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Abstract: In this paper, we find the sequence of partial sums of the k-Fibonacci sequence, say,

Sk,n =
n

∑
j=1

Fk,j, and then we find the sequence of partial sums of this new sequence, S2)
k,n =

n

∑
j=1

Sk,j,

and so on. The iterated partial sums of k-Fibonacci numbers are given as a function of k-Fibonacci
numbers, in powers of k, and in a recursive way. We finish the topic by indicating a formula to find
the first terms of these sequences from the k-Fibonacci numbers themselves.
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1. Introduction

Recently, the iterated partial sums of the classical Fibonacci sequence have been
studied [1]. Surprisingly, as noted in [1], these iterated partial sums are related to Schreier
sets, which were used to solve a problem in Banach space theory [2]. In combinatorics,
these numbers are related to Ramsey-type theorems for subsets of N. Our purpose in this
paper is to extend this study to the k-Fibonacci sequences and expand its results. Analogous
identities may be obtain for other sequences as the k-Lucas numbers [3].

The k-Fibonacci numbers appear when studying the four-triangle longest-edge (4T-LE)
partition of triangles, as another example of the relation between geometry and numbers [4].
The 4T-LE partition of a triangle is obtained by joining the middle point of the longest edge
of the triangle to the opposite vertex and to the midpoints of the two remaining edges. This
partition and the associated refinement algorithm were introduced by M.-C. Rivara [5], and
their extensions to higher dimensions have been used in finite element methods [6].

The k-Fibonacci numbers are defined by the recurrence relation Fk,n = k Fk,n−1 + Fk,n−2
with initial conditions Fk,0 = 0 and Fk,1 = 1. The first k-Fibonacci numbers are 1, k, k2 + 1,
k3 + 2k, k4 + 3k2 + 1, k5 + 4k3 + 3k, k6 + 5k4 + 6k2 + 1, . . .

The associated characteristic equation is r2 − k r − 1 = 0, and its solutions are
σ1 = k+

√
k2+4
2 and σ2 = k−

√
k2+4
2 . These roots verify that σ1 · σ2 = −1, σ1 + σ2 = k.

In [4], the following formulas, among others, are proven:
Generating function:

∞

∑
n=0

Fk,nxn =
x

1− kx− x2 . (1)

Binet formula:

Fk,n =
σn

1 − σn
2

σ1 − σ2
. (2)

Sum of the first terms:
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n

∑
j=0

Fk,j =
1
k
(Fk,n+1 + Fk,n − 1). (3)

2. Iterated Partial Sums

The definition of partial sums of the k-Fibonacci sequence is introduced, along with
how to find them and some of the relationships between their elements.

Definition 1. For r ≥ 1, the iterated partial sums of the k-Fibonacci numbers are defined as

Sr)
k,n =

n

∑
j=1

Sr−1)
k,j , with initial condition S0)

k,n = Fk,n.

The Table 1 shows the first elements of these sequences.

Table 1. Iterated partial sums of the k-Fibonacci sequences.

r
n 1 2 3 4

0 Fk,1 Fk,2 Fk,3 Fk,4
1 Fk,1 Fk,2 + Fk,1 Fk,3 + Fk,2 + Fk,1 Fk,4 + Fk,3 + Fk,2 + Fk,1
2 Fk,1 Fk,2 + 2Fk,1 Fk,3 + 2Fk,2 + 3Fk,1 Fk,4 + 2Fk,3 + 3Fk,2 + 4Fk,1
3 Fk,1 Fk,2 + 3Fk,1 Fk,3 + 3Fk,2 + 6Fk,1 Fk,4 + 3Fk,3 + 6Fk,2 + 10Fk,1
4 Fk,1 Fk,2 + 4Fk,1 Fk,3 + 4Fk,2 + 10Fk,1 Fk,4 + 4Fk,3 + 10Fk,2 + 20Fk,1

2.1. First Formula

The following formula allows us to find any term of these sequences in a non-
recursive way.

Theorem 1. For r ≥ 1:

Sr)
k,n =

n

∑
j=0

(
r + j− 1

j

)
Fk,n−j. (4)

Proof. Notice that the right-side hand is the convolution of sequences
{
(r+n−1

n )
}

n≥0
, and{

Fk,n
}

n≥0. Since their respective generating functions [4,7] are
1

(1− x)r and
x

1− kx− x2 ,

the conclusion follows.

For instance, S3)
k,4 =

4

∑
j=0

(
2 + j

j

)
Fk,4−j = Fk,4 + 3Fk,3 + 6Fk,2 + 10Fk,1.

Moreover, the first n addends of Sr)
k,n+1 are the same as those of Sr)

k,n without more than

changing Fk,n by Fk,n+1. The last addend of Sr)
k,n+1 is

(
n + r− 2

n− 1

)
, because Fk,1 = 1.

If r = 1: S1)
k,n =

n

∑
j=0

(
j
j

)
Fk,n−j =

n

∑
j=0

Fk,j.

Remark 1. Notice that for any sequence
{

ak,n
}

n≥0, if Sr)
k,n denotes the r-th iterated partial sum of{

ak,n
}

n≥0, then as in the previous theorem, Sr)
k,n = ∑n

j=0 (
r+j−1

j )ak,n−j.

2.2. Partial Sums in Powers of k

By applying the definition of the k-Fibonacci numbers in Table 1, for r = 0, 1, 2, 3, 4,
the following sequences are obtained in Tables 2–5:
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Table 2. Iterated partial sums of the k-Fibonacci sequences.

r
n 1 2 3 4 5

0 1 k k2 + 1 k3 + 2k k4 + 3k2 + 1
1 1 k + 1 k2 + k + 2 k3 + k2 + 3k + 2 k4 + k3 + 4k2 + 3k + 3
2 1 k + 2 k2 + 2k + 4 k3 + 2k2 + 5k + 6 k4 + 2k3 + 6k2 + 8k + 9
3 1 k + 3 k2 + 3k + 7 k3 + 3k2 + 8k + 13 k4 + 3k3 + 9k2 + 16k + 22
4 1 k + 4 k2 + 4k + 11 k3 + 4k2 + 12k + 24 k4 + 4k3 + 13k2 + 28k + 46

For k = 1 in Table 2, the respective sequences are

Table 3. Iterated partial sums of the classical Fibonacci sequence.

r
n 1 2 3 4 5 6 7 8 9 10 11 12

0 1 1 2 3 5 8 13 21 34 55 89 144
1 1 2 4 7 12 20 33 54 88 143 232 376
2 1 3 7 14 26 46 79 133 221 364 596 972
3 1 4 11 25 51 97 176 309 530 894 1490 2462
4 1 5 16 41 92 189 365 674 1204 2098 3588 6050

For k = 2 in Table 2, the respective sequences are

Table 4. Iterated partial sums of the Pell sequence.

r
n 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 5 12 29 70 169 408 985 2378 5741 13,860
1 1 3 8 20 49 119 288 696 1681 4059 9800 23,660
2 1 4 12 32 81 200 488 1184 2865 6924 16,724 40,384
3 1 5 17 49 130 330 818 2002 4867 11,791 28,515 68,899
4 1 6 23 72 202 532 1350 3352 8219 20,010 48,525 117,424

For k = 3 in Table 2, the respective sequences are

Table 5. Iterated partial sums of the 3-Fibonacci sequence.

r
n 1 2 3 4 5 6 7 8 9 10 11

0 1 3 10 33 109 360 1189 3927 12,970 42,837 141,481
1 1 4 14 47 156 516 1705 5632 18,602 61,439 202,920
2 1 5 19 66 222 738 2443 8075 26,677 88,116 291,036
3 1 6 25 91 313 1051 3494 11,569 38,246 126,362 417,398
4 1 7 32 123 436 1487 4981 16,550 54,796 181,158 598,556

For instance (Table 3): S4)
1,5 = S3)

1,1 + S3)
1,2 + S3)

1,3 + S3)
1,4 + S3)

1,5
= 1 + 4 + 11 + 25 + 51 = 92.
Or (Table 4): S4)

2,5 = S3)
2,1 + S3)

2,2 + S3)
2,3 + S3)

2,4 + S3)
2,5

= 1 + 5 + 17 + 49 + 130 = 202.

Theorem 1. For r ≥ 1:
Sr)

k,n = Sr)
k,n−1 + Sr−1)

k,n . (5)

Proof. Sr)
k,n = ∑n

j=1 Sr−1)
k,j = ∑n−1

j=1 Sr−1)
k,j + Sr−1)

k,n = Sr)
k,n−1 + Sr−1)

k,n .
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For instance (Table 2):

S3)
k,4 = k3 + 3k2 + 8k + 13,

S2)
k,5 = k4 + 2k3 + 6k2 + 8k + 9,

S3)
k,4 + S2)

k,5 = k4 + 3k3 + 9k2 + 16k + 22 = S3)
k,5.

Theorem 2. Sequences Sr)
k,n verify the recurrence relation

Sr)
k,n+1 = k Sr)

k,n + Sr)
k,n−1 +

(
n + r− 2

n− 1

)
. (6)

with initial conditions Sr)
k,1 = 1 and Sr)

k,2 = k + r.

Proof. By induction.

For r = 0, S0)
k,n = Fk,n (Table 1). Formula (6) holds because

(
n− 2
n− 1

)
= 0 and S0)

k,n are

reduced to the k-Fibonacci numbers.
Let us suppose Formula (6) is true until Sr)

k,n+1 and Sr+1)
k,n . Then, from Equation (5),

Sr)
k,n+1 = Sr)

k,n + Sr−1)
k,n+1

= k Sr)
k,n−1 + Sr)

k,n−2 +

(
n + r− 3

n− 2

)
+k Sr−1)

k,n + Sr−1)
k,n−1 +

(
n + r− 3

n− 1

)
= k

(
Sr)

k,n−1 + Sr−1)
k,n

)
+
(

Sr)
k,n−2 + Sr−1)

k,n−1

)
+

((
n + r− 3

n− 2

)
+

(
n + r− 3

n− 1

))
= k Sr)

k,n + Sr)
k,n−1 +

(
n + r− 2

n− 1

)
.

For instance (Table 2), for n = 4 and r = 3:

S3)
k,4 = k3 + 3k2 + 8k + 13,

S3)
k,3 = k2 + 3k + 7,

k S3)
k,4 + S3)

k,3 +

(
6
4

)
= k4 + 3k3 + 9k2 + 16k + 22 = S3)

k,5.

Thus, sequence Sr)
k,n can be found directly, by applying this formula, and it is not

necessary to use the previous sequences.

3. Relation between the Partial Sums and the k-Fibonacci Numbers

In this section, we study the relation between the iterated partial sums of the k-
Fibonacci sequences and the k-Fibonacci numbers.

Next, a lemma will be used for the following formulas.

Lemma 1.
n

∑
i=1

Fk,a+i =
1
k
(Fk,a+n+1 + Fk,a+n − (Fk,a+1 + Fk,a)). (7)
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Proof. Since
n

∑
j=0

Fk,j =
1
k
(Fk,n+1 + Fk,n − 1) and

n

∑
i=1

Fk,a+i =
n+a

∑
i=0

Fk,i −
a

∑
i=0

Fk,i, the conclu-

sion follows.

For the classical Fibonacci sequence (k = 1),
n

∑
i=0

Fa+i = Fa+n+2 − Fa+1.

Corollary 1. For r = 2,

S2)
k,n =

1
k2 (Fk,n+2 + 2Fk,n+1 + Fk,n − (k n + k + 2)). (8)

Proof. S1)
k,n =

n

∑
j=1

S0)
k,j =

n

∑
j=1

Fk,j =
1
k
(Fk,n+1 + Fk,n − 1). Therefore, by (7),

S2)
k,n =

n

∑
j=1

S1)
k,j =

1
k

n

∑
j=1

(
Fk,j+1 + Fk,j − 1

)
n

∑
j=1

Fk,j+1 =
1
k
(Fk,n+2 + Fk,n+1 − (k + 1))

n

∑
j=1

Fk,j =
1
k
(Fk,n+1 + Fk,n − 1)

S2)
k,n =

1
k2 (Fk,n+2 + 2Fk,n+1 + Fk,n − (k n + k + 2)).

In particular, for k = 1: S2)
1,n = Fn+4 − 3− n.

Identity (8) may be written as S2)
k,n =

1
k2

2

∑
i=0

(
2
i

)
(Fk,n+2−i − Fk,2−i)−

n
k

.

Corollary 2. For r = 3,

S3)
k,n =

1
k3

(
Fk,n+3 + 3Fk,n+2 + 3Fk,n+1 + Fk,n − (k2 + 4k + 3)

)
− n

2k2 (k n + 3k + 4). (9)

Proof. Taking into account the formulas for S1)
k,n and S2)

k,n, (7) and (8),

S3)
k,n =

n

∑
j=1

S2)
k,j

=
1
k2

(
n

∑
j=1

Fk,j+2 + 2
n

∑
j=1

Fk,j+1 +
n

∑
j=1

Fk,j − k
n

∑
j=1

j− (k + 2)
n

∑
j=1

1

)
.

n

∑
j=1

Fk,j+2 = S1)
k,n + (Fk,n+1 + Fk,n+2)− (Fk,2 + Fk,1),

n

∑
j=1

Fk,j+1 = S1)
k,n + Fk,n+1 − Fk,1,

n

∑
j=1

Fk,j = S1)
k,n,
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S3)
k,n =

1
k2

(
4S1)

k,n + 3Fk,n+1 + Fk,n+2 − Fk,2 − 3Fk,1

−n
2
(k n + 3k + 4)

)
=

1
k2

(
4

1
k
(Fk,n+1 + Fk,n − 1) + 3Fk,n+1 + Fk,n+2 − k− 3

)
=

1
k3

(
Fk,n+3 + 3Fk,n+2 + 3Fk,n+1 + Fk,n − (k2 + 3k + 4)

)
− n

2k2 (k n + 3k + 4).

For the classical Fibonacci sequence (k = 1), S3)
1,n = Fn+6 − 2(n2 + n + 4).

Corollary 3. For r = 4,

S4)
k,n =

1
k4

4

∑
i=0

(
4
i

)
(Fk,n+4−i − Fk,4−i)

− n
6k3

(
(n2 + 6n + 11)k2 + (6n + 24)k + 24

)
.

Proof. Taking into account (4) and (8),

S4)
k,n =

n

∑
j=1

S3)
k,j

=
1
k3

(
n

∑
j=1

Fk,j+3 + 3
n

∑
j=1

Fk,j+2 + 3
n

∑
j=1

Fk,j+1 +
n

∑
j=1

Fk,j

−(k2 + 3k + 4)
n

∑
j=1

1

)
− 3k + 4

2k2

n

∑
j=1

j− 1
2k

n

∑
j=1

j2,

n

∑
j=1

Fk,j+3 =
1
k
(Fk,n+4 + Fk,n+3 − (Fk,4 + Fk,3)),

n

∑
j=1

Fk,j+2 =
1
k
(Fk,n+3 + Fk,n+2 − (Fk,3 + Fk,2)),

n

∑
j=1

Fk,j+1 =
1
k
(Fk,n+2 + Fk,n+1 − (Fk,2 + Fk,1)),

n

∑
j=1

Fk,j =
1
k
(Fk,n+1 + Fk,n − (Fk,1 + Fk,0)),

S4)
k,n =

1
k4 (Fk,n+4 + 4Fk,n+3 + 6Fk,n+2 + 4Fk,n+1 + Fk,n

−(Fk,4 + 4Fk,3 + 6Fk,2 + 4Fk,1 + Fk,0))−
k2 + 3k + 4

k3 n

−3k + 4
4k2 n(n + 1)− 1

12k
n(n + 1)(2n + 1)

=
1
k4

4

∑
i=0

(
4
i

)
(Fk,n+4−i − Fk,4−i)

− n
6k3

(
(n2 + 6n + 11)k2 + (6n + 24)k + 24

)
.
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For the classical Fibonacci sequence (k = 1), S4)
1,n = Fn+8 − 21− n

6
(n2 + 12n + 59).

In short:

S0)
k,n = Fk,n,

S1)
k,n =

1
k
(Fk,n+1 + Fk,n − 1),

S2)
k,n =

1
k2 (2Fk,n+1 + 2Fk,n − 2 + k Fk,n+1 − k− n),

S3)
k,n =

1
k3

(
Fk,n+3 + 3Fk,n+2 + 3Fk,n+1 + Fk,n − (k2 + 3k + 4)

)
− n

2k2 (k n + 3k + 4),

S4)
k,n =

1
k4

4

∑
i=0

(
4
i

)
(Fk,n+4−i − Fk,4−i)

− n
6k3

(
(n2 + 6n + 11)k2 + (6n + 24)k + 24

)
.

4. Conclusions

In this paper, we have found the sequence of partial sums of the k-Fibonacci se-

quence, say, Sk,n =
n

∑
j=1

Fk,j, and then the sequence of partial sums of this new sequence,

S2)
k,n =

n

∑
j=1

Sk,j, and so on. The iterated partial sums of k-Fibonacci numbers have been given

as functions of k-Fibonacci numbers, in powers of k, and in a recursive way.
Finally, a formula to find the first terms of these sequences from the k-Fibonacci

numbers themselves has also been proved.
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