
Soft-tissue simulation of the
breast for intraoperative
navigation and fusion of
preoperative planning

Patricia Alcañiz1,2*, César Vivo de Catarina3,
Alessandro Gutiérrez4, Jesús Pérez1, Carlos Illana2,
Beatriz Pinar5 and Miguel A. Otaduy1

1Computer science department, Universidad Rey Juan Carlos, Madrid, Spain, 2GMV Innovating
Solutions, Madrid, Spain, 3Computer science department, Universidad Las Palmas de Gran Canaria, Las
Palmas de Gran Canaria, Spain, 4Fundación Para La Investigación Biomédica Del Hospital Universitario
La Paz, Madrid, Spain, 5Medical Physics department, Hospital Universitario Doctor Negrín, Las Palmas
de Gran Canaria, Spain

Computational preoperative planning offers the opportunity to reduce

surgery time and patient risk. However, on soft tissues such as the breast,

deviations between the preoperative and intraoperative settings largely limit

the applicability of preoperative planning. In this work, we propose a high-

performance accurate simulation model of the breast, to fuse preoperative

information with the intraoperative deformation setting. Our simulation

method encompasses three major elements: high-quality finite-element

modeling (FEM), efficient handling of anatomical couplings for high-

performance computation, and personalized parameter estimation from

surface scans. We show the applicability of our method on two problems:

1) transforming high-quality preoperative scans to the intraoperative setting

for fusion of preoperative planning data, and 2) real-time tracking of breast

tumors for navigation during intraoperative radiotherapy. We have validated

our methodology on a test cohort of nine patients who underwent tumor

resection surgery and intraoperative radiotherapy, and we have

quantitatively compared simulation results to intraoperative scans. The

accuracy of our simulation results suggest clinical viability of the

proposed methodology.
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1 Introduction

Computational preoperative planning of surgical interventions

entails multiple benefits, in particular reduced risk to the patient and

shorter interds, computational preoperative planning has seen

success in applications such as radiotherapy Calvo et al. (2014),

neurosurgery Prada et al. (2014); Kahl et al. (2021); Nemoto et al.

(2002), or orthognathic surgery Alcañiz et al. (2021).

Image-guided surgery on the breast, on the other hand,

hardly benefits from computational preoperative planning.

Due to the soft-tissue nature of the breast, there is often a

large deviation between the preoperative and intraoperative

deformation conditions, which complicates mapping any

preoperative data to the intraoperative setting. To date,

clinicians resort to three suboptimal options: 1) They rely on

preoperative images, which unfortunately do not represent the

deformed setting during surgery; 2) they may try to predict the

deformation during surgery as part of the preoperative planning,

but this is hardly feasible due to the unknown details of the

surgery; 3) they can capture high-quality images during surgery,

but this process is slow and it requires a readily available imaging

system in the operating room.

We pay particular attention to tumor resection due to breast

cancer and subsequent intraoperative radiation therapy (IORT)

Vaidya et al. (2005); Vaidya (2007). IORT delivers a large dose of

ionizing radiation to the tumor bed during surgery, thus maximizing

the dose applied to the tumor while minimizing the dose applied to

nearby healthy tissue. Preoperative planning of IORT involves

calculation of a cumulative dose on a volume image that faithfully

represents the patient’s anatomy, and is successfully used in, e.g.,

neurosurgery Prada et al. (2014); Kahl et al. (2021); Nemoto et al.

(2002). However, to date IORT is hardly possible on breast cancer

surgery, due to the strong mismatch between preoperative and

intraoperative settings. This mismatch is due to two major reasons,

which cannot be predicted in advance. One major reason is surgical

manipulation, such as tumor resection and retraction of mobile

structures in the path of the beam. The other major reason is the

insertion and motion of the IORT device (applicator).

In our work, we propose a high-performance yet accurate

simulation model of the breast, to fuse preoperative

information, e.g., high-quality CT images, with the

intraoperative deformation setting. Our simulation method

encompasses four major elements:

1) An efficient patient-specific finite-element (FEM) simulation

model. A key feature of our method is to approach two major

tasks of soft-tissue modeling, namely mesh preparation and

mathematical modeling, in a cross-informed manner. In this

way, we obtain a runtime simulationmodel that is accurate but

efficient, as it avoids complex coupling of different anatomical

elements and the need for high-resolution simulation meshes.

2) Estimation of personalized simulation parameters from

multiple preoperative images. We obtain two preoperative

images per patient, a CT scan and a surface scan, in two

different configurations that span beyond the deformation

from the preoperative to the intraoperative setting. By

optimizing mechanical tissue parameters that accurately fit

this deformation, we obtain a personalized soft-tissue model

that is able to predict intraoperative deformations.

3) Deformation of a high-quality breast model from a

preoperative CT scan to the intraoperative configuration.

With the high-accuracy simulation model estimated as

described above, we deform the preoperative breast model

to the intraoperative configuration. Once in this

intraoperative configuration, it is possible to execute IORT

dose planning.

4) Real-time simulation of breast deformation, for high-

accuracy intraoperative navigation. We further optimize

the mesh complexity of the breast simulation model to

enable real-time deformation during intraoperative

navigation. The real-time simulation can take as input

tracker data of the IORT applicator, and use these as

boundary conditions to compute the breast deformation.

In Section 2.1 we list the input data of both our simulation

methodology and experimental validation. In Section 2.2 we

describe the FEM simulation model and how it is configured

from patient-specific data. Then in Section 2.3 we describe the

estimation of soft-tissue parameters.

In Section 3.2 we demonstrate the accuracy of breast

deformation from preoperative to intraoperative settings. We

have tested our methodology on a cohort of nine patients who

underwent tumor resection surgery and IORT. For all these patients,

we obtained preoperative data (a CT-scan in supine position and a

surface scan in sitting position) as well as intraoperative data (a

surface scan in surgical position and the position of the IORT

applicator). We have estimated a personalized simulation model for

each patient, and we have evaluated the accuracy of the deformation

to the intraoperative configuration.

Finally, in Section 3.3, we demonstrate real-time simulation

of breast deformation due to motion of the IORT applicator,

suitable for intraoperative navigation.

Before describing the methods and results of our work, next

we discuss related work. Much of the previous work on

planning for breast interventions and IORT has focused on

bridging the gap between preoperative data and the operative

setting. We discuss work that follows different approaches,

either navigation techniques, simulation techniques, or

fusing preoperative images (CT, MRI, or mammography)

with the intraoperative setting.

1.1 Related work-navigation

Navigation is a problem that has received important commercial

attention. There are multiple available commercial navigation

Frontiers in Bioengineering and Biotechnology frontiersin.org02

Alcañiz et al. 10.3389/fbioe.2022.976328

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.976328


systems, but they typically target specific applications. Some of the

most prominent examples are: SurgicEye, for imaging of sentinel

lymph; Aesculap, for orthopaedics; or Medtronic, for neurosurgery.

Unfortunately, none of these systems combines preoperative imaging,

such as CT or MRI, with intraoperative navigation. Therefore, they

cannot accommodate preoperative planning data.

In addition to commercial systems, there is also important

research on navigation. For the particular problem of breast

cancer, there are works that have proposed navigation

solutions for breast biopsy Treepong et al. (2014), and for

sonography-guided breast surgery Ungi et al. (2016). In this

project, we propose matching the input anatomy to

intraoperative tracking data and use soft-tissue simulation

methods to estimate the deformation. Based on this

deformation, one could compute the required dose

distribution solution on a deformed high-resolution image

of the patient’s anatomy, overcoming the problem of

geometric mismatch between the preoperative images and

the operative setting during irradiation.

1.2 Related work-soft-tissue models

The first task in devising a soft-tissue model of the breast is to

segment and mesh its geometry. As we discuss later in Section 2.2,

we follow the most common approach of obtaining a CT-scan in

supine position, and segmenting and meshing this CT-scan.

However, the scanning position differs from the surgical position,

and we must deform the model. Recently, citeMazier2021 have

introduced a different approach, as they initialize the geometry of the

breast directly in surgical position. They do this by quicklymorphing

a geometric breast template to a surface scan obtained in surgical

position. As their template is endowed with surgical drawings that

aid in planning, they also obtain personalized surgical drawings. In a

way, we solve the same morphing task, but our model also enjoys

mechanical response, while theirs is only geometric. Therefore, we

can further deform the breast model, e.g., for runtime navigation.

Multiple previous works have attempted high-quality FEM

simulation of the soft-tissue in the breast. Those works can be

largely classified into three groups based on the specific problems

that they target: compression of the breast under two rigid plates

Tanner et al. (2006b); Azar et al. (2001); Pathmanathan et al.

(2008); Han et al. (2012), deformation due to gravity loading Han

et al. (2011); Tanner et al. (2006b); Danch-Wierzchowska et al.

(2016) and surgical planning or outcome prediction Lapuebla-

Ferri et al. (2011); del Palomar et al. (2008).

The majority of the methods execute FEM analysis using

tetrahedral meshes; however, hexahedral meshes have also been

used Pathmanathan et al. (2008); Tanner et al. (2006b). In recent

works, hexahedral meshes are gaining popularity, at least on the

brain and other organs Miller et al. (2010); Wittek et al. (2010);

Alkhatib et al. (2022), specially as they are complemented with

methods that support complex geometries Bui et al. (2019). The

various methods also differ in terms of the discretization complexity

of the models, ranging from hundreds of elements Tanner et al.

(2006b), to thousands of elements Pathmanathan et al. (2008), or

even tens of thousands of elements Tanner et al. (2006a); Han et al.

(2012). We tune the mesh complexity to optimize the balance

between accuracy and performance depending on the target

problem.

1.3 Related work-material properties

In the simulation of soft tissue in the breast, the various

previous works differ in their choice of material model as well.

Some authors used linear elastic materials (e.g., Tanner et al.

(2006a)), while others used nonlinear hyperelastic materials (e.g.,

Tanner et al. (2006b)). Comparative studies indicate that hyper-

elastic materials provide higher accuracy, which is expected given

the potential large deformation of the breast. In particular, the

incompressible Neo-Hookean material provided the best results

when comparing deformations in standing and prone positions

Griesenauer et al. (2014). Some works have analyzed the

parameterization of the incompressible Neo-Hookean

material, in particular the stiffness for the energy term of the

first invariant (typically denoted as C1 or μ/2, with the shear

modulus μ computed as E/2 (1 + ]) in terms of Young modulus E

and Poisson’s ratio ]). Optimal values range between C1 =

0.13 kPa Tanner et al. (2006a) and C1 = 0.08 kPa Rajagopal

et al. (2008). Griesenauer et al. Griesenauer et al. (2014)

recommend using the average value of C1 = 0.105 kPa.

One important conclusion from previous work is the large

variability in material parameters across subjects. Using

deterministic approaches for parameter adjustment has

proven significantly limited, and sensitivity analysis and

uncertainty quantification are necessary to obtain results

including confidence intervals Biehler et al. (2015);

Sankaran and Marsden (2011); Hauseux et al. (2017, 2018);

Rego et al. (2021). Motivated by this variability, we carry

out a personalized fitting of the soft-tissue properties of the

breast.

Beyond the material model, previous works also differ in

terms of the degree of heterogeneity in the breast models. Some

works Han et al. (2012); Tanner et al. (2006b,a) have used

different tissue classes: fibro-glandular, fat and skin. Other

works Danch-Wierzchowska et al. (2016), on the other hand,

differentiate only between internal (muscle, thorax and internal

organs) and external tissue (breast tissue including fat and

surrounding skin).

1.4 Related work-adaptive meshes

For one of our target applications, runtime navigation, we

use adaptive simulation meshes that maximize mesh
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resolution at areas of interest. Adaptive meshing is a long-

standing idea, even in the context of dynamic mesh adaptivity

Wu et al. (2001). We use a fixed adaptive mesh, as the region of

interest, i.e., the region surrounding the tumor, is known in

advance. Recent works evaluate the actual error introduced by

discretization from a rigorous mathematical perspective

Wittek et al. (2010); Bui et al. (2018a, 2019, 2018b);

Duprez et al. (2020). Interestingly, the actual resolution

and distribution of the discretization may vary considerable

depending on the error metric used. Therefore, our meshing

approach could be further enhanced by introducing a goal-

oriented error estimate.

2 Materials and methods

In this section, we describe how we create patient-specific

soft-tissue models of the breast. In our modeling methodology we

follow two fundamental principles:

• We approach mesh preparation and mathematical

modeling in a cross-informed manner, to produce

simulation models that maximize efficiency.

• We obtain patient-specific data in multiple configurations,

to estimate best-matching soft-tissue parameters.

The section starts with a description of the input data. Next, it

describes the mathematical simulation model, the initialization

of the model from imaging data, and the definition of boundary

conditions. Finally, the section covers the estimation of soft-

tissue parameters.

2.1 Input data

To create a personalized model of the patient’s breast, we

leverage multiple input data. First, we acquire a high-quality CT

scan in a pose similar to the surgical configuration. In particular,

we use a CT scan in supine position with arms lifted. Using this

CT scan, we extract the 3D simulation model, as we discuss in

more detail in the next section.

However, using the CT scan alone poses several challenges.

While the configuration is close to the surgical position, it is not

fully accurate, as the surgical bed may slightly reoriented. But

most importantly, the CT scan does not capture the mechanical

response of the breast tissue.

To estimate soft-tissue mechanical parameters, we capture

two 3D surface scans of the patient’s torso: one 3D scan in the

same supine position as the CT scan, Ssupine, and another 3D scan

in a relaxed sitting position, Ssitting. The deformation between

these two 3D scans is larger than the deformation during surgery,

and it allows us to robustly estimate simulation parameters, as we

discuss later in Section 2.3. We use 3D scans instead of CT scans

to minimize radiation on the patient.

Furthermore, for validation purposes, we also acquire a 3D

scan during surgery. Note that this last scan is not part of the

modeling and simulation methodology; it was captured only for

validation as part of this study. Figure 1 shows all three 3D scans

captured for each patient.

2.2 Simulation model

Our approach to model the breast is to identify soft and rigid

anatomical elements in the region of interest, as shown in

Figure 2, define efficient coupling boundary conditions

between them, and solve the tissue deformation using FE

analysis. This approach mimics previous work for the

simulation of orthognathic surgery Alcañiz et al. (2021), but

applied to breast simulation. We follow this approach to simulate

both the interaction between the soft-tissue and stiff or bone

tissue, as well as to handle contact between the breast soft-tissue

and the IORT applicator.

We start by segmenting rigid or stiff tissue in the breast area

in the input CT scan. In particular, we segment jointly the ribs,

intercostal muscle and the pectoralis muscle. These all form a

FIGURE 1
3D surface scans for the same patient in different positions. From left to right: supine position with arms lifted, which corresponds to the regular
CT scanning position; sitting position, which we use for parameter estimation; surgical position, used for validation.
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single continuous rigid body in the simulation, which we refer to

as chest wall in the rest of the text. In addition, we segment

separately the remaining skin tissue. Finally, we limit the

simulation mesh to a region of interest centered on the breast,

by picking a central point and a radius. We use 3D Slicer for

segmentation tasks and to create the initial mesh. However, this

mesh is too detailed, and then we use Meshmixer to obtain the

final simulation mesh.

To build the FE simulation model, we integrate a strain

energy density and a gravity potential on the volume of the

breast soft-tissue. Instead of rotating the chest wall to

represent different configurations of the torso, we keep the

chest wall fixed and we rotate the gravity vector. Furthermore,

this approach allows us to circumvent the estimation of an

undeformed configuration for the breast soft-tissue. The

breast is deformed in supine position where the mesh is

initialized, due to the action of gravity forces, but we define

the undeformed position simply by applying a negative gravity

vector. Simulating an arbitrary rotation of the torso amounts

to first applying this negative gravity vector and then adding

the rotated gravity.

We compute the gravity potential as

Vgrav � −∫
Ω
ρgT x dΩ, (1)

with ρ the breast mass density (which we define as the density of

water), g the gravity vector for the configuration to be simulated,

and x the deformationdisplacement of the tissue point.

We define the elastic energy as

Vsoft � ∫
Ω
Ψ F( ) dΩ, (2)

with Ψ(F) the constitutive model of the breast soft-tissue

and F the deformation gradient. Following

previous work, we use a Neohookean model

Ψ(F) � μ
2 (trace(FT F) − 3) − μ log(det(F)) + λ

2 (log(det(F)))2.
Recall that C1 = μ/2, which is the material parameter typically

estimated in the literature.

The simulation mesh defines a discretization of the

deformationdisplacement field x on the breast mesh

domain Ω, and we approximate the integrals of elastic

energy and gravity potential using finite elements. In our

work, we have used tetrahedral finite elements. We also

separate degrees of freedom coupled to the rigid parts,

xrigid, and free degrees of freedom, xfree. Then, the

computation of static breast deformationsdisplacements x

can be posed as an optimization problem, with the rigid

parts as boundary conditions:

x � argmin
xfree

Vsoft xfree, xrigid( ) + Vgrav xfree, xrigid, g( ). (3)

We solve this optimization to predict the breast deformation

every time we change the boundary conditions xrigid. We do this

using Newton’s method, with a conjugate gradient solver for the

solution of linear systems of equations. We refer the reader to

Alcañiz et al. (2021) for details.

2.3 Estimation of soft-tissue parameters

For preoperative planning and/or intraoperative

navigation, the breast soft-tissue must be simulated in

configurations defined by the intraoperative transformation

of the clinical bed. While this configuration is similar to the

supine position of the CT-scan, as shown in Figure 1, we

estimate soft-tissue parameters by fitting a larger deformation.

This approach ensures that the deformations in the

intraoperative setting do not extrapolate to far unknown

situations. In particular, we estimate soft-tissue parameters

to best match the transformation of the breast from supine to

sitting position, as shown in Figure 1.

We choose to estimate a homogeneous breast soft-tissue

material, defined by its Young modulus, to avoid overfitting

problems. As we discuss later in the results section, this

parameterization provides sufficient accuracy for our target

applications.

We initialize the Young modulus to a value of E =

0.609 kPa, corresponding to the average value of C1 =

0.105 kPa from the literature (as discussed in Section 1.3),

and Poisson’s ratio of ] = 0.45. Then we execute a patient-

FIGURE 2
Main components of the simulation model. From left to right: (i) segmentation andmeshing of surface skin from the CT-scan, (ii) segmentation
and meshing of the chest wall from the CT-scan, (iii) simulation mesh, obtained by selecting a portion of the skin corresponding to the breast, (iv)
combination of the simulation mesh and the chest wall that acts as boundary condition.
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specific optimization process, to estimate the Young modulus

such that a tranformation of the 3D scan in supine position

best matches the 3D scan in sitting position. We depict this

optimization process schematically in Figure 3. Formally, the

optimization is expressed as follows:

E � argmin
E

|T Ssupine, xsitting E( )( ) − Ssitting|2,
xsitting � argmin

xfree
Vsoft xfree, xrigid, E( ) + Vgrav xfree, xrigid, gsitting( ).

(4)
Given a tentative Young modulus E and the gravity vector

in sitting position gsitting, we compute the

deformationdisplacement of the breast xsitting by solving the

simulation problem (Eq. 3). Using this deformation, we

transform (denoted by function T) the 3D scan in supine

position Ssupine, and we register the result to the 3D scan in

sitting position Ssitting, to compute a registration error. Based

on this registration error, we further optimize the Young

modulus E.

Our modeling and estimation approach is limited by its

treatment of gravity, described above in Section 2.2. In supine

position the breast is deformed, under internal stress. Due to

the nonlinearity of the tissue, this underlying stress produces

an error as the gravity vector is rotated. A more sound

approach would require estimating the rest position of the

breast together with the soft-tissue parameters, such that both

the sitting and supine deformations are met under the

appropriate boundary conditions. Other works have already

explored undoing the effect of gravity for breast modeling

Mazier et al. (2022); Mîra et al. (2018). However,

while potentially more accurate, this approach introduces a

high number of degrees of freedom in the optimization and

makes it substantially more nonlinear. Since the supine

position is close to the surgical position, we find approach

to be a sufficient compromise. This is validated by our

experiments.

3 Experiments and results

In this section, we discuss the experiments carried out to

validate our simulation methodology. We start with a detailed

description of the test cohort and the estimation of soft-tissue

parameters following the approach described in Section 2.3.

Then, we perform quantitative evaluation of the accuracy and

performance of the simulation model, on the two target

deformation problems: deformation of the breast from

preoperative configuration to intraoperative configuration,

and real-time deformation for intraoperative navigation.

Deformation to the preoperative configuration enables

cross-validation of the soft-tissue model, as we measure

its accuracy on a test configuration not used for model

training.

3.1 Test cohort and parameter estimation

We performed the study on a cohort of nine patients; all of

them underwent tumor resection surgery and IORT, and we

acquired preoperative and intraoperative scans (one CT-scan and

three 3D surface scans, as discussed previously in Section 2.1). All

data was acquired at Hospital Universitario Doctor Negrín, with

approval of the hospital’s ethics committee, and with informed

consent from all the patients.

Table 1 lists details of all patients in the cohort. The age range

was 51–84 years, tumors were located on both left 6) and right

breasts (3), in different locations on the breast (some centered,

some near skin and/or the chest wall), and the size of breasts

ranged from small to large. Figure 4 highlights the simulation

mesh and the location of the tumor for one particular patient in

the cohort (patient #2). Table 1 also lists the inclination of the

surgical in the intraoperative setting. This information was used

for defining the gravity vector g in the deformation from the

preoperative to the intraoperative configuration.

FIGURE 3
We estimate soft-tissue parameters of the breast model (i.e., its Young modulus) by solving an optimization problem. We take the boundary
conditions of the sitting configuration andwe compute the deformation of the breast from supine to sitting configuration. Using this deformation, we
transform the supine-position 3D scan, we register it to the sitting-position 3D scan, andwe use the registration error to further optimize thematerial
parameters.
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Following the procedure described in Section 2.3, and using

the preoperative 3D surface scans in supine and sitting positions,

we estimate the Young modulus for the breast simulation models

of all patients. Table 1 includes the size of the simulationmesh for

each patient, as well as the Young modulus resulting from the

estimation.

3.2 Deformation to the intraoperative
setting and cross-validation

One of the applications of the soft-tissue breast simulation is

to deform a preoperative CT scan to the intraoperative

configuration, and thus plan the dose for IORT Valdivieso-

Casique et al. (2015). Here, we measure the error produced by

our model in this deformation. As the intraoperative data was not

used for estimating the soft-tissue model, this test serves for

cross-validation.

The deformation error is most relevant in the volume near

the tumor, as this is the location where the radiotherapy dose will

be planned. However, we lack a CT scan in intraoperative

configuration, hence we cannot locate the tumor in this

configuration. As an alternative, we use the preoperative and

intraoperative surface 3D scans to measure deformation error.

Specifically, we locate the tumor on the preoperative CT scan, we

find the point on the surface that is closest to the tumor, and then

we identify a region of interest (ROI) of roughly 2-cm-radius

centered on this point, as shown in Figure 5. We chose this ROI

following advice from clinical experts, as a sufficiently large

region in the proximity of the tumor.

Table 2 shows the deformation error from preoperative to

intraoperative configuration on the ROI, for all patients in the

cohort. In all cases, the error within the ROI is below 5 mm.

We initialize the simulation mesh in preoperative supine

position, we apply the orientation corresponding to the

intraoperative configuration to each patient (see Table 1),

and we compute the deformation of the breast tissue. With

this deformation, we transform the preoperative 3D surface

scan, we register the result to the intraoperative 3D surface

scan, and we measure the signed-distance error within the

ROI. Table 2 shows the input simulation mesh in supine

position, as well as the deformed mesh in the

intraoperative configuration. The fitting error could be

reduced by allowing heterogeneous soft-tissue parameters

across the breast, but this could easily incur in overfitting

error, due to the scarcity of deformation examples.

TABLE 1 Characteristics of the nine patients analyzed in the study, including age, breast characteristics, tumor position, anteroposterior (AP) and
lateral (LAT) inclination of the surgical bed, mesh size (in tetrahedra) of the simulated volume, and estimated Young modulus.

ID Age Breast Size Tumor
Position

AP (°) LAT (°) Mesh
(tets)

Young
(kPa)

1 60 Left Medium Near chest wall 5 4 8,227 0.8

2 55 Left Large Near skin 5 4 11,672 0.9

3 83 Right Medium Centered 5 4 11,828 1.2

4 56 Left Medium Centered 7 7 12,235 0.6

5 53 Left Medium Centered 7 4 11,739 0.5

6 51 Left Small Near skin and chest
wall

9 5 4,997 1.2

7 84 Left Small Near skin and chest
wall

6 7 6,712 0.4

8 69 Right Small Near skin and chest
wall

9 5 5,444 0.3

9 61 Right Large Centered 10 6 12,947 2.0

FIGURE 4
Example case for patient #2 in the cohort. The image
highlights the simulated area and the location of the tumor within
the breast.
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3.3 Real-time deformation for
intraoperative navigation

The other major application of the soft-tissue breast

simulation is to enable real-time tracking of the tumor during

navigation for IORT. We start with the tumor in the preoperative

configuration, and then we transform it to the intraoperative

configuration based on the orientation of the surgical bed as

discussed in the previous section. During IORT, it is possible to

track in real-time the position and orientation of the IORT

applicator, and we use this transformation as boundary

conditions for real-time simulation of breast deformation, and

hence track the tumor’s location. Figure 6 depicts an example

IORT applicator mesh inserted in the breast simulation mesh.

To deform the breast from preoperative to intraoperative

setting, we use a high-resolution simulation mesh, as this

deformation is not necessarily interactive. However, for real-

time tracking, deformations must be interactive. Therefore, we

have validated the ability to compute real-time deformations

with sufficient accuracy.

For this test, we have used the simulation mesh of patient #3,

but we have downsized the original simulation mesh from

11,828 tetrahedra to 1,581 tetrahedra. We have selected this

resolution by trial-and-error, to hit a good performance-accuracy

trade-off. As discussed in Section 1.4, more advanced adaptive

meshing methods could be used, e.g., considering goal-based

error metrics. We have designed a motion of the applicator of

roughly 8.7 mm (5 mm in each coordinate axis), subdivided into

10 steps. For each step, we have solved the deformation

problem of the breast soft-tissue, as described in Section 2.2,

using the configuration of the rigid applicator as boundary

conditions.

Each simulation step was computed in 30 ms, on a

commodity processor. This performance indicates that real-

time simulation can be sustained if the velocity at which the

clinician moves the applicator is under 29 mm/s, which is well

above the practical needs. Figure 6 shows the initial simulation

mesh of this test, including the applicator; the final mesh after

moving the applicator 8.7 mm, and per-vertex distances between

both meshes.

FIGURE 5
From left to right: (i) Location of tumor highlighted on top of the chest wall; (ii) 2-cm-radius sphere centered on the tumor; (iii) region of interest
on the skin surface produced by intersecting the sphere.

FIGURE 6
Quantitative evaluation of real-time deformation for intraoperative tracking. From left to right: (i) Initial simulation mesh (in grey), showing the
IORT applicator; (ii) Simulationmesh (in purple) aftermoving the applicator a total distance of 8.7 mm,with the initial and final applicators overlaid; (iii)
Per-vertex distances between initial and final position (in mm). The simulation is executed at a speed that allows a motion of the applicator of
29 mm/s.
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4 Discussion

In this work, we have described a methodology for modeling

and simulation of the breast. The focus of ourmethodology is to find

a good balance between simulation accuracy and performance,

allowing fast updates of the breast soft-tissue deformation even

interactively. We have confirmed that the method is applicable to a

diverse range of breast sizes and tumor morphologies.

In the paper, we have performed preliminary testing toward

two possible applications of fast soft-tissue simulation. Full

development of these applications would require, however,

additional technology components.

TABLE 2 Quantitative evaluation of the deformation error between preoperative and intraoperative setting. We initialize the simulation mesh in
preoperative supine position, we apply the orientation corresponding to the intraoperative configuration to each patient (see Table 1), and we
compute the deformation of the breast tissue. With this deformation, we transform the preoperative 3D surface scan, we register the result to the
intraoperative 3D surface scan, and we measure the error on the region-of-interest (ROI) closest to the tumor. The colors indicate signed-distance
error (in mm) between the simulation result and the actual intraoperative 3D scan. In all cases, the error in the ROI is below 5 mm.

Tumor location Error Tumor location Error

Patient 1 Patient 2

Patient 3 Patient 4

Patient 5 Patient 6

Patient 7 Patient 8

Patient 9
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For preoperative planning of intra-operative radiotherapy,

breast soft-tissue simulation could be used in the following way.

The simulation model should be meshes in supine position, based

on the available CT-scan, as we do. Then, the simulation model is

deformed from supine to surgical position, as done in our

experiments described in Section 3.2. Using this deformation, it

is possible to deform the input CT-scan, using a volume image

resampling method Gascon et al. (2013); Aguilera et al. (2015).

Radiotherapy planning could be executed in two possible ways. One

approach would be simulate dose planning on the pre-operative

anatomy Valdivieso-Casique et al. (2015) and then transform the

dose planning along with the CT-scan. Another approach would be

to execute fast dose simulation on the transformed CT-scan,

perhaps initialized by the transformed dose.

For intraoperative navigation, breast soft-tissue simulation

could be used in the following way. A tracking method can be

used to obtain in real-time the 3D configuration of surgical tools.

This 3D configuration can be used as boundary conditions for

soft-tissue simulation, as shown for the IORT applicator in our

experiments described in Section 3.3. With fast soft-tissue

simulation, the deformation of the breast is updated

interactively, and the location of the tumor can be displayed

to the surgeon together with the tracked configuration of the

surgical tool, e.g., using augmented reality displays Azimi et al.

(2012).

The various applications of runtime breast simulation are the

main lines for future work. In addition to developing and

integrating the complementary technology components

discussed above, they require formal clinical testing and

validation beyond the scope of this paper.

From a pure methodological perspective, our work also

admits future improvements. One of the possible

improvements, for higher accuracy of the breast simulation

model, is to consider a heterogeneous tissue distribution.

However, as mentioned earlier, estimating a more complex

tissue model also requires more training data, i.e., breast scans

under different deformations. One of the relevant aspects of our

modeling methodology is that meshing and mechanical

modeling are cross-informed, such that the couplings between

anatomical elements can be efficiently simulated. Cross-

information of these two aspects could be raised to yet

another level, through adaptive meshes that are material

aware. This, however, would require a combined solution to

the meshing and material estimation problems. Another possible

improvement is to maximize the efficiency of the quasi-static

simulation method, by designing a faster solver tailored to the

problem at hand. Finally, yet another possible improvement is to

fully automate the creation of the soft-tissue model from the

input data, thus reducing the practical overhead to deploy the

solution in practice. This could be done through data-driven

methods based on machine learning, which have seen recent

success on soft-tissue modeling problems Mendizabal et al.

(2019); Meister et al. (2020).
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