reducing the data size. In this sense, two different perspectives are viable:

2D coding, which only takes into account redundancies in the spatial or in the spectral

dimension [81–85]; or 3D coding, which considers redundancies in both domains, providing

higher compression ratios than the 2D methods. For this reason and their relevance for

this Thesis work, only 3D algorithms will be analysed in the rest of this chapter. These

algorithms can be classified as lossless, near-lossless and lossy techniques.
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In general, a lossless hyperspectral image compression algorithm is comprised by two

main stages: a spatial and/or spectral decorrelator and an entropy coder. In addition, a

quantizer and even a bit-rate control are included, if near-lossless or lossy compression is

required. Extra pre-processing stages, such as band reordering, can be incorporated to

increase the correlation between consecutive bands, obtaining higher compression ratios at

the expense of additional computational burden [86, 87].

It is also desirable that, in addition to a low complexity architecture to fit well with

the hardware available on satellites, the compression algorithms have certain robustness

against errors induced by radiation (e.g., bit flips in the FPGA configuration memory).

Most times, a bit error in a corrupted compressed pixel causes a global malfunction

during the decompression stage, since there are dependencies between consecutive image

samples. For this reason, image compression algorithms should limit the error propagation,

avoiding that an error in a certain pixel will be propagated to others, finally degrading the

whole image. Techniques such as image segmentation can prevent that the quality of the

reconstructed image is fully degraded. However, the obtained compression performance

should be evaluated when compression is independently applied to each image segment.

This analysis is needed to guarantee that this segmentation strategy does not imply a

penalty in terms of CR, compared with the one obtained when compressing the full image

in a single step.

Although there are different methods for hyperspectral image compression, such as vector

quantization [88–91], or the more recent compressive sensing [92–95] and learning-based

[96–99] techniques, algorithms based on prediction or transform as decorrelating stages

prevail in the specialized literature. Relevant solutions into these categories are detailed

below.

2.3.1 Prediction-based algorithms

Predictive algorithms are preferred for lossless compression, since they have lower complex-

ity than transform-based approaches, providing at the same time acceptable compression

ratios [100]. Besides, they can be extended to obtain low-complexity solutions to compress

in a near-lossless to lossy range, by including a quantizer stage and/or a bit-rate control,

which allows to adjust the compression ratio taking into account the target performance

and the real-time statistics [101–103]. As entropy coder, current on-board implementations
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normally employ a coding redundancy technique, such as Huffman and specially Rice

coding, because of the provided trade-off between complexity and compression performance.

Among the predictive compression methods available in the state-of-the-art, the Fast

Lossless (FL) algorithm [104] emerges as a reference for on-board lossless compression,

since it is the basis of the CCSDS 123.0-B-1 standard [30]. This low-complexity solution

calculates the predicted sample for the current pixel taking into account a vicinity in both

the spatial and the spectral domain, adapting the prediction statistics after a sample is

processed based on the prediction error. FL is based on the sign algorithm, a variant of the

Least Mean Square (LMS) method [105]. Recently, the FL algorithm has been extended

to perform near-lossless compression, denoting the new solution as Fast Lossless EXtended

(FLEX) [106]. The FLEX algorithm, which is also the basis of the recent CCSDS 123.0-B-2

standard for hyperspectral image compression [31], introduces two new elements in the

prediction loop: a uniform quantizer and the Sample Representative stage (also denoted

as local decompressor), which approximately reconstructs the original samples after the

quantization step, in the same way that the decompressor does. This solution allows

to limit the maximum error introduced in the compression chain by some user-specified

parameters. Other new features introduced regarding FL are a local sum mode which

does not take into account the sample at the left of the current one in the same band,

favouring pipelining in hardware implementations; and a new encoder, named hybrid

encoder, which provides a better response for low-entropy data than the sample-adaptive

and the block-adaptive encoders, defined in the CCSDS 123.0-B-1 [30] and the CCSDS

121.0-B-3 [27] standards, respectively.

Besides, some algorithms are proposed for hyperspectral image compression based on

CALIC, previously defined in Section 2.2. 3D-CALIC [107] is an extended version of CALIC

for working with multispectral images, switching between intra-band (i.e., working in the

spatial dimension) and inter-band modes, exploding in the latter case the strong correlation

between adjacent spectral bands. It was observed that the compression performance of

the 3D-CALIC solution decreases when the number of spectral channels used for the

prediction increases, not being suitable to compress hyperspectral images. A more recent

version of CALIC, known as M-CALIC [108], improves the compression results obtained

by the 3D-CALIC solution, using only inter-band compression by taking advantage of the

high wavelength resolution of hyperspectral images, which increases correlation between

consecutive bands. Since spatial decorrelation is not considered, M-CALIC also provides a

simpler solution than 3D-CALIC, fitting better on limited hardware resources.
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Predictive algorithms based on Look-Up Tables (LUTs) [109, 110] search try to identify in

the previous band z a pixel with similar value to a spatial neighbouring of the sample under

processing. Then, the sample in the same spatial position of the one found in the previous

band is used to predict the value of the current sample. The name of the algorithm derives

from the use of Look-Up Tables to accelerate the search. This method is interesting

when input images are in BIL order, outperforming other compression standards in the

state-of-the-art. However, it was demonstrated in [111] that the LUT-based algorithms

work extremely well for calibrated data because they exploit artificial regularities that are

introduced during the calibration. Thus, LUT-based methods do not work as well when

they directly compress raw data or when new calibration methods are applied.

Mielikainen et. al. also proposes in [112] the use of clustered DPCM with adaptive

prediction length, using the k-means clustering to assign each spectral vector (i.e., a band

with all the pixels in the spatial dimension) to the cluster whose center is the nearest.

Then, a linear prediction is applied to each cluster and finally the prediction residuals are

encoded using an adaptive range encoder.

An alternative prediction-based scheme to compress hyperspectral images is proposed in

[113], but using time-lapse HSI data. This approach, based on the FL algorithm, can be

considered an intermediate point between hyperspectral image and video compression,

since input data are consecutive hyperspectral cubes captured in a reduced time-frame,

so the temporal correlation is also exploited to reduce data size. The efficiency of the

proposed method depends on the acquisition time-frame, decreasing when temporal and/or

spectral frames are weakly correlated.

2.3.2 Transform-based solutions

Transforms, which provide good performance in decorrelating in the the spectral domain,

are normally combined with a spatial decorrelator to compress hyperspectral images, since

they need to be extended to work with 3D data.

The Discrete Cosine Transform (DCT) is a technique widely used in image compression

and included in some image and video standards, such as JPEG [114] and H.264 [115],

respectively. The DCT is applied to an image in a block-by-block basis, representing

it as a superposition of cosine functions at different frequencies, also denoted as DCT

coefficients, which measure the contribution of the cosine function at those frequencies.



Chapter 2. Satellite data compression algorithms and their hardware implementation 33

Larger and uniform blocks provide higher efficient coding and, consequently, higher

compression performance, increasing at the same time the computational burden and

the image degradation. Furthermore, the Discrete Wavelet Transform (DWT) and other

Wavelet-based approaches emerge as a reference for image compression, which provide

higher data reduction and image quality than the DCT by applying the transform to

the whole image instead of following a block-by-block scheme [116]. Nonetheless, the

DWT is more complex than the DCT from an implementation point of view, making

difficult its implementation on-board satellites. As an example, the well-known JPEG2000

image compression standard employs a Wavelet transform, instead of the DCT used by

its predecessor [117], deleting the blocking artifact and allowing the definition of ROIs

(Regions of Interest), solving in this way the main disadvantages of the original JPEG.

Another alternative is the Karhunen-Loève Transform (KLT) [118], which provides best

results in terms of rate-distortion among different transform-based alternatives [119].

Despite the suitable results presented by the KLT approach, it has some disadvantages,

such as a high computational and memory demands, together with high implementation

costs and its lack in terms of scalability, preventing its use for specific applications with

strong constraints, like on-board compression. The Pairwise Orthogonal Transform (POT)

derives from the KLT but reducing the complexity of the operations and still obtaining

better results than the Wavelet-based approaches [120]. The Principal Component Analysis

(PCA) has been also considered as spectral decorrelator for some hyperspectral image

compression solutions [91, 121, 122]. The behaviour and complexity of the PCA is similar to

the KLT (both represent the image as a sum of orthonormal and uncorrelated components,

then exploiting the correlation among them), but the former preserves most of the data

integrity after its reduction, if some assumptions are done in the model. Other examples

of transform-based compression solutions are the HyperLCA algorithm [65], which focuses

on low-complexity to fit well on limited hardware resources at the same time that high

compression ratios are achieved; or those based on partitioning in hierarchical trees

[85, 123–125].

The CCSDS has also defined the CCSDS 122.1-B-1 spectral preprocessing transform for

3D image compression standard [29], whose general overview is shown in Figure 2.2. This

algorithm is able to work in both lossless and lossy compression modes, though it presents a

better behaviour in the latter case. The standard defines four different spectral transforms

as decorrelator, whose selection depends on the target sensor and the hardware processing

capabilities. These alternatives are the identity transform, the most simple option that gets

rid of the upshift stage; the Integer Wavelet Transform (IWT), a low-complexity option
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that provides a compression improvement over the identity transform; the POT, which

achieve higher compression ratios than the IWT, at the expense of higher implementation

complexity; and the Arbitrary Affine Transform (AAT), which uses one-dimensional affine

operations to obtain a transformed image.

The resulting image after the spectral transform is compressed by multiple instances of the

CCSDS 122.1-B-1 2D encoder (one per transformed band), controlling the image quality

and the compression performance via user-defined parameters. The outputs of the different

encoder instances are finally grouped and interleaved to generate the compressed bitstream.

Additionally, two extra stages, denoted as upshift and downshift (i.e., multiplication

and division by power of two, respectively), are included to achieve a trade-off between

compression performance and image quality, limiting at the same time the maximum

bit-depth of the input image to the 2D encoders. It is recommended to not include these

stages if lossless compression is selected, since they degrade the compression performance

for this particular case [126].

Finally, an interesting research line is to evaluate the feasibility of employing video

compression algorithms to compress hyperspectral images [127]. The main idea is to tune

the most used video encoders to obtain a reduced set of options and the suitable parameter

values to compress hyperspectral images in an efficient way, without incurring in a high

complexity, keeping in mind the main constraints of the video compression algorithms

to be implemented on hardware. As hyperspectral images are commonly used on-ground

for scientific purposes, lossless compression is preferred to preserve all the data content.
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2D-Encoder

2D-Encoder

2D-Encoder

2D Encoder

2D E d
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Figure 2.2: CCSDS 122.1-B-1 standard - Block diagram
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However, video compression is generally lossy, reason why different works analyse the

impact in post-processing applications, such as feature unmixing [128] or classification

[129], of using video coders to compress hyperspectral data, demonstrating the viability

of these developments and their good results in terms of compression ratio, but at the

expense of a high architectural complexity.

2.4 Video compression

Video compression has been employed in the last decades for ground applications such as

TV signal broadcasting or multimedia content streaming through Internet. Nevertheless,

hardware resources embarked on satellites did not have the capability to manage and

process the high volume of data produced by a video sensor in real-time, preventing its

use in EO missions for applications such as monitorization. This is because commercial

video compression algorithms are not low-complexity oriented and it is many times not

feasible to implement them on-board satellites. Selecting a suitable video compression

algorithm is essential to reduce the data acquired without degrading the video quality,

but guaranteeing at the same time that unique constraints present on space missions (i.e.,

reduced computational burden, low power consumption, real-time capabilities) are met.

Currently, there is not a standard solution specifically developed for on-board satellite

video compression, beyond the adaptation of common commercial video encoders, such as

the Advanced Video Coding (MPEG-4 AVC) or the most recent High Efficiency Video

Coding (HEVC), commonly denoted as H.264 [115] and H.265 [130], respectively.

H.264 has been the reference among commercial video compression solutions during the last

decades, providing a universal solution for a wide range of video applications. The standard

defines different stages or layers, but taking into account the scope of this Thesis, we focus

on the Video Coding Layer (VCL), the one responsible of processing the video content.

The VCL follows a block-based coding approach, dividing a frame into macroblocks (MBs

from this point forward) with associated luma (i.e., brightness) and chroma components,

Cb and Cr, which are the color deviation from gray toward blue and red, respectively.

H.264 allows to partition a frame into fixed-size and rectangular MBs, with a size of 16x16

samples for the luma component and 8x8 samples for each one of the chroma components.

The H.264 VCL presents the general structure shown in Figure 2.3. The standard exploits

both the temporal correlation between consecutive frames and the spatial correlation



36 Chapter 2. Satellite data compression algorithms and their hardware implementation

among adjacent samples in a frame by using inter- and intra-prediction stages, respectively,

which are then encoded by applying a transform-based approach. Then, a quantization

and a final entropy coding stage are applied.

The intra-frame prediction exploits the spatial correlation among adjacent MBs. The

process is performed using neighbouring pixels of previously processed MBs at the left

and/or above the MB under analysis, in contrast with previously issued video standards,

which work in the transform domain. In the inter-prediction stage, the predicted value is

obtained by displacing a concrete MB of the reference frame, specified by a motion vector.

In H.264, motion compensation has a maximum precision of a quarter of distance between

luma samples, representing an improvement regarding previous standards [131]. Motion

vectors can also point outside the frame area, which is supported by repeating the edge

samples and extrapolating the boundaries of the reference image. Multi-frame motion

prediction is also supported, alllowing the use of more than one reference frame.

After the integer transform stage, a uniform quantization takes place by tuning the Q

parameter, which increases the quantization step by a 12% each time it is increased by

1. The theoretical basis of these stages is deeply explained in [132]. The deblocking

filter corrects the blocking effect, one of the main artifacts of the encoding process when

Figure 2.3: H.264 standard - Structure overview
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the video sequence is reconstructed. This effect takes place because block edges are

typically predicted and reconstructed with less accuracy, since adjacent MBs can content a

drastically different information. Its main idea is to soften blocking artifacts if the absolute

difference between samples near a block edge is large enough, considering different defined

thresholds [131].

Regarding the entropy coding stage, H.264 proposes two sophisticated techniques to encode

the prediction results (i.e., the prediction residual, the transform coefficients and the

motion vectors): Context-Adaptive Variable Length (CAVLC), which maintains different

VLC tables and switches among them to exploit inter-symbol redundancies and taking

into account data statistics (i.e., previous elements which have been already coded); and

Context-Adaptive Binary Arithmetic Coding (CABAC), which reaches higher compression

ratios than CAVLC by using arithmetic coding that at the same time introduces more

complexity for hardware implementations because of higher computational burden [133].

H.264 provides up to fourteen different profiles, which establish the set of options and

features described in the standard that can be used. Globally, they can be summarised

into four different categories: the Baseline profile, which supports all features included

in the standard, except B/SP/SI slices, slice data partioning, CABAC and field coding;

the Main profile includes, in addition to the features encompassed in the Baseline one,

support for B slices, CABAC and field coding; the Extended profile, which supports all

the aforementioned features, except CABAC; and the High profile, the last incorporated

and the most efficient and powerful for high-definition and storage applications. The High

profile comprises a set of new features, denoted as Fidelity Range Extensions (FRExt),

that allow to extend the samples bit-depth (up to 12 bits) and the supported sampling

formats, providing a profile for panchromatic video compression and even the possibility

to define lossless compression. The standard also defines 15 different levels, which specify

maximum frame size, video bit-rate and other features of the video encoding/decoding

processes [131].

Its successor, the HEVC standard, commonly denoted as H.265 Recommendation [130],

was developed not only to reduce the bit-rate about the 50% regarding H.264, but also

to support efficient compression in high video resolution applications. The structure of

HEVC is similar to H.264 but introducing some refinements in certain stages to improve

compression performance. The MB is replaced by the Coding Tree Unit (CTU) as main

coding unit, which can reach a maximum size of 64x64 luma samples, larger than the

one permitted for MBs in H.264. CTUs can be also divided into smaller partitions along
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the different stages which comprise the coding process [134]. Besides, the prediction can

be performed in a larger range of block sizes for both inter- and intra-prediction stages.

Regarding the transform stage, two-dimensional transforms are computed in the horizontal

and vertical directions for 4x4, 8x8, 16x16 and 32x32 blocks of luma samples, deriving the

elements of the transforms matrices by applying scaled DCT functions. In addition to the

deblocking filter, a Sample Adaptive Offset (SAO) filter is included in the reconstruction

loop, which modifies the value of the reconstructed samples by adding an offset, selected

by the use of look-up tables. In this way, the samples reconstruction is optimized before

writing them into the decoded frame buffer, which is then used by the motion compensation

and estimation stages. Finally, HEVC only supports CABAC as entropy coder, but it has

been enhanced to obtain high throughput [134].

An alternative to H.264 for video compression which has been widely analysed in the

state-of-the-art is the use of the JPEG or JPEG2000 image standard algorithms but

extended for video compression, version which is called Motion JPEG/JPEG2000 [135].

Using this technique, each frame is coded independently by intra-prediction, discarding

the inter-prediction to exploit temporal redundancies in the video sequence. In this

way, a simpler method in terms of implementation complexity is obtained in comparison

with H.264 and H.265 specifications, since the inter-prediction stage is one of the most

computationally intensive stages in video coding, at the expense of a reduction in the

compression performance. The core of the Motion JPEG/JPEG2000 is comprised by a

transform stage, a quantizer and a bit-plane encoder, inheriting the structure of the original

image compression standards. The use of this algorithm is intended for applications with

reduced local movement, such as videoconferencing, where the image is essentially static,

reaching an acceptable compression ratio by exploiting only the spatial correlation among

adjacent blocks of pixels in smooth areas.

The CCSDS has published some recommendations for on-board video interfaces, formats

and transmission protocols, such as the CCSDS 766.1-B-2 for digital motion imagery [136],

which also provides a set of video standards to choose from, depending on the target

application. Regarding video compression, H.264 is recommended for real-time applications

where live video is required on ground for monitoring purposes, and selecting one of the

three available profiles depending on the required image quality. Its predecessor, MPEG-4,

can be used for recording applications with a medium quality level. Motion JPEG2000 is

also proposed for low bit-rate, high quality and high fidelity (frame-by-frame) applications.
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2.5 Physical implementations for on-board data

compression

As it was mentioned in Section 2.1, implementations of compression algorithms need

to be evaluated to demonstrate their viability to work on-board satellites, taking into

account the constraints of the embarked hardware in terms of available computational

resources, power consumption or robustness against radiation. Although there is a trend

in the use of commercial devices for certain short-time space missions, such as SmallSats

for LEO missions [39], space-qualified technologies are preferred since they are radiation

tolerant. Compression algorithms must meet some performance requirements when they

are implemented on-board, such as throughput or real-time capabilities, which will depend

on the specific space mission and the associated application.

On-board processing tasks could be executed as software, running onto the PFCU of the

satellite, which is formed by a Central Processing Unit (CPU) that can be used for other

purposes, such as control and monitorization. CPUs are not power efficient since they have

a sequential behaviour, which at the same time could prevent to reach real-time processing

capabilities. This latter feature is specially desirable for on-board compression techniques,

since an on-the-fly compression of the collected data allows to reduce on-board storage

demands. Because compression algorithms sometimes provide the possibility of apply

parallelism at task level, other hardware devices have been adopted for their implementation

on-board. In this sense, it is possible the use of customized ASICs or FPGAs, because

of their strengths to work on-board satellites. Graphics Processing Unit (GPUs) are also

a promising technology due to their inherent parallelization processing capabilities, as

analysed in [51], implementations on these devices will not be taken into account since

they are not currently qualified against radiation effects, though some different studies are

underway in this area [137].

During the remainder of this Section, the technologies that are used on space missions to

implement compression and other data processing are described in detail. Besides, the

most relevant implementations existing in each category will be described.
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2.5.1 Software-based

Implementations on CPUs are software-based and they are described in a high-level

language, such as C/C++. The description of the desired functionality in a high-level

language requires a short development time and a low cost, which is a clear advantage

for space programs with restricted scheduling. Additional requirements are mandatory

for software applications when they are developed as part of ESA space programs, as

regulated by the ECSS-E-ST-40C Software guidelines [138]. CPU-based solutions present

limitations in terms of power consumption and to offer real-time processing capabilities,

because its intrinsic sequential nature. These restrictions bring to light specially when

processing a high volume of data (e.g., hyperspectral images or video sequences). For

these reasons, software versions of compression algorithms are not frequently implemented

on-board satellites, except simple coding-based data compression techniques, which fit well

on the hardware available on-board.

Some software implementations of data, image and video compression algorithms are

currently available as open-source executable written in high-level languages, such as

C/C++ or Python, or as part of third-party tool libraries. ESA provides the C source

code of the CCSDS 121.0-B-2 and the 123.0-B-1 compression standards under request. In

addition, these standards are offered by ESA, together with the CCSDS 122.0-B-1 image

compression standard, under the WhiteDwarf GUI application, which provides the option

of applying both the compression and the decompression flows [139]. The Universitat

Autónoma of Barcelona (UAB) developed the Emporda software, an implementation of

the CCSDS 123.0-B-1 lossless compression standard for multi- and hyperspectral images

[140]. Recently, CNES is also providing a software version of the CCSDS 123.0-B-2 and

121.0-B-3 under non-commercial licence [141].

Regarding the physical platforms used to implement software processing approaches

on-board satellites, the most extended microprocessor architecture in ESA programs is

the LEON [142], a family of 32-bits processors that implement the Scalable Processor

ARChitecture (SPARC) V8 Instruction Set Architecture (ISA). These cores are highly

versatile, being them suitable for SoC designs, such as the Next Generation Multipurpose

Processor (NGMP), a fault tolerant architecture that was implemented by Cobham Gaisler

on the GR740 multiprocessor SoC, which is based on the LEON4-FT core [143]. Currently,

LEON3 is the recommended architecture for space-qualified technologies, which is based

on a deeper 7-stage pipeline and multi-processor support and it is the basis of different

commercial products, such as the GR712RC, a dual-core LEON3-FT SPARC V8 processor
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with advanced interface protocols and fault-tolerant capabilities [144]. The most recent

developments, LEON4 and LEON5, are thought for their implementation in more powerful

technologies, such as ASICs or FPGAs, and they include some improvements regarding

their predecessors, such as wider internal buses, modified pipeline and support for a Level-2

cache, among other features.

The LEON family has been successfully validated for hyperspectral image compression

when a multicore platform is used as target device. As an example, the work presented

in [145] proposes a parallel implementation of the CCSDS 123.0-B-1 lossless compression

standard on a quad-core LEON4-FT architecture, obtaining an overall speedup of ×3.71

(using the 4 cores) when compared to its performance when running sequentially on a

single core.

Nowadays, there is a trend in the space industry about the use of alternative microprocessor

architectures, such as RISC-V, which provides an ISA under an open-source licence with

support for three bit-widths, 32, 64 and 128 bits, and a variety of subsets for different

applications, such as embedded systems or supercomputing. Its use for space applications

has been addressed in [146]. Cobham Gaisler has recently developed the NOEL-V core,

the first RISC-V synthesizable VHDL model for space missions, based on the 64-bits ISA

subset. The well-known ARM microarchitecture, in which is based the CPUs of most of

mobile devices, is being also evaluated to be integrated on-board satellites. For example,

the High-Performance Spaceflight Computing (HPSC) [147] is a project funded by NASA

that proposes a power-efficient and radiation-hardened ARM-based SoC design, based on

ARM Cortex-A53 quad-core processors. This SoC also includes a high performance module

for throughput-oriented applications and a real-time processing subsystem. Nanoxplore

company also includes a hard-IP, based on the ARM-R5 processor, onto its NG-LARGE

device [148]. Another alternative is the VORAGO VA10820, a low-power, radiation-

hardened chip based on the ARM Cortex-M0 processor [149].

Alternatively, DSPs can be used to implement compression algorithms, since these devices

are optimized to perform complex arithmetic operations, which are the core of image and

video compression solutions. Some examples of space-qualified DSPs are the SMJ320C6701-

SP provided by Texas Instruments [150], capable of working in floating-point precision and

achieving a maximum performance of 1 GFLOPS by executing eight 32-bit instructions/cy-

cle at 140 MHz, with a radiation hardness of 100 kRad Total Ionizing Dose (TID); and the

RC64 device [151], a many-core solution thought for on-board image processing and based

on an scalable architecture with up to 64 CEVA X1643 DSPs with floating-point extension,



42 Chapter 2. Satellite data compression algorithms and their hardware implementation

which achieves a maximum performance of 40 GFLOPS working at 300 MHz, providing a

radiation hardness of 300 kRad TID. Both hyperspectral image and video compression

solutions implemented on DSPs are available in the state-of-the-art, though they generally

target commercial DSPs. As an example, an H.264 encoder and a hyperspectral image

compressor based on prediction, IWT and the Embedded Zero-tree Wavelet (EZW) are

implemented on a TM320DM642 DSP in [152] and [153], respectively. In [154], another

hyperspectral image solution based on a prediction stage that implements the spectral

LOCO-I method combined with an arithmetic encoder is mapped on a TMS320C6416

DSP. Nonetheless, some space missions have included on-board 2D image compression

implemented on DSPs. The TEAMSAT and Proba-1 missions supported by ESA are some

examples, executing the JPEG algorithm based on the DCT on a DSP-TCS21020 [68], a

radiation tolerant (100 kRad TID) 32-bits DSP that is able to achieve a throughput up to

45 MFLOPS.

2.5.2 Hardware-based

2.5.2.1 FPGAs

FPGAs are an interesting solution for the space industry, because of their reconfigurable

capabilities together with a reduced development cost, in comparison with ASICs. Although

antifuse-based RHBD FPGAs are clearly the most used FPGA technology on space missions

nowadays, they are limited in terms of logic resources availability and maximum clock

frequency, which is relevant to real-time data processing. In addition, antifused-based

FPGAs are a one-time programmable technology, preventing its reconfigurability. For this

reason, SRAM-based FPGAs are gaining interest for space missions with a high demand

in terms of on-board data processing. SRAM-based FPGAs are some steps forward in

terms of performance, power consumption and logic resources availability than other

FPGA technologies, such as Flash- and antifuse-based, which have been exploited during

lustrums to monetize the costs of device qualification for space missions. In addition,

SRAM-based FPGAs can be reprogrammed more times than Flash-based FPGAs and

even at a higher programmability speed. Nonetheless, these strengths are provided at

the expense of a higher susceptibility against radiation effects, compared to antifuse- and

Flash-based FPGAs.
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There are several contributions to the field of FPGA implementations for on-board data and

hyperspectral image compression, both on COTS and RHBD devices. Next, a summary of

these implementations are provided, depending on the nature of the input data:

• One-dimensional Data Compression. The CCSDS 121.0-B-3 data compression

standard, which is based on Rice coding, has been implemented on space-qualified

FPGAs. The work presented in [155] implements the CCSDS 121.0-B-2 data com-

pression standard on a XQR5VFX130 FPGA but enhancing the design with a

2D second-order prediction that overcomes the performance of the standard unit-

delay predictor. This improved implementation reaches a throughput up to 205

MSamples/s, consuming around the 5% of slices and BRAMs available in the device.

In [156], a low-complexity implementation of the FAPEC compressor is developed,

targeting a Microsemi ProASIC3L M1A3P1000L FPGA, similar in terms of avail-

ability of logic resources to the space-qualified anti-fuse RTAX1000S FPGA from the

same vendor. The implementation achieves a maximum throughput of 2 MSamples/s

(16-bits input samples) working at 40 MHz, and consuming the 13% of available logic

cells and the 9% of embedded memory, with a power consumption of approximately

20 mW.

The compression system on-board the Chang’E-1, a Chinese mission for Moon

Exploration, employs a DPCM scheme comprised by a differential predictive stage

together with a bit-plane encoder. This solution is implemented on FPGA (device

not specified) and it is able to work in both lossless and lossy modes, selecting the

appropiate technique depending on the image content [68].

• Hyperspectral Image Compression. Implementations of the prediction-based

CCSDS 123.0-B-1 lossless compression standard, which is based on the FL algorithm

described in Section 2.3.1, abound in the literature, both in COTS and RHBD

FPGAs. The fastest implementation of this algorithm available in the state-of-the-

art using only one compression instance is the proposed in [157], where the authors

implement a fine-grained pipeline in critical feedback loops of the BIP architecture,

achieving up to 213 MSamples/s on a Xilinx Virtex-5 FX130T, the equivalent

commercial device of the space-qualified Virtex-5 XQR5VFX130. In a more recent

work [158], the authors also provide results on the next-generation Xilinx radiation

tolerant Kintex UltraScale XQRKU060 FPGA, achieving a maximum throughput

of 315 MSamples/s implementing the same architecture described in [157]. Other

implementation target COTS devices, such as the one proposed in [159], which selects
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a Xilinx Zynq-7020 MPSoC for the implementation, proposing a BIP architecture

with different pipelining strategies to reduce the delay in the prediction module, and

achieving a maximum throughput of 147 MSamples/s. Parallel implementations in

which multiple instances of the compressor work simultaneously by using a shared

memory, such as the ones proposed in [160] and [161], reach higher throughput at

the expense of a considerable increment of the hardware occupancy. Preliminary

implementations of the FLEX algorithm are also available, such as the one presented

by Keymeulen et. al. [162], which reaches a throughput up to 61.51 MSamples/s

in an AVIRIS flight compression experiment, when 15 compression instances are

working simultaneously on a Xilinx Virtex-7 FPGA.

Current ESA missions, such as Proba-V or Sentinel-2 perform on-board compression

on FPGA but focused on 2D transform-based algorithms. Proba-V mission includes

an implementation of the CCSDS 122.0-B-1 image compression standard on a

Microsemi RTAX2000S FPGA [163], which achieves a throughput of 90 Mbps by

consuming the 48% of available cells and the 84% of internal RAM. The EnMap

German mission also includes an implementation of the CCSDS 122 standard on an

RTAX2000S device, though compression in this particular case is done in lossless

mode following a band-by-band scheme [164]. A maximum throughput of 130 Mbps

is achieved, using slightly higher hardware resources (54% of logic cells and 91%

of available BRAMs) than the Proba-V implementation. Different studies have

also evaluated the possibility of simplifying transform-based approaches, which are

computationally cost, to perform on-board lossy compression on space applications

and targeting FPGAs as implementation device. In [165], authors evaluate an

optimized KLT to be implemented on hardware, with custom square root and

division modules to reduce algorithm complexity. The design was evaluated on a

Xilinx Spartan-6 FPGA, consuming 20% of the available logic cells and providing an

output every 4 clock cycles. The complexity of the POT was also analysed in [166],

demonstrating its feasibility to be implemented on a Microsemi RTAX2000S FPGA

for different image sizes, reaching a throughput between 12.5 and 18.4 MSamples/s,

depending on the selected configuration.

Implementations of near-lossless and lossy compression algorithms on FPGA are

also available in the state-of-the-art, evaluating the architectural complexity and

compression performance of these solutions to target space applications. The trans-

form stage of the HyperLCA algorithm, which originally works with floating-point

precision, is evaluated in [66] using integer precision, demonstrating its viability to
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be implemented on hardware (concretely, a Xilinx radiation tolerant XQRKU060

FPGA), without incurring in a compression penalty compared to the floating-point

version. In [167], JYPEC is presented, which is a lossy hyperspectral compression

algorithm that combines PCA and JPEG2000. JYPEC has been evaluated on a

Xilinx XC7VX690T FPGA, consuming the 5% of the available slices and a mini-

mum memory footprint (0.4% of the BRAMs) and achieving the goal of real-time

performance for the AVIRIS-NG sensor constraints (74 MSamples/s, considering

8-bits samples). Near-lossless alternatives, such as the implementation of the Lossy

Compression for Exomars (LCE) algorithm presented in [168] or the one of the

Low-Complexity Predictive Lossy Compression (LCPLC) solution developed in [169],

also demonstrate their feasibility to be implemented on-board satellites onto a Xilinx

Virtex-5 FPGA, combining a reduced logic resources consumption together with

promising throughput results, even obtaining in the latter implementation real-time

capabilities (up to 120 MSamples/s).

• Video Compression. Since video sensors are not extended on-board satellites yet,

implementations of video encoders on FPGAs are limited to preliminary analysis to

demonstrate their viability on future space missions, taking into account the intrinsic

complexity of these solutions. It is also remarkable that existing implementations

target commercial FPGAs, which have a high logic resources availability, bringing to

light the high complexity of developing video encoding hardware solutions. H.264 has

been completely evaluated (i.e., integrating all the modules that comprise the VCL)

in [170], achieving a viable implementation of the Baseline Profile with a tailored

VLC encoder on a Xilinx Virtex-6 FPGA, which satisfies the constraints of HDTV

(1280x720 pixels at 60 fps), consuming the 89% of the available slices and the 22%

of the embedded memory. An alternative implementation of the H.264 encoder is

presented in [171], which is mapped on an Altera Arria II GX FPGA, consuming the

66% of the available LUTs and supporting 1080p at 60 fps. The complexity of the

H.264 entropy encoders is analysed in [172] onto a Xilinx XC5VLX110T-3-FF1136

FPGA, providing also a hardware solution that allows to select between the two

possible encoders defined by the standard. The whole coding solution consumes

the 39% of the available slices and also internal DSPs and BRAMs in the case of

CABAC, and it is able to work at 163 Mbin/s with a working frequency of 164

MHz. Another Double-Mode Binary Coder (i.e., CAVLC plus CABAC) is presented

in [173], implementing the developed solution on an Altera Stratix II FPGA (3917

LUTs are consumed) and encoding with a rate up to 159 Mbin/s. Regarding HEVC,
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studies have been focused on how to simplify the complexity of the intra-prediction

stage (up to 33 directional modes, in comparison with the 9 modes available in

H.264) to fit well in the logic resources available on an FPGA, without compromising

the throughput and the compression performance. As an example, in [174] the

authors propose an scalable architecture that checks a variable number of candidate

modes, which are preselected by the processing of 8x8 predictions computed from

original samples, and supporting also 4x4 modes thanks to the incorporation of a

separate reconstruction loop. The proposed intra-encoder (i.e., inter-prediction is not

implemented) consumes the 79% of LUTs and the 83% of DSPs available on an Altera

Arria II GX FPGA, providing real-time capabilities for resolutions up to 1080 pixels

at 60 fps. The work presented in [175] optimizes the intra-prediction by a three-stage

architecture that reduces dependencies on the reference generation, needed for the

processing of the next Coding Unit (CU). The feedback to know the CU split scheme

and the prediction mode selection is avoided by using a Hadamard-based decision

method. In this way, the solution achieves a minimum operating frequency of 140

MHz, encoding Full HDTV in real-time (1920x1080 pixels at 30 fps). This design

was implemented on a Xilinx Zynq XC7Z045 MPSoC, consuming the 38% of LUTs

and the 4% of DSPs available in this device.

2.5.2.2 ASICs

Implementations on ASICs were a common practice in the space industry until the irruption

of space-qualified reprogrammable FPGAs. These ad-hoc solutions provide low-power and

high throughput performance, at the expense of high development time and Non-Recurring

Engineering (NRE) costs, since ASICs cannot modify their behaviour once they have

been manufactured. This prevents their adaptation to new mission requirements or the

possibility of reconfiguring a part of the design in case of malfunction due to radiation

effects. Most of the space missions that have included on-board data and/or image

compression in the last decades employ ASICs as target devices, as it is reflected in [68].

Some examples are the Mars Odysssey, launched by NASA in 2001, which implements

on ASIC not only a Rice encoder for data compression, but also a FL-based solution

for lossless image compression that can be substituted for a DCT to compress in lossy

mode; ALOS, a satellite launched by JAXA in 2006, which performs on an ASIC-JAXA

IDCP both the JPEG baseline and the JPEG-LS described in Section 2.2, depending

on the desired compression mode; or the PLEIADES-HR mission, funded by CNES and
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launched in 2010, which implements a compression solution comprised by a DWT stage

and a Bit-Plane encoder on Wavelet Image Compression Module (WICOM), an ASIC

solution developed by Airbus Defence and Space.

ESA has also funded the development of some ASIC implementations specific for on-board

data compression. The CWICOM chip [176], shown in Figure 2.4, is an image compression

ASIC developed by Astrium that implements the CCSDS 122.0-B-1 Wavelet-based image

compression standard. CWICOM, which is on-board the Gaia Astrometry Mission [177],

provides a high compression performance (up to 60 Mpixels/s) by exploding spatial

correlation, supporting both lossless and lossy compression. This solution takes advantage

of a high-capacity and very efficient internal embedded memory organization to store

the DWT coefficients without the necessity of external storage. In addition, the power

consumption is reduced (<100 mW/MSamples/s) and the radiation hardness is 100 kRad

TID, being also tolerant to SEU by using an EDAC mechanism. Other alternative is the

Payload Rice Data Compressor (PRDC) [178], an ASIC data compressor that implements

an extension of the Rice coding (including an optional pre-processing stage), which is

outside the CCSDS 121.0-B-2 lossless data compression standard, though it is possible to

disable certain features in order to comply with the standard. This ASIC is able to handle

samples with a size from 4 to 24 bits, achieving a maximum throughput of 40 MSamples/s.

The power dissipation of the PRDC is 630 mW at 20 MHz unloaded, while it provides a

TID > 30 kRad.

Figure 2.4: CWICOM ASIC for image compression (extracted from [176])

2.6 Conclusions

As presented throughout this Chapter, the specialized literature is plenty of different

alternatives for data compression, which can be classified depending the nature of the
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handled data, the level of losses introduced in the compression process or the performance

features that are prioritized, such as low-complexity or high computational capabilities.

Moreover, there are compression approaches specifically thought to work on-board satellites,

taking into account the constraints of a harsh environment such as the outer space. However,

it has been observed that there is not a common way to develop and implement universal

compression solutions for space missions, which makes necessary ad-hoc decompression

solutions on ground for each specific compression approach. For this reason, this Thesis

focuses on compression algorithms that provide a good compromise between complexity

and compression efficiency, therefore focusing on prediction-based decorrelators and entropy

coders based con Golomb-Rice codes. More specifically, those compression algorithms

proposed by the CCSDS standards for one-dimensional data and 3D images (i.e., multi-

and hyperspectral) are considered. This is mainly motivated by the fact that, in addition

to the trade-off they provide between compression performance and hardware complexity,

decompression can be performed on ground by using a standard decompressor, allowing

compatibility and reusability among different applications.

Besides, a gap has been detected in the state-of-the-art regarding versatility of on-board

compression solutions. This means that there is not a collection of modules that can be

reused for different purposes or for different space missions with different performance

goals, needing for a complete development each time a compression solutions is required.

This links with one of the main objectives of this Thesis, which is to provide modular

compression solutions, based on the CCSDS standards, that allow to conform an optimized

compression chain for a specific application taking into account different constraints, such

as throughput, hardware occupancy or RD ratio, by selecting the appropriate modules

among the available alternatives.

Regarding the physical platform to implement those compression solutions, space-grade

FPGAs are targeted since they are considered an optimal candidate for current and future

space missions thanks to their high performance, resources availability, reduced power

consumption and acceptable development costs. More concretely, SRAM-based FPGAs are

emerging as an interesting alternative, thanks to their higher performance, lower cost and

the possibility to update the functionality during the space mission lifetime, in comparison

with antifuse or flash-based technologies.



Chapter 3

Design and characterization of

prediction-based preprocessing

blocks

This Chapter presents different prediction-based approaches developed as functional

blocks, which can be efficiently implemented on space-qualified FPGAs as spatial and/or

spectral decorrelators, depending on the nature of the data acquired by the embarked

sensor. The alternatives under study are mainly based on the CCSDS 123 compression

standard for multi- and hyperspectral images, considering both Issue 1, focusing on lossless

compression, and the recent Issue 2, that extends the functionality of its predecessor to

support near-lossless compression. A simple predictor proposed in the CCSDS 121.0-B-3

lossless compression standard is also considered for generic data acquired on the satellite.

Both algorithmic descriptions and architectural details of the proposed implementations

are provided, in addition to preliminary synthesis results on a representative space-grade

FPGA technology.

49
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3.1 Outline

Prediction-based preprocessors are commonly the first stage in a compression chain.

This is because their simplicity to be implemented on hardware and their efficiency to

decorrelate redundant information present on the collected data. This correlation can be

exploited in hyperspectral images in both the spatial and the spectral domains. When

these preprocessors are implemented as part of a compression solution on-board satellites,

they should reach not only an efficient data reduction, but they should also take into

account some additional constraints, such as low-complexity and high throughput, as

some applications, mainly in the field of Earth Observation, require support for real-time

processing. Besides, robustness against radiation effects is desired, in order to prevent a

malfunction in case of a bit flip.

After the study of the on-board data compression algorithms available in the specialized

literature, it is considered that the prediction-based preprocessors proposed by the CCSDS

standards provide a trade-off for efficient data decorrelation as part of on-board compression,

offering acceptable Rate-Distortion ratios with a reduced computational complexity. Among

these standards, the CCSDS 123.0-B-2 [31] describes a prediction-based near-lossless

compressor of multi- and hyperspectral images, while its predecessor, the CCSDS 123.0-B-1

[30] was conceived for lossless compression only. In addition, other compression standards,

such as the CCSDS 121.0-B-3 [27], constitutes a universal prediction-based compressor

applicable to any kind of data.

This Chapter presents three different prediction-based stages and their implementation on

space-grade FPGAs. The user can select the appropriate alternative depending on the

data nature (generic information or hyperspectral images) and the desired compression

ratio, distinguishing between lossless and near-lossless compression. These preprocessors

have been developed as functional blocks, in order to be integrated as part of a whole

compression chain. RTL and HLS design methodologies are used, keeping in mind the

requirements of each implementation in terms of throughput, hardware occupancy and

available development time to select the suitable workflow.

Two of these preprocessing approaches, the CCSDS 121.0-B-3 unit-delay predictor and

the CCSDS 123.0-B-1 3D predictor, are currently part of SHyLoC, a pair of technology-

independent IP cores described in VHDL, which implement the compression algorithms

described in those respective lossless standards [59, 60]. These prediction-based prepro-

cessors have been developed trying to maximize the throughput, ensuring at the same
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time a low area footprint. For this reason, they have been developed following the RTL

design methodology, focusing on generating a cycle-accurate description that allows to

obtain as much throughput as possible, without compromising in excess the logic resources

utilization.

The remaining approach implements the prediction-based preprocessor of the novel CCSDS

123.0-B-2 near-lossless compression standard, developed following the HLS methodology.

In this way, a functional model of the algorithm behaviour is provided to perform an

early design space exploration. This approach allows to detect optimal parameter values

and to identify algorithm features that enable to maximize compression performance

faster than following an RTL-based methodology, since it is done at a higher level of

abstraction. Moreover, the prototyping is accelerated, demonstrating the viability of the

proposed compression solution to be implemented in a space-grade device. Therefore, the

main objective of this implementation is to demonstrate the feasibility of the CCSDS

123.0-B-2 near-lossless compression algorithm on FPGA, which is prioritized against other

performance metrics, such as the throughput.

Preliminary synthesis results are provided for each one of the proposed prediction-based

pre-processing stages in a representative space-grade FPGA with different sets of generic

parameters. Concretely, results are presented for Xilinx Kintex UltraScale XCKU040,

since it is supported by both RTL and HLS workflows.

3.2 CCSDS 121.0-B-3 unit-delay predictor

3.2.1 Algorithm overview

The prediction-based preprocessor defined in the CCSDS 121.0-B-3 standard [27] removes

correlation between consecutive input samples and maps them into unsigned values, as

shown in Figure 3.1. These mapped samples are the input of the block-adaptive entropy

coder, the responsible of performing the encoding stage. This preprocessing stage is based

on a simple and reversible unit-delay predictor, which employs the previous sample s(t− 1)

as an estimator of s(t). The introduction of this prediction-based preprocessor requires

the periodic insertion of reference samples (i.e., an unmodified input sample) in the output

compressed stream to be able to obtain the original image on the decompression side. The

reference interval r is a user-defined parameter limited to 4096, which specifies with which
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frequency the reference samples are inserted in the output bitstream. The lower the r

value, the higher is the robustness of the preprocessor against radiation effects, since more

reference samples are inserted. This implies that, in case of a bit flip, only the corrupted

data segment between two reference samples is lost.

The predicted sample ŝ(t) is equal to the previous sample s(t − 1), except for the first

sample in a reference interval, which is ŝ(t) = s(t) in this specific case (i.e., t = 0).

Figure 3.1: Unit-delay predictor overview

The mapper receives the prediction residual Δ(t), which is the difference between the

predicted and the input samples, generating a non-negative integer δ(t), known as mapped

residual. For every ŝ(t), there are 2n possible Δ(t) values, being n the input sample

bit-depth. The mapper follows Equation 3.1:

δ(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
2 ·Δ(t), 0 ≤ Δ(t) ≤ θ(t)

2|Δ(t)| − 1,−θ(t) ≤ Δ(t) < 0,

θ(t) + |Δ(t)|, otherwise
(3.1)

where θ(t) is

θ(t) = min(ŝ(t)− smin, smax − ŝ(t)), (3.2)

being smin = −2n−1 and smin = 0 for signed or unsigned input samples, respectively. In

the same way, smax = 2n−1 − 1 and smax = 2n − 1 when processing signed or unsigned

samples, respectively.
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3.2.2 Block design

The unit-delay predictor core consists of a register that holds the value of the previously

processed sample, a subtracting module to generate the prediction residuals Δ(t) and the

mapper. At this point, mapped prediction residuals δ(t) are obtained, which are then sent

to an entropy coder. The top module of the unit-delay predictor core includes, in addition

to the unit-delay predictor and the mapper, the necessary logic to bind the components

that perform the reception of input samples and the flow control of the output interface

to send the mapped prediction residuals Δ(t), which is mainly managed by a couple of

FIFOs and a Finite-State Machine (FSM). The block diagram of this preprocessing stage

is shown in Figure 3.2.

The unit-delay predictor has been conceived in a way that it can be easily connected to

other functional blocks to conform more complex systems for a fully compression process.

Input and output data interfaces are based on a handshaking protocol, which associates a

Valid flag to each input/output data. The Ready Ext input signal informs that the data

receiver is expecting new output samples. Additionally, there are other control signals,

such as ForceStop, which allows to suspend at any point the prediction under the user

demand.

Runtime configuration is directly received through an AHB slave interface and validated

with a Valid flag. According to the received configuration, a FSM controls the operation

of the rest of the units in the design. The fsm module may bypass the pre-processing

stage (both the unit-delay predictor and the mapper) by activating the Bypass signal,

in order to periodically insert the reference samples. The components module performs

the pre-processing itself, containing both the unit-delay predictor which computes the

predicted samples based on the input data, and the mapper module. Moreover, the

predictor includes input and output FIFOs, in order to adapt the data transfers between

modules. The input FIFO stores the incoming input data until they are preprocessed,

while the output FIFO stores the predicted data in groups of J samples, until they are

required by the block-adaptive encoder.
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Figure 3.2: Block diagram of the CCSDS 121.0-B-3 predictor top module

3.2.3 Block characterization

Preliminary synthesis results for the CCSDS 121.0-B-3 unit-delay predictor have been

obtained using Synopsys Synplify Premier P-2019.09-SP1.The parameter sets used for

synthesis purposes are summarised in Table 3.1. The main parameters that change among

configurations are the input sample bit-depth (controlled by the D GEN generic), using 8,

16 and 32 to analyse the impact of the bit depth extension in the internal operations; or

the block size J, which defines the number of samples that comprise an input block. As

it is also reflected in Table 3.1, the maximum image size is fixed to 1024 for each one of

the three coordinates just for synthesis purposes. In addition, other image parameters are

considered, such as the sign and the endianness of the input samples.

Table 3.1: Sets of synthesis configurations for the CCSDS 121.0-B-3 unit-delay predictor

Generic Set1 Set2 Set3 Set4

EN RUNCFG 1 0 1 0

RESET TYPE 1 1 1 1

Nx GEN 1024 1024 1024 1024

Ny GEN 1024 1024 1024 1024

Nz GEN 1024 1024 1024 1024

D GEN 32 16 16 8

ENDIANESS GEN 0 1 0 1

IS SIGNED GEN 0 0 1 0

J GEN 64 8 32 8

REF SAMPLE GEN 4096 512 256 256
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The timing results for the CCSDS 121.0-B-3 unit-delay predictor in terms of maximum

clock frequency are reflected in Table 3.2 for Xilinx Kintex UltraScale XCKU040. In

addition, that table contains resources utilization in terms of memory blocks, arithmetical

units and logic resources. The maximum throughput for each configuration, measured

in terms of MSamples/s, is approximately equivalent to the maximum clock frequency

achieved, since this predictor is able to process one sample per clock cycle.

Results show that the best outcome in terms of maximum clock frequency is 205.8 MHz

when using the most reduced configuration (i.e., the Set4), being D = J = 8. The extension

of the dynamic range implies an impact in timing performance, obtaining worst results

when D = 32 and reducing an average of 17% when changing from D = 16 to D = 32 (i.e.,

from Set3 to Set1).

In terms of resources utilization, the maximum logic usage for Kintex UltraScale is

approximately the 0.3% of the available LUTs without using embedded memory blocks.

These results are obtained when the predictor is configured to manage input samples with

D = 32 (i.e., Set1), the most critical configuration in terms of hardware occupancy. It is

also appreciated that BRAMs are not used, since the synthesis tool maps the different

FIFOs present in the design as distributed memory by using logic resources. This is

because the small size of those FIFOs, which are under the threshold that the synthesis

tool defines to map memory elements as dedicated or distributed memory. In any case,

this threshold can me modified by the user in order to use BRAMs and thus increasing

the maximum clock frequency of the predictor.

As it can be observed analysing the differences between results for Set2 and Set3, the block

size generic J GEN also has an impact in the resources utilization, though it is reduced

compared to the penalty introduced by increasing D GEN.

Table 3.2: CCSDS 121.0-B-3 unit-delay predictor - Synthesis on Xilinx Kintex
UltraScale XCKU040

Parameters Total Set1 Set2 Set3 Set4
Block RAMs 600 0 0 0 0

DSP48 1920 3 3 3 3
Registers 484800 199 131 140 113
LUTs 242400 618 281 341 193

Maximum Frequency
129.7 181.0 167.8 205.8

(Clk S) (MHz)
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From the obtained results it can be concluded that the developed CCSDS 121.0-B-3 unit-

delay predictor constitutes a low-complexity solution for generic data reduction, providing

a high throughput (even achieving real-time processing on-board satellites) together with

a reduced hardware occupancy on space-grade FPGAs.

3.3 CCSDS 123.0-B-1 spectral and spatial decorrela-

tor for HSI lossless compression

3.3.1 Algorithm overview

The top-level hierarchy of the CCSDS 123.0-B-1 prediction stage is reflected in Figure 3.3,

including all the necessary functional units to generate a predicted mapped residual δ(t)

from an input sample sz,y,x, which will be explained throughout this Section.

Local
Sum

Local
Differences

Prediction Weights
updating

Mapper-

Figure 3.3: CCSDS 123.0-B-1 predictor overview

The preprocessor of the CCSDS 123.0-B-1 standard [30] computes the value of the current

input sample using a set of pixels in its vicinity, counting on samples in the same band

z as well as in previously processed bands, as it is shown in Figure 3.4. The predictor

processes the input image in a single pass, independently of the order in which the input

samples are arranged.
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Figure 3.4: Set of samples used for prediction

For each input sample sz,y,x, first a local sum σz,y,x is computed, which is a weighted sum

of neighbouring samples in the current band z (i.e., in the spatial domain). The set of

samples which are used to compute these local sums is determined by the selected local

sum type: in the neighbour-oriented mode, all the previously processed adjacent samples

are used, while in the column-oriented mode just the sample right above is used. Equation

3.3 describes the way to compute the local sums under the wide neighbour-oriented mode,

while Equation 3.11 indicates the samples that are used when the column-oriented local

sums are selected and their associated weighted value. Input sample values sz,y,x are

directly employed to compute these local sums. Local sums are also computed for each

one of the P previous bands used for prediction. The P value can be configured between 0

and 15, though it has been observed that no significant improvements are achieved when

setting values of P higher than 3 [179]. The value of the local sum at the beginning of

each band σz,0,0 is not considered, since it is not used during the computations.

σz,y,x =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

sz,y,x−1 + sz,y−1,x−1 + sz,y−1,x + sz,y−1,x+1, y > 0, 0 < x < Nx − 1

4sz,y,x−1, y = 0, x > 0

2(sz,y−1,x + sz,y−1,x+1), y > 0, x = 0

sz,y,x−1 + sz,y−1,x−1 + 2sz,y−1,x, y > 0, x = Nx − 1

(3.3)
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σz,y,x =

⎧⎨
⎩4sz,y−1,x, y > 0

4sz,y,x−1, y = 0, x > 0
(3.4)

Then, the local differences are computed, by subtracting the neighbour sample values

from the previously computed local sums. The local differences are defined for every

pixel except for the first one (with x = 0 and y = 0). The central difference is computed

as dz,y,x = 4sz,y,x − σz,y,x, while the directional differences are computed according to

Equations 3.5, 3.6 and 3.7, using for each case the value of the adjacent sample on top, left

and top-left of the current one, respectively. These differences are then grouped into the

local differences vector Uz,y,x, which is built depending on the selected prediction mode.

If the reduced mode is chosen, just the central differences of the P previous bands are

included in the local differences vector. T On the other hand, the directional differences of

the current band are also included with the full mode.

dNz,y,x =

⎧⎨
⎩4sz,y−1,x − σz,y,x, y > 0

0, x > 0, y = 0
(3.5)

dWz,y,x =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
4sz,y,x−1 − σz,y,x, x > 0, y > 0

4sz,y−1,x − σz,y,x, x = 0, y > 0

0, x > 0, y = 0

(3.6)

dNW
z,y,x =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
4sz,y−1,x−1 − σz,y,x, x > 0, y > 0

4sz,y−1,x − σz,y,x, x = 0, y > 0

0, x > 0, y = 0

(3.7)

The optimal combination of the local sum and prediction modes is highly dependent of

the target HSI sensor and the image nature, and it should reach a compromise between

compression performance and hardware occupancy.

The next step is to compute a weighted sum of the elements in the local differences vector,

making use of an internal weight vector, Wz,y,x. A weight vector is separately maintained

for each band, and the resolution of each weight value is defined by Ω, a user-defined

parameter in the range 4 ≤ Ω ≤ 19. The higher is the Ω value, the higher is the accuracy

during the prediction calculation. The CCSDS 123.0-B-1 standard defines two possible

ways of setting the initial values for the components of the weight vectors. With the
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default initialization, the components of the weight vectors are set to fixed values, equal

for all bands. With the custom weight initialization, the initial weights are provided by

the user, and each band may have different values. This latter mode is specially relevant

when it is known beforehand that certain initial weight values improve the compression

performance for an specific instrument.

The inner product of the Uz,y,x and Wz,y,x components, denoted as predicted central local

difference d̂z,y,x, is used to calculate the predicted sample as

ŝz,y,x =

⌊
s̃z(t)

2

⌋
, (3.8)

which is the estimated value for an input sample, taking into account image statistics (i.e.,

the value of preprocessed samples in both the spatial and the spectral vicinity). The scaled

predicted sample s̃z(t) is estimated as

ŝz,y,x =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

clip(mod∗R

⌊
d̂z(t)+2Ω·(σz(t)−4smid)

2Ω+1

⌋
+2smid+1,{2smin,2smax+1}), t>0

2·sz−1(t), t=0,P>0,z>0

2·smid, t=0and (P=0or z=0),

(3.9)

being t = y ·Nx+ x.

Finally, weight values are updated with each new sample based on the prediction residual

Δz,y,x (i.e., the difference between the input and the predicted sample), the local differences

and some user-defined parameters. The prediction residual is mapped into an unsigned

integer δz,y,x, which is passed to the entropy coder stage.

3.3.2 Block design

The predictor can be configured with a wide set of configuration parameters which can

be selected at compile-time or at runtime. In case of runtime configuration, it is received

through an AMBA AHB slave interface. Three different architectures are devised for the

predictor of the CCSDS-123, one for each of the possible input sample arrangements (BIP,

BSQ and BIL), in order to find the best compromise between complexity and throughput

[59, 60]. Each architecture includes the prediction core itself and a control module, which
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includes a FSM to schedule the different operations to be performed. Independently of

the selected predictor architecture, input and output data interfaces are shared to ease

connectivity with other functional blocks. Similarly to the CCSDS 121.0-B-3 unit-delay

predictor, a handshaking protocol with associated Valid and Ready signals is defined,

though the latter is just present in the output interface. Besides, some additional control

signals are defined to inform about the state of the prediction (i.e., finishing, processing

the last sample) or to suspend it.

Specific schedules are proposed for each input order, avoiding data dependencies at the

same time that memory occupancy is kept in mind [59]. The BSQ and BIL schedule is

shown in Figure 3.5, where it is observed that the weight vector must be updated before

the prediction of a new sample, which shall be computed by the Multiply and Accumulate

(MAC) stage. This implies a limitation in the number of operations that can be scheduled

in parallel. The schedule of the BIP order is illustrated in Figure 3.6, where the current

sample s(t) is processed in all the bands before the contiguous sample in the spatial domain

s(t+1) is processed. Therefore, the existing data dependencies do not prevent to start the

compression of a new sample before the prediction of the current one has finished, because

the corresponding weight vector will be already updated and available. This allows to

start the compression of a new sample in every clock cycle, by applying a pipeline strategy.

A block diagram overview of the predictor internal structure is shown in Figure 3.7,

where the common functional units to all the predictor architectures are included. The

input samples to be processed are first arranged in a set of FIFOs, as determined by the

compression order. As samples are compressed, they are rearranged in a way that the
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Figure 3.5: CCSDS 123.0-B-1 algorithm - BSQ and BIL schedule
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Figure 3.6: CCSDS 123.0-B-1 algorithm - BIP schedule

already processed samples become the neighboring samples for subsequent samples. Large

memory elements that can be stored externally depending on both the selected processing

order and the logic resources availability of the target device are depicted in blue in Figure

3.7.
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The modules with the highest mathematical complexity are shown in red, which are the

MAC unit and the weight update stage, since they are the stages that require the execution

of multiplications.

Regarding memory utilization, each input sample arrangement requires different storage

for certain internal elements, such as the FIFOs used to store the neighbouring samples,

the local differences and the weight vectors. The number of elements to be stored for

each possible input order is reflected in Table 3.3, being Cz = P MAX + 3 under full

prediction mode and Cz = P MAX when reduced prediction mode is selected. Because of

the amount of internal storage required by the BIP and BIL architectures, a version of

them called BIP-MEM and BIL-MEM, respectively, are developed, which use an external

memory to store intermediate results. An AMBA AHB master interface is included to

access this memory. The storage elements which require the highest amount of memory

are the FIFO TOP RIGHT, which stores the neighbouring samples at that direction, and

the Local differences storage, in BI (i.e., both BIP and BIL) and BSQ orders, respectively.

Table 3.3: CCSDS 123.0-B-1 algorithm - Number of elements to be stored for each
possible input arrangement

Order Neighbouring Samples Local Differences Weights

BSQ Nx + 1 Nx ·Ny · P Cz

BIP (Nx + 1) ·Nz P Nz · Cz

BIL (Nx + 1) ·Nz Nx · P Nz · Cz

Specific optimizations for each predictor architecture are described in the next lines,

depending on the selected processing order:

3.3.2.1 BIP architecture

The BIP architecture has been developed in a way that is capable of accepting and

processing an input sample per clock cycle. For this reason, this architecture is the one

that reaches the highest possible throughput, because it is able to avoid data dependencies

in the processing of consecutive input samples [59].

The local differences vector Uz,y,x is stored into the internal FPGA memory. The multiply-

accumulate operations needed for the computation of the dot product of the local differences

and weight vectors needed for the prediction, d̂z,y,x, are performed using the structure

depicted in Figure 3.8. This structure makes it possible to obtain a dot product result

every clock cycle.
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The weight vectors are updated in parallel using instances of weight update units as shown

in Figure 3.9. The number of instances of multipliers and accumulators used for the dot

product and the amount of weight vector units are calculated based on the user-defined

parameter P MAX, following Equation 3.10:

Height tree = log2�Cz�, (3.10)

As mentioned before, The BIP-MEM architecture differs from the BIP one only in the

storage of FIFO TOP RIGHT in an external memory, which can be necessary depending on

the target device since the size of this FIFO is (Nx+1) ·Nz elements. This communication

is done by using an AHB master interface, needing one read and one write operation

to compress a sample and, consequently, reducing throughput compared to the BIP

architecture.

Figure 3.8: CCSDS 123.0-B-1 predictor - Multiply-accumulate unit to perform the dot
product in BIP
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Figure 3.9: CCSDS 123.0-B-1 predictor - Weight update in BIP

3.3.2.2 BSQ architecture

The main difference between the BSQ and the BIP architectures lies in the allocation of

the local differences vector in an external memory and the scheduling of the multiply-

accumulate operations, which are performed serially.

The BSQ architecture requires to store a complete vector of local differences per sample

during the compression of a band z. These local differences vectors (a total of Nx ·Ny) are

stored in an external memory and sent through the AHB master interface. The memory

addresses in which the vectors are stored are calculated by the preprocessor as shown

in Figure 3.10, in such a way that the memory locations are appropriately reused when

available. One local difference value needs to be stored per sample, and P values need

to be read, which correspond to the central local differences. Within a vector, decreasing

write addresses and increasing read addresses are used.

In BSQ, data dependencies place an important throughput limitation. Since local differences

need to be retrieved from an external memory, the parallelization of the MAC and the

weight update operations do not provide an improvement, as it happens in BIP and

BIL (shown in Figures 3.8 and 3.9). This is because readings from the external memory

constitute the main bottleneck of the BSQ architecture. For this reason, these operations

are serialized in order to reduce hardware occupancy.
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Figure 3.10: CCSDS 123.0-B-1 predictor - Local differences storage in an external
memory in BSQ

3.3.2.3 BIL architecture

BIL inherits most of the components from the BIP architecture, including the way in

which the MAC and the weight update operations are calculated. The main difference is

the local differences storage. In BIL, it is necessary to store one vector per sample in a

line of pixels. This storage is placed into the FPGA memory resources in several chained

FIFOs that store both the central and the directional differences, in a way that they are

available when requesting to process a concrete sample, as shown in Figure 3.11.

A specific scheduling is devised for the BIL architecture in order to ensure that the

maximum possible throughput is achieved in both situations, when compressing the

samples in a spatial line, where the same data dependencies as in BSQ are presented, and

when compressing the last sample of a spatial line and the first of the next line, when data

dependencies are the same as in BIP.

In the same way that for the BIP-MEM architecture, the BIL-MEM one stores the

FIFO TOP RIGHT, which contains (Nx+1) ·Nz elements, in an external memory, whereas

the BIL architecture only uses internal memory available inside the FPGA.
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Figure 3.11: CCSDS 123.0-B-1 predictor - Local differences storage in BIL

3.3.3 Block characterization

As for the CCSDS 121.0-B-3 unit-delay predictor presented in Section 3.2, preliminary

synthesis results for the CCSDS 123.0-B-1 prediction-based preprocessor have been obtained

using Synopsys Synplify Premier P-2019.09-SP1. Table 3.4 shows the CCSDS 123.0-B-1

predictor baseline configuration values, which are common to all the preliminary mapping

cases. This configuration, selected to maximize the CR taking into account the parameter

tuning presented in [179], is received at compile-time and it is applied to two different

acquisition scenarios: multispectral, by using a Landsat scene (1024 lines, 1024 columns

and 8 bands, with D = 8); and hyperspectral, represented by an AVIRIS image (512 lines,

680 columns and 224 bands, with D = 16). For each acquisition scenario, synthesis results

are provided for the five possible predictor architectures (BIP, BIP-MEM, BSQ, BIL and

BIL-MEM).

Results in terms of timing are summarised in Table 3.5 for Xilinx Kintex UltraScale

XCKU040. The system clock frequency achieved is above 144 MHz for all the configurations

implemented. However, not all the architectures provide the same throughput because

of data dependencies, being BIP the one that can reach the maximum throughput of

one sample per clock cycle. This preprocessor has been designed in such a way that

the AHB clock is faster than the system clock to avoid delays in the processing due to

the communications with the external memory, a condition that is fulfilled in all the

implemented architectures.
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Table 3.4: Baseline synthesis configuration for the CCSDS 123.0-B-1 predictor

Generic Value Description

P MAX 3 Number of previous bands used for prediction

PREDICTION GEN 0 Full prediction mode

LOCAL SUM GEN 0 Wide-neighbour local sum

OMEGA GEN 13 Weight resolution

R GEN 32 Register size

VMAX GEN 3 Weight Update Scaling Exponent Final Parameter

VMIN GEN -1 Weight Update Scaling Exponent Initial Parameter

T INC GEN 6 log2 Weight Update Scaling Exponent Change Interval

WEIGHT INIT GEN 0 Default weight initialization

Table 3.5: CCSDS 123.0-B-1 predictor - Maximum frequency on Xilinx Kintex
UltraScale XCKU040

Config BIP
BIP-

BSQ BIL
BIL-

MEM MEM
Landsat 152.6 153.7 144.5 163.9 155.7
AVIRIS 150.7 152.3 148.2 154.1 154.7

Figure 3.12 show resources utilization in Kintex UltraScale XCKU040 for Landsat and

AVIRIS scenes. In general, the CCSDS 123.0-B-1 preprocessor makes use of low logic

resources which proves its reduced complexity. The usage of DSPs, LUTs and registers is

almost constant, with slight differences depending on the selected predictor architecture

and the acquisition scenario. These differences are noticeable in the case of memory usage,

which is mainly determined by the predictor architecture, being BIP and BIL the ones

that show a higher impact on memory resources utilization.

The use of BRAMs is proportional to the size of an spectral line (NxNz), because it fixes

the size of different memory elements, such as the FIFOs that store the adjacent samples

for the local sum and differences calculation during the prediction. The P value also has

an influence in the BRAMs consumption, since it specifies the weights vector size and the

number of elements to be considered during the local differences calculation. Regarding

the logic resources consumption (i.e., LUTs and registers), the dynamic range D supposes

the main constraint, since it defines the bit-width of different internal elements, such as

the local differences values. In addition, the weight resolution Ω has also a slight influence

in the LUTs consumption, because it specifies the bit-width of each element of the weights

vector.

For Kintex UltraScale, up to 12% of memory resources are used for the AVIRIS scenario.

With respect to the DSPs and LUTs utilization, all the architectures and configurations
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Figure 3.12: CCSDS 123.0-B-1 predictor - Resources utilization on Xilinx Kintex
UltraScale XCKU040

provide similar results, with values around the 1.2% for DSPs and between 1.5% and 3%

for LUTs. It is observed that LUT utilization is proportional to the image dimensions.

It is also remarkable that DSPs utilization tends to be lower for the BSQ architecture,

due to its serial implementation. In addition, BIP and BIL architectures use less LUTs

compared with the other predictor alternatives, due to the absence of the AHB interface

to communicate with the external memory.

The resources utilization of each internal module of the CCSDS 123.0-B-1 predictor is also

analysed in Table 3.6 when implementing the BIP architecture. As it can be observed,

the critical stage in terms of memory usage is the one responsible of organizing the

neighbouring samples in order to be available when the current sample is going to be

processed. Concretely, this module uses around the 11% of the BRAMs available in the

device. On the other hand, the weights update stage is the one with the highest logic

resources demand, using the 1.1% of the available LUTs. Although these results are

obtained when the BIP architecture is implemented, minimum differences are observed

with respect to BSQ and BIL orders.

Table 3.6: CCSDS 123.0-B-1 predictor - Resources utilization on Xilinx Kintex
UltraScale XCKU040 per module in BIP order

Module Total
Vicinity Local Local

Prediction
Weights

Mapper
Disposition Sums Diffs Update

Block RAMs 600 67 0 0 0 6 0

DSP48 1920 0 0 0 7 1 0

Registers 484800 119 189 219 398 817 104

LUTs 242400 149 180 186 370 2586 171
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As a summary, and taking into account the obtained results in terms of both throughput

and resources utilization, the proposed implementation of the CCSDS 123.0-B-1 prediction-

based preprocessor is considered an efficient approach for spatial and spectral decorrelation

of hyperspectral images acquired on EO satellites. The results in terms of timing when

the BIP architecture is selected meet real-time requirements for the HSI sensors embarked

on current space missions, since a throughput of 1 sample per clock cycle is achieved.

This performance is reached together with a low area footprint and a high flexibility,

which allows to adapt the predictor behaviour to the target application to maximize the

compression ratio.

3.4 CCSDS 123.0-B-2 spectral and spatial decorrela-

tor for HSI near-lossless compression

3.4.1 Algorithm overview

The CCSDS 123.0-B-2 standard includes several modifications regarding its predecessor,

mainly aimed at supporting near-lossless compression. A new feature is the calculation of

a high-resolution predicted sample s̆z(t), used to improve the precision of the prediction

computation. Then, a quantizer is introduced in the prediction chain, in order to introduce

losses. Data loss is controlled by the maximum error limit mz(t), which can be absolute or

relative to the sample magnitude. A relevant novelty regarding Issue 1 is the calculation

of the sample representatives s′′z,y,x, which are a reconstruction of the input samples after

the quantization to perform the prediction of the next sample in the same way that it is

done during the decompression, where input samples are not available.

The block hierarchy of the prediction stage is shown in Figure 3.13, remarking the new

modules regarding Issue 1 for supporting near-lossless compression.

Issue 2 of the standard also introduces narrow local sums, which avoid the use of the

sample representative at the left of the current one in the same band (i.e., s′′z,y,x−1),

which is replaced by the sample representative in that position but in the previous band

(i.e., s′′z−1,y,x−1), favouring in this way optimization strategies on hardware for improving

throughput. Equations 3.11 and 3.12 describe how the local sums are calculated under the

narrow neighbour-oriented and column-oriented modes, respectively, where smid represents

the mid-range sample value. Sample representative values s′′z,y,x are used to compute the
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Figure 3.13: CCSDS 123.0-B-2 predictor overview

local sums, if near-lossless compression is selected; otherwise, input samples are directly

employed, as it is done in Issue 1 of the standard and described in Section 3.3.1.

σz,y,x =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s′′z,y−1,x−1 + 2s′′z,y−1,x + s′′z,y−1,x+1, y > 0, 0 < x < Nx − 1

4s′′z−1,y,x−1, y = 0, x > 0, z > 0

2(s′′z,y−1,x + s′′z,y−1,x+1), y > 0, x = 0

2(s′′z,y−1,x−1 + s′′z,y−1,x), y > 0, x = Nx − 1

4smid y = 0, x > 0, z = 0

(3.11)

σz,y,x =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
4s′′z,y−1,x, y > 0

4s′′z−1,y,x−1, y = 0, x > 0, z > 0

4smid, y = 0, x > 0, z = 0

(3.12)

Once the value of the predicted central local difference s̃z(t) is computed, in the same way

as in Issue 1 of the standard, it is used to calculate the high-resolution predicted sample

s̆z(t) which is also employed next to compute the double-resolution predicted sample s̃z(t).

These values are calculated according to formulas 37 and 38 in [31]. Then, s̃z(t) is used to

obtain the predicted sample as
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ŝz,y,x =

⌊
s̃z(t)

2

⌋
, (3.13)

Alternatively, the predicted sample can be simplified as [180]

ŝz,y,x ≈
⌊
d̂z,y,x + 2Ωσz,y,x

2Ω+2

⌋
, (3.14)

assuming that the value of the register size R is high enough to avoid overflow in the

computation of s̆z(t). In this way, it is possible to obtain the predicted sample value

without previously calculating both the high- and the double-resolution terms. Under

near-lossless compression, the prediction residual Δz(t) feeds the quantizer, while it is

directly mapped into an unsigned integer δz,y,x and passed to the entropy coder under

lossless compression, as in Issue 1 of the standard. The quantizer employs a uniform bin size

with a value of 2mz(t) + 1, being mz(t) being the maximum error limit defined by the user.

mz(t) = 0 implies lossless compression, where the input image can be fully reconstructed.

By increasing mz(t) the compression ratio improves at the cost of introducing quantization

noise, which affects the quality of the reconstructed image. The quantizer index qz(t) is

computed as

qz(t) = sgn(Δz(t))

⌊ | Δz(t) | +mz(t)

2mz(t) + 1

⌋
. (3.15)

The maximum error limit mz(t) is controlled by defining a maximum absolute error az

and/or a relative error limit rz. These errors can be identical for the whole image (i.e.

band-independent) or different for each band z (i.e. band-dependent). The latter is

useful when the target application requires specific spectral channels to be preserved with

higher fidelity. The value of each error option is limited by its dynamic range, Da or Dr

considering absolute and/or relative errors, respectively. Da and Dr should be in the range

1 ≤ Da, Dr ≤ min(D − 1, 16), being D the dynamic range of the input samples. The

maximum error is defined as mz(t) = az(t) or

mz(t) =

⌊
rz(t) | ŝz(t) |

2D

⌋
, (3.16)
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according to the type of error limits selected, absolute and/or relative. In case that both

error limits are used, mz(t) takes the most restrictive value.

Using absolute errors guarantees that the maximum absolute difference between sz(t)

and qz(t) is limited to a certain magnitude, while relative errors allows samples to be

reconstructed with different precision and, consequently, reconstructing with lower error

those samples with lower magnitude. Lossless compression is supported by defining

mz(t) = 0, implying that qz(t) = Δz(t).

Sample representatives, introduced at the beginning of this subsection, are also needed to

reduce the impact of the quantization, approximately reconstructing the original samples

sz(t), in the same way that the decompressor does. For this reason, s′′z(t) are used to

compute the predicted sample, instead of sz(t). Three user-defined parameters are used to

control the deviation of the sample representatives values from the quantizer bin center

s′z(t) (i.e., the discretized value of the predicted sample, taking into account the selected

quantization step): the sample representative resolution Θ; the damping φz, which limits

the effect of noisy samples during the calculation of s′′z(t); and the offset ψz, which tunes

the sample representative value towards s′z(t) or ŝz(t). The range of allowed values for

both φz and ψz is limited between 0 and 2Θ − 1, being also possible to define a different

value for each band z. Setting φz and ψz to 0 ensures that s′′z(t) is equal to s
′
z(t), while

higher values of one and/or both of them result in values closer to ŝz(t). Non-zero values

for φz and ψz tends to provide higher compression performance if hyperspectral images

have a high spectral correlation between adjacent bands, as it is claimed in [181]. Then,

the clipped version of the quantizer bin center s′z(t) is obtained following

s′z(t) = clip(ŝz(t) + qz(t)(2mz(t) + 1)), {smin, smax}), (3.17)

being smin and smax the lower and upper limits in the range of possible sample values,

which is directly dependent on the dynamic range D. If mz(t) = 0, then s′z(t) = sz(t). The

sample representative, s′′z(t), is obtained as

s′′z(t) =

⎧⎨
⎩
sz(0), t = 0⌊
s̃′′z (t)+1

2

⌋
, t > 0,

(3.18)

being s̃′′z(t) the double-resolution sample representative, which is calculated as



Chapter 3. Design and characterization of prediction-based preprocessing blocks 73

s̃′′z(t) =
⌊
4(2Θ − φz) · (s′z(t) · 2Ω − sgn(qz(t)) ·mz(t) · ψz · 2Ω−Θ) + φz · s̆z(t)− φz · 2Ω+1

2Ω+Θ+1

⌋
,

(3.19)

taking into account the value of the quantization bin center and the high-resolution

predicted sample, in addition to some user-defined parameters.

Backwards compatibility is guaranteed with Issue 1 of the standard, in case that the

following assumptions are accomplished:

• The maximum dynamic range D has to be less or equal to 16.

• Narrow local sums are not chosen.

• The quantizer fidelity control method has to be set to lossless (i.e., mz(t) = 0).

• Set the sample representative parameters (the resolution Θ, the damping φz and the

offset ψz) to 0.

• Supplementary tables are not part of the header.

3.4.2 Block design

Unlike the CCSDS 123.0-B-1 standard, where BIP order is the one that achieves the

maximum throughput, data dependencies introduced in the CCSDS 123.0-B-2 algorithm

imposes a penalty when processing in this arrangement. The introduction of the sample

representative calculation is identified as the bottleneck, since they are necessary to

compute local sums and local differences instead of using the original input samples. In

the case of the BIP ordering, the representative of the previous sample is not used to

compute local sums, but it is required to compute the central local difference of the

previous band. This introduces a strong data dependency, in which a sample must be

almost fully processed before the processing of the next one can start, as shown in Figure

3.14.

BIL and BSQ orderings in the CCSDS 123.0-B-1 standard present a strong data dependency

in the weights updating, where the inner product to obtain the predicted central local

difference d̂z,y,x for the current sample s(t) cannot be computed until the weights are
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Figure 3.14: CCSDS 123.0-B-2 algorithm - BIP schedule

updated for the previous sample s(t − 1). This dependency still applies in the CCSDS

123.0-B-2 standard. In addition, the dependencies with sample representatives in the

neighbouring of the one under process can appear, depending on the selected local sum and

prediction mode. The critical datapath can be softened by combining the reduced prediction

mode with narrow local sums. In this situation, the dependency on sample representatives

is removed (provided that the image is large enough in the spatial dimension) and the

only limiting factor is the dependency on weights, as reflected in Figure 3.15. There is an

additional optimization which can be performed in relation with weights updating, which

is based on [182]. It consists in the computation of both possible results of the prediction

error ez(t) in parallel with the sample representative calculation. Then, when the sample

representative and the quantizer bin center are computed, the appropriate term is selected,

depending on the sign of ez(t). This allows to slightly improve the throughput at the cost

of duplicating the logic used for weights updating.
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Figure 3.15: CCSDS 123.0-B-2 algorithm - BSQ and BIL schedule with reduced
prediction and narrow local sums

Taking into account this analysis, the predictor will be processed the samples in BIL

order. Although it is expected that BSQ provides similar performance than BIL, EO

space missions commonly integrate pushbroom sensors, which makes possible to compress

samples on-the-fly if they are processed in BIL order. Otherwise, a samples reordering
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module is needed prior to the compression stage, compromising the throughput of the

processing chain.

Therefore, the CCSDS 123.0-B-2 predictor architecture has been developed in BIL order and

following an HLS design methodology. This solution includes all the necessary functional

units to generate a mapped prediction residual δz(t) from a given input sample sz,y,x. The

top-level module receives the user-defined predictor parameters, together with the image

size and the dynamic range D through an AXI4-Lite interface in compile-time, providing

an interface that is suitable for configuration purposes that work at low data rates. This

configuration can be changed also in runtime, but the preprocessor operation should stop

until the new configuration is overwritten in the defined AXI4-Lite configuration registers.

Input samples are received by using a lightweight AXI4-Stream interface, which is thought

for burst transfers at high data rates, including also a simple handshaking protocol for

synchronisation purposes, comprised by a Valid and Ready signals. Migration from AMBA

AHB, used in previous prediction-based preprocessor developments, to AXI interfaces is

imposed by the HLS tool used, which automatically infers this kind of interfaces for the

most recent Xilinx devices. Anyway, input and output data interfaces can be synthesized

with a native protocol (i.e. as a custom or ad-hoc interface), if it is required to be connected

to other modules, such as an entropy coder. At the output, the mapped prediction residuals

δz(t) are stored in an intermediate FIFO, which then feeds the selected encoding stage.

This functional block is comprised by a total of 9 functional units, as shown in Figure 3.16.

Additional effort is required to implement the CCSDS 123.0-B-2 predictor compared to the

one defined by its predecessor. More complex arithmetic operations (mainly multiplications

and non power-of-two divisions) are introduced in the quantization loop to support near-

lossless compression. Two memories are created at top-level, which are then used by the

internal functional units: topSamples, which stores the previous spectral line (Nx · Nz

samples), needed to perform both the local sum and the directional local differences (if full

prediction mode is selected); and currentSamples, responsible of storing Nx · P samples

to compute the central local differences. For as long as the image is being processed, the

samples which are not needed anymore to calculate the central local differences because

they fall more than P bands behind the sample being currently processed, are moved from

currentSamples to topSamples. In the same way, samples in topSamples are replaced each

time a spectral line is fully predicted, prior to start the processing of the next line. The

sample at the same position that the current one but in the previous band sz−1,y,x is also
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stored in a register, since it is used to calculate the double-resolution predicted sample

s̃z(t).

Figure 3.16: CCSDS 123.0-B-2 predictor block diagram

First of all, the previously preprocessed samples, which are stored in currentSamples and

topSamples, and the current one are ordered in five FIFOs in the Read samples module,

corresponding to the current position and the vicinity needed to perform both the local

sum and the directional local differences (i.e., samples at the left, top-left, top and top-right

positions). These FIFOs store P elements.

Both the local sum and the local differences are computed in the Compute differences

module. The selection of the local sum and prediction mode is defined at compile-time

by user-defined parameters. The local differences are calculated simultaneously in a

single clock cycle independently of the selected prediction mode, since there are not data

dependencies.

Once the local differences vector Uz(t) is available, d̂z(t) is computed. After that, all the

variables needed to calculate the high-resolution predicted sample are available, obtaining

s̆z(t) in the High resolution prediction unit. The result of this operation is truncated

taking into account the value of the register size R, though this calculation can be omitted

if it is guaranteed that the size of the operation result never exceeds R. Then, the double-

resolution predicted sample s̃z(t) and the predicted sample ŝz,y,x are calculated in the

Prediction module, using right shifts operations to implement the divisions by power of

two. Finally, the output of this unit is the prediction residual, Δz(t). As this submodule

only employs simple arithmetic and logic operations, its process takes a single clock cycle.
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If mz(t) �= 0 (i.e., near-lossless compression), the next step is the Quantizer unit; otherwise,

it is bypassed. The quantizer is a critical point in the datapath, since it makes use of a

division that it is not efficiently implemented by HLS tools, considerably delaying the whole

process. In the proposed solution, a new approach is presented, substituting the division

by a multiplication by the inverse of the division, operation that is highly optimised by

using the internal DSPs of the Kintex UltraScale FPGA technology. For this purpose, a

LUT is previously defined with the result of the division 1
X

in fixed-point (i.e., integer

precision), being X the different divisor values in the range of error limits defined by the

target application. The required LUT size would be of 2Da − 1 words if only absolute

errors are used, 2Dr − 1 words if only relative errors are used, and the minimum of both

values if both error types are defined. To avoid rounding issues for certain divisors, the

computation of the inverse values of denominator is done in excess, depending on the

selected error control method. Following this strategy also in the divisions performed

in the Mapper unit, the responsible of generating the unsigned mapped residuals δz(t),

a reduction of around the 30% of the predictor latency is observed, compared with the

version that implements directly the division.

The Quantizer bin center and the Local decompressor units are the responsible of per-

forming the samples reconstruction, in order to properly estimate the value of the sample

representative s′′z,y,x, used during the processing of the next image samples. While the

first calculates the bin center s′z(t) in one clock cycle, as indicated in Equation 3.17, the

latter estimates the value of s′′z,y,x only if the user-defined parameter Θ �= 0; otherwise,

s′′z,y,x = sz,y,x. The calculation of the sample representative value is optimized for a hard-

ware implementation, substituting power-of-two operations and the division reflected in

Equation 3.18 by logical shifts. Since the rest of parameters used for the calculation are

previously known, including the sign of the quantized index qz(t), this step is also executed

in only one clock cycle.

Finally, the prediction chain includes the Compute weights module, which performs both

the weights initialization or their update, depending on the current image coordinates. The

latency of the weights updating directly depends on the selected prediction mode, which

defines the number of components in the weights vector. However, this process is done

simultaneously for the different weight components, since there are not data dependencies

among them. In addition, the proposed solution takes into account data dependencies

with adjacent samples during the weights update when the compression is done in BIL

order, trying to reduce the impact of those dependencies in the global throughput. An

extra memory is defined in the design, denoted as FullWeights, whose size is Nz · Cz and
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used to store the state of the weights vector at each band z, recovered them to process the

next image pixel in the same band.

3.4.3 Block characterization

Since the CCSDS 123.0-B-2 predictor has been modelled following an HLS design flow and

using Xilinx Vitis HLS tool (v2020.2), it is mapped on Kintex UltraScale XCKU040. The

reason is that it is equivalent to the space-grade XQRKU060 FPGA. Taking into account

the strengths of this workflow, it has been used to perform a design space exploration of

the CCSDS 123.0-B-2 predictor at early stages of the development process to analyse the

impact of implementing specific set of predictor features, in terms of resources utilization.

Results derived from this study are relevant to approximately know the predictor footprint

once it is going to be integrated in a full compression chain with other additional stages,

such as an entropy coder. For all the configurations under analysis, the predictor is

synthesized reaching a maximum clock frequency of 125 MHz.

The baseline configuration used for synthesis purposes is summarised in Table 3.7, restricting

supported image dimensions to the ones of the AVIRIS scenes, since they are the ones

used for verification and validation purposes. The value of D is also fixed to 16 to target

AVIRIS or a similar sensor. The rest of parameter values have been selected trying to

maximize the CR in lossless mode. In any case, all these parameter values can be changed

in runtime, if needed. The maximum error limit, using absolute and/or relative values, can

be changed depending on the target application and the required compression performance.

First of all, the different combinations of local sum and prediction modes are analysed. In

Table 3.8, results are provided for neighbour-oriented local sums, distinguishing between

wide neighbour-oriented (WN) and narrow neighbour-oriented (NN). In the same way,

Table 3.9 presents the results for column-oriented local sums, including wide column-

oriented (WC) and narrow column-oriented (NC). For the different situations under study,

the consumption of BRAMs and DSPs is identical, since not specific memory requirements

or extra arithmetic calculations are added based on the selected local sum and prediction

mode. Registers usage is also equal for the defined combinations. Regarding LUTs

consumption, slight differences are appreciated, increasing this usage when full prediction

mode and wide local sums are selected. In any case, these differences are minimum,

implying a difference around the 0.4% when full prediction mode is selected instead of the
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Table 3.7: Baseline synthesis configuration for the CCSDS 123.0-B-2 predictor

Parameter Value

Image parameters

Columns, Nx 677

Lines, Ny 512

Bands, Nz 224

Dynamic Range, D 16

Encoding Order BIL

Predictor parameters

Bands for Prediction, P 3

Weight Resolution, Ω 16

Sample Adaptive Resolution, Θ 2

Sample Adaptive Offset, ψz 1

Sample Adaptive Damping, φz 1

Absolute Error Bitdepth, Da 8

Relative Error Bitdepth, Dr 8

Table 3.8: CCSDS 123.0-B-2 predictor - Resources utilization on Xilinx Kintex
UltraScale XCKU040 depending on the combination of local sum and full prediction

Config Total WN+full WN+reduced NN+full NN+reduced

36Kb BRAM 600 7 7 7 7

DSP48E 1920 9 9 9 9

Registers 484800 1894 1894 1894 1894

LUTs 242400 3994 3980 3990 3976

Table 3.9: CCSDS 123.0-B-2 predictor - Resources utilization on Xilinx Kintex
UltraScale XCKU040 depending on the combination of local sum and reduced prediction

Config Total WC+full WC+reduced NC+full NC+reduced

36Kb BRAM 600 7 7 7 7

DSP48E 1920 9 9 9 9

Registers 484800 1894 1894 1894 1894

LUTs 242400 3990 3980 3984 3975

reduced one (directional local differences are taking into account), and a 0.1% when wide

local sums are used instead of the new narrow option.

Higher differences are observed depending on the selected compression mode, as reflected

in Table 3.10. Lossless compression mode with narrow neighbour-oriented local sums and

full prediction mode is used as baseline for this comparison. Just introducing the sample

reconstruction stage implies a huge increment in the memory usage regarding the purely

lossless mode, because of the introduction of the topSamples and currentSamples memories,

used to store sample representatives of previously processed pixels used to predict the

current one. Besides, DSPs usage is increased a 200% by introducing sample representatives
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Table 3.10: CCSDS 123.0-B-2 predictor - Resources utilization on Xilinx Kintex
UltraScale XCKU040 depending on the applied absolute error limit

Config Total Lossless
Lossless Near-lossless Near-lossless

(S. Representative) (Absolute error) (Relative error)
36Kb BRAM 600 7 76 76 76

DSP48E 1920 9 27 31 32
Registers 484800 1894 5257 6569 6673
LUTs 242400 3990 10940 15767 15812

computation. An extra DSP consumption is appreciated under near-lossless compression

to compute optimized multiplications in the quantizer stage, which is dependent on the

maximum error limit used.

Regarding logic resources utilization, an increment of the 177% and 174% is appreciated

in the registers and LUTs usage, respectively, when samples reconstruction is introduced.

In addition, working in near-lossless mode implies an average increment around a 26%

and 44% in the registers and LUTs utilization, respectively, compared to the lossless

architecture with samples reconstruction and depending on the maximum error limit

applied. In any case, taking the most restrictive alternative in terms of resources utilization

(i.e. near-lossless compression applying relative error limits), just the 12.6% and 1.7% of the

BRAMs and DSPs available in the device are used, respectively. Regarding logic resources

consumption, the 1.4% and 6.5% of the available registers and LUTs are consumed,

respectively.

Finally, as it was also done for the CCSDS 123.0-B-1 predictor in Section 3.3.3, the

resources utilization of each internal module is obtained, mainly to analyse the impact of

introducing the new modules to support near-lossless compression. These results are shown

in Table 3.11. As for the CCSDS 123.0-B-1 predictor, the most memory consuming stage is

the one that organize the neighbouring for the local sum and local differences calculation,

which is in this approach also the responsible of properly managing the topSamples and

currentSamples memories. This module uses the 24.5% of the BRAMs available in the

Kintex UltraScale XCKU040 FPGA when targeting AVIRIS scenes.

In terms of logic resources utilization, the optimization that replaces the division performed

in the quantizer by a multiplication implies the reduction of its complexity, consuming

just some LUTs and 1 DSP to perform that multiplication. The modules that use more

LUTs are again the weights update, as in the CCSDS 123.0-B-1 predictor; the prediction

itself, which is more complex in this new Issue of the standard for the introduction of

the high-resolution predicted sample; and the local decompressor stage (i.e. the sample
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representatives computation), which also performs some internal multiplications. The

highest LUT utilization is around the 1.5% for the weights update module, which is

considered minimum. The sample representatives stage is the one that uses more DSPs

(around the 0.2% of the total available).

Table 3.11: CCSDS 123.0-B-2 predictor - Resources utilization on Xilinx Kintex
UltraScale XCKU040 per submodule

Module Total
Read Local Local

Prediction
Weights

Samples Sums Diffs Update

36Kb BRAM 600 147 0 0 0 4

DSP48E 1920 1 0 0 0 1

Registers 484800 174 0 169 390 1048

LUTs 242400 900 398 1096 2021 3524

Module Total Quantizer
Local

Mapper
Decompressor

36Kb BRAM 600 1 0 1

DSP48E 1920 1 4 2

Registers 484800 111 664 210

LUTs 242400 240 1849 559

These numbers demonstrate the viability to implement the presented HLS implementation

of the CCSDS 123.0-B-2 predictor in a commercial FPGA equivalent to a space-grade

one, in terms of logic resources availability. In addition, obtained results will allow the

application of mitigation techniques against radiation effects, since enough logic resources

are available to apply hardware redundancy. As a final conclusion, it can be observed that

resources utilization, specially the memory usage, is closely related to the target sensor

and the acquired scene size.

3.5 Conclusions

In this Chapter, three different prediction-based preprocessors have been developed, all

of them compliant with the CCSDS standards. The unit-delay predictor, based on the

CCSDS 121.0-B-3 standard, is focused on one-dimensional data decorrelation. The 3D

predictors compliant with the CCSDS 123.0-B-1 and 123.0-B-2 standards provide both

spatial and spectral decorrelation when processing multi- and hyperspectral images under

lossless and near-lossless compression, respectively.
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Results have been provided for each one of these approaches targeting the Xilinx Kintex

UltraScale XCKU040, demonstrating the goodness of the proposed functional blocks to fit

well on a space-grade FPGA. Besides, characterization results have been obtained for other

radiation-tolerant FPGA technologies (e.g. NanoXplore Brave NG FPGAs or Microsemi

RTG4) that were not included in this document for the sake of conciseness.



Chapter 4

Design and characterization of

entropy coding blocks

In this Chapter, hardware implementations of different entropy coders are presented

as functional blocks, which can be easily integrated as part of a whole compression

chain. Entropy coders aim at reducing as much as possible the compressed bitstream,

by representing the prediction residuals with the minimum possible number of bits to

ensure a proper decompression. The developed implementations function as described

in the CCSDS 121.0-B-3, 123.0-B-1 and 123.0-B-2 compression standards, which define

the entropy coders named block-adaptive, sample-adaptive and hybrid, respectively. A

theoretical introduction to these algorithms and the architectural design implementing

each alternative are provided. Besides, some preliminary synthesis results in a space-

representative FPGA are presented to demonstrate the viability of implementing these

encoding solutions on-board satellites.

83
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4.1 Outline

In addition to a preprocessor, the entropy coding constitutes a key stage in a compression

chain. It is the responsible of coding the received prediction residuals with the minimum

possible number of bits. As in the case of prediction-based preprocessors presented in

Chapter 3, the CCSDS also propose different entropy coding alternatives in the published

data compression standards, which provide low-complexity solutions to be used by the

space industry when it comes to on-board data processing, ensuring at the same time an

acceptable RD ratio.

This Chapter presents three different entropy coding solutions developed as functional

blocks, which can be connected to the developed prediction-based preprocessors in a

plug and play manner to conform full compression chains, depending on the mission

requirements in terms of compression ratio, throughput or hardware occupancy. Both

RTL and HLS design methodologies are considered, selecting the appropriate workflow

depending on the constraints imposed by each solution development, in terms of both

performance and available design time.

Two of these solutions implement the block-adaptive and the sample-adaptive encoders,

described in the CCSDS 121.0-B-3 [27] and 123.0-B-1 [30] lossless compression standards,

respectively, as VHDL technology-agnostic solutions. These two entropy coding imple-

mentations have been then integrated as part of SHyLoC [59, 60]. The RTL design

methodology has been followed in this case to maximize the throughput of the proposed

solutions, with the purpose of reaching real-time capabilities. At the same time, these

optimized approaches are developed keeping in mind a low area footprint, which is a main

constraint for on-board processing solutions.

In addition, an HLS implementation of the hybrid encoder proposed in the CCSDS 123.0-B-

2 near-lossless compression standard is presented, in order to obtain a compression solution

fully compliant with that standard, by joining this encoder to the 3D predictor presented

in Section 3.4. In this way, the prototyping of this complex algorithm is possible in a short

time, analysing at early stages of the space mission program the viability of implementing

it in space-grade Xilinx Kintex UltraScale FPGA technology. In any case, this encoder can

be also connected to other preprocessing stages by defining the appropriate data interfaces

during its synthesis.
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Finally, preliminary synthesis results on a space-grade FPGA, specifically the Xilinx Kintex

UltraScale XCKU040, are presented for these entropy coding modules, demonstrating in

this way their feasibility to work on-board satellites. Representative configuration sets are

defined for each approach, in order to analyse both the performance and the hardware

occupancy under different possible scenarios.

4.2 CCSDS 121.0-B-3 block-adaptive encoder

4.2.1 Algorithm overview

The entropy coder described in the CCSDS 121.0-B-3 standard is based in adaptive Rice

coding [27], a subset of Golomb codes that uses a power of two as tunable parameter.

This parameter eases the hardware implementation, since multiplications and divisions

by powers of two are efficiently implemented applying logic shifts. This entropy encoder

achieves suitable performance over different overlapping ranges of entropy, since it takes

into account the variability of the geometrical distribution of the alphabet along the

time, not calculating the optimal code, such as Golomb coding, but the one that it is

more adjusted to the current input samples. The incoming samples (preprocessed or not,

depending on the presence or absence of a prediction stage, respectively) are grouped

into blocks of size J, parameter defined by the user. In this encoder, all the possible

compression options are concurrently applied to a block of J consecutive input samples.

Finally, each block of J samples is coded with the compression option which produces the

shortest output, among the available ones:

• Fundamental sequence (FS). Each input sample δi is encoded as δi zeroes followed

by a one. It is the most basic option.

• Sample splitting. First, each input sample is split by removing the k least signifi-

cant bits. The MSBs of δi (n− k) are coded with the FS, while the LSBs are left

uncompressed.

• Second-extension. In this low-entropy option each pair of input samples δi and

δi+1 is transformed into a new symbol γ, according to the formula γ = (δi+ δi+1)(δi+

δi+1 + 1)/2 + δi+1, and then coded using FS.
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• Zero-block. This option is thought for low-entropy images and it denotes one or

more consecutive blocks of all-zeroes. It is the only case where a single codeword

may represent more than one compressed block.

• No compression. The input samples are flushed unaltered (i.e. the entropy coder

is bypassed).

A unique identifier (ID) is attached to each compressed block for all the aforementioned

compression options. The standard also provides the possibility for the user to choose

either a basic or a restricted set of coding options. Nonetheless, the restricted codeset is

just selectable when D ≤ 4, reducing in this case the number of available coding options

and thus allowing the use of shorter ID bit sequences.

In addition, parameters used during the entropy coding stage are included in a header,

which is attached at the beginning of the encoded bitstream and whose structure depends

on the selected header generation mode: packet or file format. This latter option is the

main novelty of Issue 3 of the standard, codifying the value of the parameters taken account

during encoding. This information is required on the decompression side to be able to

efficiently reconstruct the original data, knowing also which encoding option has been used

for each group of J samples, thanks to the compressed block ID.

In case two or more compression options produce a codeword with the same bit length for

an specific group of J samples and it is identified as the shortest one, some precedence

rules are established:

1. The No compression option has the highest priority, being selected in case of tie

with other coding options.

2. The next one in order of priority is the Second-extension, which should be chosen

when it minimizes the encoded length.

3. Otherwise, the coding option having the smallest code parameter value k should be

chosen.
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4.2.2 Block design

The block-adaptive encoder includes, in addition to the encoding functionality, the necessary

logic to receive the runtime configuration through the AHB slave and the mapped residuals

δi, using in this case an ad-hoc dedicated interface. The block-adaptive encoder diagram

is depicted in Figure 4.1.

First, the int module reads the runtime configuration, validating the values received and

raising an error if the configuration values are out of range. If runtime configuration is

disabled, this module is bypassed throughout the datapath, directly working with the

compile-time configuration.

Then, the configuration values are sent to the header gen module, which generates the

different header fields depending on the selected header format, allowing to select between

packet and the new file format, introduced in Issue 3 of the standard. This selection is

done through the HEADER FORMAT generic, which is set to 0 to generate the header

according to the packet format, and it is equal to 1 if file format is selected. The header

can contain, in addition to fields related to the encoder parameters and the input data
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Figure 4.1: Block diagram of the CCSDS 121.0-B-3 block-adaptive entropy coder
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features. If this encoder is part of a full compression chain, a dedicated input is employed

to receive header fields from an external preprocessor connected to the encoder. Once the

header has been properly generated, it is transmitted to the packing final module. This

module splits the output bitstream in words with a size specified by the user through the

W BUFFER parameter, which should have a value between 8 and 64, in steps of 8 (i.e., a

byte boundary). Every time the output buffer is full with W BUFFER bits, a Valid flag

indicates that the output value can be captured by the external receiver.

The rest of the modules constitute the encoding engine itself, implementing the encoding

options described in Section 4.2.1. The input mapped residuals δi are stored in the mapped

FIFO until a block of J samples is completed. The size of the mapped and the rest of the

FIFOs in the design is optimized according to the user-defined values specified for J and

D. These FIFOs are mapped into BRAMs when J > 32, enabling in this case the EDAC

mechanism by setting its associated generic to 1, which is able to correct single errors and

detect and inform about Multiple Bit Upsets (MBUs).

The snd extension module computes the length of a block encoded with the second-

extension option, storing its output in the gamma FIFO, while the compute l k module

calculates the length of a block encoded with the FS, as well as all the sample splitting

options, selecting the value of k that yields the shortest encoded block by subtracting

the consecutive options Lk − Lk+1, until the first negative result is found. The number of

options to be evaluated depends on the dynamic range of the input samples D and other

user-selected configuration parameters. In addition, the compute l k module identifies if a

block of samples contains all zeroes, selecting in this case the zero-block option.

The option that generates the codeword with the minimum length is stored in a register

denoted as Lk(winner), and it is compared with the lengths obtained by the snd extension

and no compression modules in the optioncoder module. To compute the length of a

block of samples for all encoding options, it is necessary to sum and accumulate the

number of bits taken by every mapped prediction residual δi in a block, for each one of

the available encoding options. The selector will then choose the encoding option which

produces the output with the minimum number of bits, taking also into account the bits

used by the option identifier, which is generated according [27]. It has to be remarked

that the maximum length of a compressed block of samples will be that of applying the

no compression option (J ·D), so the size of the register that saves the number of bits for

each option, can be established as log2(J ·D).
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Once the suitable encoding option is selected, the fscoder module encodes the stream

according to the FS sequence, joined to the option identifier. When encoding the sample-

split option, the split bits are packed separately in buffers and then attached to the FS

codeword, using a FIFO to temporarily store the split bits. The sequence encoded by

the fscoder, as well as the uncompressed sample splits, are sent to the final packer to be

outputted.

The entropy coder must also manage periodic reference samples introduced by the unit-

delay predictor, in case it is connected to the encoder input. It should be able to identify

which blocks of samples include a reference sample. This process is done by introducing a

dedicated state in the block-coder FSM. The reference sample is coded after the unique

identifier for each coding option in all the cases, including the no compression option.

The snd extension and the compute l k modules should compute correctly the length of

the compressed block for each compression option when a reference sample is introduced,

following the rules detailed below:

• Fundamental sequence. The reference sample is not compressed, so its contribution

to the length of the compressed block is the dynamic range of the input samples D,

rather than its value. The rest of the samples in the block are compressed as usual.

• Sample splitting. Same case as the FS: the reference sample is uncompressed and no

changes are presented in the management of the rest of the block samples.

• Second-extension. The reference sample is independently coded without compression.

Then, the first sample of the block is replaced by a zero value when computing the

gamma values.

• Zero-block. The reference sample is not taken into account when the zero-block

condition is evaluated. This is, a block of all zeroes except for the first sample will

be coded with this option, if it includes a reference sample.

4.2.3 Block characterization

Different sets of configuration parameters have been defined, with the purpose of analysing

the impact of the block-encoder parameters in terms of logic resources utilization and

maximum clock frequency. These synthesis sets are summarised in Table 4.1. The main

parameters that change among configurations are the block size J GEN, which defines



90 Chapter 4. Design and characterization of entropy coding blocks

Table 4.1: Sets of synthesis configurations for the CCSDS 121.0-B-3
block-adaptive encoder

Generic Set1 Set2 Set3 Set4

EN RUNCFG 0 0 0 1

RESET TYPE 1 1 1 1

Nx GEN 1024 1024 1024 1024

Ny GEN 1024 1024 1024 1024

Nz GEN 1024 1024 1024 1024

D GEN 16 16 16 16

J GEN 16 32 64 16

W BUFFER GEN 32 32 64 64

the number of samples that comprise an input block; and the width of the output buffer,

W BUFFER GEN. As it is also reflected in Table 4.1, the maximum image size is fixed

to 1024 for each one of the three coordinates and the dynamic range D to 16, since it is

the maximum allowed by the block-adaptive encoder. Since D = 16, the basic codeset is

always selected.

The maximum clock frequency for each configuration set is reflected in Table 4.2 for

Xilinx Kintex UltraScale XCKU040. The hardware occupancy in terms of memory blocks,

arithmetical units and logic resources is also provided in that table for each one of the

proposed configuration sets. Since the block-adaptive encoder processes one sample per

clock cycle, the maximum throughput (measured in MSamples/s) will be equal to the

maximum clock frequency achieved by each synthesis set.

The best result in terms of maximum clock frequency achieves a maximum value of 188.3

MHz when using the simplest configuration (i.e., Set1), with J = 16 and W BUFFER =

32. In general, it is observed that high values of J andW BUFFER have a slight negative

impact in maximum clock frequency. This negative impact is noted when comparing

synthesis results between Set1 and Set3, being the latter the most restrictive one, attending

to J and W BUFFER values (both equal to 64, the maximum allowed). Using Set3

implies a maximum clock frequency reduction around the 14% regarding to Set1.

In terms of logic resources utilization, 1.8% of the available LUTs are utilized on Kintex

UltraScale when using the most restrictive configuration (i.e., Set3). The BRAM usage

is around the 0.6% of the total available employing also Set3. For the rest of hardware

resources, it is observed that the trend is to increase for high values of J and W BUFFER

parameters.
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Taking into account these results, it is concluded that the proposed implementation based

on the CCSDS 121.0-B-3 block-adaptive encoder allows on-board data processing at high

rates, with low area footprint.

Table 4.2: CCSDS 121.0-B-3 block-adaptive encoder - Synthesis on Xilinx Kintex
UltraScale XCKU040

Parameters Total Set1 Set2 Set3 Set4

Block RAMs 600 0 3 4 0

DSP48 1920 2 2 4 2

Registers 484800 1130 1365 1576 1560

LUTs 242400 3428 3428 4317 3708

Maximum Frequency
188.3 173.7 160.2 161.7

(Clk S) (MHz)

4.3 CCSDS 123.0-B-1 sample-adaptive encoder

4.3.1 Algorithm overview

The sample-adaptive encoder is a more sophisticated but less computationally complex

version of an adaptable Rice coder than the block-adaptive one. However, the sample-

adaptive encoder presents a theoretical limitation in terms of CR that prevents from

achieving less than 1 bpp. This constraint is not present in neither the block-adaptive nor

the hybrid encoders, which efficiently exploits low-entropy data to enhance the CR.

With the sample-adaptive encoder, the input residuals δ(t) are compressed individually

instead of in blocks, by using a family of Golomb-power-of-2 (GPO2) codes [30]. Each

code is identified by an index k, which is selected for each particular sample depends on

the image statistics (i.e., information of previously processed samples). The coding process

is performed as described next when t > 0:

1. If �δ(t)/2k� < Umax, the codeword is formed by δ(t)/2k zeros, followed by a one and

the k least significant bits of δ(t). The unary length limit Umax is a user-defined

parameter in the range 8 ≤ Umax ≤ 32.

2. Otherwise, the codeword consists of Umax zeros, followed by the representation of

δ(t) with D bits.
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The first mapped prediction residual in each band δz(0) is uncompressed and attached

to the output bitstream represented with D bits. In addition, fill bits are appended at

the end of the compressed image just after the last codeword, until the next output word

boundary is reached.

Image statistics are maintained by two variables, whose values are used to choose the

corresponding kz(t) for each input sample: a counter Γ(t) and an accumulator Σz(t), which

are computed independently for each image band. In this way, the index kz(t) is the largest

integer, lower or equal than D − 2, that satisfies Equation 4.1. The ratio between both

statistics provide an estimation of the mean δ(t) for the band z under process.

Γ(t)2kz(t) ≤ Σz(t) + �49
27

Γ(t)� (4.1)

These statistics are updated with every new sample, depending on the chosen compressor

configuration. Besides, both the counter and the accumulator are periodically rescaled

applying a division by two, avoiding infinite values and, consequently, overflow in the used

data-types. The interval at which statistics are rescaled is controlled by the rescaling

counter size γ∗, which shall be in the range max{4, γ0 + 1} ≤ γ∗ ≤ 11, being γ0 the initial

count exponent, another user-defined parameter, which shall be in the range 1 ≤ γ0 ≤ 8.

The initial value of the counter Γ(1) is 2γ0 , while the initial accumulator value Σz(1) is

calculated according to Equation 4.2, where k′z is a value in the range 0 ≤ k′z ≤ D − 2.

Σz(1) = � 1
27
(3 · 2k′z+6 − 49)Γ(1)� (4.2)

4.3.2 Block design

The sample-adaptive encoder is formed by two main modules, the compression engine and

the bitpacker, together with a FSM that manages the complete encoding process, as shown

in Figure 4.2. In addition, it includes the necessary logic to receive the configuration at

runtime through an AMBA AHB slave interface and the input samples through a dedicate

ad-hoc interface. Input and output data interfaces are implemented using a handshaking

protocol, associating a Valid signal to each input/output data. The received configuration

is checked to confirm that it is correct, raising an error otherwise. These values are sent to

the rest of the modules in the design.
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As soon as mapped residuals δ(t) are received, the compression engine calculates the code

k for each input sample using the createcdw module, taking into account the current

counter and accumulator values. The opcode update module generates an operation code

depending on the location of the sample in the image, developing different variations of

this functional unit for each possible compression order (BIP, BSQ and BIL).

Then, these image statistics (i.e., the counter and the accumulator) are updated in the

update counters module. For that purpose, two FIFOs are needed when some of the

available Band-Interleaved architectures are selected for the prediction stage, in order to

store the accumulator values of a specific sample with all its spectral components (i.e.,

in all the bands), necessary to compress the next one. All this processing chain has been

developed as a highly-optimized pipeline, which allows to encode an input sample every

clock cycle.

The last part of the encoding flow is the bit pack module, which wraps the generated

codewords according to the value of the W BUFFER GEN constant. Each time the output

buffer is full, a Valid flag is asserted to indicate that the output bitstream can be captured.

sample adaptive top

fifo_currPre_Data_Out components

opcode_update.bip_arch

update_counters.bip_arch

fifo_acc
createcdw

bit_pack
SampleCompressed

fifo_acc

opcode_update.bsq_arch opcode_update.bil_arch

update_counters.bsq_arch update_counters.bil_arch

fsm

Figure 4.2: Block diagram of the CCSDS 123.0-B-1 sample-adaptive entropy coder

4.3.3 Block characterization

Table 4.3 summarises the sets of configuration values defined to synthesize the CCSDS

123.0-B-1 sample-adaptive encoder, with the purpose of analyzing parameters impact in

both hardware occupancy and maximum clock frequency. Image features, such as size

and input bit-depth D, are fixed to target AVIRIS scenes. Although the sample-adaptive
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Table 4.3: Sets of synthesis configurations for the CCSDS 123.0-B-1
sample-adaptive encoder

Generic Set1 Set2 Set3 Set4

EN RUNCFG 0 0 1 1

Nx GEN 512 512 512 512

Ny GEN 680 680 680 680

Nz GEN 224 224 224 224

D GEN 16 16 16 16

W BUFFER GEN 32 32 64 64

INIT COUNT E GEN 1 3 1 3

ACC INIT CONST GEN 4 5 4 5

RESC COUNT SIZE GEN 5 6 5 6

U MAX GEN 8 16 32 32

encoder is developed as a standalone solution some features, such as the statistics update,

are dependent on the input image arrangement; in this way, all the proposed configuration

sets are defined for BIP order, since it makes possible that in a full lossless compression

chain, as the one presented next in Section 5.4, a whole throughput of one input sample

per clock cycle can be reached. Parameters that change among configurations are the

the width of the output buffer, W BUFFER GEN, and the ones specifically related the

encoding process (i.e., the unary length limit Umax, the rescaling counter size γ∗, the initial
count exponent γ0 and the accumulator initialization constant k).

Results in terms of maximum clock frequency are shown in Table 4.2 for Xilinx Kintex

UltraScale XCKU040. In the same way, hardware occupancy is provided in terms of

memory blocks, arithmetical units and logic resources for each one of the proposed

parameter combinations. Since it is able to process one input sample (i.e., a mapped

prediction residual δ(t)) per clock cycle, the sample-adaptive encoder always achieves

a throughput equal to the maximum clock frequency magnitude independently of the

selected configuration. In terms of maximum clock frequency, a value up to 175.7 MHz is

reached for Kintex UltraScale XCKU040 when Set4 is used for synthesis, though minimum

differences (around the 10%) are obtained regarding the worst case, under Set3. It is

observed that high values of W BUFFER and Umax have not an influence in the maximum

clock frequency achieved, while the relationship between γ0 and γ∗ implies a penalty.

In general terms, the sample-adaptive encoder allows real-time data processing while at

the same time has a lower area footprint than the block-adaptive one, since the latter

simultaneously computes multiple encoding options and works with groups of J samples.
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In contrast, the sample-adaptive encoder just calculates a single encoding option for each

input residual independently.

Although Set4 is the fastest in terms of maximum clock frequency for Kintex UltraScale

XCKU040, it is also the most demanding one regarding hardware occupancy. Anyway,

this area footprint is minimum, consuming just the 0.1% of registers and the 0.4% of the

available LUTs in the device. DSPs are not used independently of the selected configuration

set, while BRAM usage is negligible. This memory consumption is just conditioned by

the way in which the statistics are stored under BIP order (i.e., an accumulator value per

band z).

Table 4.4: CCSDS 123.0-B-1 sample-adaptive encoder - Synthesis on Xilinx Kintex
UltraScale XCKU040

Parameters Total Set1 Set2 Set3 Set4

Block RAMs 600 1 1 1 1

DSP48 1920 0 0 0 0

Registers 484800 434 434 500 500

LUTs 242400 942 961 1007 1033

Maximum Frequency
167.2 167.1 159.6 175.7

(Clk S) (MHz)

4.4 CCSDS 123.0-B-2 hybrid encoder

4.4.1 Algorithm overview

With the aim of obtaining the lowest possible bit rate at the ouput of the encoding stage,

the hybrid encoder follows an interleaved strategy, switching between two possible encoding

methods, denoted as high-entropy and low-entropy. A single output codeword is generated

by each processed sample under the high-entropy mode, while the low-entropy method,

which prevails when losses are introduced in the prediction stage (i.e., near-lossless or lossy

compression) or when low-entropy input data is received, may encode multiple samples in

a single codeword, thus achieving lower compression rates than the other entropy coder

alternatives previously described in this chapter.

The selected mode depends on code selection statistics (i.e., a counter and an accumulator),

which are updated with every new sample. Values of already processed samples are added

to the accumulator, while the counter registers the number of samples that have been
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previously processed. As in the case of the sample-adaptive encoder, both statistics are

rescaled at certain points by dividing by two, preserving the average estimated value.

The least significant bit of the accumulator is outputted before rescaling, allowing to the

decoder to invert the statistics update process. More details about how these statistics are

incremented and rescaled can be found in [31], including the theoretical basis.

The high-entropy method is selected if the condition described in Equation 4.3 is met, where

Σz(t) and Γ(t) are the accumulator and counter values in the target band z, respectively,

and T0 represents a threshold that determines if the sample under analysis should be

encoded using the high-entropy process or the low-entropy one, and whose value is reflected

in Table 4.5.

Σz(t) · 214 ≥ T0 · Γ(t) (4.3)

Under the high-entropy mode, the hybrid encoder works in a similar way than the sample-

adaptive one described in Section 4.3.1, but coding the codewords in reverse order. In

this way, GPO2 codes are used to code input samples individually depending on image

statistics, which are independently computed for each separate band. In this case, the

coding procedure is based in the next assumptions, depending on the relationship between

input residuals δ(t) and the k index value:

1. If δ(t)/2k < Umax, the codeword is comprised by the k least significant bits of δ(t),

followed by a one and δ(t)/2k zeros.

2. Otherwise, the high-entropy codeword consists on the representation of δ(t) with D

bits, followed by Umax zeros.

On the other side, the low-entropy mode uses one of the 16 variable-to-variable length

codes to code each mapped residual δ(t). During encoding, each low-entropy code has an

active prefix, which is a sequence of input symbols. The selection of the appropriate active

prefix is based on Equation 4.4, where Ti represents the threshold of the largest code index

i that can be used to code the low-entropy residual. These threshold values are defined in

the standard, as reflected in Table 4.5.

Σz(t) · 214 < Γ(t) · Ti (4.4)
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Table 4.5: Relationship between the code index, the input symbol limit and the
threshold in the low-entropy mode

Code index i Input Symbol Limit Li Threshold Ti
0 12 303336
1 10 225404
2 8 166979
3 6 128672
4 6 95597
5 4 69670
6 4 50678
7 4 34898
8 2 23331
9 2 14935
10 2 9282
11 2 5510
12 2 3195
13 2 1928
14 2 1112
15 0 408

The input symbol determines, following Equation 4.5, if the current mapped residual

δz(t) is appended to the selected active prefix; on contrary, if the input symbol is the

escape one (represented as X), the residual value δz(t)−Li − 1 is directly outputted to the

bitstream and coded in the same way than it is done by the high-entropy method, being

Li the input symbol limit for that specific code, which is also predefined in the standard

[31]. The index i is an integer in the range 0 ≤ i ≤ 15, equivalent to the total number

of variable-to-variable length codes available in the low-entropy mode. If after updating

the active prefix is equal to a complete input codeword, as specified in the code table

associated to that code, the corresponding output codeword assigned to that input word

is appended to the output bitstream, and then the active prefix for that low-entropy code

is reset.

iz(t) =

⎧⎨
⎩δ(t), δ(t) ≤ Li

X, δ(t) > Li

(4.5)

Finally, a compressed image tail is appended at the end of the output bitstream, after all

the mapped residuals have been encoded. This field contains the necessary information

to decode the compressed bitstream in reverse order. Reverse decoding process becomes

necessary because of the latency between the processing of a low-entropy mapped residual
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and the output of the codeword that encodes it. In this way, memory-efficient hardware

implementations can be efficiently developed. The image tail is comprised by the flush

codeword, in increasing order, for each one of the 16 the active prefixes, in addition to the

final value of the accumulator Σz(t) in each spectral band. Then, the bitstream is filled

with padding bits until a byte boundary is completed, adding a ’1’ bit followed by as many

zero bits as necessary. This ’1’ bit is used by the decoder to identify the number of padding

bits that shall be discarded before starting the decompression process. The compressed

bitstream is completed with a header that specifies the user-defined parameters employed

by the encoder, which must be known for a correct decompression.

4.4.2 Block design

The top-level block diagram of the hybrid encoder is shown in Figure 4.3, which is comprised

by four functional units: the Statistics module, the responsible of initializing, updating and

rescaling both the counter and the accumulator; the Method Selection unit that implements

Equation 4.3 and consequently decides which encoding method is selected, depending of the

current δ(t) value; the Bitstream Generator, which solves the bottleneck of outputting the

resultant codeword generated by the hybrid encoder in a bit-by-bit manner (being possible

to complete more than one byte in the same iteration or even let a byte incomplete), thus

adapting data rates; and the two main modules that compute the high- and low-entropy

methods, as described below.

Figure 4.3: General overview of the hybrid encoder architecture
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The hybrid encoder receives both the configuration and the input samples through AXI

interfaces. This module receives the encoder parameters, the image size and the pixel

resolution D through an AXI4-Lite interface. Then, the input samples are received from an

intermediate FIFO, where the input mapped residuals δ(t) are stored. The output interface

is based on a basic AXI4-Stream interface that uses a simple handshaking protocol by

defining the Valid and Ready signals for dataflow control, in addition to the Last signal.

which indicates the transmission of the last codeword. Input and output data interfaces

can be also synthesized with an ad-hoc protocol, if it is required to be connected to other

modules, such as a preprocessor, to conform more sophisticated compression solutions.

The variable-length codes (a single codeword for each high-entropy code or a codeword

comprised by multiple low-entropy codes) are sent grouped in words of W BUFFER bytes,

parameter defined by the user. An extra flag, named End-of-Processing (EOP), is used to

inform to the external bitpacker that the encoder has finished the bitstream generation. In

addition, both the final state of the 16 low-entropy codes and the accumulator values for

each band z are saved in FIFOs, which are accessed by the external bitpacker to properly

generate the image tail.

4.4.2.1 High-entropy unit

This functional unit is responsible of encoding the mapped residual δ(t) using a high-

entropy codeword, when Equation 4.3 is satisfied. This process employs RLL-GPO2 codes

and the procedure is done based on the assumptions described in Section 4.4.1.

The high-entropy module is divided into two main parts: the computation of the k value and

the writing of the resultant codeword in the output bitstream. The calculation of k has been

done in an iterative way, trying to find the largest positive value of kz(t) ≤ max{D− 2, 2}
that satisfies Equation 4.6. That loop is accelerated by following a pipelining strategy and

avoiding the use of complex arithmetic operations, replacing divisions, which are not fully

optimized by HLS tools, by logic shifts.

Γ(t)2kz(t)+2 ≤ ˜Σz(t) + �49
25

Γ(t)� (4.6)
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4.4.2.2 Low-entropy unit

This functional unit encodes the mapped residual δ(t) when Equation 4.3 is not satisfied.

For doing so, mapped residuals are set into one of the 16 group of values identified by a

code index, i. The management of the input-to-output and flush input-to-output codeword

tables in hardware result very inefficient from a computational point of view, if the

process is implemented as directly described in the standard. To overcome this issue, the

information present in these tables as well as the searching patterns have been reorganized.

For doing so, the information present in the input-to-output codeword table for each code

index, i, and its corresponding flush input-to-output codeword table have been merged into

two arrays, named APli and APvi, respectively. Additionally, the corresponding APi is

implemented as an index used to move inside APli and APvi arrays (i.e., as an offset) and

hence, it is initialized to 0 instead to a null sequence. For each δ(t), in this new approach,

iz(t) is calculated as shown in Equation 4.7. As described in the standard, if δ(t) exceeds

Li, the residual value δ(t)−Li − 1 is directly encoded to the bitstream as it is done in the

high-entropy mode, with a k value equal to 0.

iz(t) = min(δ(t), Li + 1) (4.7)

After calculating iz(t), APi is updated as shown in equation 4.8:

APi = APi + iz(t) + 1 (4.8)

Then, i and v are obtained as APli(APi) and APvi(APi), respectively. Two actions can

be carried out depending on the i value:

1. If i value is not 0, v value is written to the bitstream using i bits and APi is reset to

0.

2. If i value is equal to 0, APi is updated to v value (APi = v).

After processing all the δ(t) values, the remaining active prefixes are added to the bitstream

by directly coding the current APvi(APi) values using APli(APi) bits. Following this

simple strategy, the number of memory accesses and operations needed to process and

update the active prefixes, and to obtain the output codewords according to the input

ones is strongly optimized for a hardware implementation.
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4.4.3 Block characterization

The CCSDS 123.0-B-2 hybrid encoder is developed using Xilinx Vitis HLS tool and mapped

on Kintex UltraScale XCKU040. Unlike the CCSDS 123.0-B-2 predictor, where hardware

occupancy depends on the user-defined parameter values, as demonstrated in Section 3.4.3,

the encoder parameters do not have a significant impact on logic resources utilization.

For this reason, the selected combination of encoder parameter values reflected in Table

4.6 is the one that achieves best results in terms of encoding performance. The baseline

configuration is conditioned by AVIRIS, which is the target sensor, including image size

and dynamic range D. The hybrid encoder is synthesized with a maximum clock frequency

of 154 MHz.

Table 4.6: Baseline synthesis configuration for the CCSDS 123.0-B-2 hybrid encoder

Parameter Value

Image parameters

Columns, Nx 677

Lines, Ny 512

Bands, Nz 224

Dynamic Range, D 16

Encoding Order BIL

Encoder parameters

Unary Length Limit, Umax 16

Rescaling Counter Size, γ∗ 5

Initial Count Exponent, γ0 1

Output Buffer Width, W BUFFER 32

The only key parameter that can affect to the memory usage is the number of bands of

the input hyperspectral image, Nz. This value determines the number of elements in the

counter and accumulator vectors, since statistics are maintained per band when working

in BIL order. However, as it is illustrated with the results of Table 4.7, a change in the

Nz value for the situations under study does not modify BRAM consumption, since the

size of each memory block in this technology is 36Kb and it is enough to store statistics

independently of the number of bands considered for the input image. In total, just

the 1.9% of BRAMs available in the device are used. The rest of BRAMs used by the

hybrid encoder are associated to the storage of low-entropy values, such as input-to-output

codeword and flush tables or the threshold values.

The consumption of DSPs supposes around the 0.2% of the total available in the device.

These resources are mainly used to perform multiplications on Equations 4.3 and 4.4,

calculated under the low-entropy mode. Finally, the LUTs usage is also reduced, consuming
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an average of the 2.1% of the total for the different Nz values reflected in Table 4.7. In

any case, the hardware occupancy of the hybrid encoder is considered negligible compared

to other stages present in a full compression chain.

Table 4.7: CCSDS 123.0-B-2 hybrid encoder - Synthesis on Xilinx Kintex UltraScale
XCKU040

Parameters Total Baseline Nz = 32 Nz = 128 Nz = 512

Block RAMs 600 11.5 11.5 11.5 11.5

DSP48 1920 3 3 3 3

Registers 484800 2361 2352 2358 2364

LUTs 242400 4980 4966 4979 4981

4.5 Conclusions

Three entropy coding approaches have been presented throughout this Chapter, which are

compliant with the CCSDS standards for on-board data compression. The block-adaptive

encoder, originally defined in the CCSDS 121 universal lossless compression standard,

is based on Rice coding. The sample-adaptive and the hybrid encoder alternatives are

presented in the CCSDS 123 compression standard for multi- and hyperspectral images.

Although both are based on Golomb codes, the hybrid encoder allows higher CRs by

exploiting low-entropy data.

It has been demonstrated that the developed functional blocks can be successfully mapped

on a Xilinx Kintex UltraScale XCKU040 FPGA, providing a high throughput to achieve

real-time processing, together with a low area footprint. Results in other space-grade

FPGA technologies (e.g. NanoXplore Brave NG FPGAs or Microsemi RTG4) have been

obtained but not included so as not to expand the document unnecessarily.



Chapter 5

Modular solutions for on-board data

compression

This Chapter presents the design and implementation of IPs for the compression of different

kind of data collected and generated on-board satellites. These IPs are mainly based on

functional blocks developed and presented in Chapters 3 and 4. Different solutions are

proposed taking into account space mission constraints, such as data nature, expected Rate-

Distortion ratio, area footprint or real-time processing demands. The solutions provided

are compliant with the CCSDS compression standards, guaranteeing compatibility with

decompression on ground. For each proposed compression chain, its structure is detailed

and results are provided in several space-grade FPGAs to demonstrate the viability to

be used in a EO mission. A performance analysis is also presented to demonstrate the

viability of using an adapted version of the CCSDS 123.0-B-2 compression algorithm to

process both panchromatic and RGB video in future space missions.

103
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5.1 Outline

As mentioned throughout this Thesis, it is expected that future EO and exploration space

missions integrate high-resolution sensors. The development of compression chains capable

of handling and processing the high volume of data collected by these sensors is currently

a challenge for the space industry, since there is a change of paradigm in terms of on-board

computational demands and how hardware resources influence on both the overall payload

performance and the global power consumption.

For this reason, different compression IPs have been developed in this Thesis for space

missions. These IPs are comprised by two main functional blocks, a prediction-based

preprocessor and an entropy coding stage. By combining the developed functional blocks,

as depicted in Figure 5.1, it is possible to implement a suitable compression solution for

a specific application or space mission. There is also the possibility of implementing a

versatile compression solution capable of processing data acquired by multiple sensors (i.e.,

with different nature) just with a single compression core, reducing hardware occupancy

and power consumption.

The selection of the suitable functional blocks is conditioned not only by the nature of the

input data, but also by the space missions constraints, including the performance objectives

in terms of throughput, hardware occupancy or power consumption. The combination

of RTL and HLS design methodologies is also considered when a compromise between

performance and development time is required, taking advantage of the strengths of each

methodology to achieve design goals.

An additional advantage of the proposed modular approach is the reusability. This means

that the independent functional blocks that have been developed for each compression

stage (i.e., preprocessing and entropy coding) can be reused in future space missions for

on-board compression. Proper behaviour is ensured, since these modules have been deeply

characterized, at the same time that the space program can soften the scheduling thanks

to avoiding a development from scratch.

Because the compression chains designed are compliant with CCSDS standards, a proper

decompression and data management is ensured on ground. In addition, it is possible

to obtain versatile solutions that can compress data from different nature with a single

processing core by selecting the appropriate modules. In this way, ad-hoc compression
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approaches are proposed depending on mission necessities at the same time that area

utilization is optimized.

Figure 5.1: Concept of modular compression solution

5.2 Validation scenarios

To validate this modular compression approach some scenarios are defined, in which different

compression solutions are proposed in the form of IP cores. The appropriate combination

of functional blocks will be selected taking into account the specific constraints of each

scenario. As it will be explained throughout this Chapter, all the developed functional

blocks presented in Chapters 3 and 4, and reflected in Figure 5.1, have been employed to

design the proposed compression chains. It is important to mention that the selection of

these scenarios takes into account two main objectives: to be as completed as possible;

and to be representative of real space missions.

The specific scenarios that have been considered to demonstrate the goodness of the

proposed modular compression solution are listed below:

• Lossless one-dimensional data and image compression. This approach allows

to compress one-dimensional data and 2D images by combining the unit-delay

predictor with the block-adaptive encoder. As an example, this solution is used in

the Lagrange ESA-funded program [183] and the SUNRISE III mission [184], This
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results in a compression solution fully compliant with the CCSDS 121.0-B-3 lossless

standard.

• Lossless hyperspectral image compression. This solution includes a 3D lossless

predictor defined in the CCSDS 123.0-B-1 compression standard combined with any

of the entropy coders developed in Chapter 4. As an example of this scenario the

SHyLoC IP cores can be mentioned [58, 60], though SHyLoC does not use the hybrid

encoder, since it is not a fully compliant solution.

• Near-lossless hyperspectral image compression. This scenario goes a step

beyond of the lossless HSI compression approach, providing higher compression

ratios by replacing the 3D lossless predictor by the one proposed in the CCSDS

123.0-B-2 compression standard. The introduction of losses can be controlled through

certain user-defined parameters. This predictor can be combined with any of the

entropy coders presented in Chapter 4, all of them compliant with the CCSDS

123.0-B-2 standard. A tailored version of this development will be integrated as part

of the CHIME instrument processing chain, selecting the appropriate options and

parameters to maximize the CR and without compromising both the throughput

and the resources utilization.

• Video compression. A final scenario will be dedicated to the compression of video

sequences on-board satellites. The proposed solution is based on the CCSDS 123.0-B-

2 near lossless compression standard. An example for this scenario is the video sensor

to be embarked on the instrument developed in the scope of the H2020 VIDEO

project [63]. The solution provided will be able to compress both monochrome and

RGB video sequences.

5.3 Lossless one-dimensional data and image

compression

As a one-dimensional data compressor, a hardware implementation mainly comprised by

the unit-delay predictor described in Section 3.2.2 and one of the entropy coders explained

in Chapter 4 is proposed. Therefore, three alternative solutions arrive by combining the

unit-delay predictor with the block-adaptive, sample-adaptive or the hybrid encoders. The

top-level structure of the proposed IP core is reflected in Figure 5.2.
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The combination of the unit-delay predictor with the block-adaptive encoder will be fully

compliant with the CCSDS 121.0-B-3 standard. As an application example, this solution

is considered for its integration in the Lagrange mission [183] and also in the SUNRISE

III mission [184], in which a balloon-borne solar observatory is expected to be launched

at the stratosphere. These use cases emerge in the context of a collaboration among our

Group, the Instituto de Astrof́ısica de Canarias (IAC) and the Instituto de Astrof́ısica de

Andalućıa (IAA) 1.

Figure 5.2: Block diagram of the lossless 1D data and image compression IP

5.3.1 System development

The overall diagram of the IP for this scenario is depicted in Figure 5.3. The IP includes, in

addition to the unit-delay predictor and the block-adaptive entropy coder, a configuration

engine to enable the setting of parameters allowed by the standard, both at compile-time

or at runtime. This configuration engine controls that the logic internally dedicated by

each module to receive and validate their configuration parameters works properly. The

configuration is controlled by the EN RUNCFG parameter; in case of it is disabled, the

parameters are set at compile-time, reducing the overall complexity of the design. This

solution supports signed samples and an input bit-depth D up to 32 bits per sample [60].

Regarding input and output data interfaces, the IP defines a wrapper based on a hand-

shaking protocol, associating a Valid signal to each input/output data. Input samples are

1Characterization results for these missions are not provided due to confidential reasons
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received through an ad-hoc parallel interface, while the compressed bitstream is produced

at the output by using a similar interface, easing the connection with external modules

in a plug&play fashion. Data flow is handled through the ForceStop (it forces the stop

of a compression at any point) and the Ready signals at the input side, being the latter

asserted when the IP is configured correctly and thus it is able to receive new samples to

be compressed. The Ready Ext input signal is used to inform that the external module

responsible of managing the output data is ready to receive the compressed samples.

Additionally, there are other signals used for data control, such as FIFO full, EOP (it

indicates that the compression of the last sample has started) or Finished, which is asserted

when the compression has ended. The input signal IsHeaderIn is also defined to inform

that the received data is part of a header, easing the substitution of the unit-delay predictor

by an alternative preprocessing stage, if necessary to achieve specific performance goals.

Finally, the Error signal is asserted in case of malfunction or an unexpected situation

during the compressor performance.

At the beginning of the workflow, the IP receives the runtime configuration values through

an AMBA AHB slave interface only if EN RUNCFG = 1; otherwise, compile-time configu-

ration is used. After that, the Ready signal is asserted to inform that the IP is waiting for

new input samples. The received configuration is stored in internal registers, read by the

IP and then made available for the functional blocks that conform it. Then, the input

samples are preprocessed by the unit-delay predictor prior to being coded.

The IP core can optionally create a header; in that case, the generated codewords are

appended to the header and finally packed. Regarding mitigation techniques, the IP core

includes EDAC for critical embedded memories located in the block-adaptive encoder,

with capability to correct single errors and to detect double errors. EDAC is enabled by

setting the corresponding generic parameter. Besides, states in the FSM are encoded using

Gray coding and including safe statements, returning to the idle state in case of errors.
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Figure 5.3: Schematic of the proposed IP core for lossless compression of
one-dimensional data

5.3.2 Experimental results

Different sets of configuration parameters have been defined to analyse the impact of the

IP parameter values on both hardware occupancy and maximum clock frequency. These

synthesis sets are summarised in Table 5.1. The main parameters that change among

configurations are the dynamic range of the input samples D GEN ; the block size J GEN ;

and the width of the output buffer, W BUFFER GEN. In addition, the penalty for for

managing signed samples is studied. Finally, the influence of the selected mode for the

header generation is also taken into account. Regarding the maximum data size, it has

been fixed to 2048 for each spatial dimension in case that the IP is used for 2D image

compression.

The timing results in terms of maximum clock frequency are reflected in Tables 5.2, 5.3, 5.4

and 5.5 for Xilinx Virtex5QR XQR5VFX130 and Kintex UltraScale XCKU040, Microsemi

RTG4 150 and NanoXplore NG-LARGE, respectively. In general, Set5 and Set7 achieve

the highest values of clock frequency, which is clearly conditioned by the small values

selected for the dynamic range D and, specially, for the block size J . Combining low values

for both parameters (i.e., D = 8, 16 and J = 8) allows to reach that high clock frequency



110 Chapter 5. Modular solutions for on-board data compression

Table 5.1: Sets of synthesis configurations for the lossless one-dimensional data com-
pression IP core

Generic Set1 Set2 Set3 Set4 Set5 Set6 Set7

EN RUNCFG 0 1 1 1 0 1 0

D GEN 32 16 32 32 16 16 8

IS SIGNED GEN 0 0 1 0 0 1 0

J GEN 32 16 16 64 8 32 8

REF SAMPLE GEN 128 256 256 4096 512 256 256

W BUFFER GEN 64 32 64 64 48 32 8

HEADER FORMAT GEN 0 0 0 0 1 1 1

because of the reduction of the datapath length and the simplification of some internal

operations, which are dependent on those parameter values.

Specifically, a maximum clock frequency of 176.3 MHz is obtained for the Kintex UltraScale

XCKU040 under Set7, while up to 115.9 MHz are reached for Virtex5QR XQR5VFX130

under Set5. In the latter case, a minimum penalty in terms of maximum clock (around the

0.7%) is appreciated when selecting Set7 instead of Set5. The maximum clock frequency

is also obtained for RTG4 150 and NG-LARGE when using Set7, achieving up to 79 and

34.1 MHz, respectively. As expected, Set4 is the configuration that obtains the lowest

clock frequency, since the maximum allowed values of D and J (32 and 64, respectively)

are used. Regarding throughput, as the whole IP is able to process one sample per clock

cycle, the maximum throughput is equal to the maximum clock frequency achieved. In

this way, a maximum throughput of 176.3 and 163.7 MSamples/s is obtained for Xilinx

XCKU040 when storing input samples with 8 and 16 bits, respectively.

The hardware occupancy in terms of memory blocks, arithmetical units and logic resources

is also provided in Tables 5.2, 5.3, 5.4 and 5.5 for Virtex5QR XQR5VFX130, Kintex

UltraScale XCKU040, RTG4 150 and NG-LARGE, respectively, for each one of the

proposed configuration sets. The results in terms of logic resources utilization are in

consonance with the ones obtained in terms of timing. Set5 and Set7 have the lowest

area footprint, since low values of D and J simplify some internal computations and

reduce memory demand. When using Set7, just the 2.2% and the 0.7% of the available

LUTs are used on Virtex5QR and Kintex UltraScale, respectively. Under the most

restrictive configuration (i.e., Set4) these numbers increase up to the 13.7% and the 4.2%

for XQR5VFX130 and XCKU040, respectively.

The maximum area occupation for Microsemi RTG4 150 and NanoXplore NG-LARGE is

also observed for Set4, and it is around the 11.4% and the 13.1% of the available LUTs,
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respectively. The memory utilization is the same in both Xilinx technologies (5 BRAMs),

implying just the 1.7% of the total available on Virtex5QR. In the case of RTG4 150

and NG-LARGE, maximum BRAM utilization supposes the 10% and the 10.4% of the

total available on the device, respectively, when Set4 is selected. DSPs consumption is

also minimum on the FPGAs analysed for all the configuration sets, reaching a maximum

utilization of the 1.9% and the 0.3% on XQR5VFX130 and XCKU040, respectively, under

Set4.

Table 5.2: Lossless one-dimensional data compression IP core - Synthesis on Xilinx
Virtex5QR XQR5VFX130

Parameters Total Set1 Set2 Set3 Set4 Set5 Set6 Set7

Block RAMs 298 2 0 1 5 0 1 0

DSP48 320 2 5 5 6 2 7 1

Registers 81920 2008 1625 2350 2706 1360 1827 808

LUTs 81920 7078 4670 8514 11231 3586 5827 1782

Maximum Frequency
95.4 110.1 94.5 62.0 115.9 96.9 115.1

(Clk S) (MHz)

Table 5.3: Lossless one-dimensional data compression IP core - Synthesis on Xilinx
Kintex UltraScale XCKU040

Parameters Total Set1 Set2 Set3 Set4 Set5 Set6 Set7

Block RAMs 600 2 0 1 5 0 1 0

DSP48 1920 2 5 5 6 2 6 1

Registers 484800 2028 1632 2357 2754 1318 1830 813

LUTs 242400 6140 4313 7883 10994 3239 5252 1655

Maximum Frequency
151.2 160.5 137.9 120.1 163.7 141.1 176.3

(Clk S) (MHz)

Table 5.4: Lossless one-dimensional data compression IP core - Synthesis on Microsemi
RTG4 150

Parameters Total Set1 Set2 Set3 Set4 Set5 Set6 Set7

Carry Cells 151824 2649 1401 2989 3091 1071 1604 435

Sequential Cells 151824 1820 1430 2014 2685 1090 1644 727

Block RAMs
209 21 11 19 21 13 14 9

(RAM64x18)

DSP Blocks 462 5 6 6 6 5 6 4

LUTs 151824 9987 7362 12809 17364 5380 8727 2478

Maximum Frequency
55.5 58.8 56.0 35.0 78.1 65.1 79.0

(Clk S) (MHz)
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Table 5.5: Lossless one-dimensional data compression IP core - Synthesis on NanoXplore
NG-LARGE

Parameters Total Set1 Set2 Set3 Set4 Set5 Set6 Set7

Carry Cells 32256 5322 2367 5778 5938 1917 2411 939

Registers 129024 2777 1674 2862 3401 1471 1850 868

Block RAMs (48Kb) 192 20 13 20 20 13 13 11

DSP Blocks 384 1 2 2 4 1 3 1

LUTs 129024 10963 6806 11903 16871 5637 8104 2196

Maximum Frequency
21.1 25.2 19.5 16.5 25.5 20.7 34.1

(Clk S) (MHz)

5.3.3 Demonstrator set-up

A demonstrator has been developed in order to validate the behaviour of the proposed

IP core in a realistic scenario from a functional point of view, simulating the system

connectivity expected on-board satellites. The demonstrator implements the proposed

one-dimensional data compressor with the configuration defined as Set5 in Table 5.5, on a

NX1H140TSP development kit that mounts a NanoXplore NG-LARGE FPGA, providing

a novelty to the state-of-the-art since it is, to the best of our knowledge, the first on-chip

validation of a compression solution in this technology. The FPGA implementation is

completed with the STAR-Dundee SpaceWire Codec IP [185], which belongs to the ESA’s

IP cores portfolio, to enable data transfers through a SpaceWire interface [186]; and some

decoupling FIFOs, which are used to adapt data rates between both IP cores. The block

diagram of the hardware design is reflected in Figure 5.4. Besides, a time-code control

logic is included that allows to configure the SpaceWire Codec IP as both a time-code

slave or master, useful to debug communication establishment between the host PC and

the FPGA. This time-code unit is controlled by an input mapped to one of the available

switches on the development board, while some status signals of the SpaceWire Codec IP

are mapped to LEDs.

The whole design uses a single clock source of 20 MHz, generated internally by using one of

the Phase-Locked Loops (PLL) available in the FPGA, which is used as the system clock

of both IP cores as well as the transmission clock for the SpaceWire Codec IP. I/O ports

of the STAR-Dundee SpaceWire Codec IP are mapped to one of the SpaceWire connectors

available on the NX1H140TSP development kit. The other end of the communication link

is a STAR-Dundee SpaceWire Brick Mk3 [187], which is connected to a host PC from

where the Brick is configured, and where both the transmission and reception of data are

controlled. The FPGA bitstream is received and loaded into the configuration memory
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Figure 5.4: Block diagram of the hardware design developed for the IP core test set-up

by using a dedicated JTAG interface connected to the host PC, where that bitstream

is generated. The STAR-Dundee SpaceWire Codec IP is configured in autostart mode,

so the link is initiated by the host PC controlling the SpaceWire Brick. The link is

successfully established when activated by the host PC, by means of the STAR-Dundee

Device Configuration application. The whole test set-up is shown in Figure 5.5.

With this test set-up, a corpus of data sets has been successfully compressed by sending

the original data through the SpaceWire link within the FPGA, where they are compressed

by the IP. Compressed streams are sent back to the host PC through the SpaceWire brick

to be compared against reference streams generated by the CCSDS 121.0-B-3 reference

software developed in collaboration between our Group and ESA. In order to do so, the

SpaceWire Brick Mk3 is configured with a data transmission speed of 10 Mbits per second.

Once the link is established, the Brick detects a speed of 20 Mbits per second on the

reception channel.
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Figure 5.5: Overview of the IP test set-up, including the NX1H140TSP development
kit and the STAR-Dundee SpaceWire Brick Mk3

5.4 Lossless hyperspectral image compression

This validation scenario provides solutions to compress hyperspectral images in lossless

mode. As depicted in 5.6, the 3D predictor described in Section 3.3 and compliant with

the CCSDS 123.0-B-1 standard is used. Although the choice of any of the three entropy

coders presented in Chapter 4 would implement a valid lossless compression solution, only

the selection of the block adaptive or sample adaptive encoders is compliant with the

CCSDS 123.0-B-1 standard.

As an example, a hardware implementation fully compliant with the CCSDS 123.0-B-1

standard has been designed for lossless compression of multi- and hyperspectral images

on-board satellites. Results are given for a number of solutions for typical spectroscopic

sensors (e.g. Landsat, AVIRIS and AIRS).
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Figure 5.6: Block diagram of the lossless hyperspectral image compression IP

5.4.1 System development

As mentioned before, the proposed standard compliant solution is based on the CCSDS

123.0-B-1 3D lossless predictor and either the sample-adaptive or the block-adaptive

encoder. The top module of the IP core includes, in addition to the prediction-based

preprocessor and the entropy coding stage, the components depicted in Figure 5.7, which are

necessary to receive the configuration and the input samples, and to send the compressed

bitstream to the output. These modules are summarised below:

• Configuration core. It includes several units to perform the configuration of

the whole compression chain. Runtime configuration values are received from the

AMBA AHB slave interface, which includes two independent signals for data transfers

(AHBSlave123 In and AHBSlave123 Out). The clk adapt module is the responsible

of adapting data rates with the rest of the system, if needed. The interface gen

module has a twofold purpose: on one hand, it assigns the configuration values,

either from the ones received by the AHB slave interface, if runtime configuration

is enabled (EN RUNCFG = 1), or from the user-selected parameters defined at

compile-time, if runtime configuration is disabled (EN RUNCFG = 0); on the other

hand, it checks that the selected configuration values are correct, raising an error

otherwise. These values are sent to the rest of the modules in the design, including
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the header gen submodule, responsible of generating the predictor fields and also

the ones associated to the selected entropy coding stage.

• Control decoder. It generates and interprets control signals to and from I/O ports

and ensures that the compression chain is ready to receive samples to be compressed.

• Dispatcher. It receives the output from the compression engine and organizes it in

FIFOs so that it can be sent to the output according to the selected configuration,

including both the header and the compressed bitstream. This module will monitor

the Ready Ext signal and the status of the FIFOs to signal if it is necessary to

interrupt the compression, when the receiver is not ready to accept the compressor

output.

Input and output data are handled with ad-hoc interfaces, including a Valid flag. The data

flow is managed by a handshake protocol, which includes the Ready signal to inform that

the IP can receive new samples. The Ready Ext input signal is asserted to notify that any

available output data can be flushed, since the receiver is available. Additional signals are

defined for control purposes, including the ForceStop to suspend the current compression;

FIFO full, to indicate the state of the FIFOs responsible of providing and receiving the

input and output samples,respectively; EOP, which informs that the compression of the

last sample has started; or Finished, which is asserted when the compression has ended.

The output signal IsHeaderOut is included to indicate that the output data is part of

the header, easing the substitution of the sample-representative encoder by an alternative

entropy coder, if desired. Finally, the Error signal is asserted in case of an unexpected

behaviour during the compression.

The IP core is able to compress samples in BIP, BSQ and BIL orders, since all these

arrangements are supported by the main functional elements (i.e., the predictor and

the sample-adaptive encoder). The order is selected at compile-time with the PRE-

DICTION TYPE generic parameter that determines the hardware architecture that is

implemented, taking into account data dependencies and memory demands. In case that

the selected predictor architecture makes use of an external memory to store intermedi-

ate compression statistics, an AMBA AHB Master interface is instantiated, providing

independent channels for data reception and transmission (AHBMaster123 In and AHB-

Master123 Out, respectively). Also, the possibility of enabling or disabling EDAC at

compile-time is included. The user can select to use EDAC for internal, external or both

types of memories.
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Figure 5.7: Internal overview of the proposed IP core for lossless hyperspectral image
compression and connectivity among functional units

By default, the sample-adaptive encoder is implemented. When the block-adaptive

encoding option is used, the block-adaptive encoder is connected in a plug&play manner

thanks to the generic interfaces defined for both stages. The selection of the appropriate

entropy coding stage is done through a VHDL generic during compile-time configuration.

5.4.2 Experimental results

The IP core has been evaluated using up to 20 different sets of synthesis parameters (15

in compile-time and 5 in runtime configuration), trying to cover a broad range of cases

and verifying all the predictor architectures. Table 5.6 shows the values used during the

synthesis for some relevant configuration parameters, excluding image dimensions which

are dependent on the analyzed scenario. Real spectroscopic sensors, such as Landsat,

AVIRIS and the Atmospheric Infrared Sounder (AIRS), have been considered to obtain

representative results for multi- hyper- or ultraspectral images, respectively. Main features

of these scenes are summarised in Table 5.7. As entropy coding option, just the sample-

adaptive alternative is considered for synthesis purposes.
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Results for the IP core in terms of maximum clock frequency are shown in Tables 5.8,

5.8, 5.8 and 5.8 for Xilinx Virtex5QR XQR5VFX130 and Kintex UltraScale XCKU040,

Microsemi RTG4 150 and NanoXplore NG-LARGE, respectively. These results are provided

for all the developed predictor architectures, whose selection depends on input samples

arrangement, and for the different scenarios proposed in Table 5.7. For the AVIRIS sensor,

two different synthesis were performed, one allowing just compile-time configuration and

the other enabling also runtime configuration.

The maximum clock frequency achieved for Virtex5QR is above 109 MHz for all the config-

urations implemented, with the exception of the BSQ architecture under the ultraspectral

scenario, where this maximum frequency just reaches 95 MHz. When targeting Kintex

UltraScale XCKU040, clock frequencies above 119 MHz are obtained for all the developed

predictor architectures in all the targeted scenarios. For the Microsemi RTG4 technology,

the system clock frequencies range from 73 to almost 95 MHz. Finally, clock frequencies

Table 5.6: Sets of synthesis configurations for the lossless hyperspectral image com-
pression IP core

Generic Value Description

EN RUNCFG 0,1
(0) compile time;

(1) runtime

PREDICTION TYPE [0:4]

(0) BIP architecture;
(1) BIP-MEM architecture;

(2) BSQ architecture;
(3) BIL architecture;

(4) BIL-MEM architecture

ENCODING TYPE 1 sample-adaptive encoder

D GEN [8,12,14,16] samples bit-depth

ENDIANNESS GEN 0,1 (0) little; (1) big

IS SIGNED GEN 0,1 (0) unsigned; (1) signed

DISABLE HEADER GEN 0 header is always generated

W BUFFER GEN 32 bits in the output buffer

P MAX 3 bands used for prediction

PREDICTION GEN 0 full prediction

LOCAL SUM GEN 0 neighbour-oriented mode

OMEGA GEN 13 weight resolution

Table 5.7: Scenarios considered for the IP performance analysis

Instrument
Image size Bit

Nx Ny Nz depth

Landsat 1024 1024 6 8

AVIRIS (calibrated) 677 512 224 16

AIRS 90 135 1501 12-14
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between 27 and 41 MHz are obtained for NG-LARGE. Besides, the IP core has been

developed in such a way that the AHB clock is faster than the system clock in order to

avoid delays in the processing due to the communications with the external memory, a

condition that is fulfilled for all the FPGA technologies under study in all the implemented

architectures. However, not all the architectures provide the same throughput, being BIP

the one that can reach the maximum throughput of one sample per clock cycle. For this

reason, maximum throughput is 133.8 and 151.6 MSamples/s on Virtex5QR (with runtime

configuration disabled) and XCKU040, respectively, targeting the hyperspectral scenario.

Synthesis results in terms of resources utilization are summarised in Figures 5.8, 5.9, 5.10

and 5.11 for the FPGA technologies under study. In general, the IP uses low logic resources,

which proves the low complexity of the proposed compression chain. The usage of DSP

units, LUTs, registers and carry cells is almost constant for each FPGA technology, with

slight differences depending on the implemented compressor architecture, the target image

size or the possibility of configuring at run-time or not. Differences are more noticeable

for the memory utilization, which is mainly determined by the predictor architecture. For

those architectures that do not make use of external storage (BIP and BIL), the image

size has a high impact on BRAMs usage. Concretely, the size of an spectral line (NxNz)

conditions that storage utilization since it fixes the size of memory elements, such as the

FIFOs that store the adjacent samples for the local sum and differences calculation during

the prediction. The number of P previous bands used for prediction also has an influence

in the BRAMs consumption, since it determines the weights vector size and the number of

elements to be considered during the local differences calculation.

Regarding the logic resources consumption (i.e., LUTs and FFs), the dynamic range D

supposes the main constraint, since it defines the bit width of different internal operations.

In addition, the weight resolution Ω has also a slight influence in the LUTs consumption,

because it specifies the precision of each element of the weights vector. Up to the 40%

and the 20% of memory resources are used in Xilinx Virtex5QR and Kintex UltraScale

Table 5.8: Lossless hyperspectral image compression IP core - Maximum frequency on
Xilinx Virtex5QR XQR5VFX130

Config BIP
BIP-

BSQ BIL
BIL-

MEM MEM

Landsat 109.4 109.4 107.6 109.4 125.8

AVIRIS 138.3 109.4 110.8 109.4 109.4

AIRS 109.4 109.4 95.0 109.3 109.3

Runtime config. 109.3 140.8 110.4 111.9 110.3
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Table 5.9: Lossless hyperspectral image compression IP core - Maximum frequency on
Xilinx Kintex UltraScale XCKU040

Config BIP
BIP-

BSQ BIL
BIL-

MEM MEM

Landsat 149.4 157.6 139.5 166.4 164.1

AVIRIS 151.6 150.3 140.7 160.6 152.7

AIRS 149.7 138.2 119.9 152.8 126.2

Runtime config. 151.6 149.8 135.1 148.0 149.8

Table 5.10: Lossless hyperspectral image compression IP core - Maximum frequency
on Microsemi RTG4 150

Config BIP
BIP-

BSQ BIL
BIL-

MEM MEM

Landsat 94.9 94.2 77.8 94.7 91.9

AVIRIS 74.8 84.1 77.8 73.7 85.4

AIRS 87.2 83.1 77.5 84.2 86.5

Runtime config. 84.0 83.6 79.0 84.6 81.5

Table 5.11: Lossless hyperspectral image compression IP core - Maximum frequency
on NanoXplore NG-LARGE

Config BIP
BIP-

BSQ BIL
BIL-

MEM MEM

Landsat 37.1 40.6 38.9 37.0 33.5

AVIRIS 38.9 39.8 28.9 31.1 27.8

AIRS 30.2 36.3 30.7 31.5 32.3

Runtime config. 31.5 30.9 27.6 29.2 27.8

XCKU040, respectively, when targeting a ultraspectral scenario. With respect to the

DSPs and LUTs utilization, all the architectures and configurations provide similar results

for Virtex5QR, with ranges between 1.5% and 4.7% for DSPs, and between 4.5% and

9% for LUTs. In Xilinx technologies, the DSP utilization tends to be lower for the BSQ

architecture, due to its serial implementation. The BIP and BIL architectures use less

LUTs compared with the others, due to the absence of the AHB interface to communicate

with an external memory, and the LUT utilization slightly increases with the image

dimensions in all the implemented architectures.

In the case of Microsemi RTG4, the memory demands when compressing ultraspectral

scenes (e.g. AIRS) are so high that exceed the available FPGA internal storage, as

shown in Figure 5.10. This forces to use an external memory for that specific scenario.

Regarding the rest of logic resources, they are kept almost constant for each one of the

target configurations (between 1.3% and 3.5% for carry cells and DSPs, 1.8% - 3.4%
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for sequential cells, and 3.5% - 7.2% for LUTs). The implementation of the runtime

configuration interface increases the resource usage of all these elements in about 1%.

When targeting NG-LARGE, the memory usage grows up to a maximum of 80% for the

AIRS ultraspectral scene. Regarding logic resources, LUTs consumption is in the range of

2.5% - 6%, while DSPs are under the 2% for all the cases.

In general, it can be observed that the inclusion of the AHB configuration interface increases

the LUT utilization only about a 1% for all the FPGA technologies under study, compared

to the results obtained for AVIRIS just configuring the compressor at compile-time.
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Figure 5.8: Lossless hyperspectral image compression IP core - Resources utilization
on Xilinx Virtex5QR XQR5VFX130 [60]
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Figure 5.9: Lossless hyperspectral image compression IP core - Resources utilization
on Xilinx Kintex UltraScale XCKU040
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Figure 5.10: Lossless hyperspectral image compression IP core - Resources utilization
on Microsemi RTG4 150 [60]
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Figure 5.11: Lossless hyperspectral image compression IP core - Resources utilization
on NanoXplore NG-LARGE [60]

5.4.3 Comparison with state-of-the-art implementations

Since the CCSDS 123.0-B-1 lossless compression standard is becoming interesting for

future space missions that embark spectroscopic sensors, there are several implementations

of this algorithm on FPGAs in the specialized literature. Nonetheless, the comparison of

the developed IP core with other FPGA implementations available in the state-of-the-art

is not easy, because the presented solution allows a high quantity of architectures and

configurations that results in different performance capabilities. This flexibility is not

generally present in other implementations that focus the attention in obtaining the best

architecture generally in terms of either maximum throughput or minimum resources

utilization. Moreover, the different FPGA implementations of the CCSDS 123-0-B-1

standard do not target the same technologies, targeting even in some cases commercial

devices.

For comparison purposes, the IP architecture that achieves the best throughput for the

AVIRIS sensor (D = 16) is considered, in order to provide a fair comparison with the existing

FPGA implementations [157, 159, 188–191]. Besides, resources utilization (if available) is
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analyzed for the mentioned implementations. Although there are other implementations

available in the specialized literature, they are based on a parallel approach, instantiating

multiple compressor copies that work simultaneously to maximize throughput. For this

reason, they are not considered as part of this comparison, focusing the attention on

those works where the performance of just a single compression instance is analysed. This

comparison is summarised in Table 5.12.

The implementation proposed by Santos et al. [188] focuses on obtaining a low-complexity

architecture in terms of resources utilization, in order to fit in older generations of space-

grade FPGAs. BSQ was selected as processing order, compromising the throughput due

to data dependencies in the prediction stage. In addition, local differences are recomputed

when needed to optimize area. In [189], the authors proposed a BIP architecture for

pushbroom instruments, fitting well in different Xilinx FPGA technologies. Nevertheless,

the possibilities of parallelism that the algorithm allows are not exploited, incurring in a

penalty in terms of throughput. Bascones et al. [190] propose an implementation that

works also in BIP order and it is optimized to use only internal memory storage. Using

this scheme, they achieve a throughput of almost 48 Msamples/s when it is implemented

on a Xilinx Virtex-7 XC7VX690T.

To the best of our knowledge, the fastest implementation available in the state-of-the-

art using only one compression instance is the proposed by Tsigkanos et al. [157]. In

this work, the authors exploit the parallelism under BIP ordering and implement a fine-

grained pipeline in critical feedback loops based on C-slow retiming, achieving up to 213

MSamples/s on a Xilinx Virtex-5 FX130T. They introduce an extra module, named as

Spectral Slice Buffer, in order to have the necessary neighbouring available when the local

sum calculation is going to take place.

In addition to implementations targeting space-grade FPGA technologies, a comparison

is also done with implementations of the CCSDS 123.0-B-1 algorithm on commercial

Table 5.12: Comparison with CCSDS-123 FPGA implementations

Implementation Order P D Encoder Device LUTs FFs BRAMs
Throughput
(MSamples/s)

HyLoC, Santos et al.[188] BSQ 3 16 Sample Virtex XQR5VFX130 2342 1535 0 11.3
Keymeulen et al. [189] BIP 3 13 Golomb-Rice Virtex SX50T 12697 1586 8 40
Bascones et al. [190] BIP 0-15 16 Sample Virtex XC7VX690T - - - 47.6
Tsigkanos et al. [157] BIP 3 16 Sample Virtex FX130T 9462 9990 83 213
Pereira et al. [191] BIP 3 16 No Zynq-7020 2244 630 0 20.4

Fjeldtvedt et al. [159] BIP 0-15 16 Sample Zynq-7020 3012 2528 84 147
Developed IP All 0-15 16 Sample/Block Virtex XQR5VFX130 4809 2736 74 138.3
Developed IP All 0-15 16 Sample/Block Zynq-7020 4619 2765 74 151.1



Chapter 5. Modular solutions for on-board data compression 125

FPGAs. In this way, Pereira et al. [191] propose a low-complexity implementation of the

prediction stage (column-oriented local sum and reduced prediction mode are selected),

targeting a Xilinx Zynq-7020 and achieving a maximum throughput of 20.4 MSamples/s.

This architecture works in BIP order, storing the weights in an internal memory but

out of the processing core, in order to share these values among multiple copies of the

compression instance, if needed for higher throughput. The work of Fjeldtvedt et al.

[159], also targeting a Xilinx Zynq-7020, proposes a BIP architecture with a Sample Delay

module that works in a similar way that the Slice Buffer proposed by [157]. Different

pipelining strategies are applied in the prediction module in order to reduce delay, splitting

the critical path located in the local sum calculation and in the weights updating. With

this scheme, they achieve a maximum throughput of 147 MSamples/s.

The IP proposed in this work achieves a maximum throughput of 138.3 MSamples/s

targeting a Xilinx Virtex-5 XQR5VFX130. This IP has been also mapped on the Xilinx

Zynq-7020 in order to compare it with implementations on COTS devices, reaching a

throughput of 151.1 MSamples/s. For both cases, the AVIRIS sensor was taken as reference

and the BIP architecture is selected, since it obtains the best results in terms of throughput.

If higher performance is required, several measures can be taken by the user, such as

breaking the critical path with intermediate registers, or instantiating several copies to

work in parallel. Although our implementation of the CCSDS 123-0-B-1 standard exhibits

lower throughput than the implementation presented in [157], it represents a good trade-off

among timing performance, resources utilization, versatility and portability.

5.5 Near-lossless hyperspectral image compression

This validation scenario provides compression of hyperspectral images in near-lossless

mode. As depicted in Figure 5.12, the CCSDS 123.0-B-2 near-lossless predictor can be

combined with any of the entropy coders developed and explained in Chapter 4. In this

way, a full compression solution based on the CCSDS 123.0-B-2 standard is provided,

which can be used to demonstrate the viability of this compression solution for different

space programs that embark spectroscopic sensors and need from high CRs.

As an example, the compression IP of the CHIME instrument is presented. Taking into

account the CR required in this mission, it is not feasible to use a lossless compressor. As

entropy coder, the block-adaptive encoder is used, because it has a lower area footprint
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and a higher throughput than the hybrid one. Besides, it will be possible to achieve CRs

under 1 bpp, which is the reason why the sample-adaptive encoder has been discarded for

this implementation.

Figure 5.12: Block diagram of the near-lossless hyperspectral image compression IP

5.5.1 Compression solution fully compliant with the CCSDS

123.0-B-2 standard

The solution proposed for this scenario is an IP fully compliant with the CCSDS 123.0-B-2

standard, including all the possible alternatives for the prediction and local sum steps and

the whole range of values for each one of the parameters defined by the standard, which

can be configurable at compile-time or at runtime.

5.5.1.1 System development

A global overview of the whole design is shown in Figure 5.13, including the different

interfaces used for configuration and interconnection among modules. I/O interfaces

implement the AXI4-Stream protocol to speed up data transfers to/from the compression

solution. In addition to the main compression chain, comprised by the predictor and the

hybrid encoder, respectively described in Sections 3.4.2 and 4.4.2, two extra modules are

included and described below:
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• Header generator. This module is responsible of generating the appropriate header

fields, including both predictor and hybrid encoder information, to allow a correct

decompression of the generated bitstream. The length of this header directly depends

on the compression configuration. Image, predictor and encoder parameters are

sent to this module through an AXI4-Lite interface, while the generated header is

sent through a lightweight custom interface to the bitpacker. This module works in

parallel to the main compression datapath, since its behaviour is essentially sequential.

In this way, the global latency of the system is balanced.

• Bitpacker. It is the last stage of the compression chain, taking the output of both

the header generator and the hybrid encoder modules to generate the compressed

image, formed by the header, the codewords and the image tail, created also in this

module to reduce the latency of the hybrid encoding stage. The two input data

interfaces of this module, one to receive the header coming from the header generator

and other to receive the bitstream from the hybrid encoder, are implemented with

custom interfaces, include the necessary control signals for dataflow management.

Taking into account the value of the Valid signals of both input interfaces, the IP is

able to identify if it should be ready to receive the header or the bitstream, appending

both information properly at the output interface, which is implemented with an

AXI4-Stream interface. When the EOP flag generated by the hybrid encoder is

asserted, the bitpacker recognizes that both the header and the bitstream have been

received, and it is time to generate the image tail, as it is indicated in Section 4.4.1.

For this purpose, it accesses to the two FIFOs where the final state of both the 16

low-entropy codes and the accumulator values for each band Σz have been stored.

Figure 5.13: Top-level hierarchy of the near-lossless hyperspectral image compression
solution fully compliant with the CCSDS 123.0-B-2 standard
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5.5.1.2 Experimental results

Several tests have been performed by combining 7 different images, including AVIRIS scenes

and synthetic images to debug corner cases, with multiple configuration sets, ensuring

that at least the different local sum and prediction options are covered in both lossless

and near-lossless modes. In the latter case, both band-dependent and band-independent

errors are used.

Then, the proposed compression solution has been synthesized targeting the Kintex Ultra-

Scale XCKU040 FPGA. The baseline configuration for synthesis purposes is summarised

in Table 5.13, restricting supported image dimensions and the D value to the features of

AVIRIS scenes, since they are the ones used for validation purposes. The rest of parameters

values have been selected after an exhaustive parameter tuning on software, selecting the

configuration that maximize CR under lossless mode. The optimal combination of local

sum and prediction modes is defined taking into account the results previously presented

in Tables 3.8 and 3.9 in Chapter 3. The absolute error value can be modified, depending

on the requirements of the target application.

Area consumption of the whole compression chain is summarised in Table 5.14, specifying

the resources utilization of each stage. As it can be observed, the predictor is the critical

module in terms of both memory and logic resources usage, consuming the 12.7% of

BRAMs and the 4.1% of LUTs available in the target device.

In general, the results for this full approach are as expected, since the prediction stage is the

one that performs more complex operations, such as the ones performed under near-lossless

compression in the feedback loop. The consumption of DSPs supposes around the 3.3% of

the total available in the device. These resources are mainly used to perform the different

multiplications present in the design, such as the multiplication by the precomputed inverse

performed in both the quantizer and the mapper, and the dot product between the local

differences vector Uz,y,x and the weights vector Wz,y,x, both performed in the prediction

stage; or to compute Equations 4.3 and 4.4, calculated under the low-entropy mode in the

hybrid encoder.

All the modules that conform the compression chain have been successfully synthesized

with a targeted maximum clock frequency of 125 MHz, the maximum reached by the

predictor, which is the bottleneck of the system.
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Table 5.13: Main configuration parameters of the CCSDS 123.0-B-2 proposed IP used
for synthesis purposes

Parameter Value

Image parameters

Columns, Nx 677

Lines, Ny 512

Bands, Nz 224

Dynamic Range, D 16

Encoding Order BIL

Predictor parameters

Bands for Prediction, P 3

Local Sum Mode Narrow Neighbour-Oriented

Prediction Mode Full Prediction

Weight Resolution, Ω 16

Sample Adaptive Resolution, Θ 2

Sample Adaptive Offset, ψz 1

Sample Adaptive Damping, φz 1

Error Method Absolute

Absolute Error Bit-depth, Da 8

Absolute Error Value, Az 4

Hybrid Encoder parameters

Unary Length Limit, Umax 16

Rescaling Counter Size, γ∗ 5

Initial Count Exponent, γ0 1

Table 5.14: Near-lossless hyperspectral image compression IP - Resources utilization
on Xilinx Kintex UltraScale XCKU040

36Kb BRAM DSP48E Registers LUTs

Predictor 76 (12.7%) 54 (2.8%) 6054 (1.3%) 10087 (4.1%)

Hybrid Encoder 9 (1.5%) 9 (0.5%) 2498 (0.5%) 4286 (1.8%)

Header generator 0 (0%) 0 (0%) 2976 (0.6%) 2478 (1.0%)

Bitpacker 0 (0%) 0 (0%) 387 (0.1%) 334 (0.1%)

Total 85 (14.2%) 63 (3.3%) 11915 (2.5%) 17185 (7.0%)

5.5.1.3 Demonstrator set-up

The developed IP core has been mapped on a Xilinx Kintex UltraScale XCKU040-

2FFVA1156E FPGA, mounted on a KCU105 evaluation board for validation purposes.

In addition to the compression chain, the test-setup is completed with a MicroBlaze
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embedded microprocessor to manage IP initialization and test behaviour; the necessary

AXI infrastructure to interconnect the different modules; and a Direct Memory Access

(DMA) module, which handles data transactions between the compression chain and the

off-chip memory, where the input images are located prior to start the tests. The access to

that external memory is done through a dedicated DDR4 memory controller. Input images

are loaded into the external RAM from an SD card, by using the Xilinx xilffs library, which

runs on the MicroBlaze soft processor and provides the necessary software functions to

interact with that storage device. A specific AXI module is also used to manage modules

initialization and configuration through AXI4-Lite interfaces. An overview of the whole

test set-up is shown in Figure 5.14. The inclusion of these modules in the design implies

a resources utilization overhead of 15% of LUTs, 9% of registers and 13% of dedicated

memory, compared to the area consumed just by the compression chain.

The whole validation set-up also runs at a clock frequency of 125 MHz, except the DDR4

controller, which is fed with a dedicated clock at 300 MHz for high-speed accesses to

the off-chip memory. The bottleneck of the processing chain is the predictor, due to the

feedback loop implemented to support near-lossless compression. In this implementation,

the predictor is able to generate a prediction residual δ(t) every 7 clock cycles. The other

modules have a latency of 1 clock cycle including the hybrid encoder, since it always

Figure 5.14: Validation set-up for the CCSDS 123.0-B-2 compliant IP
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selects the high-entropy method for the AVIRIS scenes used for validation; otherwise, its

latency will be variable, depending on the number of samples that are coded by using

the low-entropy mode. The latency of the header generator, which has a sequential

behaviour, is overlapped with the rest of the compression solution by executing both

processes simultaneously. Therefore, the latency of the whole compression chain is 7 clock

cycles to fully process an input sample. Taking into account that the presented solution

has a linear behaviour, the throughput of the system is imposed by the predictor and it

can be calculated as following reflected, considering as sample a 16-bits input pixel of an

AVIRIS scene:

Throughput =
1

Tpredictor · 1
f

=
1

7 · 1
125·106

= 17.86 (MSamples/s), (5.1)

being Tpredictor the number of clock cycles taken by the predictor to generate a mapped

residual δ(t) and f the system clock frequency, fixed to 125 MHz.

Although this throughput could prevent the use of this solution in real-time applications,

it can be improved by placing multiple instances of the compression chain in parallel,

since there is enough margin in terms of resources utilization, as previously reflected in

Table 5.14. This mechanism is also robust against radiation effects, since an error in one

image segment implies that it is lost but not the rest of the image, which can be recovered

during the decompression. This scheme has been successfully evaluated in [192], obtaining

different results in terms of compression performance and reconstructed image quality,

depending on the partitioning pattern.

5.5.1.4 Evaluation of the HLS approach

Finally, Table 5.15 shows a comparison between the full HLS implementation of the CCSDS

123.0-B-2 standard and the VHDL implementation of the CCSDS 123.0-B-1 standard

presented in Section 5.4. Results obtained by the VHDL implementation are presented

for BIL order, for a more realistic comparison with the HLS approach [193]. As it can be

observed, there is an increment in the logic resources utilization due to the introduction of

the quantization feedback loop in the HLS approach, to be able to compress in near-lossless

mode. The use of the new hybrid encoder instead of the sample-adaptive one described in

Issue 1 of the standard also implies a higher logic resources usage. This is added to the

fact that generally HLS implementations are not capable to map the developed model in



132 Chapter 5. Modular solutions for on-board data compression

the available resources in an optimal way, as it is done in an RTL description. This area

overhead is around +188% of LUTs and +15% of BRAMs. The high difference in the use

of DSPs, around +79%, is derived from the quantizer inclusion, which uses multiplications.

Besides, architectural modifications to support near-lossless compression also imply a

reduction of -70% in terms of throughput.

The main strength of the presented work is the short development time, thanks to use

the HLS design methodology, obtaining a functional model +75% faster (i.e., in less time)

than following an RTL strategy. In this way, it is demonstrated the benefit of HLS to

provide a behavioural description of the final system that, though it does not reach an

optimized model in terms of area utilization and performance, it can served as a starting

point for prototyping purposes. It is intended that future FPGA implementations of the

CCSDS 123.0-B-2 near-lossless compression standard takes the presented approach as

worst case, since it is expected that VHDL descriptions always obtain better results in

terms of resources usage and throughput than one developed following an HLS design

strategy.

Table 5.15: Comparison between CCSDS 123 VHDL and HLS implementations

Implementation
Development

Encoder LUTs FFs DSPs BRAMs
freq. Throughput

time (months) (MHz) (MSamples/s)
CCSDS 123.0-B-1

24 Sample 5975 3599 13 74 152 59.4
(VHDL)

CCSDS 123.0-B-2
6 Hybrid 17185 11915 63 85 125 17.86

(HLS)

5.5.2 Compression solution based on the CCSDS 123.0-B-2

standard for CHIME

The HLS model developed for CHIME is a tailored version of the predictor presented

in the previous Section, implementing only the predictor features that achieve the best

results in terms of compression ratio to meet mission goals. This optimal configuration

was extracted after an exhaustive parameter tuning, whose main results are presented in

Section 5.5.2.1.

The CCSDS 121.0-B-3 block-adaptive encoder introduced in Section 4.2 is used as entropy

coder, since it achieves a compromise among compression demands and area utilization.

In this way, a combined approach that uses both HLS and VHDL design methodologies is
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employed to obtain a complete compression solution for this specific space mission in the

available development time (i.e., 3-4 months).

5.5.2.1 Parameter tuning

The CCSDS 123.0.B-2 compression standard presents a great amount of configuration

parameters that influence the compression performance. For the CHIME program, most

of these parameters have been set to fixed values to simplify the hardware implementation,

while at the same time optimizing the compressor performance according to the mission

requirements. Some choices are imposed by the mission sensor, such as the spectral and

spatial resolution per line, as well as the sample processing order in BIL. Other choices are

motivated by the goal of obtaining a throughput as high as possible, such as the settings for

the number of P previous bands used for the prediction, the local sum and the prediction

mode. These decisions has been made after performing a parameter tuning to find the

configuration that allows to maximize the compression ratio for the representative test

vectors. These test vectors are based on AVIRIS scenes extended in the x-axis to achieve

2048 pixels per line, as expected for the CHIME sensor, and presenting different levels of

cloud coverage.

The baseline configuration used for the parameter tuning is the one reflected in Table

5.16. Firstly, the predictor is configured in lossless mode, in order to identify the suitable

parameter values to maximize CR. This process is done in an incremental way, determining

first the predictor parameters that have a higher influence in the compression performance

and then the ones related to the entropy coding stage.

The first test battery exercises the 8 possible combinations of local sum and prediction

mode. Doing this, the combination of narrow neighbour-oriented local sum with reduced

prediction mode is identified as the best one, obtaining maximum CRs of 4.0378.

After fixing these parameters, then it was turn for analysing the impact of the P value in

the CR. Since it is demonstrated that values higher than 3 do not provide an improvement

in terms of compression performance [181], the tuning has been done for P values from 0

to 3, as shown in Figure 5.15. Although the results for P = 1 are slightly better than for

P = 3, the latter is finally selected since results for P = 1 are outliers probably due to

image construction by mirroring In addition, it is expected a higher image quality after

decompression by employing P = 3 than P = 1.
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Table 5.16: CCSDS123.0-B-2 predictor configuration for CHIME parameter tuning

Parameter Value

Image parameters

Columns, Nx 2048

Lines, Ny 2649

Bands, Nz 224

Dynamic Range, D 16

Encoding Order BIL

Predictor parameters

Bands for Prediction, P 3

Local Sum Mode Narrow Neighbour-Oriented

Prediction Mode Full

Register size, R 64

Weight Resolution, Ω 16

Weight Update Scaling Exponent Interval, tinc 64

Weight Scaling Exponent Interval Initial, vmin 6

Weight Scaling Exponent Interval Final, vmax 9

Figure 5.15: Compression ratio as a function of the P value

Then, suitable values for vmin, vmax and tinc are obtained. Those optimal values are

0, 3 and 2048, respectively, though the latter does not affect performance. Under this

configuration, a maximum CR of 4.3776 is obtained in lossless compression. Regarding

the register size R, improvements are not observed for R ≥ 43, so 48 is finally selected, as

it is the closer byte boundary.

Weight resolution Ω has been swept from 8 to 18 in steps of two. In addition, the maximum

allowed value (i.e., 19) is also included in the tests. Results are reflected in Figure 5.16 for
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Figure 5.16: Compression ratio as a function of the Ω value

two of the employed test vectors and considering prediction in full and reduced mode for

each one of them. As it is observed, best results under full mode are obtained for Ω = 16,

while Ω = 19 provides higher CRs when reduced prediction mode is selected. Since the CR

improvement for increasing Ω from 16 to 19 is not significant (from 4.3573 with Ω = 16 to

4.3589 with Ω = 19), 16 is selected as final value for the sake of hardware simplicity.

Regarding sample representative parameters, our findings demonstrate that optimal values

depend on the target image nature and the error introduced under near-lossless compression.

As an example, for a sample representative resolution Θ equal to 4, the optimal offset

value ψz is dependent on the absolute error limit az, as reflected in Table 5.17. If lower

resolutions are used, these values are adjusted dividing them by 2 for each bit of resolution

removed. In addition, it has been demonstrated that suitable values of the damping φz

depends on the chosen value of the resolution Θ, being this relationship the one expressed

by Equation 5.2.

φz = 2Θ−2 (5.2)

Table 5.17: Optimal offset and damping values depending on the absolute error limit
az, when Θ = 4

az 1 2 3 4

Damping, φz 4 4 4 4

Offset, ψz 3 4 6 7
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Finally, the compression performance of the three available options for the entropy coding

stage is compared. As it is shown in Figure 5.17, the hybrid encoder outperforms the other

two encoding alternatives, specially for high absolute error limits (az ≥ 4). This is because

mapped prediction residuals δ(t) tend to be closed to 0 at the same time the maximum

error limit defined during the prediction increases, exploiting in this way the low-entropy

mode introduced in the hybrid encoder. The sample-adaptive encoder is clearly the worst

option, since it is not able to achieve a CR lower than 1 bpp from a theoretical point of

view. Differences in terms of achieved CR between the hybrid and the block-adaptive

encoder are reduced for high absolute error values, since the latter incorporates a zero-block

option.

Test Vector 1

Test Vector 2

Figure 5.17: Comparison of the encoder performance for CHIME test vectors.
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For this reason, the block-adaptive encoder has been selected for this implementation,

since results are considered acceptable. Besides, a VHDL implementation, previously

presented in Section 4.2.2, is available at the beginning of the CHIME program, which is

widely verified compared to the developed hybrid encoder. In addition, the block-adaptive

encoder ensures a throughput of 1 sample per clock cycle, providing real-time capabilities

that are not guaranteed when using the hybrid encoder under low-entropy mode. The

combination of parameter values that achieve best results for the block-adaptive encoder

in terms of CR is the one summarised in Table 5.18.

Table 5.18: Parameter values for the block-adaptive encoder to achieve the highest CR

Parameter Value
Block size, J 4

Codeset Basic
Reference sample interval, r 4096

5.5.2.2 System development

The block diagram of the developed approach for the CHIME pre-development phase is

shown in Figure 5.18. It is mainly comprised by two stages: a tailored version of the

CCSDS 123.0-B-2 predictor and the block-adaptive encoder presented in Section 4.2. In

addition, a third-party AXI-to-AHB bridge has been included to preserve the original

configuration interface of the block-adaptive encoder.

custom

AHB

AXI4-Lite

AXI-to-AHB
Bridge

CHIME
Predictor
(HLS)

Block-adaptive
Encoder
(VHDL)Intermediate FIFO

encoder_params

input_params

predictor_params

input_params

Input samples

Compressed 
image

Configuration

Figure 5.18: Block diagram of the proposed compression approach for CHIME
pre-development phase
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Since the target device is a Kintex UltraScale XCKU040 FPGA, the predictor can be

modelled using Xilinx Vitis HLS tool. As it is observed in Figure 5.19, this module has

been developed with custom interfaces, based on a simple handshaking protocol to be

easily connected with the block-adaptive entropy coder. To do that, specific directives have

been defined to the Vitis HLS tool, in order to synthesize I/O ports as ad-hoc interfaces,

avoiding the automatic definition of AXI signals. The predictor accesses to the input FIFO,

external to the compressor, to receive a new sample as soon as the internal pipeline allows,

ensuring that there are not collisions with the processing of the previous one. Since this

module generates the CCSDS header fields related to the prediction, a dedicated output,

denoted as Is header out, is defined to send this partial header to the block-adaptive

encoder, which receives it and appends the encoder fields.

Several predictor parameters are fixed, taking into account the results of the parameter

tuning presented in Subsection 5.5.2.1. The selected configuration is summarised in Table

5.19. With respect to the quantizer settings, only band-dependent absolute error limits

are supported, while sample representative parameters (i.e., the offset ψz and the damping

φz) are fixed as band-independent for simplicity. The absolute error is implemented

with a resolution of 6 bits, which allows a range of values between 0 and 63, runtime

configurable. The sample representative settings are also fixed, with the exception of the

band-independent sample representative offset ψz. Lossless compression is enabled by

setting the absolute error limit A to 0. For disabling the samples reconstruction stage,

it is enough with setting the sample representative offset ψz or the resolution Θ to 0. In

addition to these two parameters, the number of lines in the image Ny is also configurable,

and a bypass option is provided to avoid the compression process. Runtime parameters

Start

Clk
Rst_n

Is_header_out
Valid_bits

Data_out
Data_out_valid

Ready

Data_in
Data_in_valid

Predictor IP

16

16

6

Figure 5.19: CHIME predictor - Overview
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are reflected in Table 5.20 and they are configured through a dedicated AXI4-Lite slave

interface.

Table 5.19: CHIME predictor - Constant parameters

Parameter Value
Image parameters

Columns, Nx 2048
Bands, Nz 256

Dynamic Range, D 16
Encoding Order BIL

Predictor parameters
Bands for Prediction, P 3

Local Sum Mode Narrow Neighbour-Oriented
Prediction Mode Reduced
Register size, R 48

Weight Resolution, Ω 16
Weight Update Scaling Exponent Interval, tinc 2048
Weight Scaling Exponent Interval Initial, vmin 0
Weight Scaling Exponent Interval Final, vmax 3

Sample Representative Resolution, Θ 2
Sample Representative Damping, φz 1

Absolute Error Bit-Depth, Az 6

Table 5.20: CHIME predictor - Runtime configurable parameters

Parameter Allowed values Bits taken
Number of lines, Ny [1:256] 8

Bypass [0,1] 1
Band-dependent Absolute Error, A [0:63] 6
Sample Representative Offset, ψz [0:3] 2

5.5.2.3 Experimental results

A pipelining strategy has been followed in the prediction stage, overlapping internal

prediction stages in absence of data dependencies and thus improving throughput. The

selection of the narrow neighbour-oriented local sum together with the reduced prediction

mode benefits this approach, since data dependencies with the sample at the left of the

current one in the same band sz,y,x−1 are removed, which is a main constraint under BIL

order. However, the HLS tool does not properly analyse data dependencies among internal

stages so, though some tasks are performed in parallel (i.e., the processing of the next

sample is started without finishing the prediction of the current one), maximum theoretical
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throughput is not achieved. The optimized predictor version is able to process an input

sample (16 bits precision) each 11 clock cycles at a frequency of 100 MHz. This feature

is still far of the final target of 1 clock cycle per sample for CHIME, but it is expected

to be achieved by a purely VHDL description of the CCSDS 123.0-B-2 predictor. In any

case, this model allows to validate the behaviour of the proposed compression chain as a

prototype at early stages of the mission workflow, and it can be considered as a worst case

for a future VHDL implementation.

Results in terms of resources utilization are shown in Table 5.21. As it can be observed,

the limiting factor is the memory usage of the predictor, which is clearly conditioned

by the input image size. This is because all the preprocessed samples of the previous

spectral line (Nx ·Nz samples) should be stored to compute the prediction of the current

spectral line. For the CHIME implementation, a total of 144 BRAMs are used just to

store this memory. Nonetheless, even when the predictor has been designed by means of

HLS techniques, hardware occupancy is considered acceptable, since the design can be

mapped in the target FPGA including mitigation strategies based on modular redundancy.

Table 5.21: CHIME IP - Resources utilization on Xilinx Kintex UltraScale XCKU040

36Kb BRAM DSP48E Registers LUTs

Predictor (HLS) 167 (27.8%) 33 (1.7%) 7388 (1.5%) 9737 (4.0%)

Block-adaptive
4 (0.7%) 4 (0.2%) 1725 (0.4%) 4944 (2.0%)

Encoder (VHDL)

Total 171 (28.5%) 37 (1.9%) 9113 (1.9%) 14681 (6.0%)

5.5.2.4 Demonstrator set-up

Figure 5.20 shows the demonstrator set-up used for validation purposes [194]. In this

picture, the main hardware components of the board and the used external interfaces are

highlighted. The main elements of the demonstrator are summarised next:

• DUT board. The KCU105 evaluation board from Xilinx has been used to imple-

ment the Design-Under-Test (DUT) [195]. This board mounts a Kintex UltraScale

XCKU040-2FFVA1156E FPGA, where the design is loaded for its validation. This

board contains all the hardware needed, excepting the interfaces to send and receive

the images. To implement the data interfaces, extra hardware is added by using a

FMC connector.

• Test Board. This mezzanine board has been mounted in the DUT board. This

board allows for bridging the USB 3.0 host (connected to the Monitoring and Control
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PC) to a FIFO bus. The FPGA in the DUT board interfaces this FIFO to receive

and transmit the image samples. The USB 3.0 to FIFO bridge allows to send the

images and receive the compressed bitstream at a maximum data rate of 2.1 Gbps.

The Monitoring and Control PC includes different software tools to perform several

functions, such as programming the FPGA through the JTAG link; a GUI to control and

monitor the test execution; reading the files containing the images to be sent and controls

the USB interface to transmit this information to the test mezzanine; recovering the

compressed data from the USB link, saving them into an output file to be post-processed;

and automation of all the tasks needed to run one test and to verify compression results.

Validation has been initially done with small images to speed up the debugging process.

After that, two test vectors have been used, compressing both in lossless mode and

additionally one of them under lossy compression [194]. In all the cases, the output files

obtained by the demonstrator are identical bit-by-bit to the ones produced with the CNES

software [141]. In addition, the throughput has been measured, obtaining the same results

expected from the theoretical analysis (i.e., 11 clock cycles per sample), which correspond

to the predictor throughput, the critical stage of the compression chain. Therefore, the

execution of these tests has been considered successful and, consequently, the HLS-VHDL

combined implementation has been probed to be in accordance with the initial mission

requirements.

Figure 5.20: Validation set-up for CHIME (extracted from [194])
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5.6 Video compression solution based on the CCSDS

123.0-B-2 algorithm

Since video sensors are integrated on-board satellites little by little, the space industry

is looking for low-complexity compression solutions that can be efficiently implemented

on embarked hardware. In this way, video acquisition is not compromised by neither the

on-board storage capacity nor the limitations in the downlink bandwidth with ground.

The VIDEO project proposes the development of a next-generation instrument for Earth

observation, capable to perform high-resolution video monitoring on an extremely wide

scene, with the purpose of recognizing and tracking objects. The processing finishes by

compressing the useful data in order to minimize the downloaded information to ground

[63].

The contribution to this project presented in this Section is related to the compression

of the video acquired by the VIDEO instrument. As commercial video encoders used on

ground are complex to be embarked on satellites, even if tailored solutions are considered,

an alternative standpoint is presented in this Thesis. Concretely, two different solutions are

proposed, depending on the video nature (i.e., panchromatic or RGB). Both approaches

take the CCSDS 123.0-B-2 algorithm as baseline, which is adapted for video compression.

In this way, a reusable solution is proposed to compress not only multi- and hyperspectral

images, but also panchromatic and RGB video with a unique processing core, reducing

hardware occupancy and power consumption. This kind of versatile compression solutions

could be useful for next-generation space missions that embark both spectroscopic and

video sensors, sharing the compression core and thus optimizing on-board computational

resources.

5.6.1 Application of the CCSDS 123.0-B-2 algorithm for

panchromatic video compression

5.6.1.1 Proposed approach

As it has been aforementioned in Section 3.4, the CCSDS 123.0-B-2 algorithm is conceived

for multi- and hyperspectral image compression. However, it can be easily adapted to

perform panchromatic video compression, since this kind of video just has a wide spectral
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component in the visible range. To do this, the spectral dimension z defined in the standard

is replaced by the temporal domain t, using for the inter-prediction the neighbouring

samples in the P previous frames, instead of the vicinity in the previously processed

spectral bands, as it is done originally in the local differences calculation of the prediction

stage. This transformation is reflected in Figure 5.21. In addition, intra-prediction is

done by calculating the local sum in the current spatial frame, as it was explained in

Section 3.4.1. This intra-prediction, though limited in comparison with the one used by

commercial video encoders, can be considered as a low-complexity alternative for video

sequences with mainly global movement, as it is expected in Remote Sensing applications.

This prediction-based solution, though is not able to achieve compression ratios in the

same order than transform-based approaches, such as H.264 and H.265 codecs, is capable

of offering a fine-grain control of the losses introduced in the compression process, at the

same time that eases the hardware implementation.

Figure 5.21: Conversion from the spectral to the temporal domain

5.6.1.2 Experimental results

A dataset comprised by 6 video sequences has been used for carrying out the quality assess-

ment of the CCSDS 123.0-B-2 algorithm for panchromatic video compression. Concretely,

4 of these scenes are from Planet SkySat database [22] and the other 2 have been acquired

in our facilities using an IDS uEye sensor [196]. All of them present a relatively low global

movement with different levels of local movements, trying to be representative of a real

Remote Sensing scenario.

All the video sequences used in the experiment are comprised of 150 frames and are stored

using 8 bits per pixel. Each frame corresponding to the Burj Khalifa video from SkySat
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has 1920x1080 spatial pixels. The frames corresponding to the other 3 videos from SkySat,

Calbuco Volcano, Turkey and Las Vegas, have a spatial resolution of 1280x720 pixels.

Finally, the spatial resolution of the videos collected by the IDS uEye sensor is 1280x1024

pixels.

Since the algorithm has a high quantity of configurable parameters that influence in the

achieved CR, the solution must be characterized to find the optimal configuration for

panchromatic video compression. A fine-grain parameter tuning is done, fixing first the

predictor parameters, and afterwards, the ones related to the hybrid encoder.

The selected compressor configuration is summarised in Table 5.22, keeping in mind the

goal of maximizing CR without degrading in excess the reconstructed video quality.

Regarding the selected prediction mode, it was observed that the reduced mode provides

better results for static video sequences (i.e., with a reduced local movement), while the

full mode is preferable for scenes with a considerable presence of local movement. These

results were expected, since the full prediction mode considers more neighbouring samples

for its computation than the reduced one, improving in this way the compression under

high local movement. In both cases, the wide neighbour-oriented local sum outperforms

Table 5.22: Relevant compressor parameters

Parameter Value Description

Video parameters

D 8 Bit-width of input pixels

ENDIANNESS 0 Little Endian

IS SIGNED 0 Unsigned samples

Predictor parameters

P 3 Previous bands used for prediction

R 48 Register size

Ω 16 Weight resolution

vmin 0 Weight update initial value

vmax 3 Weight update final value

tinc 64 Weight update change interval

Θ 2 Sample representatives resolution

φ 1 Damping

ψ 1 Offset

Da 7 Absolute error bit-depth

A [0:32] Band-independent absolute error

Encoder parameters

Umax 32 Unary Length Limit

γ∗ 4 Rescaling Counter Size

γ0 1 Initial Count Exponent
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the other available options, though the penalty when the narrow neighbour-oriented one

is selected is around the 10%-15%. This latter option may be preferable to prioritise

the throughput instead of the CR in hardware implementations, since it reduces data

dependencies with adjacent samples in the same frame. The impact of varying the P

value has been also evaluated, concluding that values higher than 3 do not provide a

compression improvement, as it is shown in Figure 5.22 and as it was also concluded for

hyperspectral image compression [179, 181]. At the same time, employing a low P value

simplifies hardware implementation, since some memory elements are dependent on this

parameter.

Other critical parameters, such as the ones involved in the samples representatives calcula-

tion (i.e., the resolution Θ, the damping φ and the offset ψ), are also in consonance with

the optimal values detailed in [181], when the compressor is characterized with multi- and

hyperspectral images.

Results in terms of compression ratio versus reconstructed video quality, measured by

using the PSNR, are summarised in Figure 5.23. Only absolute error values are reflected

for simplicity, because both the compression ratio and the PSNR are similar when relative

error limits are used or when both are combined, since the algorithm always take the

minimum value between both options.

The absolute error is used as frame-independent (i.e., the same error is applied to all the

frames in the video sequence) and its value is swept from 0 (lossless) to 31, by defining a

Figure 5.22: Panchromatic compression - Influence of P value in the compression ratio
under lossless mode
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Figure 5.23: Panchromatic compression - Relationship between compression ratio and
video quality

maximum error bit-depth of 5. It is observed that for compression ratios up to 25 (i.e.,

0.32 bits per pixel), the reconstructed video obtains PSNR values over 35 dB, providing

sequences without any visual impact because of compression effects. The worst results are

obtained for Las Vegas sequence, the one with highest local movement within the used

dataset. It is also remarkable the difference in terms of compression performance for the

video samples with higher and lower amount of local movement, obtaining the latter CRs

around 50 (i.e., approximately 0.16 bits per pixel), with a PSNR equal to 25 dB.

Figure 5.24 shows a frame of the IDS 1 sequence, applying different absolute error limits.

As it can be observed, a clear degradation is not appreciated from a visual point of view

until the bottom-left frame (A = 16), with a CR around 40 (i.e., 0.2 bits per pixel) and a

PSNR equal to 37 dB. In the first and second frame (A = 4 and A = 8, respectively), just

some degradation is distinguished at the top of the picture. Nevertheless, object shapes

are preserved even when A = 32, obtaining in this case a CR around 47 with a PSNR

equal to 27 dB.
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a) A=4 b) A=8

c) A=16 d) A=32

Figure 5.24: Visual aspect of the decompressed frames from the IDS 1 video sequence
when compressing it with different maximum errors values

5.6.2 Adapting the CCSDS 123.0-B-2 algorithm to compress

RGB video

5.6.2.1 Proposed approach

5.6.2.1.1 Using a single CCSDS-123 compression core for each color channel

When the CCSDS 123.0-B-2 algorithm is used to compress hyperspectral images, it has

been demonstrated that highest RD ratios are obtained for hyperspectral images with

a large number of bands [197]. This happens due to the fact that when the number of

bands increases, the spectral channels at which subsequent bands are sensed get closer

and hence, adjacent bands start to be strongly correlated. Accordingly, each sample can

be accurately predicted using the values of the same pixel in previous bands. However,

when compressing multispectral images with higher spectral distances between consecutive

bands, the spectral prediction is not so efficient.
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This is also applicable to Remote Sensing applications focused on video acquisition, where

a high spatial resolution results in video sequences with a reduced global movement

between subsequent frames, and where the moving objects are very small in comparison

to the spatial dimension of the captured scene. Due to this, the correlation between

subsequent frames for the same color channel in an RGB video could be strong, while the

correlation between the 3 color channels for a single frame would not be so high. Hence,

each of the color channels could be treated as an independent gray-scale video and can be

independently compressed using a CCSDS 123.0-B-2 compressor, as it is shown in Figure

5.25.

Following this procedure, both panchromatic and RGB video sequences can be compressed

using the same CCSDS 123.0-B-2 processing core, without carrying out any further

modification, just by replacing the spectral dimension z by the temporal dimension t, and

independently compressing each color channel as a gray-scale video.

Figure 5.25: Compression strategy for RGB video, treating each color channel as
independent frames

5.6.2.1.2 Transformation to the YCbCr domain

Although the previous strategy is viable for RGB videos, its compression performance

is limited. So, further optimizations can be added to increase the overall compression

performance. In order to keep the compression solution fully compliant with the CCSDS

123.0-B-2 standard and to make it flexible so it can be adapted to multiple requirements,

each optimization added here on is implemented into the entire compression chain as an

individual stage, which can be optionally used attending to the necessities of the targeted
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application, resulting in three different compression alternatives. Figure 5.26 graphically

describes the entire compression chain, including these three compression alternatives and

the individual blocks that encompasses them, which are also detailed next:

• RGB to YCbCr spectral transformation. This block carries out the spectral

transformation of each video frame from the RGB to the YCbCr color space. By

doing so, while each video frame still has three spectral channels, most of its spatial

information is concentrated into the first one, the luma (Y), which represents the

brightness of the scene, while the chroma bands (Cb and Cr) stores the color

information. The conversion is done by applying Equations 5.3, 5.4 and 5.5, as it is

described in the Recommendation ITU-R BT.709-6 [198]. This kind of transformation

is commonly used in most of the standard video compressors, such as the H.264

specification [115], to introduce a higher level of losses in the Cb and Cr components,

since they store information less perceptible to the human eye, allowing in this

way to increase CR without degrading reconstructed video quality. Similarly, a

higher error limit can be applied in the CCSDS 123.0-B-2 compressor when using

it to individually compress the Cb and Cr frames, while compressing the Y frames

with a lower error or even in lossless mode. This preprocessing stage is graphically

described in the second row of Figure 5.26 and it is only executed in the compression

alternatives 2 and 3.

Y = 0.2627 ·R + 0.6780 ·G+ 0.0593 ·B (5.3)

CB =
B − Y

1.8814
(5.4)

CR =
R− Y

1.4746
(5.5)

• Spatial subsampling of the Cb and Cr bands. In addition to the previous

step, a spatial subsampling of the Cb and Cr channels can be applied by using a

bilinear interpolation, reducing in this way their width and height. This strategy

is also commonly applied in most of the commercial video compressors in order to

increase the overall CR achieved at the cost of introducing some spatial blurring in

the Cb and Cr channels, without introducing significant distortions from a visual



150 Chapter 5. Modular solutions for on-board data compression

point of view. One further advantage of applying this preprocessing stage is that

the computational burden of the subsequent compression stages for the Cb and Cr

channels is reduced, decreasing at the same time the resources utilization needed on

the final hardware implementation. In the proposed approach, the size of the Cb

and Cr channels has been reduced by a factor of 2 in both their width and height

dimensions, thus lessening the overall amount of data to be further processed from

these channels by a factor of 4. By introducing this stage in the compression chain,

it is also possible to adjust the global latency, being able to compress the luma

channel with a compression instance, at the same time that both chroma components

are compressed one after the other by using an additional compression core. This

preprocessing stage is graphically described in the last row of Figure 5.26 and it is

only executed in the last compression alternative (i.e., alternative 3).

Figure 5.26: Full processing chain for RGB video compression

5.6.2.2 Experimental results

4 video sequences have been used for carrying out the quality assessment of the CCSDS

123.0-B-2 standard for RGB video compression. The first two sequences have been acquired

in our facilities using an IDS uEye sensor [196], providing scenes comprised by 100 frames

that are stored using 8 bits per pixel and with a spatial resolution of 1280x1024 pixels.
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These scenes were captured trying to simulate a Remote Sensing application, where an

object with a constant movement is appreciated, while the rest of the scene remains almost

static. Two additional sequences extracted from the Stanford Drone Dataset have been

also employed [199], known as Death Circle and Nexus sequences. These videos have

been also trimmed to 100 frames, with a spatial resolution of 1400x1904 pixels and a

precision of 8 bits per pixel. Unlike video sequences acquired in our facilities, videos from

Stanford Dataset present a high local movement, helping to characterize the behaviour of

the compression solution under demanding scenes in terms of displacement.

After an exhaustive parameter tuning to characterize the different CCSDS 123.0-B-2

compression parameters, the same configuration used for panchromatic video compression

is selected, which has been summarised in Table 5.22, since it is also the one that provides

the best results in terms of RD ratio for RGB videos. Full prediction mode has been

selected, since it was identified as the best option not only for eminently static scenes,

but also for the ones with a considerable local movement. This is because it considers a

pixel vicinity for the prediction in the current frame, in addition to the pixel at the same

position than the current one but in P previous frames, which is the only one employed

under reduced mode. Regarding the local sum method, the wide neighbour-oriented local

sum outperforms the other available options.

A sweep is firstly performed to analyse the impact in the CR of the applied absolute

errors on the luma and chroma channels, using values in the range 0 ≤ A ≤ 31 in steps

of power-of-two. This study has been performed for Alternatives 2 and 3, since both of

them apply RGB to YCbCr spectral transformation, and the obtained results are shown

in Figures 5.27 and 5.28, respectively. The case A = 0 represents lossless compression,

achieving CRs around 5 for IDS videos, and between 8 and 10 for Stanford sequences

under Alternative 2. Compression ratio in lossless mode is improved under Alternative 3,

reaching up to 10 for IDS videos, and between 9 and 12 for the Stanford sequences.

As it is shown in Figure 5.27, the chroma errors slightly increase compression ratio

for all the images in the dataset, while in Figure 5.28 is appreciated that compression

performance stalls when high error values are applied to chroma components, specially

when low absolute error values are applied to the luma. This is due to the fact that the

amount of Cr and Cb data to be compressed is just the half than the Y data due to the

spatial subsampling. Additionally, Cb and Cr channels present lower entropy and can be

more efficiently compressed even with low maximum errors, resulting in less compressed
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a) Guagua sequence b) Top sequence

c) DeathCircle sequence d) Nexus sequence

Figure 5.27: Relationship of the the chroma and luma errors with the compression
ratio (Alternative 2)

information and becoming negligible in comparison to the part of the compressed bitstream

corresponding to the Y channel.

On the other side, the luma error emerges as the key value to increase the compression

performance, allowing maximum compression ratios for the IDS sequences between 37

and 94 when AY = 2 and AY = 31, respectively, under Alternative 3. Similar results are

obtained for the Stanford sequences, reaching maximum compression ratios between 24

and 96 when AY = 2 and AY = 31, respectively. These results are obtained for the four

video sequences by fixing both chroma errors to the maximum allowed in these tests (a

value of 31). These results are considerably worse under Alternative 2, obtaining maximum

compression ratios for the IDS sequences between 27 and 50 when AY = 2 and AY = 31,

respectively, and between 20 and 54 for the Stanford videos when AY = 2 and AY = 31,

respectively.
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a) Guagua sequence b) Top sequence

c) DeathCircle sequence d) Nexus sequence

Figure 5.28: Relationship of the the chroma and luma errors with the compression
ratio (Alternative 3)

Results in terms of compression ratio versus reconstructed video quality, measured in terms

of PSNR, are shown in Figures 5.29, 5.30 and 5.31 for Alternatives 1, 2 and 3, respectively.

In these tests, only frame-independent absolute errors are used. In the case of Alternative

1, the same absolute error is applied to each color channel, since in this approach the

RGB to YCbCr spectral transformation is not performed, compressing directly RGB video

in raw format. Purely lossless situation (AY,Cb,Cr = 0) is not shown for Alternative 1,

since PSNR tends to infinite. As it can be seen for all the experiments performed, the

decompressed video quality decreases as the maximum error fixed for the luma and chroma

channels increases. This tendency is more notable in the case of the Stanford sequences

when applying low absolute errors to the luma channel (AY ≤ 4), under Alternatives 2

and 3.
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In the lossless scenario (AY,Cb,Cr = 0), a considerable video quality is reached for all the

analysed video sequences. Under Alternative 2, around 52 dB are obtained for all the

video sequences in the dataset. In the case of Alternative 3, PSNR values are lower, being

around 34 dB and 36 dB for the Guagua and Top sequences, respectively, and still 52 dB

for the two videos of the Stanford dataset.

Best results in terms of PSNR are obtained for Alternative 1, at the expense of a penalty

in terms of CR. Maximum compression ratio of 38 is obtained for Guagua and Death Circle

sequences, while this value is increased up to 44 for Top and Nexus videos. These results

are obtained for AY,Cb,Cr = 31 and guaranteeing an acceptable visual quality, since PSNR

≥ 26 dB in all the cases.

Compression ratios up to 20 (i.e., 0.4 bits per pixel) and 28 (i.e., approximately 0.29

bits per pixel) are obtained for the Guagua and Top sequences, respectively, when fixing

AY = 4 and ACb,Cr = 8 under Alternative 2. For the case of Death Circle and Nexus

videos, maximum CRs of 22 (i.e., 0.36 bits per pixel) and 26 (i.e., around 0.31 bits per

pixel) are obtained respectively, using the same approach and identical error values.

In general terms, higher compression ratios are obtained under Alternative 3. Fixing

also the error limits to AY = 4 and ACb,Cr = 8, maximum CRs up to 30 (i.e., around

0.27 bits per pixel) and 47 (i.e., 0.17 bits per pixel) are achieved for the Guagua and

Top sequences, respectively. Compression results are almost 27 (i.e., around 0.3 bits per

pixel) and 34 (i.e., approximately 0.24 bits per pixel) for Death Circle and Nexus videos,

respectively, by applying the mentioned error values to the three spectral channels. Under

this configuration, compression has not effect yet over the video quality (approximately 30

dB for IDS sequences and 32 dB for Stanford videos) from a visual inspection.

When error limits are increased to AY = 8 and ACb,Cr = 16, higher compression ratios are

achieved. For Alternative 2, maximum CRs of 29 and 38 are obtained for Guagua and

Top sequences, respectively. In the case of DeathCircle and Nexus videos, CRs up to 31

and 36 are reached, respectively, specifying the same error limits. In all these test cases,

video quality is over 25 dB, ensuring visual fidelity. Compression results under this error

configuration but for Alternative 3 achieve maximum values of 47 and 66 for the Guagua

and Top sequences, respectively, while video quality is still over 25 dB in both cases. The

same video quality level is achieved for the Stanford sequences applying the same error

limits, with compression ratios up to 43 and 53 for DeathCircle and Nexus sequences,

respectively.
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a) Guagua sequence b) Top sequence

c) DeathCircle sequence d) Nexus sequence

Figure 5.29: Relationship between the compression ratio and video quality, measured
by PSNR, for original RGB video (Alternative 1)

In addition to the PSNR, which is a mathematically-defined measure of the video quality,

results are also provided in terms of UIQI [200]. This metric tries to provide a quality

measurement approach independent of the images under test, the viewing conditions or

the observer point of view. I has been observed that under Alternative 3, UIQI values

higher than 0.92 have been obtained for all the tests performed for the different video

sequences in the dataset. These results are considered satisfactory, since these values are

closed to the maximum allowed (i.e., 1 is just achieved under lossless compression).

From a visual point of view, video degradation is clearly appreciated in Alternative 3 for

higher compression ratios (e.g., for AY ≥ 16), though object shapes are still preserved.

Some examples are provided in Figures 5.32 and 5.33, where a frame of the Death Circle

and Guagua sequences is shown, respectively, applying in each case different error levels to

the luma and the chroma channels. As it is reflected in both pictures, degradation is not
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a) Guagua sequence b) Top sequence

c) DeathCircle sequence d) Nexus sequence

Figure 5.30: Relationship between the compression ratio and video quality, measured
by PSNR, after applying RGB to YCbCr transformation (Alternative 2)

visually appreciated until the third frame, when a slight degradation is observed at the top

of the frames, applying error values of AY = 16 and ACb,Cr = 4. Under this configuration,

CRs of 61 (i.e., 0.13 bits per pixel) and 44 (i.e., 0.18 bits per pixel) are obtained for each

video sequence, respectively. PSNR values are around 30 and 28 dB for the Death Circle

and Guagua sequences, respectively, while UIQI ≥ 0.99 in both cases.

The highest level of degradation is observed in the last frame, when AY = 31 and ACb,Cr = 8.

In this point, brightness losses are combined with colour saturation, obtaining a distorted

sequence where objects are still clearly identified in the scene. In addition, some artifacts

are observed, related to the way in which the prediction is carried out by the CCSDS

123.0-B-2 algorithm. In the full mode, which is the selected one for the tests performed,

the predictor uses the previous vertical, horizontal and diagonal neighbour samples to

predict the current one, and this may result in diagonal artifacts. The level of degradation
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a) Guagua sequence b) Top sequence

c) DeathCircle sequence d) Nexus sequence

Figure 5.31: Relationship between the compression ratio and video quality, measured
by PSNR, after applying RGB to YCbCr transformation and chroma subsampling

(Alternative 3)

introduced by these artifacts depends on the absolute error set in the prediction. Since

higher errors are being set for the chroma channels, these artifacts tend to has a higher

impact in the image colour than in the image shapes, which are preserved by the luma

channel. Under this configuration, compression ratios of 83 (i.e., approximately 0.1 bits

per pixel) and 64 (i.e., around 0.13 bits per pixel) are obtained for the Death Circle and

Guagua sequences, respectively, with a PSNR around 25 dB in both cases. Applying this

error configuration, UIQI values of 0.967 and 0.981 are obtained for Death Circle and

Guagua sequences, respectively.

The obtained results demonstrate the goodness of the proposed solution for Remote

Sensing applications, having achieved compression ratios up to 39 (i.e., 0.21 bits per

pixel) in the experiments carried out in this work without observing any degradation by

visual inspection. Higher compression ratios can be achieved at the cost of decreasing
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the decompressed video quality. While in this case the present objects are still clearly

distinguishable in the decompressed video, the trade-off between compression ratio and

decompressed video quality has to be set to meet the targeted application requirements.

a) AY =4 -
AC=2

b) AY =8 -
AC=2

c) AY =16 -
AC=4

d) AY =31 -
AC=8

Figure 5.32: Decompressed frames from the DeathCircle video with different maximum
errors values for the Y channel (AY ) and for the Cb and Cr channels (AC).

a) AY =4 - AC=2 b) AY =8 - AC=2

c) AY =16 - AC=4 d) AY =31 - AC=8

Figure 5.33: Decompressed frames from the Guagua video with different maximum
errors values for the Y channel (AY ) and for the Cb and Cr channels (AC).
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5.7 Conclusions

In this Chapter, the concept of modular compression solution is demonstrated through its

applicability to four different validation scenarios: lossless one-dimensional data and image

compression; lossless and near-lossless hyperspectral image compression; and near-lossless

video compression. The proposed compression chain for each one of the validation scenarios

is mainly comprised by a prediction-based preprocessor and an entropy coder, selecting the

appropriate alternative from the functional blocks developed and presented in Chapters 3

and 4.

Characterization results are provided for lossless compression scenarios (i.e. one-

dimensional data and hyperspectral imaging), including maximum clock frequency and

resources utilization in a variety of space-grade FPGAs, including the novel BRAVE family.

The near-lossless hyperspectral image compression scenario has been successfully validated

just on the Xilinx Kintex UltraScale XCKU040 FPGA, because of its main functional

blocks have been designed following an HLS workflow and that device is the target one

on the CHIME program. Finally, the video compression approach has been verified at

algorithmic level, demonstrating the viability of using the CCSDS 123.0-B-2 algorithm

not only to compress multi- and hyperspectral images, but also panchromatic and RGB

video sequences. This derives in a versatile compression solution capable of compressing

data with different nature in future space missions that embark different kind of sensors,

reducing at the same time the area overhead.





Chapter 6

Conclusions and future work

This Chapter summarises the contributions of the Thesis to the field of hardware imple-

mentations of low-complexity algorithms for on-board data compression. The modular

strategy proposed, based on the development of functional blocks, allows the user to create

suitable solutions for the target application. The proposed scheme provides the basis to

design efficient systems to compress one-dimensional data, HSI and for video sequences

on-board satellites. In addition, future research lines are drawn, which will complement

and improve the work presented in this Thesis.

161
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6.1 Conclusions

Embarking high-resolution sensors on-board satellites is becoming increasingly popular in

imaging space missions, since these sensors are powerful tools to acquire a high amount

of information about the observed scene. However, both on-board storage resources and

the downlink bandwidth to the ground stations are limited, making difficult the proper

handling of the collected data in raw format (i.e., as it is acquired). For this reason,

employing on-board compression techniques becomes mandatory to efficiently reduce the

volume of the acquired data, such as multi- and hyperspectral images, video sequences or

a non-formatted data stream (i.e., one-dimensional data).

The need for on-board compression has motivated space companies and academic institu-

tions to dedicate efforts to design efficient compression techniques that could be deployed

on-board. The implementation of low-complexity compression algorithms on hardware

available on-board satellites is a constant challenge, mainly because the solutions must

meet strict requirements in terms of low power consumption and high frequency (real-time

processing capabilities is demanded by many applications) providing, on the other hand,

high compression performance (i.e., high image quality and high compression ratio). Be-

sides, on-board solutions have to be robust against the effect that ionizing radiation has

on electronics which operate in a harsh environment, such as the outer space. Techniques

such as Triple Modular Redundancy, scrubbing, EDAC, etc. alleviate this problem at the

expense of impose more constraints to the designed systems.

This Thesis tries to solve these problems, making a contribution to the development of

efficient hardware implementations for on-board data, hyperspectral image and video

compression. The Thesis approach consists on the use of a modular strategy providing a

number of functional blocks (mainly prediction-based blocks and entropy coder blocks)

that can be combined to form a complete compression solution. These functional blocks

are designed and fully characterized, allowing the user to accelerate the design process by

simply concatenating the selected blocks required for a specific application. Moreover, the

functional blocks have a high level of configuration, easing its adaptation to the mission

requirements (sensor type, hardware occupancy, performance, etc.). The Thesis is focused

in the use of FPGAs as hardware platforms, as they are an attractive and available option

for the space industry. In addition to a high performance, flexibility and low power

consumption, FPGAs also has reduced development costs compared to ASICs and even

multiprocessor circuits.
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The following sections detail the results of the Thesis and relate them to the objectives

initially proposed and described in Chapter 1.

6.1.1 State-of-the-art analysis

There are several compression algorithms available in the specialised literature, including

both lossless and lossy, to compress one-dimensional data, and multi- and hyperspectral

images on-board satellites, with different levels of complexity and performance. Regarding

video compression, there are not (to the date) specific algorithms proposed to compress

video in space, except for tailored versions of video encoders used on ground, such as H.264

and H.265, used with a reduced set of features to adapt their architectural complexity to

the embarked hardware. The feasibility of a one-dimensional data, hyperspectral image

and video compression algorithm to be implemented on hardware available on-board is not

commonly addressed in the state-of-the-art. Moreover, architectural studies focused on

how to reduce hardware occupancy or to increase performance are not discussed in-depth.

As part of this Thesis, an exhaustive analysis of the available literature in the on-board

data compression research topic has been performed, distinguishing different compression

solutions depending on their performance and the nature of the data handled. From this

study of the state-of-the-art, the current trends in the development of on-board data

compression techniques are identified, as well as the most commonly employed hardware

technologies to implement compression solutions. The focus is on compression algorithms

for one-dimensional data and 3D images, since the interest of the space industry is moving

from traditional images in the spatial domain to HSI, which provides extra information in

several wavelengths for EO missions.

This analysis narrows down the compression algorithms to those that exhibit a good

compromise between complexity and compression efficiency. In conclusion, the contri-

butions of the Thesis are focused on prediction-based decorrelators and entropy coders

based con Golomb-Rice codes. Specifically, those algorithms proposed by the CCSDS, the

international organism responsible of publishing standards for the development of data

systems for space missions, are taken into consideration.
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6.1.2 Functional blocks

The main contribution of the Thesis is the development of basic functional blocks as the

basis to design compression systems. They are fully configurable and can be used with

any sensor type. These functional blocks are fully verified and characterized for a range of

FPGAs qualified for space missions. The contributions can be summarised as follows:

• Three different prediction-based blocks have been developed, all of them compliant

with CCSDS standards. The unit-delay predictor, based on the CCSDS 121.0-B-3

standard, is focused on one-dimensional data decorrelation. The 3D predictors

compliant with the CCSDS 123.0-B-1 and 123.0-B-2 standards provide both spatial

and spectral decorrelation when processing multi- and hyperspectral images under

lossless and near-lossless compression, respectively. Data dependencies present on

the processing of the possible input sample arrangements have been studied in detail,

in order to overcome them to achieve a maximum throughput of one sample per clock

cycle under specific configurations. For this reason, different predictor architectures

have been proposed and implemented. As a result, these blocks are highly configurable

(providing a set of parameters to tailor it to the application) and adaptable to the

different sensors in the market. The blocks have been fully characterized and results

are provided for Xilinx Kintex UltraScale XCKU040 FPGA. These results (and

results on other FPGAs not present here for the sake of brevity) demonstrate the

goodness of the proposed functional blocks to fit well on a space-grade FPGAs.

• Three entropy coding blocks have been developed, which are also compliant with

CCSDS standards. The block-adaptive encoder, originally defined in the CCSDS

121 universal lossless compression standard, is based on Rice coding. The sample-

adaptive and the hybrid encoder alternatives are presented in the CCSDS 123.0-B-2

near-lossless compression standard for multi- and hyperspectral images. Although

both are based on Golomb codes, the hybrid encoder allows higher CRs by exploiting

low-entropy data. It has been demonstrated that the developed functional blocks can

be successfully mapped on a Xilinx Kintex UltraScale XCKU040 FPGA, providing a

high throughput to achieve real-time processing, together with a low area footprint.

The hybrid encoder block was designed using the HLS methodology.
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6.1.3 Solutions provided

With the functional blocks developed in the Thesis, a number for different systems can be

designed. The Thesis provides the following examples:

• A one-dimensional data compression solution mainly comprised by an

unit-delay predictor block and an encoder block. Among the entropy encoders

designed, the use of the block-adaptive encoder is recommended because the solution

will be fully compliant with the CCSDS 121.0-B-3 universal lossless compression

standard. The performance in terms of throughput is high enough to achieve

real-time capabilities for next-generation sensors, reaching up to 176.3 and 163.7

MSamples/s for Xilinx Kintex UltraScale XCKU040 when processing input samples

with a dynamic range of 8 and 16 bits, respectively. Hardware occupancy is reduced,

using up to the 4.2% of the LUTs available in the XCKU040 FPGA under a restrictive

configuration (D = 32 and J = 64) and with a negligible consumption of internal

memory resources (around the 0.8%).

• A lossless multi- and hyperspectral image compressor formed by a 3D

predictor block and an encoder block. The 3D predictor is the one defined in

the CCSDS 123.0-B-1 lossless compression standard. Selecting the predictor block

that process hyperspectral images in BIP order, a throughput of 1 sample per clock

cycle is achieved. Although the hybrid encoder can be selected, it would not be a

solution compliant with the CCSDS 123.0-B-1 compression standard. In this case,

and with the sample-adaptive encoder, a maximum performance of 151.6 MSamples/s

is obtained for Xilinx Kintex UltraScale XCKU040 when processing AVIRIS images

(16 bits per sample). Logic resources consumption is reduced (around the 3% of

available LUTs in a XCKU040 FPGA), while the memory usage is clearly dependent

on image size (e.g. the 12% of BRAMs in a XCKU040 FPGA for AVIRIS).

• A near-lossless multi- and hyperspectral image compressor formed by a

3D predictor block and an encoder block. The 3D predictor is the one defined

in the CCSDS 123.0-B-2 near-lossless compression standard and the entropy coder

could be anyone of the alternatives described in the same standard, though the

hybrid one has been selected for validation purposes. Both functional blocks were

developed using a HLS methodology. This is, to the best of our knowledge, the first

full functional solution based on the CCSDS 123.0-B-2 standard available in the state-

of-the-art [62]. Logic resources consumption is around the 7% of available LUTs, the
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BRAMs usage is a 14.5% for a XCKU040 FPGA processing a AVIRIS scenes at 125

MHz. A comparison between HLS and VHDL designs is presented in section 5.5.1.4,

where the conclusion is that although the area footprint of an HLS design is about

the double of a VHDL design, the maximum design frequency is similar. Finally,

these HLS functional blocks can be combined with VHDL blocks to produce a specific

solution (e.g. combining the predictor designed in HLS with the block-adaptive

encoder designed in VHDL, approach used for the CHIME instrument).

• A monochrome video compressor based on the CCSDS 123.0-B-2 near-

lossless algorithm. The approach consists in using the temporal domain t to

predict the information of the subsequent video frames instead of the previous

spectral channels z, as it is done in the CCSDS 123.0-B-2 standard. Results show

the goodness of the proposed solution, achieving compression ratios up to 30 with

a considerable video quality (more than 32 dB of PSNR), which has been checked

by visual inspection after reconstruction. These results satisfy video compression

demands on current space missions, together with a reduced architectural complexity

and an acceptable reconstructed video quality.

• An RGB video compressor based on the CCSDS 123.0-B-2 near-lossless

algorithm. The monochrome video compression solution has been extended to

compress RGB video sequences. To achieve this goal, the RGB video is split

into 3 data sequences, one per color channel, and independently processed within

the CCSDS 123.0-B-2 compressor. Additionally, in order to increase the overall

compression performance without significantly decreasing the video quality, two

extra preprocessing stages have been added, including an RGB to YCbCr spectral

transformation and a spatial subsampling of the chroma channels. These steps also

reduce the overall computational burden, since the amount of data to be processed

by the CCSDS 123.0-B-2 compressor is reduced. In the experiments carried out,

the compression ratios reached were as high as 39 (i.e., 0.21 bits per pixel), without

observing a high degradation by visual inspection. Higher compression ratios can be

achieved at the cost of decreasing the decompressed video quality, needing to define

a trade-off between both metrics to meet the targeted application requirements. This

solution provides a clear advantage versus commercial video encoders, such as H.264

and H.265, though achieved compression ratios are clearly lower but still acceptable

for on-board video compression requirements.
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Based on the functional blocks provided, a general system able to compress on-demand

one-dimensional data, multi- and hyperspectral images, and panchromatic and RGB video

sequences is feasible. The advantage to have only a single processing core, with reduced

footprint and low power consumption, can be a very interesting option for many space

missions. Moreover, the capability of some FPGAs to be reconfigured on-board will allow

to adapt its functionality to unforeseen situations or simply to instrument aging during

the mission life, simply by replacing one of the implemented building blocks of the design

or its configuration.

6.1.4 Validation

As a result of the Thesis, the solutions provided (and summarized in the previous section)

are used in a number of research projects dedicated to the design of the compression units

for different instruments. Among them, the following can be mentioned:

• A one-dimensional data compressor was designed for Lagrange ESA-funded program

[183] and the SUNRISE III space mission [184] in collaboration with the Instituto

de Astrof́ısica de Canarias (IAC)and with the Instituto de Astrof́ısica de Andalućıa

(IAA). The solution is compliant with the CCSDS 121.0-B-3 standard and work with

a clock frequency of 150 MHz on the Xilinx Kintex UltraScale XCKU040 FPGA.

• A lossless/near-lossy compressor was developed for CHIME instrument in collabora-

tion with Thales Alenia Space in France (TASiF) and Thales Alenia Space in Spain

(TASiS). This implementation was based on the CCSDS 123.0-B-2 standard modified

to use different error values for normal pixels and cloud pixels. A band-dependent

error is applied for both kind of pixels. The CCSDS 121.0-B-3 block-adaptive encoder

presented in Section 4.2 was used as entropy coder. A combined methodology using

HLS and VHDL was used in the design and a prototype was done on a Xilinx Kintex

UltraScale XCKU040. This validates the use of this compressor in the CHIME

instrument in the Copernicus program.

• An RGB video compressor is under development in the context of the H2020 VIDEO

project. The RGB sensor is provided by Pyxalis and the objective of the project is to

compress Full HD video (1920x1080 pixels) in real-time. This implementation is based

on the CCSDS 123.0-B-2 standard and extended with some preprocessing stages to
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be capable of handling RGB video sequences. This hardware implementation will be

mapped on a Xilinx Kintex UltraScale XCKU040 FPGA.

6.1.5 Summary

The use of compression in space missions (mainly in Earth Observation) is not a trivial

decision. Scientists usually prefer raw data because the captured scenes are unique and

cannot be reproduced, hence introducing data losses can harm the results of the experiment.

This Thesis contributes to providing an important flexibility to compression data on a

specific mission, allowing the user to select the appropriate solution keeping in mind the

mission requirements and the use the collected data will have on ground.

With the accomplished research work, the main objectives proposed in this Thesis are

achieved. Low-complexity solutions for on-board data, multi- and hyperspectral images,

and monochrome and RGB video compression have been proposed, obtaining results

in terms of timing and area utilization. These solutions have been mapped on space-

grade FPGAs and the design decisions made, together with the inherent parallelization

features of this technology, have contributed to successfully overcome initial forecasts

drawn at the beginning of the Thesis. The results have been properly evaluated in terms

of computational performance and hardware occupancy, taking into account also the

available development time to provide the compression solution. Some of the proposed

approaches have been validated directly on-chip, demonstrating in this way their viability

to work on embarked hardware. Two different design methodologies have been employed,

RTL and HLS (even combining both), keeping in mind restrictions in terms of scheduling,

since the proposed solutions are candidates to be implemented as part of different space

programs. Difficulties found during the design process have been identified and solved

when possible, which were mainly related to data dependencies present in the datapath of

the implemented algorithms. All these contributions are expected to help to reduce design

costs and to provide efficient compression solutions in terms of hardware occupancy and

computational performance for future space missions, in which high-resolution sensors are

expected to be embarked for observation purposes.

From the technical point of view, we can conclude that both the CCSDS 121 and 123

algorithms are good candidates for on-board data compression implementations on space-

grade FPGAs, showing a low hardware occupancy compared with other compression

algorithms available in the state-of-the-art that are specifically though for space applications.
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They have been successfully mapped in a wide variety of RHBD FPGA technologies,

including the novel BRAVE family. Throughput results extracted for CCSDS 121.0-B-3 and

CCCSDS 123.0-B-1 proposed solutions demonstrate their suitability to be used on-board for

real-time applications. The achieved results are possible thanks to the algorithm nature and

the parallelization capabilities provided by FPGAs in absence of data dependencies. This

is not currently feasible for the CCSDS 123.0-B-2 approach, whose internal dependencies

among internal prediction stages must be studied to considerably increase throughput.

Nonetheless, this latter solution can exploit the possibility of replicating the compression

instances in order to achieve higher throughput, since logic resources utilization has still

some margin to allow it.

6.2 Further research work

Although compression is a well established area in ground applications, its use in space

missions is limited and most of the times forced by the on-board memory or downlink

rate limitation. It is foreseen that this will change in the near future. The advent of more

precise instruments and more on-board processing capabilities will enforce the compression

as a must to have on-board application. The direct reuse of the solutions implemented

on ground applications will not work on space missions, mainly because the compression

objectives will be different (data quality will be generally more important than in ground

applications) and the limited availability of power on-board will prevent the use of the

most advanced computational solutions in the state-of-the-art. Hence, this research line

will continue in the next years as the missions demand increase. In Europe, ESA and the

European Commission are aware of this reality publishing projects calls in this area. In

particular, the continuation of this research will be framed within the projects awarded to

the Group (all funded either by European Space Agency or the European Union).

The first research line is to achieve more efficient hardware implementations for hyperspec-

tral image compression. The efforts will be focused on developing a VHDL description

of the CCSDS 123.0-B-2 near-lossless compression standard. The main objective of this

design will be to enhance the throughput compared to its HLS provided in this Thesis,

by obtaining a cycle-accurate model that allows a fine control of the datapath latency.

This activity will be done in the context of the Lossless/lossy multispectral & hyperspec-

tral compression IP core project (ESA Contract No. 4000136723/22/21/NL/CRS). This
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project is leaded by IUMA in a consortium with Thales Alenia Space Spain, National and

Kapodistrian University of Athens, and Universitat Autònoma de Barcelona.

Different predictor architectures will be proposed depending on both the input samples

arrangement and the target performance in terms of throughput. In addition, the three

entropy encoding alternatives will be available. The hybrid encoder must be completely

developed in VHDL, while the block- and the sample-adaptive options, described in

Sections 4.2 and 4.3, respectively, can be reused as they are. It is expected that this VHDL

description will be able to compress at a maximum rate of 1 input sample per clock cycle for

certain configurations under BIL order (the one less restricted in terms of data dependencies

under near-lossless mode) by exploiting the inherent parallelism of the algorithm in absence

of data dependencies in the processing of two consecutive input samples. Moreover, the

developed solution must still have an acceptable hardware occupancy to fit well on space-

grade FPGAs, considerably reduced to the logic resources and memory consumption

reported by the HLS development. A reduced hardware occupancy is crucial, since it must

be enough margin to implement redundancy techniques to provide robustness against

radiation effects during the space mission lifetime. All these improvements in terms of

performance should be done guaranteeing at the same time full compliance with the

standard, providing all the possible configuration options and working modes.

A tailored version of this compressor will be described in VHDL in the scope of the ESA

project RFP/1-9941/19/NL/NA entitled Copernicus HPCM (High Priority Candidate

Missions) - CHIME (Copernicus Hyperspectral Imaging Mission for the Environment)

phases B2, C/D and E1 (prototype and recurrent satellites), led by Thales Alenia Space in

France.

A second research line will be related to video compression in the space and it will

be funded in the ESA project Efficient Video Compression for space (ITT AO/1-1-

10954/21/NL/MGu), in which our Group will collaborate with Thales Alenia Space in

Spain that acts as project leader. This Thesis concludes that the proposed solution

for video compression based on the CCSDS 123.0-B-2 multi- and hyperspectral image

compression standard is promising at algorithmic level. A flexible solution was provided

for next-generation space missions to compress both hyperspectral images and video

sequences using the same processing core. Nonetheless, its performance is still far from

video encoders typically used on ground, specially to reach high CRs. For this reason, it

is proposed to develop a tailored version of the well-known H.264 encoder to accomplish

video compression demands on-board satellites. Firstly, an HLS model will be developed
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to perform a space design exploration, in order to identify what parts of the encoder

architecture are candidates to be removed from the datapath, which can be dispensable

in a Remote Sensing scenario (e.g. motion estimation or the use of B slices). To do

this, the impact in terms of CR must be evaluated. After completing this stage, it is

expected to obtain a customized high-level implementation that fits well on the hardware

resources available on-board. Taking this HLS model as starting point, the next stage is

to develop a VHDL description, equivalent to the prior from a behavioural point of view.

This VHDL development will be optimized to obtain higher throughput and a reduced

hardware occupancy compared to the HLS model.

Since the proposed solution for RGB video compression employs a processing instance

per color channel, it is not feasible to apply it to multispectral video, which makes use of

6-10 spectral bands. It is expected that this technology will be interesting for the space

industry in the near-future, because of the high quantity of information collected in both

the spectral and the temporal domain, useful for many scientific applications on ground.

For this reason, as a future line of this Thesis, alternative compression approaches are

currently under study for this novel technology, including transform-based approaches,

such as the one proposed for RGB video compression, or solutions based on lightweight

convolutional networks, which must take into account on-board hardware restrictions.

It is intended to validate on-chip both hyperspectral image and video compression proposed

solutions not only on the Xilinx Kintex UltraScale XCKU060 FPGA, but also on the

novel BRAVE family. These SRAM-based FPGA devices are expected to be the reference

in the near-future for the space industry, because of their high reprogrammability, high

performance, high resources availability, reduced costs and low power consumption.

Finally, a third research line is opened with the European project proposal PDHT-NG

(Payload Data Handling and Transmission - New Generation) entitled Innovative and

Flexible New Generation of Payload Data Handling for New Space Applications, which

is currently under evaluation by the European Commission. The main idea is the same

developed in this Thesis but extended to a higher level of abstraction. This project will

create a multi-mission technology that can address a large range of missions, from high-end

satellite Copernicus to low-end constellation and will be compatible with high accuracy

sensors (visible up to video, Infra-Red, hyperspectral, ultraspectral, Lidar, Radar, etc.). It

will only rely on European technology and will contribute to EU non-dependence for the

development of Earth Observation technologies. The basic idea is to develop a standard

hardware platform (based on the COTS Kalray MPPA, Massively Parallel Processor Array
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Architecture, Manycore) and a development platform. The applications (compression,

object detection, monitoring, etc.) will be deployed seamlessly in the system through this

development platform. The partners are the following ones: Thales Alenia Space in France

(Leader), Thales Systems Romania, Teletel Greece, KP Labs Poland, Edisoft Portugal,

Orbital EOS Spain and University of Las Palmas de Gran Canaria.
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Sinopsis en español

En este Caṕıtulo se proporciona una visión general del trabajo de investigación realizado en

esta Tesis Doctoral. En concreto, se resaltarán las contribuciones realizadas en el campo de

las implementaciones sobre FPGAs de algoritmos de compresión de datos unidimensionales,

imágenes multi- e hiperespectrales, y sequencias de v́ıdeo a bordo de satélites, poniendo

especial énfasis en el concepto de modularidad para generar una solución de compresión

óptima para la aplicación final.
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A.1 Introducción

Las aplicaciones de teledetección se han hecho muy populares para la industria espacial

durante las últimas décadas, ya que los sensores de alta resolución permiten obtener

información útil para fines de vigilancia, caracterización y detección, entre otros. Este tipo

de sensores, comúnmente utilizados en misiones de observación de la Tierra, también están

ganando interés para la exploración espacial, y están siendo considerados por las agencias

espaciales para estudiar la Luna o la superficie de Marte.

Los sensores de alta resolución de última generación están concebidos para adquirir el

mayor área posible, sin degradar la resolución ni la calidad de los ṕıxeles. También se

puede incorporar información adicional en el dominio espectral y/o temporal para obtener

mayor nivel de información sobre el objetivo analizado. Sin embargo, esa gran cantidad de

información debe ser transmitida, almacenada o procesada. Además, se espera que los

sensores de imagen de nueva generación aumenten en los próximos años tanto la resolución

espacial como la espectral.

En este sentido, la compresión de datos surge como una solución para esquivar estas

limitaciones, reduciendo el volumen de datos antes de enviarlos a tierra. Sin embargo, la

reducción de datos sigue siendo un reto para la industria espacial, ya que los satélites no

cuentan con suficiente capacidad de cálculo y almacenamiento para gestionar tal volumen

de información, y el ancho de banda del enlace descendente con las estaciones terrestres es

limitado para transferir esos datos en crudo (es decir, tal y como se adquieren).

Las técnicas de compresión pueden ser con o sin pérdidas. La compresión sin pérdidas

preserva toda la información presente en los datos originales, que puede recuperarse

completamente durante el proceso de descompresión. Por esta razón, la compresión sin

pérdidas resulta interesante para la comunidad cient́ıfica, ya que mantiene la fidelidad de

los datos adquiridos por el sensor. Por otro lado, la compresión con pérdidas produce

ratios de compresión más altos al introducir pérdidas en la cadena de compresión. Como

consecuencia, la información recuperada no es idéntica a los datos captados por el sensor.

En un punto intermedio se encuentra la compresión casi sin pérdidas, que consigue ratios de

compresión más altos que las técnicas sin pérdidas sin llegar a los niveles de la compresión

con pérdidas. La compresión casi sin pérdidas supone un buen compromiso entre los ratios

de compresión alcanzados, la calidad de la imagen y la complejidad del algoritmo. En cuanto

a la naturaleza del algoritmo de compresión, en el estado del arte destacan claramente dos

técnicas: los enfoques basados en la predicción y los basados en transformada. Los métodos
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de compresión basados en transformada reducen la información redundante presente en los

datos de entrada transformando la información del dominio espacial a una representación

alternativa, como la dimensión espectral, con el fin de decorrelacionar eficientemente los

datos. Por otra parte, las soluciones basadas en la predicción se basan en el cálculo del

valor del ṕıxel actual como una suma ponderada de los ṕıxeles en su vecindad espacial,

espectral o temporal. Aunque el ratio de compresión que se consigue es peor que la de

los algoritmos basados en transformada, los enfoques basados en la predicción ofrecen un

buen equilibrio entre el ratio de compresión alcanzado y la complejidad del algoritmo.

La compresión de datos sigue considerándose un reto para la industria espacial. Se necesitan

algoritmos y plataformas de procesamiento eficientes y de baja complejidad a bordo para

comprimir esa enorme cantidad de información en tiempo real. Este ha sido un tema

candente para la comunidad cient́ıfica durante las últimas décadas, principalmente porque

las restricciones computacionales presentes a bordo de los satélites obligan a los algoritmos

de compresión a cumplir ciertos criterios de diseño. Al mismo tiempo, es muy importante

preservar la calidad de los datos reconstruidos tras la descompresión, ya que será imposible

capturar los mismos datos dos veces.

Esta es la razón por la que el Comité Consultivo para los Sistemas de Datos Espaciales

(CCSDS), una organización internacional formada por las principales agencias espaciales

del mundo para definir un procedimiento común para el desarrollo de sistemas de datos e

información espaciales, ha publicado diferentes normas de compresión. Estos algoritmos

se dirigen a datos de distinta naturaleza (datos 1D, 2D y 3D) y proponen distintas

técnicas de compresión (es decir, sin pérdidas o con pérdidas), pero siempre cumplen la

condición de una complejidad algoŕıtmica reducida. Estas normas pretenden establecer

un marco común para el desarrollo de soluciones de compresión a bordo y disponer de

una solución universal para la descompresión de la información en tierra. En cuanto a la

compresión de datos unidimensionales, imágenes e imágenes hiperespectrales, el CCSDS

ha publicado los siguientes estándares: a) CCSDS 121.0-B-3 (Compresión de datos sin

pérdidas) [27], b) CCSDS 122.0-B-2 (Compresión de imágenes 2D) [28], c) CCSDS 122.

1-B-1 (Preprocesamiento espectral basado en transformada para la compresión de imágenes

multiespectrales e hiperespectrales) [29], d) CCSDS 123.0-B-1 (Compresión de imágenes

multiespectrales e hiperespectrales sin pérdidas) [30] y e) CCSDS 123.0-B-2 (Compresión

de imágenes multiespectrales e hiperespectrales con baja complejidad sin pérdidas y casi

sin pérdidas) [31]. Existen también otros algoritmos espećıficamente diseñados para la

compresión de datos a bordo de satélites en la literatura especializada, tanto basados en

técnicas de predicción como en transformada en el dominio espectral. Sin embargo, estos
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algoritmos no propocionan soluciones estándar, precisando de decompresores customizados

para cada aplicación o misión espacial.

La compresión a bordo requiere no sólo algoritmos eficientes que proporcionen la compresión

y la calidad reconstruida deseadas, sino también una implementación f́ısica adecuada en el

hardware disponible que preserve el comportamiento correcto de la solución implementada,

que debe coexistir con otras funcionalidades en la misma carga útil. Este hardware

debe contar con ciertos requisitos para trabajar en el entorno espacial, como un reducido

consumo de potencia y resistencia a fallos provocados por la radiación. Tradicionalmente,

los algoritmos de procesamiento en general se implementan a bordo de satélites como

software que se ejecuta en procesadores de propósito general. Luego se comenzó a introducir

a bordo circuitos de alto rendimiento basados en ASICs, ya que ofrecen un equilibrio

entre rendimiento y consumo de enerǵıa, debido a que están totalmente optimizados para

una aplicación espećıfica y la tecnoloǵıa utilizada para su fabricación está pensada para

aplicaciones espaciales (es decir, tolerante a la radiación). Sin embargo, los costes y el

tiempo de fabricación son elevados. Por esta razón, las FPGAs están aumentando su

presencia en los últimos años como parte de los circuitos de procesamiento de un satélite,

debido a su flexibilidad, alto rendimiento computacional y bajo consumo de enerǵıa. Una

de las principales ventajas de las FPGAs es también su reducido coste en comparación

con los ASICs. La flexibilidad inherente a las FPGAs basadas en RAM permite cambiar

toda o algunas partes de la funcionalidad de forma dinámica para adaptarla a los nuevos

requisitos que puedan aparecer durante la vida de la misión o incluso si se produce una

corrupción por efectos de la radiación. Además, las FPGAs favorecen el paralelismo de

tareas, ejecutando simultáneamente diferentes operaciones si no se presentan dependencias

de datos entre ellas, lo que supone una ventaja frente al comportamiento secuencial de los

microprocesadores embebidos.

A.2 Objetivos y metodoloǵıa de trabajo

Como se ha mencionado, los sensores de próxima generación que se integrarán en las

futuras misiones espaciales adquirirán tal cantidad de datos que la compresión a bordo será

obligatoria para mantener altas tasas de adquisición de datos y superar las restricciones

en términos de almacenamiento disponible y ancho de banda del enlace descendente. La

cantidad y los tipos de sensores a bordo de un satélite son diversos y las soluciones para

la compresión de datos deben ser fácilmente adaptables o configurables a cada misión.
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Además, la limitación de la memoria y los recursos computacionales a bordo exigirá la

compresión de datos sobre la marcha (es decir, en tiempo real). Aunque las soluciones

propuestas son agnósticas a la tecnoloǵıa, se demostrarán en FPGAs, ya que son una

plataforma interesante para las misiones espaciales actuales y futuras. Esto implicará

el desarrollo de arquitecturas hardware que exploten eficientemente las bondades de las

FPGAs.

El uso de metodoloǵıas de alto nivel acelerará aún más el proceso de diseño y verificación.

Aunque el uso de metodoloǵıas de alto nivel no está extendido en aplicaciones espaciales,

esta Tesis investigará el uso de HLS cuando el rendimiento y el consumo de recursos

requerido por la solución se consideren adecuados para la aplicación objetivo.

En la literatura especializada abundan alternativas para la compresión de datos, que

pueden clasificarse en función de la naturaleza de los datos tratados, del nivel de pérdidas

introducido en el proceso de compresión o de las caracteŕısticas de rendimiento que se

priorizan, como la baja complejidad o la alta capacidad de cómputo. Además, existen

enfoques de compresión espećıficamente pensados para trabajar a bordo de satélites,

teniendo en cuenta las limitaciones de un entorno tan duro como el espacio exterior. Sin

embargo, se ha observado que no existe una forma común de desarrollar e implementar

soluciones de compresión para misiones espaciales, lo que hace necesarias soluciones de

descompresión customizadas en tierra para cada enfoque de compresión espećıfico.

Por esta razón, esta Tesis se centra en los algoritmos de compresión que proporcionan un

buen compromiso entre la complejidad y la eficiencia de la compresión, prestando especial

atención a etapas como los preprocesadores basados en la predicción y los codificadores de

entroṕıa basados en los códigos Golomb-Rice. Más concretamente, se consideran los algo-

ritmos de compresión propuestos por los estándares CCSDS para datos unidimensionales e

imágenes 3D (es decir, multi e hiperespectrales). Esto está motivado principalmente por el

hecho de que, además del equilibrio que proporcionan entre el rendimiento de la compresión

y la complejidad del hardware, la descompresión puede realizarse sobre el terreno utilizando

un descompresor estándar, lo que permite la compatibilidad y reutilización entre diferentes

aplicaciones.

El objetivo principal de esta Tesis es proporcionar soluciones modulares que puedan ser

adaptadas para comprimir datos de diferente naturaleza, incluyendo información genérica

o unidimensional, imágenes multi e hiperespectrales y secuencias de v́ıdeo, adquiridos por

sensores de alta resolución en misiones espaciales de nueva generación.
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La flexibilidad que proporciona este esquema modular sobre FPGA también permite

cambiar la funcionalidad de la solución de compresión si aparecen nuevos requisitos

durante la vida de la misión. Esto se consigue sustituyendo las etapas de procesamiento

adecuadas para reducir la ocupación del hardware y el consumo de enerǵıa, para aumentar

la relación de compresión o para acelerar el rendimiento.

Los objetivos espećıficos de esta Tesis se detallan a continuación:

� Analizar las soluciones propuestas por el CCSDS para la compresión de datos

unidimensionales, imágenes 2D, imágenes 3D multi e hiperespectrales y secuencias

de v́ıdeo. Este análisis determinará las mejores soluciones para ser implementadas en

aplicaciones espaciales, teniendo en cuenta su complejidad y el rendimiento esperado.

� Desarrollar una exploración del espacio de diseño de los algoritmos CCSDS objeto

de estudio, proporcionando alternativas arquitecturales para su implementación, en

función de los requerimientos de la aplicación objetivo.

� Proporcionar soluciones eficientes y modulares para la compresión de datos en FPGAs

de grado espacial con un alto rendimiento y una baja utilización de recursos hardware.

La atención se centra en los algoritmos CCSDS propuestos para la compresión de

datos unidimensionales y de imágenes multiespectrales/hiperespectrales debido a su

interés para las futuras misiones espaciales: la norma CCSDS 121.0-B-3 [27] y la

norma CCSDS 123, incluyendo la edición 1 (sólo pensada para la compresión sin

pérdidas) [30] y la reciente edición 2 (que ampĺıa la funcionalidad para la compresión

casi sin pérdidas) [31].

� Proponer el uso de diferentes metodoloǵıas de diseño, como RTL y HLS, en función de

los requisitos de la misión espacial en términos de tiempo de desarrollo y rendimiento.

Se estudiarán los resultados obtenidos para remarcar las debilidades y fortalezas de

las metodoloǵıas de diseño seguidas.

� Proponer diferentes configuraciones de hardware, dependiendo de los requisitos de

compresión y de la naturaleza de los datos a comprimir. Siguiendo este enfoque, se

pueden definir múltiples cadenas de compresión reutilizando módulos que realicen las

etapas de predicción y codificación entrópica de forma eficiente, teniendo en cuenta

la naturaleza de los datos y los requisitos de la aplicación final.
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� Demostrar que las soluciones son viables para una serie de escenarios cuando se

implementan en FPGAs de grado espacial. Esto se hará realizando una verificación

exhaustiva y también validación en hardware.

A.3 Técnicas de compresión modulares a bordo de

satélites

Se ha detectado una carencia en el estado del arte en cuanto a la versatilidad de las

soluciones de compresión a bordo. Esto significa que no existe una colección de bloques

funcionales que puedan ser reutilizados para diferentes propósitos o para diferentes misiones

espaciales con diferentes objetivos de rendimiento, necesitando un desarrollo completo cada

vez que se requiera una solución de compresión. Esto enlaza con uno de los principales

objetivos de esta Tesis, que es proporcionar soluciones de compresión modulares, basadas en

los estándares CCSDS, que permitan conformar una cadena de compresión optimizada para

una aplicación espećıfica teniendo en cuenta diferentes restricciones, como el rendimiento,

la ocupación del hardware o el ratio de compresión deseado, seleccionando los módulos

adecuados entre las alternativas disponibles. Dado que las cadenas de compresión diseñadas

cumplen con los estándares CCSDS, se garantiza una correcta descompresión y gestión de

los datos en tierra.

Por este motivo, en esta Tesis se han desarrollado diferentes IPs de compresión para

misiones espaciales. Estos IPs están compuestos por dos bloques funcionales principales:

un preprocesador basado en la predicción que actúa como decorrelador de datos y una

etapa de codificación de entroṕıa, encargada de reducir el número de bits con el que se

representan los residuos de la predicción. Combinando los bloques funcionales desarrollados,

tal y como se muestra en la Figura A.1, es posible implementar una solución de compresión

adecuada para una aplicación o misión espacial espećıfica. También existe la posibilidad

de implementar una solución de compresión versátil capaz de procesar los datos adquiridos

por múltiples sensores (es decir, de distinta naturaleza) con un solo núcleo de compresión,

reduciendo la ocupación del hardware y el consumo de enerǵıa.

La selección de los bloques funcionales adecuados está condicionada no sólo por la naturaleza

de los datos de entrada, sino también por las limitaciones de las misiones espaciales,

incluyendo los objetivos en términos de rendimiento, ocupación del hardware o consumo

de enerǵıa. La selección de la metodoloǵıa de diseño adecuada (RTL o HLS) vendrá
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condicionada por dichos objetivos funcionales, además de por el tiempo de desarrollo

disponible.

Una ventaja adicional del enfoque modular propuesto es la reutilización. Esto significa

que los bloques funcionales independientes que se han desarrollado para cada etapa de

compresión (es decir, el preprocesamiento y la codificación de entroṕıa) pueden reutilizarse

en futuras misiones espaciales para la compresión a bordo. Se garantiza un comportamiento

adecuado a nivel funcional, ya que estos módulos han sido profundamente caracterizados,

al tiempo que el programa espacial puede suavizar la programación gracias a que se evita

un desarrollo desde cero.

Figure A.1: Concepto de solución de compresión modular

A.3.1 Implementación en FPGA de un compresor sin pérdidas

de datos génericos basado en el estándar CCSDS 121.0-

B-3

Como compresor de datos unidimensional, se propone una implementación hardware

compuesta principalmente por el predictor de retardo unitario descrito en el estándar

CCSDS 121.0-B-3 y uno de los codificadores de entroṕıa desarrollados. Por lo tanto, se

obtienen tres soluciones alternativas combinando el predictor de retardo unitario con los

codificadores block-adaptive, sample-adaptive o hybrid. La combinación del predictor de

retardo unitario con el codificador block-adaptive cumple con el estándar CCSDS 121.0-B-3.
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Como ejemplo de aplicación, se considera esta solución para su integración en la misión

Lagrange [183] y también en la misión SUNRISE III [184], en la que se espera lanzar un

globo a la estratosfera que actuará como observatorio solar. Estos casos de uso surgen

en el contexto de una colaboración entre nuestro Grupo, el Instituto de Astrof́ısica de

Canarias (IAC) y el Instituto de Astrof́ısica de Andalućıa (IAA).

Se han definido diferentes conjuntos de parámetros de configuración para analizar el

impacto de los valores de los parámetros del IP tanto en la ocupación del hardware

como en la frecuencia de reloj máxima. Los principales parámetros que cambian entre

configuraciones son el rango dinámico de las muestras de entrada D GEN ; el tamaño del

bloque J GEN ; y la anchura del buffer de salida, W BUFFER GEN.

En general, se alcanzan los valores más altos de frecuencia de reloj para los valores más

bajos seleccionados para el rango dinámico D y, especialmente, para el tamaño de bloque

J . La combinación de valores bajos para ambos parámetros permite la reducción de la

longitud de la ruta cŕıtica. En concreto, se obtiene una frecuencia de reloj máxima de

176,3 MHz para la Kintex UltraScale XCKU040 bajo Set7, mientras que se alcanzan hasta

115,9 MHz para la Virtex5QR XQR5VFX130 bajo Set5. En cuanto al throughput, como

el IP es capaz de procesar una muestra por ciclo de reloj, el rendimiento máximo es igual a

la frecuencia de reloj máxima alcanzada. De este modo, se obtiene un rendimiento máximo

de 176,3 y 163,7 MSmuestras/s para la Xilinx XCKU040 cuando se procesan muestras

de entrada con 8 y 16 bits de precisión, respectivamente. Los resultados en términos

de utilización de recursos lógicos están en consonancia con los obtenidos en términos

frecuencia máxima; es decir, mientras mayor es la frecuencia máxima alcanzada, mayor es

la utilización de recursos lógicos. Con la configuración más restrictiva se usa el 4,2% de

LUTs en la XCKU040. La utilización de memoria es mı́nima en esta implementación (5

BRAMs). El consumo de DSPs también es mı́nimo (un máximo del 0,3% en XCKU040).

Los resultados para una configuración t́ıpica, con D = 16 y J = 32, se muestran a modo

de ejemplo en la Tabla A.1.

A.3.2 Implementación en FPGA de un compresor sin pérdidas

de imágenes multi- e hiperespectrales basado en el

estándar CCSDS 123.0-B-1

Este escenario de validación proporciona soluciones para comprimir imágenes hiperespec-

trales sin pérdidas. Para ello, se utiliza el predictor 3D descrito en el estándar CCSDS
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Table A.1: Compresor de datos unidimensionales sin pérdidas - Śıntesis en Xilinx
Kintex UltraScale XCKU040 con D = 16 y J = 32

Recursos Total Usado

Bloques RAM 600 1

DSP48 1920 6

Registros 484800 1830

LUTs 242400 5252

Frecuencia máxima
141.1

(Clk S) (MHz)

123.0-B-1. Podŕıan utilizarse todos los codificadores de entroṕıa diseñados, pero la imple-

mentación del codificador h́ıbrido no será una solución estándar. Como ejemplo, se ha

diseñado una implementación de hardware totalmente compatible con el estándar CCSDS

123.0-B-1 para la compresión sin pérdidas de imágenes multi e hiperespectrales a bordo

de satélites, implementando el codificador sample-adaptive y proporcionando también

la alternativa de sustituirlo por el block-adaptive. Como ejemplo de este escenario cabe

destacar los IPs de compresión desarrollados bajo el nombre de SHyLoC, que actualmente

forman parte del catálogo de IPs ofrecidos por la ESA para futuras misiones espaciales

[58, 60] Se ofrecen resultados de varias soluciones para sensores hiperespectrales conocidos

(por ejemplo, Landsat, AVIRIS y AIRS). El IP ha sido evaluado en śıntesis utilizando

hasta 20 conjuntos diferentes de parámetros de śıntesis, tratando de cubrir un amplio

rango de casos y verificando todas las arquitecturas del predictor.

La frecuencia de reloj máxima alcanzada para Kintex UltraScale XCKU040 es superior a

119 MHz para todas las arquitecturas del predictor desarrolladas en todos los escenarios

planteados. No todas las arquitecturas proporcionan el mismo throughput, siendo BIP la

que única que puede alcanzar una muestra por ciclo de reloj. Por tanto, el throughput

máximo es de 151,6 MSamples/s en XCKU040 en el escenario hiperespectral. Los resultados

de la śıntesis en términos de utilización de recursos se resumen en la Figura A.2 para la

FPGA XCKU040. En general, el IP utiliza pocos recursos lógicos, lo que demuestra la

baja complejidad de la cadena de compresión propuesta. El uso de DSPs, LUT y registros

es casi constante, con ligeras diferencias dependiendo de la arquitectura del predictor

implementado y el tamaño de la imagen de entrada. Las diferencias son más notables para

la utilización de la memoria, que viene determinada principalmente por la arquitectura del

predictor. En el caso de las arquitecturas que no hacen uso del almacenamiento externo,

el tamaño de la imagen tiene un gran impacto en el uso de memoria. Concretamente, el

tamaño de una ĺınea espectral (NxNz) condiciona esa utilización del almacenamiento ya

que fija el tamaño de las FIFOs que almacenan las muestras adyacentes para el cálculo de
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las sumas locales y de las diferencias locales durante la predicción. El número de bandas

previas P utilizadas para la predicción también influye en el consumo de BRAMs, ya que

determina el tamaño del vector de pesos y el número de elementos a considerar durante el

cálculo de las diferencias locales.

En cuanto al consumo de recursos lógicos (es decir, LUTs y FFs), el rango dinámico D

supone la principal restricción, ya que define el ancho de bits de las diferentes operaciones

internas. Además, la resolución de pesos Ω también tiene una ligera influencia en el

consumo de LUTs, ya que especifica la precisión de cada elemento del vector de pesos. En

Kintex UltraScale XCKU040 se utiliza hasta el 20% de los recursos de memoria, cuando se

trata de un escenario ultraespectral. En cuanto a la utilización de DSPs y LUTs, todas las

arquitecturas y configuraciones proporcionan resultados similares.
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Figure A.2: Compresor de imágenes hiperespectrales sin pérdidas - Utilización de
recursos en Xilinx Kintex UltraScale XCKU040
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A.3.3 Implementación en FPGA de un compresor casi sin

pérdidas de imágenes multi- e hiperespectrales basado en

el estándar CCSDS 123.0-B-2

Este escenario de validación proporciona compresión de imágenes hiperespectrales en

modo casi sin pérdidas. Para ello, el predictor CCSDS 123.0-B-2 casi sin pérdidas puede

combinarse con cualquiera de los codificadores de entroṕıa desarrollados. De esta manera,

se proporciona una solución de compresión completa basada en el estándar CCSDS 123.0-

B-2, que puede ser utilizada para demostrar la viabilidad de esta solución de compresión

para diferentes programas espaciales que embarcan sensores espectroscópicos y necesitan

de altos CRs.

Como ejemplo, se presenta el IP de compresión del instrumento CHIME. Como codificador

entrópico, se utiliza el block-adaptive, ya que tiene una menor huella de área y un mayor

throughput que el h́ıbrido. Además, permite conseguir ratios de compresión por debajo

de 1 bpp, razón por la que se ha descartado el codificador sample-adaptive para esta

implementación.

Se ha seguido una estrategia basada en pipelining en la etapa de predicción, solapando el

procesamiento de etapas consecutivas en ausencia de dependencias de datos y mejorando

aśı el throughput. La selección de la suma local narrow neighbour-oriented junto con el

modo de predicción reducido beneficia a este enfoque, ya que se eliminan las dependencias

de datos con la muestra situada a la izquierda de la actual en la misma banda sz,y,x−1, que

es una restricción principal bajo el orden BIL, el elegido para esta implementación. La

versión optimizada del predictor es capaz de procesar una muestra de entrada (16 bits de

precisión) cada 11 ciclos de reloj a una frecuencia de 100 MHz. Esta caracteŕıstica está

todav́ıa lejos del objetivo final de 1 ciclo de reloj por muestra para CHIME, pero se espera

que se consiga con una descripción puramente VHDL del predictor CCSDS 123.0-B-2. En

cualquier caso, este modelo permite validar el comportamiento de la cadena de compresión

propuesta como prototipo en etapas tempranas del flujo de diseño de la misión, y puede

considerarse como el peor caso para una futura implementación VHDL.

Los resultados en términos de utilización de recursos se muestran en la Tabla A.2. Como se

puede observar, el factor limitante es el uso de memoria del predictor, que está claramente

condicionado por el tamaño de la imagen de entrada. Esto se debe a que todas las muestras

preprocesadas de la ĺınea espectral anterior (Nx ·Nz muestras) deben ser almacenadas para

calcular la predicción de la ĺınea espectral actual. Para la implementación de CHIME, se
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utilizan un total de 144 BRAMs sólo para almacenar esta memoria. No obstante, aunque el

predictor se haya diseñado mediante técnicas HLS, la ocupación del hardware se considera

aceptable, ya que el diseño se puede mapear satisfactoriamente en la FPGA objetivo.

Table A.2: CHIME IP - Utilización de recursos en Xilinx Kintex UltraScale XCKU040

36Kb BRAM DSP48E Registros LUTs

Predictor (HLS) 167 (27.8%) 33 (1.7%) 7388 (1.5%) 9737 (4.0%)

Block-adaptive
4 (0.7%) 4 (0.2%) 1725 (0.4%) 4944 (2.0%)

Encoder (VHDL)

Total 171 (28.5%) 37 (1.9%) 9113 (1.9%) 14681 (6.0%)

A.3.4 Aplicación del estándar CCSDS 123.0-B-2 para com-

primir secuencias de v́ıdeo monocromáticas y RGB

Finalmente, se ha evaluado el algoritmo de compresión sin pérdidas propuesto en el estándar

CCSDS 123.0-B-2 para la compresión de v́ıdeo. Este algoritmo puede adaptarse fácilmente

para la compresión de v́ıdeo monocromático, sustituyendo la dimensión espectral z definida

en la norma por el dominio temporal t, utilizando para la inter-predicción las muestras

vecinas en los P frames anteriores.

Para la compresión de v́ıdeo RGB se ha explotado la correlación entre cada canal espectral

en diferentes frames adquiridos consecutivamente en el dominio temporal. Se ha decidido

añadir etapas de preprocesamiento adicionales para aumentar el rendimiento global de la

compresión. Estas etapas realizan, por un lado, una transformación espectral del espacio

de color RGB a YCbCr, concentrando la mayor parte de la información espacial en el canal

de luma (Y), que representa el brillo de la escena, mientras que las bandas de croma (Cb y

Cr) almacenan la información de color. De este modo, se puede introducir un mayor nivel

de pérdidas en las componentes Cb y Cr, ya que almacenan información menos perceptible

para el ojo humano, permitiendo aśı aumentar el ratio de compresión sin degradar la calidad

del v́ıdeo reconstruido. Por otro lado, se puede aplicar adicionalmente un submuestreo

espacial de las bandas Cb y Cr, aumentando aún más el ratio de compresión conseguido

a costa de introducir cierto desenfoque espacial en los canales Cb y Cr, sin introducir

distorsiones significativas desde el punto de vista visual. En el enfoque propuesto, el

tamaño de los canales Cb y Cr se ha reducido en un factor de 2 en sus dimensiones de

anchura y altura, disminuyendo aśı la cantidad total de datos a procesar posteriormente

en un factor de 4.
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Fijando los ĺımites de error para cada canal espectral en AY = 4 y ACb,Cr = 8 y aplicando

las etapas de preprocesamiento propuestas, se consiguen CRs máximos de hasta 30 (es

decir, alrededor de 0,27 bits por ṕıxel) y 47 (es decir, 0,17 bits por ṕıxel). Con esta

configuración, la compresión aún no tiene efecto sobre la calidad del v́ıdeo a partir de una

inspección visual. Cuando se aumentan los ĺımites de error a AY = 8 y ACb,Cr = 16, se

consiguen mayores ratios de compresiónm alcanzando valores máximos de 66, mientras

que la calidad de v́ıdeo sigue siendo superior a 25 dB en ambos casos. Los resultados

alcanzados se pueden observar en la Figura A.3 para las 4 secuencias de v́ıdeo que forman

parte del dataset.

a) Guagua sequence b) Top sequence

c) DeathCircle sequence d) Nexus sequence

Figure A.3: Relación entre el ratio de compresión y la calidad del v́ıdeo decomprimido,
medida en términos de PSNR, para la cadena de compresión para v́ıdeo RGB completa

Desde el punto de vista visual, la degradación del v́ıdeo se aprecia claramentepara los ratios

de compresión más altos (por ejemplo, para AY ≥ 16), aunque las formas de los objetos se

siguen conservando. En la Figura A.4 se muestra un ejemplo para una de las secuencias de

test, aplicando en cada caso diferentes niveles de error a los canales de luma y croma. La

degradación no se aprecia visualmente hasta el tercer frame, cuando se observa una ligera

degradación en la parte superior, aplicando valores de error de AY = 16 y ACb,Cr = 4. Con

esta configuración, se obtiene un CR de 61 (es decir, 0,13 bits por ṕıxel). Los valores de

PSNR se sitúan en torno a los 30 dB.
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El mayor nivel de degradación se observa en el último fotograma, cuando AY = 31 y

ACb,Cr = 8. En este punto, las pérdidas de brillo se combinan con la saturación del color,

obteniendo una secuencia distorsionada en la que los objetos se siguen identificando en

la escena. Además, se observan algunos artefactos, relacionados con la forma en que se

realiza la predicción por parte del algoritmo CCSDS 123.0-B-2. El nivel de degradación

introducido por estos artefactos depende del error absoluto fijado en la predicción. Dado

que se fijan errores más altos para los canales de croma, estos artefactos tienden a tener un

mayor impacto en el color de la imagen que en las formas de la misma, que son preservadas

por el canal de luma. Bajo esta configuración, se obtiene un ratio de compresión de 83 (es

decir, aproximadamente 0,1 bits por ṕıxel), con una PSNR alrededor de 25 dB.

a) AY =4 -
AC=2

b) AY =8 -
AC=2

c) AY =16 -
AC=4

d) AY =31 -
AC=8

Figure A.4: Frames decomprimidos de la secuencia de v́ıdeoDeathCircle aplicando
diferentes errores a los canales de luma y cromas

A.4 Conclusiones

Una vez resumido el trabajo realizado a lo largo de esta Tesis y los principales resultados

alcanzados, se considera que los objetivos planteados al comienzo de su desarrollo se han

cumplido satisfactoriamente. Se ha demostrado el concepto de solución de compresión mod-

ular mediante su aplicabilidad a cuatro escenarios de validación diferentes: compresión de

datos unidimensionales sin pérdidas; compresión de imágenes hiperespectrales sin pérdidas

y casi sin pérdidas; y compresión de v́ıdeo casi sin pérdidas. La cadena de compresión

propuesta para cada uno de los escenarios de validación se compone principalmente de

un preprocesador basado en la predicción y un codificador entrópico, seleccionando la

alternativa adecuada de entre los bloques funcionales desarrollados.
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Se han desarrollado tres preprocesadores diferentes basados en la predicción, todos ellos

conformes con los estándares CCSDS. El predictor de retardo unitario, basado en la norma

CCSDS 121.0-B-3, se centra en la decorrelación de datos unidimensionales. Los predictores

3D que cumplen con los estándares CCSDS 123.0-B-1 y 123.0-B-2 proporcionan una

decorrelación tanto espacial como espectral al procesar imágenes multi e hiperespectrales

bajo compresión sin pérdidas y casi sin pérdidas, respectivamente.

También se han presentado tres enfoques de codificación entrópica que cumplen con las

normas CCSDS para la compresión de datos a bordo. El codificador block-adaptive,

definido originalmente en el estándar de compresión universal sin pérdidas CCSDS 121,

se basa en la codificación Rice. Las alternativas del codificador sample-adaptive y del

h́ıbrido se presentan en el estándar de compresión CCSDS 123 para imágenes multi e

hiperespectrales. Aunque ambos se basan en códigos Golomb, el codificador h́ıbrido permite

obtener mayores CRs al explotar la baja entroṕıa de los datos de entrada.

Se proporcionan resultados de caracterización para escenarios de compresión sin pérdidas (es

decir, datos unidimensionales e imágenes hiperespectrales), incluyendo la frecuencia de reloj

máxima y la utilización de recursos en una variedad de FPGAs de grado espacial, incluyendo

la novedosa familia BRAVE. El escenario de compresión de imágenes hiperespectrales casi

sin pérdidas se ha validado con éxito en la FPGA Xilinx Kintex UltraScale XCKU040, ya

que sus principales bloques funcionales se han diseñado siguiendo un flujo de diseño HLS y

ese dispositivo es el que se empleará en el instrumento CHIME. Por último, se ha verificado

el enfoque de compresión de v́ıdeo a nivel algoŕıtmico, demostrando la viabilidad de utilizar

el algoritmo CCSDS 123.0-B-2 no sólo para comprimir imágenes multi e hiperespectrales,

sino también secuencias de v́ıdeo pancromáticas y RGB. Esto deriva en una solución de

compresión versátil capaz de comprimir datos de diferente naturaleza en futuras misiones

espaciales que embarquen diferentes tipos de sensores, reduciendo al mismo tiempo el área

empleada.
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[8] Jun Liu, Bin Luo, Sylvain Douté, and Jocelyn Chanussot. Exploration of Planetary

Hyperspectral Images with Unsupervised Spectral Unmixing: A Case Study of Planet

Mars. Remote Sensing, 10(5), 2018. ISSN 2072-4292. doi: 10.3390/rs10050737. URL

https://www.mdpi.com/2072-4292/10/5/737.

[9] Zhiping He, Rui Xu, Chunlai Li, Liyin Yuan, Chengyu Liu, Gang Lv, Jian Jin,

Jianan Xie, Chuifeng Kong, Feifei Li, Xiaowen Chen, Rong Wang, Sheng Xu, Wei

Pan, Jincai Wu, Changkun Li, Wang Tianhong, Haijun Jin, Hourui Chen, and Jianyu

Wang. Mars Mineralogical Spectrometer (MMS) on the Tianwen-1 Mission. Space

Science Reviews, 217, 03 2021. doi: 10.1007/s11214-021-00804-z.

[10] Michael A. Wulder, Thomas R. Loveland, David P. Roy, Christopher J. Crawford,

Jeffrey G. Masek, Curtis E. Woodcock, Richard G. Allen, Martha C. Anderson,

Alan S. Belward, Warren B. Cohen, John Dwyer, Angela Erb, Feng Gao, Patrick

Griffiths, Dennis Helder, Txomin Hermosilla, James D. Hipple, Patrick Hostert,

M. Joseph Hughes, Justin Huntington, David M. Johnson, Robert Kennedy, Ayse

Kilic, Zhan Li, Leo Lymburner, Joel McCorkel, Nima Pahlevan, Theodore A. Scambos,

Crystal Schaaf, John R. Schott, Yongwei Sheng, James Storey, Eric Vermote, James

Vogelmann, Joanne C. White, Randolph H. Wynne, and Zhe Zhu. Current status of

Landsat program, science, and applications. Remote Sensing of Environment, 225:

127–147, 2019. ISSN 0034-4257. doi: https://doi.org/10.1016/j.rse.2019.02.015. URL

https://www.sciencedirect.com/science/article/pii/S0034425719300707.

[11] J.S. Pearlman, P.S. Barry, C.C. Segal, J. Shepanski, D. Beiso, and S.L. Carman.

Hyperion, a space-based imaging spectrometer. IEEE Transactions on Geoscience

and Remote Sensing, 41(6):1160–1173, 2003. doi: 10.1109/TGRS.2003.815018.

[12] Christine M. Lee, Morgan L. Cable, Simon J. Hook, Robert O. Green, Susan L.

Ustin, Daniel J. Mandl, and Elizabeth M. Middleton. An introduction to the

NASA Hyperspectral InfraRed Imager (HyspIRI) mission and preparatory activities.

Remote Sensing of Environment, 167:6–19, 2015. ISSN 0034-4257. doi: https://doi.

org/10.1016/j.rse.2015.06.012. URL https://www.sciencedirect.com/science/



References 195

article/pii/S0034425715300419. Special Issue on the Hyperspectral Infrared

Imager (HyspIRI).

[13] Wenxue Fu, Jianwen Ma, Pei Chen, and Fang Chen. Remote Sensing Satellites for

Digital Earth, pages 68–136. Springer Link, 2020. ISBN 978-981-329-915-3. doi:

https://doi.org/10.1007/978-981-32-9915-3. URL https://link.springer.com/

book/10.1007/978-981-32-9915-3.

[14] J. Nieke and M. Rast. Status: Copernicus Hyperspectral Imaging Mission For The

Environment (CHIME). In IGARSS 2019 - 2019 IEEE International Geoscience

and Remote Sensing Symposium, pages 4609–4611, 2019. doi: 10.1109/IGARSS.2019.

8899807.

[15] Sylvain Michel, Philippe Gamet, and Marie-José Lefevre-Fonollosa. HYPXIM —
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[48] Sakari Lahti, Panu Sjövall, Jarno Vanne, and Timo D. Hämäläinen. Are We
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Sebastián. FPGA-Based On-Board Hyperspectral Imaging Compression: Bench-

marking Performance and Energy Efficiency against GPU Implementations. Remote

Sensing, 12(22):3741, Nov 2020. ISSN 2072-4292. doi: 10.3390/rs12223741. URL

http://dx.doi.org/10.3390/rs12223741.

[68] Guoxia Yu, Tanya Vladimirova, and Martin N. Sweeting. Image compression systems

on board satellites. Acta Astronautica, 64(9):988 – 1005, 2009. ISSN 0094-5765. doi:

https://doi.org/10.1016/j.actaastro.2008.12.006. URL http://www.sciencedirect.

com/science/article/pii/S0094576508004062.

[69] Swetha Vura, Premjyoti Patil, and Shantakumar B. Patil. A study of different

compression algorithms for multispectral images. Materials Today: Proceedings,

2021. ISSN 2214-7853. doi: https://doi.org/10.1016/j.matpr.2021.06.175. URL

https://www.sciencedirect.com/science/article/pii/S2214785321045417.

[70] N. Beser. Space data compression standards. Johns Hopkins APL Tech. Dig., 15:

206–223, September 1994.

[71] N. Moayeri. A low-complexity, fixed-rate compression scheme for color images and

documents. 1998.

[72] D. A. Huffman. A method for the construction of minimum-redundancy codes.

Proceedings of the IRE, 40(9):1098–1101, 1952. doi: 10.1109/JRPROC.1952.273898.



202 References

[73] Robert F Rice. Some practical universal noiseless coding techniques. JPL Publication,

1979.

[74] J. Capon. A probabilistic model for run-length coding of pictures. IRE Transactions

on Information Theory, 5(4):157–163, 1959. doi: 10.1109/TIT.1959.1057512.

[75] Paul G. Howard and Jeffrey Scott Vitter. Arithmetic Coding for Data Compression,

pages 65–68. Springer US, Boston, MA, 2008. ISBN 978-0-387-30162-4. doi: 10.1007/

978-0-387-30162-4 34. URL https://doi.org/10.1007/978-0-387-30162-4_34.

[76] A.J. Hussain, Ali Al-Fayadh, and Naeem Radi. Image compression techniques:

A survey in lossless and lossy algorithms. Neurocomputing, 300:44 – 69, 2018.

ISSN 0925-2312. doi: https://doi.org/10.1016/j.neucom.2018.02.094. URL http:

//www.sciencedirect.com/science/article/pii/S0925231218302935.
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Roberto Sarmiento. On the hardware implementation of the arithmetic elements of the

pairwise orthogonal transform. Journal of Applied Remote Sensing, 9(1):1 – 12, 2015.

doi: 10.1117/1.JRS.9.097496. URL https://doi.org/10.1117/1.JRS.9.097496.
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[169] D. Báscones, C. González, and D. Mozos. An Extremely Pipelined FPGA Implemen-

tation of a Lossy Hyperspectral Image Compression Algorithm. IEEE Transactions

on Geoscience and Remote Sensing, pages 1–13, 2020.

[170] Teng Wang, Chih-Kuang Chen, Qi-Hua Yang, and Xin-An Wang. FPGA Implemen-

tation and Verification System of H.264/AVC Encoder for HDTV Applications. In

David Jin and Sally Lin, editors, Advances in Computer Science and Information

Engineering, pages 345–352, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

ISBN 978-3-642-30223-7.

[171] G. Pastuszak. Architecture Design of the H.264/AVC Encoder Based on Rate-

Distortion Optimization. IEEE Transactions on Circuits and Systems for Video

Technology, 25(11):1844–1856, 2015. doi: 10.1109/TCSVT.2015.2402911.

[172] C. C. Thiele, B. B. Vizzotto, A. L. M. Martins, V. S. da Rosa, and S. Bampi. A

low-cost and high efficiency entropy encoder architecture for H.264/AVC. In 2012

IEEE/IFIP 20th International Conference on VLSI and System-on-Chip (VLSI-SoC),

pages 117–122, 2012. doi: 10.1109/VLSI-SoC.2012.7332087.

[173] G. Pastuszak. A High-Performance Architecture of the Double-Mode Binary Coder

for H.264.AVC. IEEE Transactions on Circuits and Systems for Video Technology,

18(7):949–960, 2008. doi: 10.1109/TCSVT.2008.920743.

[174] G. Pastuszak and A. Abramowski. Algorithm and Architecture Design of the

H.265/HEVC Intra Encoder. IEEE Transactions on Circuits and Systems for Video

Technology, 26(1):210–222, 2016. doi: 10.1109/TCSVT.2015.2428571.

[175] S. Atapattu, N. Liyanage, N. Menuka, I. Perera, and A. Pasqual. Real time all

intra HEVC HD encoder on FPGA. In 2016 IEEE 27th International Conference on

Application-specific Systems, Architectures and Processors (ASAP), pages 191–195,

2016. doi: 10.1109/ASAP.2016.7760792.

[176] Jean-Luc Poupat and Raffaele Vitulli. CWICOM: A Highly Integrated & Innovative

CCSDS Image Compression ASIC. In L. Ouwehand, editor, DASIA 2013 - DAta

Systems In Aerospace, volume 720 of ESA Special Publication, page 62, August 2013.

[177] eoPortal. GAIA (Global Astrometric Interferometer for Astrophysics) Mission. https:

//directory.eoportal.org/web/eoportal/satellite-missions/g/gaia. Ac-

cessed: 2019-07-22.



214 References

[178] R. Vitulli. PRDC: an ASIC device for lossless data compression implementing the

Rice algorithm. In IGARSS 2004. 2004 IEEE International Geoscience and Remote

Sensing Symposium, volume 1, page 320, 2004. doi: 10.1109/IGARSS.2004.1369025.
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