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Abstract

This report is concerned with the gradient-based shape optimization of two dimensional
wave barriers using the Boundary Element Method (BEM) and the Finite Element Method
(FEM) in the time harmonic domain. The advantages and disadvantages of both numeri-
cal methods are widely known, and the problem at hand is one of those problems where
they complement very well. The main focus is on the development of the formulation
required for the calculation of shape sensitivities, which is usually the costlier stage of a
gradient-based shape optimization. Shape sensitivities are calculated using a Direct Dif-
ferentiation Method (DDM) rather than an Adjoint Variable Method (AVM) because a
small number of design variables is considered. For the sake of completeness and use-
fulness, the formulation is described in such a level of detail that its implementation is
relatively straightforward. From the FEM point of view, the formulation is developed
for wave propagation through isotropic elastic solids. From the BEM point of view, the
formulation is developed for wave propagation through inviscid fluids, and anti-plane and
in-plane wave propagation through isotropic elastic solids. An entire chapter is devoted
to the optimization of wave barriers, where the developments of the present work are ap-
plied to the optimization of a simple wave barrier. The studied problem exploit partially
the BEM–FEM coupling as it can also be solved by using a BEM–BEM model. How-
ever, it serves as an application of the methodology, which will remain valid for future
developments based on this work.
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Organization of the report

Chapter 1 gives an overview of the subject by describing several concepts related to
wave barriers and optimization.

Chapter 2 gives an overview of shape sensitivity analysis using the Finite Element Method,
and describes in detail the formulation for 2D solid finite elements.

Chapter 3 gives an overview of shape sensitivity analysis using the Boundary Element
Method, and develops the Singular Boundary Integral Equations for 2D shape sensi-
tivity analysis of Laplace (heat conduction, electrostatics, potential flow), Helmholtz
(wave propagation in inviscid fluids, anti-plane elastodynamics), in-plane elasto-
statics, and in-plane elastodynamics problems.

Chapter 4 describes BEM-BEM and BEM-FEM coupling for sensitivity analysis.

Chapter 5 contains the application of the described methodologies to the shape opti-
mization of a simple wave barrier. This chapter also gives the main conclusions and
ideas for further research.

5



6



Chapter 1

Introduction

1.1 Wave barriers

Machinery and vehicles are a source of vibrations that can travel through the soil to nearby
constructions, where they can annoy people or cause equipment malfunctioning or even
damage. In order to reduce the vibrations, one or more wave barriers can be installed
along the transmission path as a passive isolation system. The design of each system
depends on the source of vibrations, the properties of the transmission path, and the iso-
lation requirements. Open trenches are very efficient as wave barriers because its stress-
free boundaries act as perfect reflectors of elastic waves. The efficiency of open trenches
greatly depends on the ratio between the Rayleigh wavelength and the trench depth. How-
ever, a pure open trench can not be excavated to any desired depth for soil stability reasons.
Thus, other systems such as in-filled trenches, or the installation of sheet piles or rows of
piles, are often used. Another option is reinforcing the open trench by installing retaining
sheet piles or concrete walls on both sides of the trench.

The literature about the design and analysis of wave barriers is vast. Before the nu-
merical computing era, only experimental studies were performed in order to assess these
problems. Barkan [10] conducted experiments to study the efficiency of open trenches
in dry and water saturated soils, and sheet piles barriers in a dry soil. Woods [60] per-
formed a more systematic set of field tests to study the effect of the geometry of open
trenches over their efficiency. They confirmed experimentally the well known fact that
the efficiency of open trenches mostly depends on the depth to Rayleigh wavelength ratio.
Woods found that the width of the trench has little influence on efficiency. Nowadays,
analytical, semi-analytical and numerical methods are being used, although experimen-
tal methods are still being used to confirm or parametrize mathematical models. Three
kinds of wave barriers have been extensively studied: open and in-filled trenches, and
rows of piles; mainly using the Boundary Element Method (BEM). The open and in-filled
trenches have been studied through two-dimensional BEM models by Emad et al. [30],
Beskos et al. [16, 40], and even formulas for a simplified design have been given by Ah-
mad et al. [2]. They were studied in three-dimensional problems using BEM models by
Banerjee et al. [9] and Dasgupta et al. [27]. The vibration isolation produced by rows of
piles have been studied by Avilés et al. [7] analytically, and by Kattis et al. [39] using a
three-dimensional BEM model.

Most of the effort has been directed towards the analysis of wave barriers in general
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situations in order to obtain useful design rules, where the influences of the source, wave
barrier, soil, and receiver are evaluated by doing parametric studies. A step forward is
being taken for obtaining better designs by applying optimization algorithms to this prob-
lem [35]. The optimization of wave barriers leads to better designs for both general and
particular situations, but specially for the latter as it allows obtaining the best solution
taking into account specific economic and engineering constraints.

1.2 Optimization
Nowadays, design optimization is a crucial field in engineering. When facing a design
problem, the very first step is to come out with a solution or a concept that simply works,
i.e. the design does what is required. In our competitive environment this is not enough,
and the design must fulfill several constraints and perform well under different conditions.
Furthermore, the main objectives are usually accompanied by other secondary objectives,
which can be even conflicting objectives. An appropriate methodology to do such an
optimization is using optimization algorithms and numerical simulation of the problem.

The mathematical formulation of an optimization problem can be written as [48]:

min
a∈Rn

fi (a) , i ∈ F subject to

gi (a) ≤ 0, i ∈ I
hi (a) = 0, i ∈ E

(1.1)

where fi, gi and hi are scalar valued functions of the variables a, and F , I and E are sets of
indices. The variable a is the vector of design variables. The functions fi are the objective
functions, gi the inequality constraints, and hi the equality constraints. Optimization is a
very active field of research because of its complexity and usefulness. There are a plethora
of optimization algorithms, each of one designed to target a range of problems. They
can be mainly divided into deterministic and heuristic approaches. The deterministic
approach take analytical properties of the problem to generate points that converge to
optimal solutions. The heuristic approach is more flexible than the deterministic one, but
the quality of the obtained solution cannot be guaranteed and the number of evaluations
of the objective function is usually greater. A good reference on deterministic algorithms
is [48], and on heuristic algorithms [34, 28].

The structural optimization problem can be explained using the paradigm of three
interacting models [5]: the design model, the analysis model and the optimization model.
Here, we give a slightly broader definition of this paradigm in order to include other
aspects than geometry.

The design model is a subset of all possible designs. Thus, it is a decisive step that
needs some knowledge about the problem at hand. The description of a design model
comprises information about its geometry, materials and conditions. The most important
piece of information is the geometrical one. All others are somehow supported on it. The
geometric description consists of information related to the topology, i.e. number of sub-
domains and their connectivity, and information related to the shape of each sub-domain.
The material information offers data about the type of material and its properties at each
point of the domain. Each sub-domain is usually made of the same type of material with
homogeneous properties, but in general the properties could vary over it. The description
about conditions consists of support, interface and load information. All this information
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must be expressed in a mathematical form as a set of equations, inequalities and variables
(continuous or discrete). Eventually, some of the variables become constants, parameters
or design variables, being these latter those that actually change during the optimization
process.

The analysis model allows evaluation of objective and constraint functions, and their
gradient or even Hessian if needed by the optimization model. This model must be equiv-
alent to the design model, but ready to be used by an analysis procedure. The analysis
procedure can be a closed-form analytical solution, but more often is a semi-analytical or
numerical procedure.

The optimization model selects the best design according to the objective and con-
straint functions from the possibilities offered by the design model. For a multi-objective
optimization, it gives a range of designs which defines the Pareto front. The model re-
quires the definition of the design variables and their domains, the objective and constraint
functions, and the optimization algorithm. The optimization model acts as the job man-
ager in the optimization process, i.e. it decides at each step what designs have to be
analysed and then takes further decisions using the analysis results.

1.3 Sensitivity analysis
Most of the analyses consist in obtaining the response of a given design, these are the
usual zero-order static, time harmonic, transient, modal, etc. analyses. In order to study
the influence of some design parameters, it is possible to run several zero-order analyses
with different values of these design parameters, i.e. a parametric study. It is appropriate
when the engineer would like to have a global idea of the performance of the design for a
range of variation of a small number of parameters. For other purposes like optimization,
identification or reliability studies, zero-order analyses are usually not enough. Sensitiv-
ity analyses consist in obtaining first- and second-order static, time harmonic, transient,
modal, etc. analyses of a design with respect to the variation of continuous design param-
eters [25].

Let a be a vector of continuous design parameters, and f = f (a) a field variable
(displacement, velocity, stress, etc.) or combination of field variables (performance, con-
straints, etc.). If f is smooth enough ( f ∈ C2), it is possible to build a Taylor’s approxi-
mation of f near a given set of values of the design parameters a0:

f (a) = f 0 + f 0
, j

(
a j − a0

j

)
+ f 0

, jk

(
a j − a0

j

) (
ak − a0

k

)
+ O

[
(∆a)3

]
(1.2)

where f 0 is obtained from a zero-order analysis, f 0
, j from a first-order sensitivity analy-

sis (gradient), and f 0
, jk from a second-order sensitivity analysis (Hessian), all at a = a0.

Note that indicial notation, comma notation for derivatives with respect to the design pa-
rameters, and Einstein summation convention are used in Equation (1.2). Most of the
literature about sensitivity analysis is focused on first-order analysis. Second-order anal-
ysis, although useful for checking optimality conditions, is seldom performed because of
its computational cost and its comparatively narrow range of applications [25]. Therefore,
in the following, the term “sensitivity” is used as a synonym of “first-order sensitivity”.

There are four major methodologies for obtaining sensitivities [59]: overall or global
finite differences, continuum derivatives, discrete derivatives and computational or auto-
matic differentiation. The last three methodologies can be formulated as direct and adjoint
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methods. In the direct approach, the derivatives of the entire structural response are ob-
tained, and then the performance functions can be obtained by using the chain rule of
differentiation. In the adjoint approach, an adjoint problem is formulated for each per-
formance function, and hence not all derivatives of the structural response are obtained.
Roughly speaking, the direct approach focuses on structural response, while the adjoint
approach focuses on structural performance. The former is appropriate for a small number
of design variables and a big number of performance functions, and the latter is appro-
priate for the opposite. In both approaches, the obtained matrix of the linear system of
equations (stiffness or influence matrix) is exactly equal to that of the zero-order analysis,
and thus its factorization could be used for the sensitivity analysis. The effort is employed
in building the vector of the linear system of equations (load vector). Van Keulen et al.
[59] give a very complete review of methods of structural sensitivity analysis. Next, a
brief overview is given.

The Global Finite Differences (GFD) methodology is based on estimating the perfor-
mance sensitivity f 0

, j by using a finite difference formula which requires only zero-order
analyses:

f 0
, j ' FD

[
f 0,∆a0

j

]
(1.3)

where the FD operator can represent a forward, central, 4-point central, etc. finite differ-
ence formula with a perturbation ∆a0

j on the j-th design variable. It is the easiest method
to implement. However, it is computationally inefficient and unreliable as an appropriate
value of the perturbation is needed. Furthermore, not always is possible to find a finite dif-
ference formula and a value of the perturbation that lead to a sensitivity with the required
precision. Therefore, GFD should be the last resort for computing sensitivities.

In the Continuum Derivatives (CD) approach, the sensitivities are obtained by dif-
ferentiating the continuum governing equations (partial differential or integro-differential
equations). It leads to a set of continuum sensitivity equations which are then usually
solved numerically. For shape sensitivities, because the domain itself becomes a design
variable, a material differentiation approach or a control volume approach must be used
[6].

In the Discrete Derivatives (DD) approach, the sensitivities are obtained by differ-
entiating the discretized set of equations. Thus, in the DD approach the differentiation
and discretization processes are reversed with respect to the CD approach. For some
cases, if the same numerical method and discretization is used, it has been proven that
both approaches lead to the same solution [5]. The element-wise matrices obtained af-
ter differentiation involves derivatives of the stiffness and load matrices. Although these
derivatives can be evaluated analytically, they are particularly involved and lengthy for
shape sensitivities. Therefore, they are usually approximated by finite differences, which
not only is much more easy to implement, but also is cheaper computationally. In this
case, the approach is called semi-analytical.

Automatic Differentiation (AD) approach consists in the differentiation of the com-
puter code itself. Although finite element codes are composed of many more or less com-
plex subroutines and functions, they are basically a collection of elementary functions.
AD approach defines the partial derivatives of these elementary functions, and then the
derivatives of complicated subroutines and functions are computed using propagation and
the chain rule of differentiation. Although it may appear to be simple and straightforward,
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it is not. It requires enough skills to apply the tools to the source code, and a judicious
choice of where to apply it in order to get an efficient code. Furthermore, it could require
the modification of the original code before applying the tools.

1.4 Parametrization
Parametrization (or parameterization) is the process by which some entity is described
in terms of parameters. In our context, this is done over the description of the design
model. The parametrization of a design is not unique nor trivial, it has a huge impact on
the result of an optimization process. In fact, it materializes the design model by setting
a set of parameters and mathematical expressions that defines the geometry, material and
conditions of a design model. The parameters that are used in an optimization process are
the design variables.

In structural design, there are mainly five kinds of parameters [25]: material parame-
ters (Young’s modulus, fiber orientation, etc.), size parameters (thickness, cross-section,
etc.), shape parameters (length, radius, etc.), configuration parameters (orientation and
location of structural elements), and topological parameters (number and connectivity of
structural elements). Note that some of them are closely related, and, for example, the last
four could be grouped as geometrical parameters. These parameters can be also classified
as discrete (boolean or integer) or continuous (real) parameters.

The literature about geometric parametrization is vast and specialized, particularly
in shape parametrization, which is probably the most involved. Before going further,
it is necessary to define some concepts related to shape parametrization and sensitivity
analysis. For first-order analyses, each shape parameter is studied independently from
others, i.e. the sensitivities are obtained without considering other shape parameters.
Although several parameters could be linked through some constraints in order to obtain
a feasible design, this is something managed by the optimization algorithm and does
not influence the first-order sensitivity analysis. For this reason, it is possible to build
a Taylor’s expansion of the geometrical design with respect to the parameter a around a
given state a = a0:

x̃ = x + v
(
a − a0

)
+ O

[(
a − a0

)2
]

(1.4)

where x is a point of the domain Ω(a0), v = v(x, a0) = (∂x/∂a)a0 is the design velocity
field, and x̃ = x̃ (x, a) is the new location of the point x for a parameter value a. This is
a linear mapping of points of the domain Ω(a0) to Ω̃, that approximates the domain for a
small variation of a, see Fig. 1.1. It must obviously be continuous, i.e. v ∈ C0, otherwise
the mapping breaks the domain.

For first-order shape sensitivity analysis, the design velocity field v of each design
variable has to be defined for all points of the domain. There are a large number of
strategies to build and update this mapping during optimization processes [58, 54, 25, 26,
5]. Although it is difficult to classify all these strategies, there are three main philosophies:

Based on geometry. In order to build the geometry, it is necessary to use a CAD (Com-
puter Aided Design) tool which can use a Boundary REPresentation (BREP), Func-
tion REPresentation (FREP), Constructive Solid Geometry (CSG) or other repre-
sentation. Since the representation is based on a set of equations and parameters,
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x̃

x
v(a − a0)

Ω̃

Ω(a0)

Γ̃

Γ(a0)

Figure 1.1: Taylor’s expansion of the shape parametrization

these parameters are available as design variables. Once the mesh is obtained from
the CAD model by a mesher, the design velocity field of each design variable can
be inherited to the nodes of the mesh by differentiation of the representation with
respect to the design variable at the position of the nodes.

Based on mesh. Instead of working with the representation given by the CAD model, it
is possible to use the representation provided by the mesh. The nodal coordinates
are used as design variables, which lead to a big set of design variables. It is also
called parameter-free or FE-based parametrization.

Based on a free-form deformation. An auxiliary design mesh consisting of isoparamet-
ric elements, B-splines or NURBS is defined in order to deform the CAD model or
the mesh. The points of the CAD model or the nodes of the mesh are connected to
the design mesh by position, i.e. there is a one-to-one correspondence (a mapping)
between the design model and the CAD model or mesh. The design mesh acts as
a canvas where the CAD model or the mesh is stuck, and any deformation applied
to the canvas is accordingly done over them. The design variables can be the nodal
coordinates or control points of the design mesh.

None of the strategies are of general applicability. The strategies based on geometry are
useful for clearly defined shape optimizations, for example when the design variables are
radii, lengths or positions of straight or arc-like lines. If the CAD model allows patches
of variable order, then it would be possible to obtain more complicated shapes. A major
drawback is that CAD tools do not usually come with all the necessary features to apply
these strategies easily. The strategies based on mesh movement offer more freedom to
the shape optimization. However, this freedom comes with some additional costs. Reg-
ularization and remeshing processes are needed after each optimization step in order to
obtain a feasible design and a valid mesh. Furthermore, because of the number of de-
sign variables and the post-processing stages after each iteration, they can be relatively
expensive computationally. The strategies based on a free-form deformation have char-
acteristics of the latter two. They offer a selective in-between flexibility with respect to
shape variations, from very simple and constrained shapes to very complex shapes. More-
over, they have much less problems associated with the distortion of the mesh, and thus
regularization and remeshing are hardly needed.
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Chapter 2

Shape sensitivities using the Finite
Element Method

2.1 Introduction
As pointed out in Section 1.3, the calculation of shape sensitivities can be done in several
ways. Apart from the unreliable Global Finite Difference (GFD) approach, the other three
approaches are somehow equivalent, but very different with respect to where and how
much effort is required. From the point of view of the Finite Element Method (FEM), the
Discrete Derivatives approach is probably the most appropriate. Its starting point is the
system of equations obtained from the discretization.

Consider the global system of equations resulting from the discretization of an elastic
domain by using the FEM:

Ku = f (2.1)

where K is the stiffness matrix, u is the degrees of freedom vector of dimension Ndof , and
f is the load vector. Consider also Nf objective or constraint functions ψi, and the vector
of design variables a of dimension Ndv:

ψi = ψi (a,u (a)) , i = 1, . . . ,Nf (2.2)

By differentiating Equation (2.1) with respect to the design variables:

K
∂u
∂ai

=
∂f
∂ai
−
∂K
∂ai

u, i = 1, . . . ,Ndv (2.3)

where ∂u/∂ai is the vector of sensitivities of u with respect to ai, and ∂f/∂ai and ∂K/∂ai

are derivatives with respect to ai, which can be calculated by using the design parametriza-
tion. In the so-called semi-analytical approach, these derivatives are calculated by finite
differences, which is relatively simple but accurate. Because compatibility and equilib-
rium conditions also hold for the displacement and traction sensitivities, these derivatives
can be calculated element-wise and then assembled into the global system of equations as
usual. By differentiating Equation (2.2) with respect to the design variables:

dψi

da j
=
∂ψi

∂a j
+
∂ψi

∂uk

∂uk

∂a j
, i = 1, . . . ,Nf, j = 1, . . . ,Ndv, k = 1, . . . ,Ndof (2.4)
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where indicial notation and Einstein summation convention are used. This approach
can be formulated as a Direct Differentiation Method (DDM) or as an Adjoint Variable
Method (AVM). DDM consists in performing the following steps:

1. Solve Equation (2.1), i.e. zero-order analysis.

2. Solve Equation (2.3), i.e. first-order sensitivity analysis.

3. Substitute results in Equation (2.4) in order to obtain the gradient of each objective
or constraint function.

AVM requires a reformulation of Equation (2.4) by substituting ∂uk/∂a j obtained from
Equation (2.3):

dψi

da j
=
∂ψi

∂a j
+
∂ψi

∂uk
K−1

lk

(
∂ fl

∂a j
−
∂Klk

∂a j
uk

)
=
∂ψi

∂a j
+ λl

(
∂ fl

∂a j
−
∂Klk

∂a j
uk

)
(2.5)

∂ψi

∂uk
= λlKlk (2.6)

where l = 1, . . . ,Ndof , and Equation (2.6) represents the adjoint problem with λl as the
adjoint variables and ∂ψi/∂uk as the adjoint loads. Note that this problem has the same
stiffness matrix as the original problem, although transposed. Adjoint loads are explicit
and known once the objective or constraint functions are defined. Therefore, AVM con-
sists in performing the following steps:

1. Solve Equation (2.1), i.e. zero-order analysis of the original problem.

2. Obtain the loads from Equation (2.3), i.e. the loads required for solving first-order
sensitivity analysis.

3. Solve Equation (2.5), i.e. zero-order analysis of the adjoint problem.

4. Substitute results in Equation (2.5) in order to obtain the gradient of each objective
or constraint function.

Both methods require solving the zero-order analysis of the original problem, and also the
calculation of the stiffness matrix and load vector derivatives with respect to the design
variables. The main difference is the additional linear system of equations that must be
solved. DDM requires solving as many systems as the number of design variables, while
AVM requires solving as many systems as the number of objective or constraint functions
that require the calculation of their gradients. A very concise comparison between both
methods can be found in [25]. In the present work, DDM is used because a small number
of design variables are considered.

The rest of the chapter is organized as follows. In Section 2.2, the 2D solid isopara-
metric finite element is described, including the matrices derivatives, their approximation
by finite differences, and their analytical evaluation. In Section 2.3, an example is solved
analytically and numerically in order to validate the formulation and its implementation.
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2.2 2D solid isoparametric finite element
Although widely known, the 2D solid isoparametric finite element formulation is going
to be briefly described for the sake of completeness. It also allows describing the basic
semi-analytical approach as well as an exact method [49] for the evaluation of the matrices
derivatives.

2.2.1 Basic formulation
A 2D solid isoparametric finite element with Nn nodes is built using the same interpolation
for the geometry and the displacement field:

x =

i=Nn∑
i=1

N(i)x(i) =
[

N(1)I . . . N(i)I . . . N(Nn)I
]


x(1)

. . .
x(i)

. . .
x(Nn)


= N(e)x(e) (2.7)

u = N(e)u(e) (2.8)

where x(i) is the position vector of the i-th node in global coordinates, N(i) = N(i) (ξ1, ξ2)
is the shape function associated the the i-th node, ξ1 and ξ2 are the local curvilinear coor-
dinates, and I is the 2 × 2 identity matrix. The transformation between local curvilinear
coordinates and global cartesian coordinates is governed by the Jacobian matrix:

∂ f
∂ξi

=
∂ f
∂x j

∂x j

∂ξi
= Jij

∂ f
∂x j

G = J−1

−−−−−−→

∂ f
∂xi

= Gij
∂ f
∂ξ j

(2.9)

where:

J =


∂x1

∂ξ1

∂x2

∂ξ1

∂x1

∂ξ2

∂x2

∂ξ2

 =

i=Nn∑
i=1


∂N(i)

∂ξ1
x(i)

1
∂N(i)

∂ξ1
x(i)

2

∂N(i)

∂ξ2
x(i)

1
∂N(i)

∂ξ2
x(i)

2

 =


J11 J12

J21 J22

 (2.10)

and its determinant relates infinitesimal domains in both spaces:

dΩ = |J| dξ1dξ2 (2.11)

The relevant strain tensor components can be arranged in a column-vector ε, whose rela-
tionship with the displacement field is:

ε =


ε11

ε22

γ12

 =



∂

∂x1
0

0
∂

∂x2
∂

∂x2

∂

∂x1


 u1

u2

 = Su =

[
B(1) . . . B(i) . . . B(Nn)

]
u(e) = B(e)u(e)

(2.12)
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where B(i) = SN(i) is built using Equation (2.9):

∂N(i)

∂x j
= Gjk

∂N(i)

∂ξk
(2.13)

The relevant stress tensor components can also be arranged in a column-vector σ, and its
relationship with the strain vector is done through the general constitutive matrix D:

σ =


σ11

σ22

τ12

 =

 d11 d12 0
d11 d12 0
0 0 d33



ε11

ε22

γ12

 = Dε (2.14)

where for plane strain (ε33 = γ13 = ε23 = 0):

d11 = d22 =
E(1 − ν)

(1 + ν)(1 − 2ν)

d12 = d21 =
Eν

(1 + ν)(1 − 2ν)

d33 =
E

2(1 + ν)
= µ

(2.15)

By changing di j is possible to consider plane stress or orthotropy [50].
Consider a two-dimensional domain Ω with boundary Γ = ∂Ω and thickness t. The

Principle of Virtual Work for 2D elasticity problems can be written in matrix form as:∫
Ω

δεTσt dΩ =

∫
Ω

δuT bt dΩ +

∫
Γ

δuT tt dΓ +

Npl∑
i=1

δui
T pi (2.16)

where t = 1 for plain strain, and t is the real thickness for plain stress. The virtual field
is indicated as usual with the prefix δ, b is the vector of body loads, t is the vector of
boundary loads, and pi is the i-th point load. Once discretized into elements, by using
the same interpolation for virtual and real displacements it leads to the classical local
equilibrium equation for a given element Ω(e):

K(e)u(e) − f(e) = q(e) (2.17)

where the element-wise stiffness matrix K(e) is:

K(e) =

∫
Ω(e)

(
B(e)

)T
D(e)B(e)t dΩ (2.18)

the element-wise load vector f(e) consist of equivalent nodal forces due to body loads f(e)
b

and boundary loads f(e)
t :

f(e) = f(e)
b + f(e)

t (2.19)

and q(e) is the element-wise vector of equilibrating nodal forces. A body load b with the
same interpolation as the displacement field lead to the following equivalent nodal forces:

f(e)
b =

∫
Ω(e)

(
N(e)

)T
bt dΩ =

[∫
Ω(e)

(
N(e)

)T
N(e)t dΩ

]
b(e) = Q(e)

b b(e) (2.20)
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When a boundary load t is applied along Γ(be), the produced equivalent nodal forces are
obtained from:

f(e)
t =

∫
Γ(be)

(
N(e)

)T
tt dΓ =

[∫
Γ(be)

(
N(e)

)T
N(be)t dΓ

]
t(be) = Q(be)

t t(be) (2.21)

where t is interpolated using a boundary element with Nbe
n nodes:

t =
[

N(be)(1)I . . . N(be)(i)I . . . N(be)(Nbe
n )I

]


t(1)

. . .
t(i)

. . .

t(Nbe
n )


= N(be)t(be) (2.22)

and N(be)(i) = N(be)(i) (η), being η the local curvilinear coordinate of the load element. The
load element is connected to the element by defining the coordinate ξ( j) of the j-th node
of the load element, thus:

ξi =

j=Nbe
n∑

j=1

N(be)( j)ξ
( j)
i (2.23)

and:

dξi

dη
=

j=Nbe
n∑

j=1

dN(be)( j)

dη
ξ

( j)
i = Jηi (2.24)

dxi

dη
=
∂xi

∂ξ j

dξ j

dη
= J jiJ

η
j = J(be)

i (2.25)

dΓ =

√
J(be)

j J(be)
j dη =

∣∣∣J(be)
∣∣∣ dη (2.26)

The global equilibrium equation is obtained by establishing that the sum of all equili-
brating nodal forces balances the point loads:

Ku = f (2.27)

where f includes body, boundary and point loads.
For time harmonic analysis, displacements, stresses, loads, etc. can be expressed as

v (x, t) = v (x, ω) eiωt. All the equations written above hold, although now the variables
are complex amplitudes v (x, ω) which depend on the real circular frequency ω. Inertial
forces due to the movement of the continuous distribution of mass can be included as a
body load b = −ρü:

f(e)
m = −

∫
Ω(e)

(
N(e)

)T
ρüt dΩ = ω2ρQ(e)

b u(e)eiωt = ω2M(e)u(e)eiωt (2.28)

where M(e) is the mass matrix. Taking into account that the exponential terms cancel out,
the local equilibrium equation for time harmonic analysis can be written as:(

K(e) − ω2M(e)
)

u(e) − f(e) = q(e) ⇒ K̃(e)u(e) − f(e) = q(e) (2.29)

which is completely analogous to Equation (2.17).
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2.2.2 Element matrices differentiation
The basic semi-analytical approach consist in the numerical differentiation of the ele-
ment matrices by using finite difference formulas. This simple black-box procedure is
appropriate and leads to accurate results most of the times. It fails when dealing with
structural finite elements in shape sensitivity analysis [49, 17], especially with Euler-
Bernoulli/Kirchoff kinematics. There exist several ways to overcome this, but the pro-
cedures proposed by Olhoff et al. [49] are particularly general (solid and structural ele-
ments), accurate and robust.

Consider a shape design variable a which produces a design velocity field v, the partial
derivative of any field variable f with respect to a can be expressed as a function of v by
using the chain rule of differentiation:

∂ f
∂a

=
∂ f
∂x j

∂x j

∂a
=
∂ f
∂x j

v j (2.30)

where the Einstein summation convention is implied. The finite difference formula can
be applied to estimate ∂/∂a or ∂/∂x j:

∂ f
∂a
' FD

[
f ,∆a

]
(2.31)

∂ f
∂x j
' FD

[
f ,∆x j

]
⇒

∂ f
∂a
'
∂ f
∂x j

v j (2.32)

where in the latter case Equation (2.30) is applied in order to build the required ∂/∂a.
Although both methods are equivalent, there are differences in terms of robustness and
computational effort. The former is simpler and computationally cheaper, however is
unreliable because choosing an appropriate ∆a is not straightforward. The latter is com-
putationally more expensive, but also more robust since a clear criteria based on the size
of the element can be used to estimate an appropriate value of ∆x j. With this in mind, the
partial derivative of the element-wise stiffness matrix K(e) with respect to a can be written
as:

∂K(e)

∂a
=
∂K(e)

∂x(k)
j

∂x(k)
j

∂a
=
∂K(e)

∂x(k)
j

v(k)
j (2.33)

where v(k) is the design velocity field at the k-th node, and the summation convention is
implied for indices j and k. The same holds true for other element-wise matrices (Q(e)

b ,
Q(be)

t , M(e), etc.).
Since the stiffness matrix is explicit for the linear triangle, see e.g. [50], its derivatives

with respect to the nodal coordinates can be easily calculated analytically by any computer
algebra system. These derivatives are rational polynomial functions of nodal coordinates,
where both are 4-th degree polynomials. Therefore, even for such a simple element, the
finite difference can provide only an approximation. The perturbation ∆x(k)

j is chosen as
∆x(k)

j = D · ∆h, where D is the diameter of the bounding ball of the element and ∆h is
a dimensionless perturbation. Using the linear triangle, a convergence study has been
performed for several finite difference formulas. Table 2.1 shows the RMS error between
analytical and numerical estimation of ∂K(e)/∂x( j)

k for an equilateral triangle with E = 1
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and ν = 1/3. The dimensionless perturbation ∆h behaves with the expected convergence
rate up to a point where round-off and truncation error start becoming relevant. Framed
cells show the minimum error and indicate the best value of ∆h for each finite difference
formula. This criteria can be used not only for the stiffness matrix, but also for the load
matrices.

∆h = ∆x( j)
k /D Forward FD Central FD 4P Central FD 6P Central FD

10−1 4 · 10−1 4 · 10−2 2 · 10−3 4 · 10−4

10−2 4 · 10−2 4 · 10−4 2 · 10−7 3 · 10−10

10−3 4 · 10−3 4 · 10−6 2 · 10−11 5 · 10−13

10−4 4 · 10−4 4 · 10−8 6 · 10−12 6 · 10−12

10−5 4 · 10−5 4 · 10−10 5 · 10−11 7 · 10−11

10−6 4 · 10−6 5 · 10−11 7 · 10−10 7 · 10−10

10−7 4 · 10−7 4 · 10−10 7 · 10−9 8 · 10−9

10−8 7 · 10−8 4 · 10−9 7 · 10−8 7 · 10−8

10−9 5 · 10−7 2 · 10−8 4 · 10−7 6 · 10−7

Table 2.1: ∂K(e)/∂x( j)
k RMS error using several FD formulas (linear equilateral triangle)

Other linear triangles with aspect ratios up to 1/5 have been studied, and their be-
haviour with respect to ∆h is a little bit worse. Despite high-order finite difference formu-
las can lead to almost exact results, it is achieved at the expense of evaluating the matrix
many times. Note that the computational effort is proportional to the the total number of
matrix evaluations, which is equal to the product of the number of nodes, the number of
dimensions, and the number of points of the finite difference formula.

Analytical differentiation

The explained basic finite difference approach is simple, easy to implement and applicable
to all kind of elements and design variables. However, its lack of accuracy when applied
to structural elements in shape sensitivity analysis and its high computational cost have
motivated researchers to find for better solutions. Olhoff et al. developed a semi-analytical
but exact procedure using inexpensive forward finite differences, being [49] probably their
most complete paper. In general, the strategy consists in performing the analytical differ-
entiation over the integrand and then decomposing it in order to find polynomial terms
that can be numerically differentiated exactly. In the case of solid isoparametric elements,
this procedure can be easily used to obtain an analytical solution (except for the numer-
ical integration). Next, this analytical solution is going to be described for 2D elements,
although the extension to 3D elements is straightforward.

For the stiffness matrix, the starting point is the derivative of Equation (2.18) once
the integration domain is transformed into the local space through the determinant of the
Jacobian matrix |J|. Then, taking into account that D(e) is symmetric, the derivative can
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be written as:

∂K(e)

∂x(k)
j

=
1
2


[∫

Ω(e)

(
B(e)

)T
D(e)B̂(e)t |J| dξ1dξ2

]
+

[∫
Ω(e)

(
B(e)

)T
D(e)B̂(e)t |J| dξ1dξ2

]T


(2.34)

where:

B̂(e) = 2
∂B(e)

∂x(k)
j

+
1
|J|
∂ |J|
∂x(k)

j

B(e) (2.35)

The difference between Equation (2.34) and Equation (2.18) is only B̂(e), which even con-
tains several already calculated terms. Thus, relatively small additional effort is needed
with respect to the calculation of the stiffness matrix, only the calculation of ∂B(e)/∂x(k)

j

and ∂ |J| /∂x(k)
j . By examining Equation (2.10), it is easy to write the derivative of J with

respect to x(k)
j as:

∂J
∂x(k)

j

=


∂J11

∂x(k)
j

∂J12

∂x(k)
j

∂J21

∂x(k)
j

∂J22

∂x(k)
j

 =


∂N(k)

∂ξ1
δj1

∂N(k)

∂ξ1
δj2

∂N(k)

∂ξ2
δj1

∂N(k)

∂ξ2
δj2

⇒
∂Jmn

∂x(k)
j

=
∂N(k)

∂ξm
δjn (2.36)

By applying the chain rule, the derivative of the determinant can be written as:

∂ |J|
∂x(k)

j

=
∂ |J|
∂Jmn

∂Jmn

∂x(k)
j

(2.37)

where the Einstein summation convention is implied for both indices. From the definition
of the determinant in terms of its cofactors, it is clear that its derivative with respect to
each element of the matrix is:

∂ |J|
∂Jmn

= cofactor (Jmn) , cofactor (Jmn) = (−1)m+nminor (J,m, n) (2.38)

where the minor is the determinant of the submatrix obtained when removing the m-th
row and the n-th column of the matrix J. The inverse of a matrix can be expressed as a
function of its adjugate and its determinant:

G = J−1 =
1
|J|

adjugate (J) =
1
|J|

[cofactor (Jmn)]T =
1
|J|

[cofactor (Jnm)] (2.39)

Gmn =
1
|J|

cofactor (Jnm)⇒
∂ |J|
∂Jmn

= |J|Gnm (2.40)

Therefore, Equation (2.37) can now be written as:

∂ |J|
∂x(k)

j

=
∂ |J|
∂Jmn

∂N(k)

∂ξm
δjn =

∂ |J|
∂Jm j

∂N(k)

∂ξm
= |J|G jm

∂N(k)

∂ξm
= |J|

∂N(k)

∂x j
(2.41)
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which is composed by terms already calculated. The derivative of B(e) with respect to x(k)
j

can be written as:

∂B(e)

∂x(k)
j

=

 ∂B(1)

∂x(k)
j

. . .
∂B(i)

∂x(k)
j

. . .
∂B(Nn)

∂x(k)
j

 (2.42)

where with the help of Equation (2.13):

∂B(i)

∂x(k)
j

=
∂

∂x(k)
j



∂N(i)

∂x1
0

0
∂N(i)

∂x2

∂N(i)

∂x2

∂N(i)

∂x1


(2.43)

∂

∂x(k)
j

(
∂N(i)

∂xm

)
=
∂Gmn

∂x(k)
j

∂N(i)

∂ξn
(2.44)

The derivative of Gmn with respect to x(k)
j is difficult to compute directly. Instead, from the

identity JJ−1 = JG = I, it can be written as:

∂J
∂x(k)

j

G + J
∂G
∂x(k)

j

= 0⇒
∂G
∂x(k)

j

= −G
∂J
∂x(k)

j

G⇒
∂Gmn

∂x(k)
j

= −Gmr
∂Jrs

∂x(k)
j

Gsn (2.45)

where substituting Equation (2.36) and considering Equation (2.13):

∂Gmn

∂x(k)
j

= −Gmr
∂N(k)

∂ξr
δjsGsn = −Gmr

∂N(k)

∂ξr
G jn = −

∂N(k)

∂xm
G jn (2.46)

Substituting this last result into Equation (2.44) and considering again Equation (2.13):

∂

∂x(k)
j

(
∂N(i)

∂xm

)
= −

∂N(k)

∂xm
G jn

∂N(i)

∂ξn
= −

∂N(k)

∂xm

∂N(i)

∂x j
(2.47)

which is a simple product of terms already calculated. The substitution of this result into
Equation (2.43) allows building the matrix ∂B(e)/∂x(k)

j defined by Equation (2.42).
For the body load matrix (and mass matrix), one has to consider the derivative of Q(e)

b
(Equation (2.20)) once the integration domain is transformed into the local space:

∂Q(e)
b

∂x(k)
j

=

∫
Ω(e)

(
N(e)

)T
N(e)t

∂ |J|
∂x(k)

j

dξ1dξ2 =

∫
Ω(e)

(
N(e)

)T
N(e)t

∂N(k)

∂x j
|J| dξ1dξ2 (2.48)

where Equation (2.41) has been used. For the boundary load matrix, the same procedure
is followed, the derivative of Q(be)

t (Equation (2.21)) can be written as:

∂Q(be)
t

∂x(k)
j

=

∫
Γ(be)

(
N(e)

)T
N(be)t

∂
∣∣∣J(be)

∣∣∣
∂x(k)

j

dη (2.49)
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where ∂
∣∣∣J(be)

∣∣∣ /∂x(k)
j can be calculated considering equations (2.25), (2.26) and (2.36):

∂
∣∣∣J(be)

∣∣∣
∂x(k)

j

=
J(be)

j∣∣∣J(be)
∣∣∣ ∂N(k)

∂ξm
Jηm (2.50)

These analytical solutions has been checked against the basic semi-analytical ap-
proach with finite differences, except for the linear triangle which has a explicit analytical
solution. When comparing the solution by finite differences against these analytical solu-
tions, the same rates of convergence and optimum values of ∆h as those shown in Table
2.1 are observed as expected. As an example, Table 2.2 shows RMS errors for the cal-
culation of the stiffness matrix derivative of a quadratic triangular element (equilateral,
E = 1, ν = 1/3).

∆h = ∆x( j)
k /D Forward FD Central FD 4P Central FD 6P Central FD

10−1 3 · 10−1 7 · 10−2 9 · 10−2 4 · 10−1

10−2 2 · 10−2 7 · 10−4 3 · 10−6 4 · 10−8

10−3 2 · 10−3 7 · 10−6 3 · 10−10 1 · 10−13

10−4 2 · 10−4 7 · 10−8 8 · 10−13 9 · 10−13

10−5 2 · 10−5 7 · 10−10 9 · 10−12 9 · 10−12

10−6 2 · 10−6 6 · 10−11 8 · 10−11 9 · 10−11

10−7 2 · 10−7 6 · 10−10 9 · 10−10 9 · 10−10

10−8 3 · 10−8 7 · 10−9 9 · 10−9 9 · 10−9

10−9 1 · 10−7 6 · 10−8 8 · 10−8 9 · 10−8

Table 2.2: ∂K(e)/∂x( j)
k RMS error using several FD formulas (quadratic equil. triangle)

In summary, two approaches have been shown with their own advantages and dis-
advantages. The classical semi-analytical approach using finite differences is easy to
implement and accurate for any element, except for Euler-Bernoulli/Kirchoff structural
elements. However, it is computationally expensive, and an appropriate selection of the
perturbation is needed, which depends on the finite difference formula and the required
accuracy. The analytical approach gives exact results with minimum computational cost
at the expense of the effort required to obtain and implement the formulation. At least for
solid isoparametric elements, the resulting formulation is simple and its implementation
is straightforward.

2.3 Validation example

Analytical solution

Consider an elastic two-dimensional rectangular domain Ω with the geometry and bound-
ary conditions that Figure 2.1 shows. The domain Ω has a density ρ, shear modulus µ and
Poisson’s ratio ν. Despite being a two-dimensional domain, boundary conditions lead to a
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Design velocity field: v1(x)=x/L, v2(x)=0

x2

Figure 2.1: Problem layout

one-dimensional behaviour. The solution of the time harmonic elastodynamic governing
equations consists of two waves travelling in opposite directions along x1:

u1 (x1) = Ae−ikx1 + Beikx1 (2.51)

where A and B are the amplitudes of the waves, k = ω/cP is the wavenumber, ω is
the circular frequency, and cP =

√
(λ + 2µ)/ρ is the P-wave propagation speed. Once

boundary conditions are considered, the displacement u1 and stress σ11 can be written as:

u1 (x1) =
P

ρc2
P cos kL

sin kx1

k
(2.52)

σ11 (x1) =
P

cos kL
cos kx1 (2.53)

If L is taken as the shape design variable with a design velocity field v = (x/L, 0), then
the sensitivities are:

δu1 (x1) =
P
ρc2

P

(
sin kL

cos2 kL
sin kx1 +

1
cos kL

x1

L
cos kx1

)
(2.54)

δσ11 (x1) = Pk
(

sin kL
cos2 kL

cos kx1 −
1

cos kL
x1

L
sin kx1

)
(2.55)

where δ = d/dL = ∂/∂L + (∂/∂x j)v j is the simplified notation for the field variable
sensitivity (or material derivative).

FEM solution

This problem is solved numerically by using the FEM-DDM where the derivatives are
calculated with the analytical procedure explained in the previous section. The domain
is considered to be a square with side length L, and is meshed using different element
sizes (L/4, L/10), different topologies (structured, unstructured), different element shapes
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Figure 2.2: Meshes with L/4 and L/10 element sizes, structured/unstructured topology
and triangular/quadrilateral elements.

(triangular, quadrilateral) and different element order (linear, quadratic), see Figure 2.2.
By doing so, h and p convergence can be checked for triangular and quadrilateral meshes
with structured or unstructured topologies. Poisson’s ratio is assumed to be ν = 1/4.
Dimensionless frequency a0 = ωL/cP is used, which varies between 0 and 3 for linear
elements, and between 0 and 6 for quadratic elements.

The design velocity field v is assigned to each physical node by defining a design mesh
(auxiliary mesh) connected to the physical mesh by position, i.e. the so-called free-form
deformation approach (see Section 1.4). The geometry and the design velocity field are
interpolated similarly (isoparametric):

x = N(de)x(de) (2.56)

v = N(de)v(de) (2.57)

Given a physical node i with position x(i) and design velocity v(i), located within a design
element, its design velocity field is calculated as:

x(i) = N(de)
(
ξ(i)

)
x(de) (2.58)

v(i) = N(de)
(
ξ(i)

)
v(de) (2.59)

where ξ(i) is the local coordinate of the physical node i within the design element. The
connectivity between all physical nodes and the design mesh and the calculation of v(i)

are done just one time as an initialization stage in the solver.
The complete design velocity field is defined by a design mesh containing only one

4-node quadrilateral element covering the domain Ω, and appropriate values of v are
assigned to the four nodes in order to define v = ∂x/∂L = (x1/L, 0), see Figure 2.3 (Left).
In order to reduce computational cost, instead of using the complete domain deformation,
only boundary nodes that produce a change in the shape can be used in the deformation
field. The change of the shape of the domain remains exactly the same, however the

24



Design mesh

Physical mesh

x(i)

x(i)=N(de)(ξ(i))x(de)

v=(1,0)
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x1

Design mesh

Physical mesh

v=(1,0)

v=(1,0)

x2

x1

x(i)

x(i)=N(de)(ξ(i))x(de)

Figure 2.3: Physical mesh and design mesh. Left: complete design velocity field. Right:
boundary layer technique.

design velocity field becomes less smooth as the design velocity is assumed null in other
nodes. This approach is called boundary layer technique. In our example, this can be done
by defining a design mesh with just one 2-node line element covering the right boundary
(x1 = L, x2 = [0, L]), see Figure 2.3 (Right). Note that both design velocity fields lead to
the same sensitivities only on the right boundary (x1 = L), but not at other points.

Figures 2.4 to 2.7 show normalized displacements and displacement sensitivities, and
their relative errors, at the point x = (L, L/2) for all the meshes using the complete design
velocity field. Figure 2.8 shows the displacement sensitivity errors at x = (L, L/2) for all
meshes using the boundary layer technique.

Given that the same mesh is used for the whole frequency range, the error increases
with the frequency because the number of elements per wavelength decreases. As ex-
pected, the error levels are similar between displacements and displacement sensitivities
for the same element size and order. This is not the case for unstructured meshes when
using the boundary layer technique, although the error levels are acceptable. Some unac-
ceptable error peaks start to appear in all cases when the number of elements per wave-
length is less than 8-10 for linear elements, and less than 4-5 for quadratic elements.
These peaks in the numerical solution can be mitigated by using a small damping in the
system.

Convergence and robustness are clearly observed by comparing these graphs. There-
fore, it can be said that the formulation and the implementation have been correctly de-
veloped.
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Figure 2.4: Linear elements with L/4 size using complete design velocity field
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Figure 2.5: Linear elements with L/10 size using complete design velocity field
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Figure 2.6: Quadratic elements with L/4 size using complete design velocity field
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Figure 2.7: Quadratic elements with L/10 size using the complete design velocity field
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Figure 2.8: Sensitivity errors when using the boundary layer technique
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Chapter 3

Shape sensitivities using the Boundary
Element Method

3.1 Introduction

As seen in the previous chapter, sensitivity analysis can be done more or less straightfor-
wardly with the Finite Element Method (FEM) by differentiation of the discretized equa-
tions, and then calculating the derivatives in an approximate manner by finite differences
(semi-analytical approach) or exactly by analytical differentiation where possible. As it
is well known, the FEM is not naturally adapted to the analysis of unbounded regions. In
this case, the Boundary Element Method (BEM) is a more appropriate numerical method.
Furthermore, the BEM only requires the discretization of the boundary of the domain,
i.e. the shape of the body, thus it perfectly fits with shape sensitivity analysis and opti-
mization. On the other hand, the BEM is considerably more involved mathematically and
numerically than the FEM.

Although less common than the FEM, the application of the BEM to sensitivity anal-
ysis is an active research field that started in the early 1980s. Barone et al. [11] applied
a special form of the BEM to the optimal arrangement of holes in a two-dimensional do-
main. Meric used the BEM with the Adjoint Variable Method (AVM) in order to study
heat transfer and mechanical behaviour of solids [44, 45, 46]. Mota Soares et al. [55]
applied the BEM to optimal shape design for minimum compliance. Kane et al. [38]
used implicit differentiation of the discretized equations for plane elasticity. Barone et al.
[12, 13] used the material derivative over the Boundary Integral Equations (BIE), includ-
ing the Hypersingular (stress) BIE (HBIE), for three-dimensional elasticity. Aithal and
Saigal [3, 4] applied the AVM and the material derivative to obtain the shape sensitivities
for thermal and elasticity problems.

Besides being useful by itself or for shape optimization, shape sensitivity analysis us-
ing the BEM fits particularly well with inverse problems. Mellings and Aliabadi [42, 43]
used the BEM and the Dual BEM for identification of cavities and cracks on potential
and elastic problems. Also, Nishimura and Kobayashi [47] developed a BEM formula-
tion for identification of cracks with complex shapes. Bonnet [18, 19, 22, 23] covered
almost all aspects of shape sensitivity analysis using the BEM and a rigurous mathemati-
cal treatment. In particular, Bonnet [20] proved that material differentiation formulas for
regular integrals still hold true for strongly singular and hypersingular integrals, which
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demonstrated that material differentiation can be applied to non-regularized as well as
regularized BIEs. Gallego, Rus and Suarez [33, 32, 51, 52, 53] used the BEM for cavities
and crack identification on potential and elastic problems using a free-form approach for
the flaw parametrization, and a sensitivity BIE derived from the Taylor’s expansion of the
shape perturbation. In the present work, the latter approach is used to obtain the sensitivity
or variation BIE (δBIE) which is the fundamental ingredient to build the BEM for sensi-
tivity analysis. It is esentially similar to applying the material differentiation formulas to
the BIE.

The chapter is organized as follows. In Section 3.2, several geometrical aspects, the
discretization scheme and the notation that will be needed in the rest of the chapter are de-
scribed. From Section 3.3 to 3.6, the Singular BIEs for sensitivity analysis are developed
for Laplace, Helmholtz, elastostatics and elastodynamics problems, respectively. Last,
Section 3.7 shows the validation of the presented formulation and its implementation.

3.2 Generalities

The superscript i over a symbol � representing a position vector, unit normal, field vari-
able, etc., i.e. �i, is used to indicate if the object is associated with the collocation point,
rather than with the observation point. It is not an index, thus no summation is implied
for it.

Let Ω be a region in R2 with boundary Γ = ∂Ω whose orientation is defined by the
outward unit normal vector n = (n1, n2). Following the usual convention, the orientation
of Γ can be equally defined by the unit tangent vector t = (t1, t2) = (−n2, n1). Consider
a boundary element Φ ⊂ Γ with NΦ

n nodes, then any point x of the boundary element is
described by:

x j = φpxΦ
jp (3.1)

where j = 1, 2 is the coordinate index, p = 1, . . . ,NΦ
n is the node index of the boundary

element, xΦ
jp is the j-th component of the position vector of the p-th node, φp = φp(ξ) is

the shape function of the p-th node, and ξ is the local curvilinear coordinate. The trans-
formation between the local curvilinear coordinate and the global cartesian coordinates is
governed by the Jacobian vector J:

J j =
∂x j

∂ξ
=

dφp

dξ
xΦ

jp (3.2)

dΓ =
√

J jJ j dξ = |J| dξ (3.3)

where summation convention is implied for j. Thus, the unit tangent can be calculated as
t = J/ |J| and the unit normal n = (t2,−t1).

For first-order shape sensitivity analysis, the region Ω = Ω(a0) is perturbed with re-
spect to a given design velocity field v = v(x, a0) that is produced by a design variable a
when a = a0, see Figure 3.1. The following linear mapping builds the perturbed domain
Ω̃ from the reference domain Ω = Ω(a0) for a small variation of a around a0:

x̃ = x + v
(
a − a0

)
(3.4)
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Figure 3.1: Taylor’s expansion of the shape parametrization

The design velocity field acts basically as a displacement field, thus a constant design
velocity field throughout the domain does not produce any shape variation. It can be
easily seen that a material vector w, i.e. a vector whose origin and orientation are sticked
to a point, follows this linear mapping [21]:

w̃i = wi + vi, jw j

(
a − a0

)
(3.5)

where the comma notation for derivatives with respect to x is implied. The following
notation is going to be used for the vector sensitivity (or vector material derivative):

δwi = vi, jw j (3.6)

Thus, the linear mapping of the vector length is:

w̃ = w̃iw̃i = wiwi + wivi, jw j

(
a − a0

)
= w + δw

(
a − a0

)
(3.7)

where only linear terms are retained, and summation convention is implied for i and j.
With this in mind, the linear mapping of an infinitesimal part of the boundary dΓ is easily
obtained by using the length variation of the unit tangent considered as a material vector:

dΓ̃ = dΓ + tivi, jt j dΓ
(
a − a0

)
= dΓ + δJ dΓ

(
a − a0

)
=

(
1 + δJ

(
a − a0

))
dΓ (3.8)

The unit tangent and normal vectors are not material vectors. The unit tangent is only
material with respect to orientation, and the unit normal is completely dependant on the
tangent plane. Hence, the linear mapping of the unit tangent is similar to that of a material
vector but substracting the length increase:

t̃i = ti +
(
vi, jt j − tkvk, jt jti

) (
a − a0

)
= ti +

(
vi, jt j − δJti

) (
a − a0

)
= ti + δti

(
a − a0

)
(3.9)

The variation of the unit tangent δt can only be perpendicular to the unit tangent t. Hence,
it can further be simplified to:

δti = vi, jt j − δJti ⇒ δtini = nivi,jt j ⇒ δtknkni = δti = ninkvk, jt j (3.10)

The linear mapping of the unit normal is obtained by rotation of that of the unit tangent:

εij t̃ j = εijt j + εijδtj

(
a − a0

)
= ñi = ni + δni

(
a − a0

)
(3.11)
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where εij is the two-dimensional Levi-Civita symbol, and then δni = −tinkvk,jt j.
The design velocity field v = v(x, a0) throughout the domain is defined by using a de-

sign mesh (auxiliary mesh) connected to the physical mesh by position, i.e. the so-called
free-form deformation approach (see Section 1.4). The geometry and the design velocity
field of a design element Ψ ⊂ Ω with NΨ

n nodes are interpolated similarly (isoparametric):

x j = ψqxΨ
jq (3.12)

v j = ψqvΨ
jq (3.13)

where q = 1, . . . ,NΨ
n is the node index of the design element, and xΨ

jq and vΨ
jq are the j-th

components of the position vector and design velocity field of the q-th node, respectively.
The element can be a one-dimensional or a two-dimensional element, i.e. shape functions
can be ψq = ψq(η) or ψq = ψq(η1, η2), respectively. In general, they can be written as
ψq = ψq(η). As it will be seen later, shape functions ψq(η) only appear in the calculation
of the integrals. Thus, for an integration point i with position vector x(i) located within a
design element Ψ, the calculation of the local curvilinear coordinate η(i) is required:

η(i) such that x(i)
j = ψq

(
η(i)

)
xΨ

jq (3.14)

which can be done by a simple iterative minimization algorithm (convergent if x(i) ∈ Ψ).
The connectivity between the physical mesh and the design mesh is built in the initializa-
tion stage of the solver, allowing a good initial guess for the minimization algorithm.

Strictly speaking, the design velocity field must be at least continuous throughout the
domain, i.e. C0, otherwise it breaks the domain. Hence, the design mesh should fill the
whole domain, should be conforming, and only elements with the same dimension as
the ambient space should be used. However, for shape sensitivity calculation using finite
elements, the design velocities are required only at the nodes of the finite elements. Thus,
neither the design mesh must fill the domain (by default a null design velocity field can be
assigned to physical nodes not connected to the design mesh) nor the elements must have
the same dimension as the ambient space. This fact justifies using the boundary layer
technique as a way to reduce the computational cost (elements with null design velocity
fields have null matrices derivatives with respect to the design variables) at the expense
of a moderate but acceptable error increase in unstructured meshes (see Figure 2.8). As
it will be shown later in this chapter, for shape sensitivity calculation using boundary
elements, the design velocity field at the collocation point must be at least differentiable,
i.e. C1. The same strategy as with finite elements can be followed, although, in that case,
a computationally expensive non-nodal collocation is required. In order to use nodal
collocation, an element with the same dimension as the ambient space must be present at
the collocation point. More details about these issues will be given later in this chapter.

As shown above, the calculation of the gradient of the design velocity field is needed.
For a point located at a design element Ψ, it means that the derivatives of shape functions
with respect to the global coordinates are required:

vi, j = ψq,jvΨ
iq (3.15)

If the design element is a one-dimensional element, then the shape functions are ψq =

ψq(ξ), and their derivatives with respect to the global coordinates are:

ψq, j =
∂ψq

∂x j
=

J j

|J|2
∂ψq

∂ξ
(3.16)
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where the Jacobian vector is:

J j =
∂x j

∂ξ
=
∂ψq

∂ξ
xΨ

jq (3.17)

If the design element is a two-dimensional element, then the shape functions are ψq =

ψq(ξ1, ξ2), and their derivatives with respect to the global coordinates are:

ψq, j =
∂ψq

∂x j
= Gjk

∂ψq

∂ξk
(3.18)

where G = J−1 and the elements of the Jacobian matrix J are:

Jjk =
∂xk

∂ξ j
=
∂ψq

∂ξ j
xΨ

kq (3.19)

The linear mapping corresponding to a field variable u is:

ũ = u + δu
(
a − a0

)
= u +

(
∂u
∂a

+
∂u
∂x j

v j

)
a=a0

(
a − a0

)
(3.20)

where the sensitivity δu can be evaluated using the expression shown above only when u
is explicit, as in Section 2.3. When used in the FEM or BEM sensitivity analysis, δu is a
degree of freedom. Field variables and their sensitivities are interpolated using the same
shape functions as the geometry, hence an isoparametric boundary element representation
is considered. For a vector variable u:

u j = φpuΦ
jp (3.21)

δu j = φpδuΦ
jp (3.22)

where p = 1, . . . ,NΦ
n is the node index of the boundary element, and uΦ

jp and δuΦ
jp are the

j-th components of the vector variable and its sensitivity of the p-th node, respectively.

3.3 Laplace problem

A problem governed by the Laplace equation is considered. The potential (primary vari-
able) is denoted by p, while the flux is the potential derivative in the n direction (secondary
variable) and is denoted by q = ∇p · n.

3.3.1 δSBIE for non-boundary collocation points
The Singular BIE (SBIE) for an interior or exterior collocation point with respect to the
reference domain Ω can be written as [29, 51]:

δi
Ω pi +

∫
Γ

q∗p dΓ =

∫
Γ

p∗q dΓ, δi
Ω =

1, xi ∈ Ω

0, xi < Ω ∪ Γ
(3.23)
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where:

p∗ = −
1

2π
ln r (3.24)

p∗,j = −
1

2π
1
r

r,j (3.25)

q∗ = p∗, jn j = −
1

2π
1
r
∂r
∂n

(3.26)

r =
∣∣∣x − xi

∣∣∣ (3.27)

and x and xi are the observation and collocation points, respectively. Likewise, for the
perturbed domain Ω̃:

δi
Ω̃

p̃i +

∫
Γ̃

q̃∗ p̃ dΓ̃ =

∫
Γ̃

p̃∗q̃ dΓ̃, δi
Ω̃

=

1, xi ∈ Ω̃

0, xi < Ω̃ ∪ Γ̃
(3.28)

As seen in the previous section, the relationships of geometrical objects and variables be-
tween the reference domain Ω and the perturbed domain Ω̃ are given by linear mappings:

p̃i = pi + δpi
(
a − a0

)
(3.29)

p̃ = p + δp
(
a − a0

)
(3.30)

p̃,j = p,j + δp,j
(
a − a0

)
(3.31)

ñ j = n j + δn j

(
a − a0

)
(3.32)

q̃ = p̃,jñ j = q +
(
p,jδn + δp,jn j

) (
a − a0

)
= q + δq

(
a − a0

)
(3.33)

dΓ̃ =
[
1 + δJ

(
a − a0

)]
dΓ (3.34)

where (a − a0)2 terms have been disregarded. Since the shape parametrization does not
change the topology of the domain, i.e. an interior (or exterior) point remains interior
(or exterior), then δi

Ω̃
= δi

Ω
. The fundamental solution p∗ depends on the observation and

collocation points p∗ = p∗(x, xi), hence its linear mapping must be built from the Taylor’s
expansion with respect to both points:

p̃∗ = p∗ +
∂p∗

∂x j
v j

(
a − a0

)
+
∂p∗

∂xi
j

vi
j

(
a − a0

)
= p∗ + p∗,j

(
v j − vi

j

) (
a − a0

)
(3.35)

where �,j = ∂�/∂x j = −∂�/∂xi
j holds for any fundamental solution and its derivatives

since x and xi only appear inside of terms depending on the distance vector r = x − xi.
Furthermore, from the linear mapping of observation and collocation points, it is possible
to write:

x̃ = x + v
(
a − a0

)
x̃i = xi + vi

(
a − a0

)
x̃ − x̃i = x − xi +

(
v − vi

) (
a − a0

)
r̃ = r + δr

(
a − a0

) (3.36)
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where it is obvious that δr → 0 as x → xi, i.e. δr = O(r). This important fact is used
later to study the integration of the SBIE for collocation points located at the boundary.
Therefore, p̃∗ can be written as:

p̃∗ = p∗ + p∗,jδr j

(
a − a0

)
= p∗ + δp∗

(
a − a0

)
(3.37)

The linear mapping of q̃∗ is built by using the linear mapping of its components:

q̃∗ = p̃∗,jñ j =
[
p∗, j + p∗,jmδrm

(
a − a0

)] [
n j + δn j

(
a − a0

)]
= q∗ +

(
p∗, jδn j + p∗,jmδrmn j

) (
a − a0

)
= q∗ + δq∗

(
a − a0

) (3.38)

where only linear terms are kept. Note that p∗,jm is obtained differentiating Equation (3.25):

p∗,jm = −
1

2π
1
r2

(
δjm − 2r,jr,m

)
(3.39)

where δij is the Kronecker delta. Last, substituting all these linear mappings into Equa-
tion (3.28), keeping only linear terms (a − a0), substracting Equation (3.23) from it, and
dropping out (a − a0) terms, give the sensitivity SBIE (or δSBIE):

δi
Ωδp

i +

∫
Γ

q∗δp dΓ+

∫
Γ

(δq∗ + q∗δJ) p dΓ =

∫
Γ

p∗δq dΓ+

∫
Γ

(δp∗ + p∗δJ) q dΓ (3.40)

The first and third integrals are analogous to the integrals of the SBIE, except that instead
of p and q, their sensitivities δp and δq appear. The second and fourth integrals are new
integrals that depend on p and q, hence only once the zero-order solution is known they
can be evaluated. Since the integration domain Γ does not contain the collocation point,
all integrals are regular but nearly singular if the collocation point is close to Γ.

3.3.2 δSBIE for boundary collocation points
The δSBIE presented in Equation (3.40) is valid only for interior or exterior collocation
points. In order to obtain the δSBIE for boundary collocation points (xi ∈ Γ), it is possi-
ble to perform the integration of Equation (3.40) but along a modified path avoiding the
collocation point:

Γ = lim
ε→0+

[(
Γ − ei

)
+ Γi

]
(3.41)

where ε is the radius of a circular arc Γi that substitutes a neighbourhood ei of the col-
location point on Γ. As seen in Figure 3.2, this limiting process can be done from the
interior (δi

Ω
= 1) or from the exterior (δi

Ω
= 0), both leading to the same final result. In

the following, the former is used:

δpi + lim
ε→0+

∫
Γ−ei

q∗δp dΓ + lim
ε→0+

∫
Γi

q∗δp dΓ + lim
ε→0+

∫
Γ−ei

(δq∗ + q∗δJ) p dΓ

+ lim
ε→0+

∫
Γi

(δq∗ + q∗δJ) p dΓ = lim
ε→0+

∫
Γ−ei

p∗δq dΓ + lim
ε→0+

∫
Γi

p∗δq dΓ

+ lim
ε→0+

∫
Γ−ei

(δp∗ + p∗δJ) q dΓ + lim
ε→0+

∫
Γi

(δp∗ + p∗δJ) q dΓ (3.42)
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Γ − ei
xi

ei

Γi

xi

ei

Γi
Γ − ei

r′1 → θ1r′2 → θ2

nn

t
t

xi

∆θint

∆θext = 2π − ∆θint

Figure 3.2: Integration path near boundary collocation points. Left: from the interior.
Center: from the exterior. Right: criteria for angles θ1 and θ2

Integration over Γi In order to evaluate the integrals along Γi, a polar system of coordi-
nates (ε, θ) centered at the collocation point and oriented counterclockwise is considered.
The polar angle θ is in the domain θ1 ≤ θ ≤ θ2, where θ1 and θ2 are shown in Figure 3.2.
The main geometrical terms along Γi are:

xi = 0 (3.43)
x = (ε cos θ, ε sin θ) (3.44)
r = x, r = ε (3.45)

r,j = r j/r (3.46)
n j = r,j, n = (cos θ, sin θ) (3.47)
ti = εijn j, t = (− sin θ, cos θ) (3.48)

∂r/∂n = r,jn j = 1 (3.49)
r,jt j = 0 (3.50)
dΓ = ε dθ (3.51)

where εij is the two-dimensional Levi-Civita symbol. The evaluation of the first integral
over Γi of Equation (3.42) gives:

lim
ε→0+

∫
Γi

q∗δp dΓ = −
1

2π
lim
ε→0+

θ2∫
θ1

1
ε

1
(
δpi + O (ε)

)
ε dθ = −

θ2 − θ1

2π
δpi = −

∆θext

2π
δpi (3.52)

where a simple zero-order expansion δp = δpi + O (ε) is required. The second integral
over Γi is:

lim
ε→0+

∫
Γi

(δq∗ + q∗δJ) p dΓ = lim
ε→0+

∫
Γi

(
p∗, jδn j + p∗,jmδrmn j + q∗δJ

)
p dΓ

= −
1

2π
lim
ε→0+

θ2∫
θ1

[
1
ε

n jδn j +
1
ε2

(
δjm − 2n jnm

)
δrmn j +

1
ε

1δJ
] (

pi + O (ε)
)
ε dθ (3.53)

where a zero-order expansion p = pi + O (ε) is used. In order to evaluate the integral,
expansions of several terms of the kernel around the collocation point are needed. For the
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sensitivity of the unit normal δn j, a zero-order expansion is required:

δn j = −t jnmvi
m,ktk + O (ε) (3.54)

Likewise, for the sensitivity of the boundary length δJ

δJ = tmvi
m,jt j + O (ε) (3.55)

For the design velocity field, however, a first-order expansion is required:

vm = vi
m + vi

m,j(x j − xi
j) + O

(
r2

)
= vi

m + vi
m,jr,jε + O

(
ε2

)
(3.56)

and hence:

δrm = vm − vi
m = vi

m,jr,jε + O
(
ε2

)
(3.57)

Therefore, since the gradient of the design velocity field at the collocation point vi
m,j is

required, the design velocity field must be differentiable, i.e. v(xi) ∈ C1. Substituting
these expansions into Equation (3.53) leads to:

lim
ε→0+

∫
Γi

(δq∗ + q∗δJ) p dΓ =
1

2π


θ2∫

θ1

nmn j dθ −

θ2∫
θ1

tmt j dθ

 vi
m,j p

i = bi
mjv

i
m,j p

i (3.58)

where bi
mj is:(

bi
mj

)
=

1
4π

(
sin 2θ2 − sin 2θ1 − (cos 2θ2 − cos 2θ1)
− (cos 2θ2 − cos 2θ1) − (sin 2θ2 − sin 2θ1)

)
(3.59)

which is null if the collocation point is located at a smooth point of the boundary, i.e
Γ(xi) ∈ C1 ⇒ bi

mj = 0. The third integral over Γi is null:

lim
ε→0+

∫
Γi

p∗δq dΓ = −
1

2π
δq

(
lim
ε→0+

ε ln ε
) 

θ2∫
θ1

dθ

 = 0 (3.60)

where δq must be bounded. The fourth integral over Γi is also null:

lim
ε→0+

∫
Γi

(δp∗ + p∗δJ) q dΓ = −
1

2π
lim
ε→0+

θ2∫
θ1

(
1
ε

nmvi
m,jεn j + (ln ε) δJ

)
qε dθ = 0 (3.61)

where q must be bounded. Substituting all these results into Equation (3.42) gives:

ciδpi + bi
mjv

i
m,j p

i + lim
ε→0+

∫
Γ−ei

q∗δp dΓ + lim
ε→0+

∫
Γ−ei

(δq∗ + q∗δJ) p dΓ

= lim
ε→0+

∫
Γ−ei

p∗δq dΓ + lim
ε→0+

∫
Γ−ei

(δp∗ + p∗δJ) q dΓ (3.62)

where ci = ∆θint/2π is the free-term similar to that of the SBIE, and bi
mj is a new free-term

appearing in the δSBIE. The integrals over Γ − ei are at most strongly singular, and their
evaluation requires additional work.
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∂r
∂Γ

=
r
r
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(
∂r
∂Γ

)i

= −1
∂r
∂Γ

=
r
r
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(
∂r
∂Γ

)i

= 1

n

ni

n
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x before xi x after xi

titi

∂r
∂n

=
r
r
· n→ 0 when r → 0⇒

∂r
∂n

= O(r)

Figure 3.3: Limiting behaviour of geometrical vectors around the collocation point

Integration over Γ − ei The evaluation of the integrals in Equation (3.62) can be per-
formed in different ways, from a pure analytical approach (doable for straight elements) to
a pure numerical approach using special quadrature formulae (Kutt’s quadrature). In this
work, an analytical regularization leading to at most weakly singular integrals is applied
before any numerical integration is done. By doing so, only regular and weakly singular
integrals are numerically managed, which are easily tractable and controllable.

The integrands are composed mainly of geometrical terms and field variables, thus
their behaviour near the collocation point must be studied. The behaviour of the relevant
geometrical terms is illustrated in Figure 3.3. The field variables are at least bounded, and
hence p, q, δp, δq are O(r0). The first integral of Equation (3.62) is regular:

H = lim
ε→0+

∫
Γ−ei

q∗δp dΓ is regular ∵ q∗ = −
1

2π
1
r︸︷︷︸

O(r−1)

∂r
∂n︸︷︷︸
O(r1)

= O
(
r0

)
(3.63)

The third integral is weakly singular:

G = lim
ε→0+

∫
Γ−ei

p∗δq dΓ is weakly singular ∵ p∗ = −
1

2π
ln r = O (ln r) (3.64)

The fourth integral can be split into two parts:

δG = lim
ε→0+

∫
Γ−ei

(δp∗ + p∗δJ) q dΓ = δGR + δGJ (3.65)

where:

δGR = lim
ε→0+

∫
Γ−ei

δp∗q dΓ is regular ∵ δp∗ = p∗,j︸︷︷︸
O(r−1)

δr j︸︷︷︸
O(r1)

= O
(
r0

)
(3.66)
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δGJ = lim
ε→0+

∫
Γ−ei

p∗δJq dΓ is weakly singular ∵ p∗︸︷︷︸
O(ln r)

δJ︸︷︷︸
O(r0)

= O (ln r) (3.67)

The second integral can be split into three parts:

δH = lim
ε→0+

∫
Γ−ei

(
p∗, jδn j + p∗,jmδrmn j + q∗δJ

)
p dΓ = δHN + δHR + δHJ (3.68)

where:

δHN = lim
ε→0+

∫
Γ−ei

p∗, jδn j p dΓ is strongly singular ∵ p∗, j︸︷︷︸
O(r−1)

δn j︸︷︷︸
O(r0)

= O
(
r−1

)
(3.69)

δHR = lim
ε→0+

∫
Γ−ei

p∗,jmδrmn j p dΓ is strongly sing. ∵ p∗,jm︸︷︷︸
O(r−2)

δrm︸︷︷︸
O(r1)

n j︸︷︷︸
O(r0)

= O
(
r−1

)
(3.70)

δHJ = lim
ε→0+

∫
Γ−ei

q∗δJp dΓ is regular ∵ q∗︸︷︷︸
O(r0)

δJ︸︷︷︸
O(r0)

= O
(
r0

)
(3.71)

Therefore, δHN and δHR require further treatment. δHN can be regularized by substracting
and adding the limit when r → 0 of a part of the integrand:

δHN =
1

2π
lim
ε→0+

∫
Γ−ei

1
r

r,jt jnmvm,ktk p dΓ =
1

2π
lim
ε→0+

∫
Γ−ei

1
r
∂r
∂Γ

nmvm,ktk p dΓ

=
1

2π

 lim
ε→0+

∫
Γ−ei

1
r
∂r
∂Γ

(
nmvm,ktk p − ni

mvi
m,kt

i
k pi

)
dΓ + ni

mvi
m,kt

i
k pi lim

ε→0+

∫
Γ−ei

1
r

dr

 (3.72)

leading to one regular integral and another integral
∫

1/r dr that can be solved analyti-
cally. For δHR, first, it is necessary to expand the integrand:

δHR = −
1

2π
lim
ε→0+

∫
Γ−ei

1
r2

(
δjm − 2r,jr,m

) (
vm − vi

m

)
n j p dΓ

=
1

2π

 lim
ε→0+

∫
Γ−ei

2
r2

∂r
∂n

(
vm − vi

m

)
r,m p dΓ − lim

ε→0+

∫
Γ−ei

1
r2

(
vm − vi

m

)
nm p dΓ

 (3.73)

which gives one regular integral and another strongly singular integral. Then, taking into
account that:

vm = vi
m + vi

m,jr j + O
(
r2

)
⇒ vm − vi

m − vi
m,jr j = O

(
r2

)
(3.74)
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and adding and substracting vi
m,jr j:

δHR =
1

2π

 lim
ε→0+

∫
Γ−ei

2
r2

∂r
∂n

(
vm − vi

m

)
r,m p dΓ − lim

ε→0+

∫
Γ−ei

1
r2

(
vm − vi

m − vi
m,jr j

)
nm p dΓ

− lim
ε→0+

∫
Γ−ei

1
r

vi
m,jr,jnm p dΓ

 (3.75)

a new regular integral and a new strongly singular integral appear. By checking out Figure
3.3, it is easy to see that:

r,j =

(
∂r
∂Γ

)i

ti
j + O (r) (3.76)

which can be used to add and substract a part of the integrand of the strongly singular
integral:

δHR =
1

2π

 lim
ε→0+

∫
Γ−ei

2
r2

∂r
∂n

(
vm − vi

m

)
r,m p dΓ − lim

ε→0+

∫
Γ−ei

1
r2

(
vm − vi

m − vi
m,jr j

)
nm p dΓ

− lim
ε→0+

∫
Γ−ei

1
r

vi
m,jr,jnm p − vi

m,j

(
∂r
∂Γ

)i

ti
jn

i
m pi

 dΓ − ni
mvi

m,jt
i
j p

i lim
ε→0+

∫
Γ−ei

1
r

(
∂r
∂Γ

)i

dΓ


(3.77)

leading to a new regular integral and another strongly singular integral. Finally, by adding
and substracting the limit of ∂r/∂Γ when r → 0 leads to:

δHR =
1

2π

 lim
ε→0+

∫
Γ−ei

2
r2

∂r
∂n

(
vm − vi

m

)
r,m p dΓ − lim

ε→0+

∫
Γ−ei

1
r2

(
vm − vi

m − vi
m,jr j

)
nm p dΓ

− lim
ε→0+

∫
Γ−ei

1
r

vi
m,jr,jnm p − vi

m,j

(
∂r
∂Γ

)i

ti
jn

i
m pi

 dΓ−ni
mvi

m,jt
i
j p

i lim
ε→0+

∫
Γ−ei

1
r

( ∂r
∂Γ

)i

−
∂r
∂Γ

 dΓ

−ni
mvi

m,jt
i
j p

i lim
ε→0+

∫
Γ−ei

1
r

dr

 (3.78)

which is a set of regular integrals and an integral
∫

1/r dr analytically solvable. It must be
noticed that terms involving the integral

∫
1/r dr cancel out when δH is evaluated using

Equation (3.68).

3.3.3 Discretization, collocation, numerical integration and solution

The boundary Γ is discretized using a set of Nbe boundary elements: Γ = ∪
i=Nbe
i=1 Φi where

Φi ∩ Φ j = ∅ when i , j. As explained above, the discretization is performed using
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Figure 3.4: Possible positions of a boundary element throughout a design mesh

isoparametric elements. For a given boundary element Φ with NΦ
n nodes:

Geometry: x j = φpxΦ
jp

Variables: p = φp pΦ
p , q = φpqΦ

p , δp = φpδpΦ
p , δq = φpδqΦ

p

(3.79)

where p = 1, . . . ,NΦ
n is the node index of the boundary element. The design domain is

discretized using a set of Nde design elements: Υ = ∪
i=Nde
i=1 Ψi where Ψi ∩ Ψ j = ∅ when

i , j. For a given design element Ψ with NΨ
n nodes:

Geometry: x j = ψqxΨ
jq

Design velocity field: v j = ψqvΨ
jq

(3.80)

where q = 1, . . . ,NΨ
n is the node index of the design element. In the following, the

indices p and q are exclusively related to node indices of boundary and design elements,
respectively, and any other index is related to a coordinate index.

It was shown in the previous section that the collocation point xi must be in a point
where v(xi) ∈ C1. Figure 3.4 shows a design mesh consisting of two two-dimensional
design elements (Ψ1 and Ψ2) with a common edge, and two one-dimensional design ele-
ments (Ψ3 and Ψ4) with a common node. Design elements Ψ2 (two-dimensional) and Ψ3

(one-dimensional) share a common node. By defining the values of the design velocity
field at each node, a C∞ design velocity field is built throughout the design mesh except
at some locations where it is guaranteed only to be C0. These locations are the edges and
nodes shared by two or more design elements. The existence of these locations condi-
tions the collocation procedure of the BIEs in the sensitivity analysis (and the required
zero-order analysis). There are two ways of dealing with it:

Fully isoparametric approach The design velocity field is interpolated also with the
shape functions of the boundary element Φ:

Geometry: x j = φpxΦ
jp

Variables: p = φp pΦ
p , q = φpqΦ

p , δp = φpδpΦ
p , δq = φpδqΦ

p

Design velocity field: v j = φqvΦ
jq

(3.81)
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where p, q = 1, . . . ,NΦ
n is the node index of the boundary element. The design

velocity field at nodes vΦ
jq are calculated from the design mesh. This interpolation

guarantees differentiability along the boundary element except at the end nodes.
Hence, a Multiple Collocation Approach (MCA) is used [31], where the collocation
is performed only inside the boundary element. This fully isoparametric approach
using the MCA is simple and applicable to all possible positions of the boundary
elements shown in Figure 3.4. It is even possible to consider the boundary element
Φ5 if a null design velocity field is assigned to the node located outside the design
mesh. Despite its versatility, it comes with a big disadvantage: its computational
cost.

Mixed approach Nodal collocation is used for boundary elements whose nodes are lo-
cated at points where v(xi) ∈ C1. For boundary elements where at least one node
violates this condition, the full isoparametric approach is used. This approach is
versatile and, at the same time, as computationally cheap as possible. The only dis-
advantage is the implementation effort needed to automatically distinguise between
both situations. In Figure 3.4, nodal collocation is used on boundary elements Φ1,
Φ2, Φ3 and Φ7, while the full isoparametric approach is used on boundary elements
Φ4, Φ5 and Φ6.

Once discretization and collocation procedures have been described, it is possible to
present the discretized form of Boundary Integral Equations (3.40) and (3.62). For any
collocation point xi, both can be written in a generic way as:

ciδpi + bi
mjv

i
m,j p

i +

Nbe∑
e=1

(
Hpδpp

)Φe
+

Nbe∑
e=1

(
δHp pp

)Φe
=

Nbe∑
e=1

(
Gpδqp

)Φe
+

Nbe∑
e=1

(
δGpqp

)Φe

(3.82)

where:

• If xi ∈ Γ, then:

Φi =
{
Φe, e = 1, . . . ,Nbe : xi ∈ Φe

}
Ψi =

{
Ψd, d = 1, . . . ,Nde : xi ∈ Ψd

}
pi =

(
φi

p pp

)Φi

δpi =
(
φi

pδpp

)Φi

vi
m,j =

(
ψi

q,jvmq

)Ψi

and ci and bi
mj are calculated as shown previously according to the local geometry

of the boundary at the collocation point.

• If xi < Γ, then ci = δi
Ω

and bi
mj = 0.

For a boundary element Φ associated with a design element Ψ, two different situations
must be considered:
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Exterior integration, xi < Φ. All integrals are strictly regular, and standard Gauss-
Legendre quadrature is able to approximate them numerically. The quadrature order
mainly depends on the normalized distance d = rmin/D, where rmin is the minimum dis-
tance between xi and Φ, and D is the diameter of the bounding ball of Φ. As Figure 3.5
shows, the number of integration points increase as d decrease, becoming prohibitive for
d << 1. For this reason, they are called nearly- or quasi-singular integrals. In order to
reduce the number of integration points for a given integration error, several strategies
have been proposed. Two of the most relevant non-linear transformations that smooth
the integrands are the Telles transformation [56, 57] and the sinh transformation [36]. A
combination of subdivision of the integration path [37] and Telles transformation is used
in this work.
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Figure 3.5: Number of integration points vs. normalized distance for integrand I = 1/r2

and relative error ε = 10−6

When xi < Φ, the contributions of a boundary element Φ similar to those of the SBIE
are:

Hp =

∫
Φ

q∗φp dΓ (3.83)

Gp =

∫
Φ

p∗φp dΓ (3.84)

The contributions of the new integrals arising in the δSBIE consider separately the design
velocity field along the boundary element (through the design element Ψ) and the design
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velocity field at the collocation point:

δHp = δHT1
mqpvΨ

mq − δH
T2
mpvi

m =
(
δHN1

mqp + δHR1
mqp + δHJ1

mqp

)
vΨ

mq − δH
R2
mpvi

m (3.85)

δGp = δGT1
mqpvΨ

mq − δG
T2
mpvi

m =
(
δGR1

mqp + δGJ1
mqp

)
vΨ

mq − δG
R2
mpvi

m (3.86)

where:

δHN1
mqp = −

∫
Φ

p∗,jt jnmψq,ktkφp dΓ (3.87)

δHR1
mqp =

∫
Φ

p∗,jmn jψqφp dΓ (3.88)

δHR2
mp =

∫
Φ

p∗,jmn jφp dΓ (3.89)

δHJ1
mqp =

∫
Φ

q∗tmψq,ktkφp dΓ (3.90)

δGR1
mqp =

∫
Φ

p∗,mψqφp dΓ (3.91)

δGR2
mp =

∫
Φ

p∗,mφp dΓ (3.92)

δGJ1
mqp =

∫
Φ

p∗tmψq,ktkφp dΓ (3.93)

Interior integration, xi ∈ Φ. The integrals contain a singularity, which can be inte-
grable in the Riemann sense (regular or weakly singular) or in the more general Finite
Part sense. The regularization performed in the previous section leads to a set of integrals
integrable in the Riemann sense, making explicit the Finite Part of the original integral.
In any case, the integrand is unbounded at the collocation point, and hence no integration
point can lie at it. A way to achieve this is to split the integration domain at the colloca-
tion point, and then make use of a gaussian quadrature for each subdivision. In the case
of weakly singular integrals, a gaussian quadrature with weighting function w = ln x can
be used in order to have a reduced number of integration points [29]. Another alternative
is using the Telles transformation with a null transformation Jacobian at the singularity.
The latter is used in this work.

When xi ∈ Φ, the contributions of Φ similar to those of the SBIE are:

Hp = lim
ε→0+

∫
Φ−ei

q∗φp dΓ (3.94)

Gp = lim
ε→0+

∫
Φ−ei

p∗φp dΓ (3.95)
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Since xi ∈ Φ, the contributions of the new integrals arising in the δSBIE consider only the
design velocity field along the boundary element (through the design element Ψ):

δHp = δHT1
mqpvΨ

mq =
(
δHN1

mqp + δHR1
mqp + δHJ1

mqp

)
vΨ

mq (3.96)

δGp = δGT1
mqpvΨ

mq =
(
δGR1

mqp + δGJ1
mqp

)
vΨ

mq (3.97)

where:

δHN1
mqp =

1
2π

lim
ε→0+

∫
Φ−ei

1
r
∂r
∂Γ

(
nmψq,ktkφp − ni

mψ
i
q,kt

i
kφ

i
p

)
dΓ (3.98)

δHR1
mqp =

1
2π


∫

Φ−ei

2r,m
r2

∂r
∂n

(
ψq − ψ

i
q

)
φp dΓ −

∫
Φ−ei

nm

r2

(
ψq − ψ

i
q − ψ

i
q,jr j

)
φp dΓ

−

∫
Φ−ei

1
r

nmφpψ
i
q, jr, j −

(
∂r
∂Γ

)i

ni
mφ

i
pψ

i
q, jt

i
j

 dΓ − ni
mφ

i
pψ

i
q, jt

i
j

∫
Φ−ei

1
r

( ∂r
∂Γ

)i

−
∂r
∂Γ

 dΓ


(3.99)

δHJ1
mqp = lim

ε→0+

∫
Φ−ei

q∗tmψq,ktkφp dΓ (3.100)

δGR1
mqp = lim

ε→0+

∫
Φ−ei

p∗,m
(
ψq − ψ

i
q

)
φp dΓ (3.101)

δGJ1
mqp = lim

ε→0+

∫
Φ−ei

p∗tmψq,ktkφp dΓ (3.102)

where the limit notation limε→0+ before some integrals has been omitted for brevity. Note
that terms involving the integral

∫
1/r dΓ has been removed from δHN1

mqp and δHR1
mqp since

they cancel out when evaluating δHT1
mqp.

The solution of the sensitivity problem requires the solution of the zero-order solution.
As it is well known, the discretized form of the SBIE is:

ci pi +

Nbe∑
e=1

(
Hp pp

)Φe
=

Nbe∑
e=1

(
Gpqp

)Φe
(3.103)

which is somewhat a simplified version of the δSBIE (3.82). Performing a suitable col-
location of the SBIE throughout the discretization leads to the influence matrices H and
G, which are built by assembling free-terms and Hp integrals into H, and Gp integrals
into G. The discretized system is transformed into a system of linear equations once the
boundary conditions are applied:

Hp = Gq
boundary conditions
−−−−−−−−−−−−−→ Ax = Bx̄ = b (3.104)
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where A is composed of components of H and G related to the unknown components of
p and q (gathered into x), and B is composed of components of H and G related to the
known components of p and q (gathered into x̄). Following a similar procedure but using
the δSBIE (3.82), the first-order discretized system is:

Hδp+δHp = Gδq+δGq
boundary conditions
−−−−−−−−−−−−−→ Aδx = Bδx̄+δGq−δHp = bδ (3.105)

where A and B is similar to that of the zero-order system (if the same discretization
and collocation is used), and the components of δx̄ are related to the sensitivities of the
boundary conditions. Note the parallelism between the obtained Equation (3.105) and
Equation (2.3) related to the sensitivity analysis using the FEM.

3.4 Helmholtz problem
The previous section deals with the Laplace problem, which, despite being the simplest
case, it is very useful to explain, discuss and understand in detail all the steps to obtain a
BEM formulation for sensitivity analysis. Furthermore, the crucial part already solved for
the Laplace problem is applicable with small modifications to other problems. A simple
change of flux variable f = −kq, where f is the physical flux and k is the conductivity,
make possible to use the already developed formulation for heat transfer or electrostatics
problems. By expanding the fundamental solution, it is also possible to obtain the BEM
formulation for the Helmholtz problem, which with simple change of flux variables allows
the study of wave propagation within inviscid fluids or the anti-plane wave motion in
two-dimensional elastodynamics. In the present section, the BEM formulation (SBIE and
δSBIE) for sensitivity analysis for the Helmholtz problem is developed.

Concerning the BIEs, the only formal difference between the Laplace problem and the
Helmholtz problem is the fundamental solution [29], which represents a dynamic event
with a propagation speed c in the frequency domain ω. Being k = ω/c the wavenumber,
the fundamental solution p∗ and its derivatives are:

p∗ =
1

2π
K0 (ikr) =

1
2π

P (3.106)

p∗,j =
1

2π
∂P
∂r

r,j =
1

2π
Qr,j (3.107)

p∗,jm =
1

2π

[
1
r
∂P
∂r
δjm +

(
∂2P
∂r2 −

1
r
∂P
∂r

)
r,jr,m

]
=

1
2π

(
R1δjm + R2r,jr,m

)
(3.108)

q∗ = p∗, jn j =
1

2π
∂P
∂r

∂r
∂n

=
1

2π
Q
∂r
∂n

(3.109)

where i is the imaginary unit, and Kn (z) is the modified Bessel function of the second
kind of order n and argument z. Terms Q, R1 and R2 depend exclusively on r and k:

Q = −ikK1 (ikr) (3.110)

R1 =
1
r

Q (3.111)

R2 = (ik)2K2 (ikr) (3.112)
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Bessel functions Kn (z) can be decomposed in the following manner [1, Equation (9.6.11)]:

K0 (z) = − ln
z
2
− γ + KR

0 (z)

K1 (z) =
1
z

+
z
2

(
ln

z
2

+ γ −
1
2

)
+ KR

1 (z)

K2 (z) =
2
z2 −

1
2
−

z2

8

(
ln

z
2

+ γ −
3
4

)
+ KR

2 (z)

(3.113)

where γ = 0.5772156649 . . . is the Euler-Mascheroni constant. These decompositions
come from extracting some terms from the infinite series that define Kn (z), and gathering
the rest of the terms in the residue and KR

n (z) which is of order O(zn+2 ln z). The ascending
series are computationally competitive only for moderate values of the argument (|z| < 7
for double precision), whereas an asymptotic expansion [1, Equation 9.7.2] is required
for larger values of the argument. By using this decomposition, P, Q, R1 and R2 can be
written is such a way that a part depending only on r is segregated from another parts
depending on r and k:

P = − ln r − ln
ik
2
− γ + KR

0 (ikr) = − ln r + O
(
r0

)
(3.114)

Q = −
1
r

+
k2

2
r ln r +

k2

2

(
ln

ik
2

+ γ −
1
2

)
r − ikKR

1 (ikr) = −
1
r

+ O (r ln r) (3.115)

R1 = −
1
r2 +

k2

2
ln r +

k2

2

(
ln

ik
2

+ γ −
1
2

)
−

ik
r

KR
1 (ikr) = −

1
r2 + O (ln r) (3.116)

R2 =
2
r2 +

k2

2
−

k4

8
r2 ln r −

k4

8

(
ln

ik
2

+ γ −
3
4

)
r2 − k2KR

2 (ikr) =
2
r2 + O

(
r0

)
(3.117)

Therefore, the fundamental solution and its derivatives can be written as:

p∗ =
(
p∗

)static
+

(
p∗

)dynamic
(3.118)

p∗,j =
(
p∗,j

)static
+

(
p∗,j

)dynamic
(3.119)

p∗,jm =
(
p∗,jm

)static
+

(
p∗,jm

)dynamic
(3.120)

q∗ =
(
q∗

)static
+

(
q∗

)dynamic
(3.121)

where the static parts correspond to the Laplace problem. Dynamic parts lead to at most
weakly singular integrals, hence neither produce additional free-terms nor require further
treatment.

3.4.1 Inviscid fluid
Consider an inviscid fluid with density ρ and bulk modulus K. The wave propagation
speed is then c =

√
K/ρ. Within the small perturbation hypothesis, the wave propaga-

tion in this medium follows the Helmholtz equation with the dynamic pressure p as the
primary variable [29]. The flux variable (secondary variable) is the fluid normal displace-
ment un:

un =
1
ρω2

∂p
∂n

=
1
ρω2 q (3.122)
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Thus, simply by making the change of variable q = ρω2un, the formulation can be used to
study this problem.

3.4.2 Anti-plane elastodynamics
Consider an elastic solid with density ρ and shear modulus µ. The shear wave propaga-
tion speed is then c2 =

√
µ/ρ. The two-dimensional analysis of the anti-plane motion

is governed by the Helmholtz equation with the anti-plane displacement u3 = p as the
primary variable, and c2 = c as the wave propagation speed [29]. The flux variable is now
the anti-plane traction:

t3 = σ3αnα = µu3,αnα = µq (3.123)

where α = 1, 2, and summation convention is implied. Hence, by making the change of
variable q = t3/µ, the formulation can be used to study this problem.

3.5 Elastostatics
Consider the static analysis of an elastic solid with Poisson’s ratio ν and shear modulus
(or Lamé’s second parameter) µ. Lamé’s first parameter is then λ = 2µν/(1 − 2ν). The
primary variable of the governing differential equations for the in-plane problem are the
displacements uk, and the secondary variables are the tractions tk = σkjn j, where the stress
tensor is σkj = λum,mδkj + µ(uk,j + uj,k), and k, j,m = 1, 2. In the present work, the plane
strain problem is considered, although the plane stress problem can be obtained easily
from it [24].

3.5.1 δSBIE for non-boundary collocation points
The Singular BIE (SBIE) for an interior or exterior collocation point with respect to the
reference domain Ω can be written as [24]:

δi
Ωui

l +

∫
Γ

t∗lkuk dΓ =

∫
Γ

u∗lktk dΓ, δi
Ω =

1, xi ∈ Ω

0, xi < Ω ∪ Γ
(3.124)

where the body loads have been discarded, l = 1, 2 is the live index related to the load
direction, k = 1, 2 is the dummy index related to the observation direction, and:

u∗lk =
1

8πµ (1 − ν)

[
− δlk (3 − 4ν) ln r + r,lr,k

]
(3.125)

u∗lk,j =
1

8πµ (1 − ν)
1
r

[
− δlk (3 − 4ν) r,j + δjlr,k + δkjr,l − 2r,lr,kr,j

]
(3.126)

σ∗lkm = λu∗lj,jδkm + µ
(
u∗lk,m + u∗lm,k

)
(3.127)

σ∗lkm = −
1

4π (1 − ν)
1
r

[
2r,lr,kr,m + (1 − 2ν)

(
δlkr,m + δlmr,k − δkmr,l

) ]
(3.128)

t∗lk = σ∗lkmnm (3.129)

t∗lk = −
1

4π (1 − ν)
1
r

{
∂r
∂n

[
δlk (1 − 2ν) + 2r,lr,k

]
+ (1 − 2ν)

(
nlr,k − nkr,l

)}
(3.130)
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Likewise, for the perturbed domain Ω̃:

δi
Ω̃

ũi
l +

∫
Γ

t̃∗lkũk dΓ̃ =

∫
Γ

ũ∗lk t̃k dΓ̃, δi
Ω̃

=

1, xi ∈ Ω̃

0, xi < Ω̃ ∪ Γ̃
(3.131)

As seen in previous sections, the relationships of geometrical objects and variables be-
tween the reference domain Ω and the perturbed domain Ω̃ are given by linear mappings:

ũi
k = ui

k + δui
k

(
a − a0

)
(3.132)

ũk = uk + δuk

(
a − a0

)
(3.133)

ũk,j = uk,j + δuk,j

(
a − a0

)
(3.134)

ñ j = n j + δn j

(
a − a0

)
(3.135)

σ̃kj = λũm,mδkj + µ(ũk,j + ũj,k) = σkj + δσ̃kj

(
a − a0

)
(3.136)

t̃k = σ̃kjñ j = σkjn j +
(
σkjδn j + δσkjn j

) (
a − a0

)
= tk + δtk

(
a − a0

)
(3.137)

dΓ̃ =
[
1 + δJ

(
a − a0

)]
dΓ (3.138)

where only linear terms (a − a0) are kept. The fundamental solution u∗lk depends on the
observation and collocation points u∗lk = u∗lk(x, x

i), hence its linear mapping must be built
from the Taylor’s expansion with respect to both points. As seen with the Laplace prob-
lem, this means that the linear mapping can be written as:

ũ∗lk = u∗lk + u∗lk,jδr j

(
a − a0

)
= u∗lk + δu∗lk

(
a − a0

)
(3.139)

The linear mapping of t̃∗lk is built by using the linear mapping of its components:

t̃∗lk = σ̃∗lkmñm =
[
σ∗lkm + σ∗lkm,jδr j

(
a − a0

)] [
nm + δnm

(
a − a0

)]
= σ∗lkmnm +

(
σ∗lkmδnm + σ∗lkm,jδr jnm

) (
a − a0

)
= t∗lk + δt∗lk

(
a − a0

) (3.140)

and keeping only linear terms (a − a0). Note that σ∗lkm,j is obtained by differentiation of
Equation (3.128):

σ∗lkm,j = −
1

4π (1 − ν)
1
r2

[
− 8r,lr,kr,mr,j − 2 (1 − 2ν)

(
δlkr,mr,j + δlmr,kr,j − δkmr,lr,j

)
+ 2

(
δljr,kr,m + δkjr,lr,m + δmjr,lr,k

)
+ (1 − 2ν)

(
δlkδmj + δlmδkj − δkmδlj

) ]
(3.141)

Finally, substituting all these linear mappings into Equation (3.131), keeping only linear
terms (a−a0), substracting Equation (3.124) from it, and dropping out (a−a0) terms, give
the sensitivity SBIE (or δSBIE):

δi
Ωδu

i
l+

∫
Γ

t∗lkδuk dΓ+

∫
Γ

(
δt∗lk + t∗lkδJ

)
uk dΓ =

∫
Γ

u∗lkδtk dΓ+

∫
Γ

(
δu∗lk + u∗lkδJ

)
tk dΓ (3.142)

The first and third integrals are similar to the integrals of the SBIE, except that now the
sensitivities δuk and δtk appear. The second and fourth integrals are new integrals that
depend on uk and tk, thus they can be evaluated only once the zero-order solution is known.
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3.5.2 δSBIE for boundary collocation points
The process to obtain the δSBIE for boundary collocation points is analogous to the pro-
cess performed for the Laplace problem, so many aspects are skipped and assumed similar
here. The limiting process is also done from an interior collocation point (δi

Ω
= 1). The

integration path of the integrals of Equation (3.142) is modified according to Equation
(3.41), then:∫

Γ

(. . .) dΓ = lim
ε→0+

∫
Γi

(. . .) dΓ + lim
ε→0+

∫
Γ−ei

(. . .) dΓ (3.143)

Integration over Γi In order to perform the integration over the arc Γi, a polar system
of coordinates centered at the collocation point is used, see Section 3.3.2. Assuming that
the displacement sensitivity is continuous, i.e. δuk = δui

k +O (ε), the evaluation of the first
integral of Equation (3.142) leads to:

δui
l + lim

ε→0+

∫
Γi

t∗lkδuk dΓ =

δlk −
1

4π (1 − ν)

(1 − 2ν) δlk∆θ
ext + 2

θ2∫
θ1

nlnk dθ


 δui

k

= ci
lkδu

i
k

(3.144)

where ci
lk is the well-known elastic free-term:

(
ci

lk

)
=

∆θext

2π

(
δlk

)
−

1
8π (1 − ν)

(
sin 2θ2 − sin 2θ1 − (cos 2θ2 − cos 2θ1)
− (cos 2θ2 − cos 2θ1) − (sin 2θ2 − sin 2θ1)

)
(3.145)

Given that the displacement is continuous: uk = ui
k + O (ε); and the design velocity field

is differentiable: vm = vi
m + vi

m,jr,jε + O
(
ε2

)
; the second integral of Equation (3.142) can

be written as:

lim
ε→0+

∫
Γi

(
δt∗lk + t∗lkδJ

)
uk dΓ = lim

ε→0+

∫
Γi

(
σ∗lkmδnm + σ∗lkm,jδr jnm + t∗lkδJ

)
uk dΓ = bi

lkjmvi
j,mui

k

(3.146)

where bi
lkjm is:

bi
lkjm = −

1
4π (1 − ν)

−6

θ2∫
θ1

nlnkn jnm dθ − (1 − 2ν) δlk

θ2∫
θ1

n jnm dθ

+ (1 + 2ν) δlj

θ2∫
θ1

nknm dθ + (3 − 2ν) δkj

θ2∫
θ1

nlnm dθ − (1 − 2ν)

θ2∫
θ1

tlnkn jtm dθ

+ (1 − 2ν)

θ2∫
θ1

nltkn jtm dθ + 2

θ2∫
θ1

nlnkt jtm dθ + (1 − 2ν) δlk

θ2∫
θ1

t jtm dθ

 (3.147)
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and its evaluation can be found in Appendix A. The new free-term bi
lkjm is null if the

collocation point is located at a smooth boundary point. Assuming that traction tk and
traction sensitivity δtk are bounded, the third and fourth integrals of Equation (3.142) are
null:

lim
ε→0+

∫
Γi

u∗lkδtk dΓ = 0 (3.148)

lim
ε→0+

∫
Γi

(
δu∗lk + u∗lkδJ

)
tk dΓ = 0 (3.149)

Therefore, after performing the integration over Γi, the δSBIE for boundary collocation
points can be written as:

ci
lkδu

i
k + bi

lkjmvi
j,mui

k + lim
ε→0+

∫
Γ−ei

t∗lkδuk dΓ + lim
ε→0+

∫
Γ−ei

(
δt∗lk + t∗lkδJ

)
uk dΓ

= lim
ε→0+

∫
Γ−ei

u∗lkδtk dΓ + lim
ε→0+

∫
Γ−ei

(
δu∗lk + u∗lkδJ

)
tk dΓ (3.150)

Integration over Γ−ei The first integral of Equation (3.150) is clearly strongly singular:

Hl = lim
ε→0+

∫
Γ−ei

t∗lkδuk dΓ is strongly singular ∵ t∗lk = O
(
r−1

)
(3.151)

The term leading to the strongly singular part can be segregated:

Hl = −
1

4π (1 − ν)

 lim
ε→0+

∫
Γ−ei

1
r
∂r
∂n

[
δlk (1 − 2ν) + 2r,lr,k

]
δuk dΓ

+ (1 − 2ν) lim
ε→0+

∫
Γ−ei

1
r
(
nlr,k − nkr,l

)
δuk dΓ

 (3.152)

Because the displacement sensitivity is continuous, one can add and substract δui
k from

δuk in order to further segregate the strongly singular term:

Hl = −
1

4π (1 − ν)

 lim
ε→0+

∫
Γ−ei

1
r
∂r
∂n

[
δlk (1 − 2ν) + 2r,lr,k

]
δuk dΓ

+ (1 − 2ν)

 lim
ε→0+

∫
Γ−ei

1
r
(
nlr,k − nkr,l

) (
δuk − δui

k

)
dΓ + δui

k lim
ε→0+

∫
Γ−ei

1
r
(
nlr,k − nkr,l

)
dΓ




(3.153)
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It is easy to see that:

∂r
∂Γ

= r,1t,1 + r,2t,2 = −r,1n2 + r,2n1 = n1r,2 − n2r,1 ⇒ nlr,k − nkr,l = εlk
∂r
∂Γ

(3.154)

Hence, the regularized integral can be written as:

Hl = −
1

4π (1 − ν)

 lim
ε→0+

∫
Γ−ei

1
r
∂r
∂n

[
δlk (1 − 2ν) + 2r,lr,k

]
δuk dΓ

+ (1 − 2ν)

 lim
ε→0+

∫
Γ−ei

1
r
(
nlr,k − nkr,l

) (
δuk − δui

k

)
dΓ + εlkδui

k lim
ε→0+

∫
Γ−ei

1
r

dr




(3.155)

where
∫

1/r dr is analytically solvable. The second integral of Equation (3.150) can be
split into three integrals:

δHl = lim
ε→0+

∫
Γ−ei

(
δt∗lk + t∗lkδJ

)
uk dΓ = lim

ε→0+

∫
Γi

(
σ∗lkmδnm + σ∗lkm,jδr jnm + t∗lkδJ

)
uk dΓ

= δHN
l + δHR

l + δHJ
l

(3.156)

δHN
l is a strongly singular integral:

δHN
l = lim

ε→0+

∫
Γ−ei

σ∗lkmδnmuk dΓ is strongly singular ∵ σ∗lkm = O
(
r−1

)
(3.157)

If its integrand is expanded, two integrals are obtained:

δHN
l = − lim

ε→0+

∫
Γ−ei

σ∗lkmtmnrvr,stsuk dΓ

=
1

4π (1 − ν)
lim
ε→0+

∫
Γ−ei

1
r

[
2r,lr,k

∂r
∂Γ

+ (1 − 2ν)
(
δlk
∂r
∂Γ

+ tlr,k − tkr,l

)]
nrvr,stsuk dΓ

=
1

4π (1 − ν)

(1 − 2ν) lim
ε→0+

∫
Γ−ei

1
r
(
tlr,k − tkr,l

)
nrvr,stsuk dΓ

+ lim
ε→0+

∫
Γ−ei

1
r
∂r
∂Γ

[
2r,lr,k + (1 − 2ν) δlk

]
nrvr,stsuk dΓ

 (3.158)
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where the first integral is regular because tlr,k − tkr,l = O (r). In the second integral, it is
possible to add and substract ni

rv
i
r,st

i
s from nrvr,stsuk:

δHN
l =

1
4π (1 − ν)

(1 − 2ν) lim
ε→0+

∫
Γ−ei

1
r
(
tlr,k − tkr,l

)
nrvr,stsuk dΓ

+ lim
ε→0+

∫
Γ−ei

1
r
∂r
∂Γ

[
2r,lr,k + (1 − 2ν) δlk

] (
nrvr,stsuk − ni

rv
i
r,st

i
su

i
k

)
dΓ

+ ni
rv

i
r,st

i
su

i
k lim
ε→0+

∫
Γ−ei

1
r
∂r
∂Γ

[
2r,lr,k + (1 − 2ν) δlk

]
dΓ

 (3.159)

where new regular and strongly singular integrals are obtained. In the new strongly sin-
gular integral, one of its terms lead to an integral

∫
1/r dr:

δHN
l =

1
4π (1 − ν)

(1 − 2ν) lim
ε→0+

∫
Γ−ei

1
r
(
tlr,k − tkr,l

)
nrvr,stsuk dΓ

+ lim
ε→0+

∫
Γ−ei

1
r
∂r
∂Γ

[
2r,lr,k + (1 − 2ν) δlk

] (
nrvr,stsuk − ni

rv
i
r,st

i
su

i
k

)
dΓ

+ ni
rv

i
r,st

i
su

i
k

(1 − 2ν) δlk lim
ε→0+

∫
Γ−ei

1
r

dr + 2 lim
ε→0+

∫
Γ−ei

1
r
∂r
∂Γ

r,lr,k dΓ


 (3.160)

and the other term can be expanded as:

r,lr,k =

(
∂r
∂Γ

)i

ti
l

(
∂r
∂Γ

)i

ti
k + O (r) = ti

lt
i
k + O (r) (3.161)

which leads to:

δHN
l =

1
4π (1 − ν)

(1 − 2ν) lim
ε→0+

∫
Γ−ei

1
r
(
tlr,k − tkr,l

)
nrvr,stsuk dΓ

+ lim
ε→0+

∫
Γ−ei

1
r
∂r
∂Γ

[
2r,lr,k + (1 − 2ν) δlk

] (
nrvr,stsuk − ni

rv
i
r,st

i
su

i
k

)
dΓ

+ ni
rv

i
r,st

i
su

i
k

2 lim
ε→0+

∫
Γ−ei

1
r
∂r
∂Γ

(
r,lr,k − ti

lt
i
k

)
dΓ +

[
(1 − 2ν) δlk + 2ti

lt
i
k

]
lim
ε→0+

∫
Γ−ei

1
r

dr




(3.162)

Hence, δHN
l can be written as a set of regular integrals and one integral

∫
1/r dr. The

integral δHR
l is also strongly singular:

δHR
l = lim

ε→0+

∫
Γ−ei

σ∗lkm,jδr jnmuk dΓ is strongly singular ∵ σ∗lkm,j︸︷︷︸
O(r−2)

δr j︸︷︷︸
O(r)

= O
(
r−1

)
(3.163)
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If the following part of the integrand is expanded:

σ∗lkm,jnm = −
1

4π (1 − ν)

{
1
r2

∂r
∂n

[
− 8r,lr,kr,j − 2 (1 − 2ν) δlkr,j + 2

(
δljr,k + δkjr,l

) ]
+

1
r2

[
− 2 (1 − 2ν) r,j

(
nlr,k − nkr,l

)
+ 2n jr,lr,k + (1 − 2ν)

(
δlkn j + δkjnl − δljnk

) ]}
= σ̃a

lkj︸︷︷︸
O(r−1)

+ σ̃b
lkj︸︷︷︸

O(r−2)

(3.164)

It is easy to see that σ̃a
lkj leads to a regular integral while σ̃b

lkj leads to a strongly singular
integral:

δHR
l = lim

ε→0+

∫
Γ−ei

σ̃a
lkj

(
v j − vi

j

)
uk dΓ + lim

ε→0+

∫
Γ−ei

σ̃b
lkj

(
v j − vi

j

)
uk dΓ (3.165)

Given that the design velocity field is differentiable, i.e. v j − vi
j − vi

j,srs = O
(
r2

)
, one can

add and substract vi
j,srs from δr j leading to new regular and strongly singular integrals:

δHR
l = lim

ε→0+

∫
Γ−ei

σ̃a
lkj

(
v j − vi

j

)
uk dΓ + lim

ε→0+

∫
Γ−ei

σ̃b
lkj

(
v j − vi

j − vi
j,srs

)
uk dΓ

+ lim
ε→0+

∫
Γ−ei

rσ̃b
lkjv

i
j,sr,suk dΓ (3.166)

This new strongly singular integral can be further reduced by adding and substracting
limr→0

(
r,suk

)
= (∂r/∂Γ)i ti

su
i
k to r,suk:

δHR
l = lim

ε→0+

∫
Γ−ei

σ̃a
lkj

(
v j − vi

j

)
uk dΓ + lim

ε→0+

∫
Γ−ei

σ̃b
lkj

(
v j − vi

j − vi
j,srs

)
uk dΓ

+ lim
ε→0+

∫
Γ−ei

rσ̃b
lkj

vi
j,sr,suk − vi

j,s

(
∂r
∂Γ

)i

ti
su

i
k

 dΓ + vi
j,st

i
su

i
k lim
ε→0+

∫
Γ−ei

rσ̃b
lkj

(
∂r
∂Γ

)i

dΓ

(3.167)

The latter integral can be expanded and written as:

A = lim
ε→0+

∫
Γ−ei

rσ̃b
lkj

(
∂r
∂Γ

)i

dΓ = −
1

4π (1 − ν)
lim
ε→0+

∫
Γ−ei

1
r

(
∂r
∂Γ

)i [
−2 (1 − 2ν) r,j

(
nlr,k − nkr,l

)
+ 2n jr,lr,k + (1 − 2ν)

(
δlkn j + δkjnl − δljnk

) ]
dΓ (3.168)
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By adding and substracting the following, already used, expansions: r,j = (∂r/∂Γ)i ti
j +

O (r), r,lr,k = ti
lt

i
k + O (r) and n,j = ni

j + O (r); it can be written as:

A = −
1

4π (1 − ν)

 lim
ε→0+

∫
Γ−ei

1
r

(
∂r
∂Γ

)i [
− 2 (1 − 2ν)

r,j − (
∂r
∂Γ

)i

ti
j

 (nlr,k − nkr,l
)

+ 2
(
n jr,lr,k − ni

jt
i
lt

i
k

)
+ (1 − 2ν)

(
δlk

(
n j − ni

j

)
+ δkj

(
nl − ni

l

)
− δlj

(
nk − ni

k

)) ]
dΓ

− 2 (1 − 2ν) ti
j lim
ε→0+

∫
Γ−ei

1
r
(
nlr,k − nkr,l

)
dΓ

+
[
2ni

jt
i
lt

i
k + (1 − 2ν)

(
δlkni

j + δkjni
l − δljni

k

)]
lim
ε→0+

∫
Γ−ei

1
r

(
∂r
∂Γ

)i

dΓ

 (3.169)

where the second integral is similar to the strongly singular integral appearing in the
regularization process of Hl. Also, it is easy to see by inspection that δkjni

l − δljni
k = εlkti

j.
The third integral can be regularized by adding and substracting ∂r/∂Γ to (∂r/∂Γ)i:

A = −
1

4π (1 − ν)

 lim
ε→0+

∫
Γ−ei

1
r

(
∂r
∂Γ

)i [
− 2 (1 − 2ν)

r,j − (
∂r
∂Γ

)i

ti
j

 (nlr,k − nkr,l
)

+ 2
(
n jr,lr,k − ni

jt
i
lt

i
k

)
+ (1 − 2ν)

(
δlk

(
n j − ni

j

)
+ δkj

(
nl − ni

l

)
− δlj

(
nk − ni

k

)) ]
dΓ

+
[
2ni

jt
i
lt

i
k + (1 − 2ν)

(
δlkni

j + εlkti
j

)]
lim
ε→0+

∫
Γ−ei

1
r

( ∂r
∂Γ

)i

−
∂r
∂Γ

 dΓ

+
[
ni

j

(
2ti

lt
i
k + (1 − 2ν) δlk

)
− (1 − 2ν) εlkti

j

]
lim
ε→0+

∫
Γ−ei

1
r

dr

 (3.170)

Therefore, δHR
l can be written as a set of regular integrals and an integral

∫
1/r dr. The in-

tegral δHJ
l can be easily regularized. If, in the first place, the expansion of δJ = t∗lkt jvj,sts =

ti
jv

i
j,st

i
s + O (r) is considered:

δHJ
l = lim

ε→0+

∫
Γ−ei

t∗lkδJuk dΓ = lim
ε→0+

∫
Γ−ei

t∗lkt jvj,stsuk dΓ

= lim
ε→0+

∫
Γ−ei

t∗lk
(
t jvj,sts − ti

jv
i
j,st

i
s

)
uk dΓ + ti

jv
i
j,st

i
s lim
ε→0+

∫
Γ−ei

t∗lkuk dΓ (3.171)
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then the resulting strongly singular integral is similar to Hl. Hence, the regularized form
of δHJ

l can be written as:

δHJ
l = lim

ε→0+

∫
Γ−ei

t∗lk
(
t jvj,sts − ti

jv
i
j,st

i
s

)
uk dΓ

−
1

4π (1 − ν)
ti

jv
i
j,st

i
s

 lim
ε→0+

∫
Γ−ei

1
r
∂r
∂n

[
δlk (1 − 2ν) + 2r,lr,k

]
uk dΓ

+ (1 − 2ν)

 lim
ε→0+

∫
Γ−ei

1
r
(
nlr,k − nkr,l

) (
uk − ui

k

)
dΓ + εlkui

k lim
ε→0+

∫
Γ−ei

1
r

dr


 (3.172)

Eventually, we are in the position to evaluate δHl = δHN
l +δHR

l +δHJ
l by simply adding the

three contributions. It is easy to see that all terms related to the integral
∫

1/r dr cancel
out when adding all the contributions.

The third integral of Equation (3.150) is weakly singular:

Gl = lim
ε→0+

∫
Γ−ei

u∗lkδtk dΓ is weakly singular ∵ u∗lk = O (ln r) (3.173)

The fourth integral of Equation (3.150) can be split into two integrals:

δGl = lim
ε→0+

∫
Γ−ei

(
δu∗lk + u∗lkδJ

)
tk dΓ = δGR

l + δGJ
l (3.174)

where:

δGR
l = lim

ε→0+

∫
Γ−ei

u∗lk,jδr jtk dΓ is regular ∵ u∗lk,j︸︷︷︸
O(r−1)

δr j︸︷︷︸
O(r)

= O
(
r0

)
(3.175)

δGJ
l = lim

ε→0+

∫
Γ−ei

u∗lkδJtk dΓ is weakly singular ∵ u∗lk︸︷︷︸
O(ln r)

δJ︸︷︷︸
O(r0)

= O (ln r) (3.176)

3.5.3 Discretization and solution
The discussion done in Section 3.3.3 about discretization, collocation, numerical integra-
tion and solution of the Laplace BEM sensitivity problem holds for the elastostatic case.
The difference is in the length of the formulation, which is also more involved as it has
been shown in the previous section.

The discretized form of Boundary Integral Equations (3.142) and (3.150) for any col-
location point xi can be written in a generic way as:

ci
lkδu

i
k+bi

lkjmvi
j,mui

k+

Nbe∑
e=1

(
Hlkpδukp

)Φe
+

Nbe∑
e=1

(
δHlkpukp

)Φe
=

Nbe∑
e=1

(
Glkpδtkp

)Φe
+

Nbe∑
e=1

(
δGlkptkp

)Φe

(3.177)

where:
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• If xi ∈ Γ, then:

Φi =
{
Φe, e = 1, . . . ,Nbe : xi ∈ Φe

}
Ψi =

{
Ψd, d = 1, . . . ,Nde : xi ∈ Ψd

}
ui

k =
(
φi

pukp

)Φi

δui
k =

(
φi

pδukp

)Φi

vi
j,m =

(
ψi

q,mvjq

)Ψi

and ci
lk and bi

lkjm are calculated as shown previously according to the local geometry
of the boundary at the collocation point.

• If xi < Γ, then ci
lk = δlkδ

i
Ω

and bi
lkjm = 0.

For a boundary element Φ associated with a design element Ψ, two different situations
must be considered:

Exterior integration, xi < Φ. When xi < Φ, the contributions of a boundary element Φ

similar to those of the SBIE are:

Hlkp =

∫
Φ

t∗lkφp dΓ (3.178)

Glkp =

∫
Φ

u∗lkφp dΓ (3.179)

The contributions of the new integrals arising in the δSBIE consider separately the design
velocity field along the boundary element (through the design element Ψ) and the design
velocity field at the collocation point:

δHlkp = δHT1
lkmqpvΨ

mq − δH
T2
lkmpvi

m =
(
δHN1

lkmqp + δHR1
lkmqp + δHJ1

lkmqp

)
vΨ

mq − δH
R2
lkmpvi

m (3.180)

δGlkp = δGT1
lkmqpvΨ

mq − δG
T2
lkmpvi

m =
(
δGR1

lkmqp + δGJ1
lkmqp

)
vΨ

mq − δG
R2
lkmpvi

m (3.181)

where:

δHN1
lkmqp = −

∫
Φ

σ∗lkjt jnmψq,stsφp dΓ (3.182)

δHR1
lkmqp =

∫
Φ

σ∗lkj,mn jψqφp dΓ (3.183)

δHR2
lkmp =

∫
Φ

σ∗lkj,mn jφp dΓ (3.184)

δHJ1
lkmqp =

∫
Φ

t∗lktmψq,stsφp dΓ (3.185)
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δGR1
lkmqp =

∫
Φ

u∗lk,mψqφp dΓ (3.186)

δGR2
lkmp =

∫
Φ

u∗lk,mφp dΓ (3.187)

δGJ1
lkmqp =

∫
Φ

u∗lktmψq,stsφp dΓ (3.188)

Interior integration, xi ∈ Φ. When xi ∈ Φ, the contributions of Φ similar to those of
the SBIE are:

Hlkp = −
1

4π (1 − ν)

 lim
ε→0+

∫
Φ−ei

1
r
∂r
∂n

[
δlk (1 − 2ν) + 2r,lr,k

]
φp dΓ

+ (1 − 2ν)

 lim
ε→0+

∫
Φ−ei

1
r
(
nlr,k − nkr,l

) (
φp − φ

i
p

)
dΓ + εlkφ

i
p lim
ε→0+

∫
Φ−ei

1
r

dr


 (3.189)

Glkp = lim
ε→0+

∫
Φ−ei

u∗lkφp dΓ (3.190)

Since xi ∈ Φ, the contributions of the new integrals arising in the δSBIE consider only the
design velocity field along the boundary element (through the design element Ψ):

δHlkp = δHT1
lkmqpvΨ

mq =
(
δHN1

lkmqp + δHR1
lkmqp + δHJ1

lkmqp

)
vΨ

mq (3.191)

δGlkp = δGT1
lkmqpvΨ

mq =
(
δGR1

lkmqp + δGJ1
lkmqp

)
vΨ

mq (3.192)

where:

δHN1
lkmqp =

1
4π (1 − ν)

(1 − 2ν)
∫

Φ−ei

1
r
(
tlr,k − tkr,l

)
nmψq,stsφp dΓ

+

∫
Φ−ei

1
r
∂r
∂Γ

[
2r,lr,k + (1 − 2ν) δlk

] (
nmψq,stsφp − ni

mψ
i
q,st

i
sφ

i
p

)
dΓ

+ 2ni
mψ

i
q,st

i
sφ

i
p

∫
Φ−ei

1
r
∂r
∂Γ

(
r,lr,k − ti

lt
i
k

)
dΓ

 (3.193)
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δHR1
lkmqp =

∫
Γ−ei

σ̃a
lkm

(
ψq − ψ

i
q

)
φp dΓ +

∫
Γ−ei

σ̃b
lkm

(
ψq − ψ

i
q − ψ

i
q,srs

)
φp dΓ

+

∫
Γ−ei

rσ̃b
lkm

ψi
q,sr,sφp − ψ

i
q,s

(
∂r
∂Γ

)i

ti
sφ

i
p

 dΓ

−
1

4π (1 − ν)
ψi

q,st
i
sφ

i
p


∫

Γ−ei

1
r

(
∂r
∂Γ

)i [
− 2 (1 − 2ν)

r,m − (
∂r
∂Γ

)i

ti
m

 (nlr,k − nkr,l
)

+ 2
(
nmr,lr,k − ni

mti
lt

i
k

)
+ (1 − 2ν)

(
δlk

(
nm − ni

m

)
+ δkm

(
nl − ni

l

)
− δlm

(
nk − ni

k

)) ]
dΓ

+
[
2ni

mti
lt

i
k + (1 − 2ν)

(
δlkni

m + εlkti
m

)] ∫
Γ−ei

1
r

( ∂r
∂Γ

)i

−
∂r
∂Γ

 dΓ

 (3.194)

δHJ1
lkmqp =

∫
Φ−ei

t∗lk
(
tmψq,sts − ti

mψ
i
q,st

i
s

)
φp dΓ

−
1

4π (1 − ν)
ti
mψ

i
q,st

i
s


∫

Φ−ei

1
r
∂r
∂n

[
δlk (1 − 2ν) + 2r,lr,k

]
φp dΓ

+ (1 − 2ν)
∫

Φ−ei

1
r
(
nlr,k − nkr,l

) (
φp − φ

i
p

)
dΓ

 (3.195)

δGR1
lkmqp = lim

ε→0+

∫
Φ−ei

u∗lk,m
(
ψq − ψ

i
q

)
φp dΓ (3.196)

δGJ1
lkmqp = lim

ε→0+

∫
Φ−ei

u∗lktmψq,stsφp dΓ (3.197)

where the limit notation limε→0+ before some integrals has been omitted for brevity. Note
that terms involving the integral

∫
1/r dΓ has been removed from δHN1

lkmqp, δHR1
lkmqp and

δHJ1
lkmqp since they cancel out when evaluating δHT1

lkmqp.
The solution of the sensitivity problem requires the solution of the zero-order solution.

As it is well known, the discretized form of the SBIE is:

ci
lku

i
k +

Nbe∑
e=1

(
Hlkpukp

)Φe
=

Nbe∑
e=1

(
Glkptkp

)Φe
(3.198)

Performing a suitable collocation of the SBIE throughout the discretization leads to the
influence matrices H and G, which are built by assembling free-terms and Hlkp integrals
into H, and Glkp integrals into G. The discretized system is transformed into a system of
linear equations once the boundary conditions are applied:

Hu = Gt
boundary conditions
−−−−−−−−−−−−−→ Ax = Bx̄ = b (3.199)
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where A is composed of components of H and G related to the unknown components of
u and t (gathered into x), and B is composed of components of H and G related to the
known components of u and t (gathered into x̄). Following a similar procedure but using
the δSBIE (3.177), the first-order discretized system is:

Hδu + δHu = Gδt + δGt
boundary conditions
−−−−−−−−−−−−−→ Aδx = Bδx̄ + δGt− δHu = bδ (3.200)

where A and B is similar to that of the zero-order system, and the components of δx̄ are
related to the sensitivities of the boundary conditions.

3.6 Elastodynamics

In the present section, the time harmonic counterpart of the elastostatic problem is stud-
ied. The formulation is completely analogous to the elastostatic problem, except that the
fundamental solution is more involved. However, it can be split into a part similar to the
elastostatic one, and another part that leads to at most weakly singular integrals. This
splitting process was also applied to the Helmholtz problem in Section 3.4.

Consider the time harmonic analysis of an elastic solid with density ρ, Poisson’s ratio
ν and shear modulus µ. Lamé’s first parameter is then λ = 2µν/(1 − 2ν). As it is well
known [29], two body modes exist: the longitudinal mode (primary wave or P-wave) with
a propagation speed c1 =

√
(λ + 2µ)/ρ, and the transversal mode (secondary wave or S-

wave) with a propagation speed c2 =
√
µ/ρ. The P and S wavenumbers are denoted as

k1 = ω/c1 and k2 = ω/c2, respectively, where ω is the circular frequency.
The fundamental solution and its derivatives can be written as [29]:

u∗lk =
1

2πµ

[
U1δlk − U2r,lr,k

]
U1 = K0 (ik2r) +

1
ik2r

[
K1 (ik2r) −

k1

k2
K1 (ik1r)

]
U2 = K2 (ik2r) −

k2
1

k2
2

K2 (ik1r)

(3.201)

u∗lk,m =
1

2πµ

[
V1δlkr,m + V2r,lr,jr,m + V3

(
δlmr,k + δkmr,l

) ]
V1 =

∂U1

∂r

V2 =
2
r

U2 −
∂U2

∂r

V3 = −
1
r

U2

(3.202)
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σ∗lkm =
1

2π

[
T1r,lr,kr,m + T2

(
δlkr,m + δlmr,k

)
+ T3δkmr,l

]
T1 = 2

(
2
r

U2 −
∂U2

∂r

)
T2 =

∂U1

∂r
−

1
r

U2

T3 =
λ

µ

(
∂U1

∂r
−
∂U2

∂r
−

1
r

U2

)
−

2
r

U2

(3.203)

t∗lk = σ∗lkmnm =
1

2π

[
T1r,lr,k

∂r
∂n

+ T2

(
δlk
∂r
∂n

+ δlmr,k

)
+ T3nkr,l

]
(3.204)

σ∗lkm,j =
1

2π

[
R1

(
δljr,mr,k + δkjr,lr,m + δmjr,lr,k

)
+ R2r,j

(
δlkr,m + δlmr,k

)
+ R3r,lr,kr,mr,j + R4δkmδlj + R5δkmr,lr,j + R6

(
δlkδmj + δlmδkj

) ]
R1 =

1
r

T1

R2 =
∂2U1

∂r2 −
1
r

(
∂U1

∂r
+
∂U2

∂r
−

2
r

U2

)
R3 = 2

[
−
∂2U2

∂r2 +
1
r

(
5
∂U2

∂r
−

8
r

U2

)]
R4 =

1
r

T3

R5 =
λ

µ

(
∂2U1

∂r2 −
∂2U2

∂r2 −
1
r
∂U1

∂r
+

2
r2 U2

)
−

2
r
∂U2

∂r
+

4
r2 U2

R6 =
1
r

T2

(3.205)

where terms Ui, Vi, Ti and Ri depend on distance r, frequency ω and material proper-
ties. By using the decomposition of Bessel functions presented in Equation (3.113), the
non-frequency dependant part (static) of each term can be segregated. Their full decom-
position can be found in Appendix B. Terms Ui, Vi, Ti and Ri can be written as:

U1 = −
3 − 4ν

4 (1 − ν)
ln r + O

(
r0

)
U2 = −

1
4 (1 − ν)

+ O
(
r2 ln r

) (3.206)

V1 = −
3 − 4ν

4 (1 − ν)
1
r

+ O (r ln r)

V2 = −
1

2 (1 − ν)
1
r

+ O (r)
(3.207)

T1 = −
1

1 − ν
1
r

+ O (r)

T2 = −
1 − 2ν

2 (1 − ν)
1
r

+ O (r ln r)

T3 =
1 − 2ν

2 (1 − ν)
1
r

+ O (r ln r)

(3.208)
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R2 =
1 − 2ν
1 − ν

1
r2 + O

(
r0

)
R3 =

4
1 − ν

1
r2 + O

(
r0

)
R5 = −

1 − 2ν
1 − ν

1
r2 + O

(
r0

) (3.209)

where terms V3, R1, R4 and R6 have been omitted for brevity, see Equations (3.202) and
(3.205). Also, in order to be able to verify that the static parts lead to the elastostatic
fundamental solution, the following relationships have been used:

c2
2

c2
1

=
1 − 2ν

2 (1 − ν)
(3.210)

λ

µ
=

c2
1

c2
2

− 2 (3.211)

By substituting these decompositions into Equations (3.201-3.205), it is very easy to see
that the static parts lead to the elastostatic fundamental solution and its derivatives, and
that the “dynamic residues” lead to at most weakly singular integrals:

u∗lk =
(
u∗lk

)static
+

(
u∗lk

)dynamic
(3.212)

u∗lk,m =
(
u∗lk,m

)static
+

(
u∗lk,m

)dynamic
(3.213)

t∗lk =
(
t∗lk

)static
+

(
t∗lk

)dynamic
(3.214)

σ∗lkm =
(
σ∗lkm

)static
+

(
σ∗lkm

)dynamic
(3.215)

σ∗lkm,j =
(
σ∗lkm,j

)static
+

(
σ∗lkm,j

)dynamic
(3.216)

3.7 Validation examples

In this section, some examples with analytical solution are used to validate the formu-
lation and its implementation. Only dynamic problems are considered since their static
counterparts can be checked by simply making ω → 0. In the same line as in the previ-
ous chapter, the example is a square domain with boundary conditions such that a one-
dimensional wave phenomenon occurs. However, in order to validate the formulation for
curved geometries, the domain is divided into two regions with the same material proper-
ties but with curved interfaces. Details about coupling between BEM regions are given in
Chapter 4.

3.7.1 Inviscid fluid problem

Analytical solution

Consider a rectangular domain Ω with the geometry and boundary conditions shown in
Figure 3.6. The domain Ω contain an inviscid fluid with density ρ, and bulk modulus K.
The solution of the related Helmholtz equation consists of two pressure waves travelling
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Ω

L

p=Pp=0

un=0

un=0

x1

Design velocity field: v1(x)=x/L, v2(x)=0

x2

Figure 3.6: Problem layout (inviscid fluid problem)

in opposite directions along x1:

p (x1) = Ae−ikx1 + Beikx1 (3.217)

where A and B are the amplitudes of the waves, k = ω/c is the wavenumber, ω is the cir-
cular frequency, and c =

√
K/ρ is the wave propagation speed. Once boundary conditions

are considered, the pressure p and fluid displacement in the x1 direction (u1 = 1/(ρω2)p,1)
can be written as:

p (x1) =
P

sin kL
sin kx1 (3.218)

u1 (x1) =
Pk

ρω2 sin kL
cos kx1 (3.219)

If L is taken as the shape design variable with a design velocity field v = (x/L, 0), then
the sensitivities are:

δp (x1) =
Pk

sin kL

(
−

cos kL
sin kL

sin kx1 +
x1

L
cos kx1

)
(3.220)

δu1 (x1) = −
Pk2

ρω2 sin kL

(
cos kL
sin kL

cos kx1 +
x1

L
sin kx1

)
(3.221)

BEM solution

The problem is solved numerically by using the BEM sensitivity analysis with the δSBIE
developed in this chapter. The domain is a square with side length L, and is meshed
using different element sizes (L/4, L/10) and different element order (linear, quadratic).
By doing so, h and p convergence can be tested. Also, a fictitious circular inclusion
filled with the same material is considered in order to demonstrate that the formulation
works well also for curved elements. All meshes used here are shown in Figure 3.7.
Dimensionless frequency a0 = ωL/c is used, which is in the range (0, 6].
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Figure 3.7: Linear and quadratic meshes with L/4 and L/10 element sizes, and with and
without a fictitious circular inclusion.

The design velocity field is defined in the same way as it is described in Section 2.3. It
is done by defining a design mesh containing one 4-node quadrilateral element covering
the domain Ω, and appropriate values of v are assigned to the four nodes in order to define
v = ∂x/∂L = (x1/L, 0), see Figure 2.3 (Left).

Figure 3.8 shows the normalized displacement u1 and sensitivity δu1 at x1 = L, and
their relative errors with respect to the analytical solution. These results are obtained
for the upper meshes in Figure 3.7. Figure 3.9 shows the same results but using the
meshes with the fictitious circular inclusion, i.e. the lower meshes in Figure 3.7. In
all cases, error levels are so small that the differences between numerical and analytical
solutions can only be seen in the relative error graphs. These graphs clearly demonstrate
the h and p convergence of the developed BEM sensitivity analysis for plane and curved
boundary elements. The error levels at low frequencies are higher when using the meshes
with the fictitious circular inclusion. However, the same phenomenon is seen in both
the displacement and the displacement sentitivity, and hence it seems to be related to the
discretization itself.

3.7.2 Elastodynamic problem
The analytical solution of this example can be found in Section 2.3. The numerical so-
lution is obtained using the same configuration and the same set of meshes as in the
previous section. Poisson’s ratio is assumed to be ν = 1/4. In this case, the dimensionless
frequency is a0 = ωL/c1, where c1 is the P-wave propagation speed.

Figure 3.10 shows the normalized displacement u1 and sensitivity δu1 at x1 = L,
and their relative errors with respect to the analytical solution. Figure 3.11 shows the
same results but using the meshes with the fictitious circular inclusion. As in the previous
section, h and p convergence can be seen in these graphs for straight and curved boundary
elements.
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Figure 3.8: Convergence of u1(L) and δu1(L) for the inviscid fluid problem
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Figure 3.9: Convergence of u1(L) and δu1(L) for the inviscid fluid problem (meshes with
a fictitious circular inclusion)
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Figure 3.10: Convergence of u1(L) and δu1(L) for the elastodynamic problem
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Figure 3.11: Convergence of u1(L) and δu1(L) for the elastodynamic problem (meshes
with a fictitious circular inclusion)
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Chapter 4

Shape sensitivities in multi-region
problems

4.1 Introduction

Formulations developed in Chapter 2 (DDM–FEM) and Chapter 3 (DDM–BEM) can be
combined for solving multi-region problems in an advantageous way. Each region is
managed either by the BEM or by the FEM, whichever is more appropriate. Unbounded
regions are handled very naturally by the BEM, but they require special formulations if
treated by the FEM. The BEM also works very well when analysing regions with cracks
or where accurate stresses are needed. The FEM is intrinsically well-adapted to manage
structural members and inhomogeneities.

In this chapter, BEM–BEM and BEM–FEM coupling between regions are consid-
ered. BEM–BEM coupling between regions of the same or different type is relatively
straightforward, and not too many variations exist. On the other hand, several coupling
strategies can be used to build a BEM–FEM interaction [8]. The most direct and sim-
ple approach consists in establishing compatibility and equilibrium conditions along the
interfaces at the level of discretizated equations. Depending on the relative number of
degrees of freedom of FEM and BEM regions, it may be also convenient to symmetrize
the BEM matrices and treat BEM regions as macro finite elements. A more advanced
method is that of Belytschko et al. [14, 41, 15]. This approach uses a single variational
statement for the whole domain, which is then discretized using appropriate continuous
test and trial functions throughout the domain. Using the patch test and solving several
problems, they found that this method is far superior to the direct approach [41]. However,
it requires doing some modifications to the standard formulations, and is more expansive
computationally. Therefore, the direct approach is used in this work.

The rest of the chapter is organized as follows. In Section 4.2, discretization and
collocation procedures in multi-region problems are described. The coupling conditions
for the cases considered in this work are described in Section 4.3.
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Ω1:

Ω2: BEM

Ω3: BEM

FEM
Ω1

∂Ω2 = {Γ3,Γ4,Γ5,−Γ7}

∂Ω3 = {Γ1,Γ2,Γ7,Γ6}

Γ1

Γ2

Γ3

Γ4Γ5

Γ6

Γ7

Figure 4.1: Multi-region problem example (geometry)

4.2 Discretization and collocation in multi-region prob-
lems

The domain Ω of a multi-region problem consists of Nr regions Ωi, i.e. Ω = ∪
i=Nr
i=1 Ωi.

A region Ωi can be treated using either the BEM or the FEM. If a region Ωi is treated
using the BEM, then is necessary to explicitly define its boundary ∂Ωi as a set of oriented
boundaries Γ j, i.e. ∂Ωi =

{
±Γ j, j ∈ Bi

}
. Each boundary Γ j is discretized into boundary

elements Φk, Γ j = ∪k∈C jΦk, where nodes are unique, i.e. each boundary is a piece of
mesh with unique nodes and elements. If a region Ωi is treated using the FEM, then it is
directly discretized into finite elements Υk, Ωi = ∪k∈DiΥk, where nodes can be shared by
several finite elements of different regions. Figure 4.1 shows an example of a multi-region
problem with BEM and FEM regions.

The boundary of a region ∂Ωi is split into several boundaries Γk in order to assign a
different boundary or interface condition to each one of them. Also, it is split at sharp
corners in order to have a better representation of tractions there. Since it has been es-
tablished that each boundary has its own nodes, double nodes appear at points where
different boundaries meet. If standard nodal collocation is applied at these nodes, then a
singular system of linear equations could be obtained. There are several ways to overcome
this difficulty, for example using discontinuous elements, special corner elements, alter-
native BIEs, or additional equations. In the present work, non-nodal collocation is used
at these nodes, where the collocation points are located inside the elements but near the
nodes. This approach not only solves the degeneracy problem with an acceptable error,
but is also quite simple. The meshes obtained from standard pre-processors do not require
modifications. Furthermore, it can be fully automated without much difficulty. Figure 4.2
shows a detail of discretization and collocation in a multi-region problem example.

As shown in Figure 4.2, a BEM–BEM interface is intrinsically conforming because
of the way it is discretized. On the other hand, in order to have a conforming BEM–FEM
interface, the corresponding boundary of the FEM mesh must match the BEM boundary
mesh.
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Γ7

Γ5

Ω2

Ω3

Ω1

Γ6

Node
Collocation point

Figure 4.2: Multi-region problem example (exploded mesh and collocation)

4.3 Coupling conditions
Coupling is directly performed by establishing compatibility and equilibrium along both
faces of the interface at the level of discretized equations.

4.3.1 BEM–BEM
Consider two BEM regions Ωi and Ω j (i , j) connected through an interface boundary
Γk with orientation defined by its unit normal n, see Figure 4.3. Relative to region Ωi, Γk

has positive orientation, hence n(i) = n. However, relative to region Ω j, Γk has negative
orientation, and thus n( j) = −n. Following this notation, coupling conditions between
BEM regions are described next.

Ωi

Γk

n

Ω j

∂Ωi = {. . . ,Γk, . . .}

∂Ω j = {. . . ,−Γk, . . .}

Ωi

Γk

n(i) = n

Ω j

−Γk

n( j) = −n

Figure 4.3: Boundary Γk acting as an interface between BEM regions Ωi and Ω j
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BEM (Ωi: elastic solid) – BEM (Ω j: elastic solid) The compatibility and equilibrium
at the interface in a nodal fashion can be written as:

u(i) = u( j)

t(i) + t( j) = 0
(4.1)

δu(i) = δu( j)

δt(i) + δt( j) = 0
(4.2)

where it must be noticed that displacements and tractions and their sensitivities have the
same coupling equations. In the following, we denote ui and ti as vectors of displace-
ments and tractions in all boundaries of Ωi except Γk, and u(i)

k and t(i)
k as vectors of dis-

placements and tractions of Γk with respect to Ωi. Also, we denote u j and t j as vectors
of displacements and tractions in all boundaries of Ω j except Γk, and u( j)

k and t( j)
k as vec-

tors of displacements and tractions of Γk with respect to Ω j. The equations obtained after
collocating the SBIE for both regions are: Hii Hik

Hki H(i)
kk


 ui

u(i)
k

 −
 Gii Gik

Gki G(i)
kk


 ti

t(i)
k

 =

 0i

0k

 (4.3)

 H j j H jk

Hk j H( j)
kk


 u j

u( j)
k

 −
 G j j G jk

Gk j G( j)
kk


 t j

t( j)
k

 =

 0 j

0k

 (4.4)

which reduce to:
Hii Hik Gik 0i j

Hki H(i)
kk G(i)

kk 0k j

0ki H( j)
kk −G( j)

kk Hk j

0 ji H jk G jk H j j




ui

u(i)
k

t( j)
k

u j


−


Gii 0i j

Gki 0k j

0ki Gk j

0 ji G j j


 ti

t j

 =


0i

0k

0k

0 j


(4.5)

once coupling conditions are applied maintaining u(i)
k and t(i)

k as active degrees of freedom
along the interface. The final system of linear equations is obtained after applying the
boundary conditions:

Aii Hik Gik 0i j

Aki H(i)
kk G(i)

kk 0k j

0ki H( j)
kk −G( j)

kk Ak j

0 ji H jk G jk A j j




xi

u(i)
k

t( j)
k

x j


=


Bii 0i j

Bki 0k j

0ki Bk j

0 ji B j j


 x̃i

x̃ j

 =


bi

b(i)
k

b( j)
k

b j


(4.6)

where xi and x j gather unknown displacements and tractions, and x̃i and x̃ j gather known
displacements and tractions. Matrices A and B combine terms of H and G matrices
according the known and unknown displacements and tractions. Once this system of
equations is solved, all displacements and tractions are known.
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Therefore, in order to solve the sensitivity problem, we proceed following a similar
process but collocating the δSBIE instead of the SBIE:

Aii Hik Gik 0i j

Aki H(i)
kk G(i)

kk 0k j

0ki H( j)
kk −G( j)

kk Ak j

0 ji H jk G jk A j j




δxi

δu(i)
k

δt( j)
k

δx j


=


Bii 0i j

Bki 0k j

0ki Bk j

0 ji B j j


 δx̃i

δx̃ j



−


δHii δHik 0ik 0i j

δHki δH(i)
kk 0kk 0k j

0ki 0kk δH( j)
kk δHk j

0 ji 0 jk δH jk δH j j




ui

u(i)
k

u( j)
k

u j

 +


δGii δGik 0ik 0i j

δGki δG(i)
kk 0kk 0k j

0ki 0kk δG( j)
kk δGk j

0 ji 0 jk δG jk δG j j




ti

t(i)
k

t( j)
k
t j


(4.7)

where the left hand side matrix is exactly the same as before.

BEM (Ωi: inviscid fluid) – BEM (Ω j: inviscid fluid) The nodal compatibility and
equilibrium at the interface can be written as:

u(i)
n n(i) = u( j)

n n( j) ⇒ u(i)
n = −u( j)

n

−p(i)n(i) − p( j)n( j) = 0 ⇒ p(i) = p( j) (4.8)

δu(i)
n = −δu( j)

n

δp(i) = δp( j) (4.9)

where, as in the previous case, normal displacements and pressures and their sensitivities
have the same coupling equations. The procedure to obtain the final system of equations
is analogous to the process followed in the previous case.

BEM (Ωi: inviscid fluid) – BEM (Ω j: elastic solid) In this case, the nodal compatibil-
ity and equilibrium is:

u(i)
n n(i) = u( j) ⇒ u(i)

n = −u( j) · n( j)

−p(i)n(i) + t( j) = 0 ⇒ t( j) = p(i)n(i) (4.10)

δu(i)
n = −δu( j) · n( j) − u( j) · δn( j)

δt( j) = δp(i)n(i) + p(i)δn(i) (4.11)

where, unlike the previous cases, the sensitivities do not follow exactly the same coupling
equations due to an additional term that takes into account the variation of the unit nor-
mal. This, however, does not lead to difficulties. The only difference with respect to the
previous cases is a new term in the right hand side of the system of equations.

4.3.2 BEM–FEM
Consider a BEM region Ωi (elastic solid) and a FEM region Ω j (elastic solid) connected
through a BEM boundary Γk with orientation defined by its unit normal n, see Figure 4.4.
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Ωi

Γk

n

Ω j

∂Ωi = {. . . ,Γk, . . .}

Ωi

Γk

n(i) = n

Ω j

∂kΩ j

∂kΩ j

Figure 4.4: Coupling between a BEM boundary Γk and a FEM boundary ∂kΩ j

The FEM boundary ∂kΩ j is not explicitly defined, but defined implicitly by its coincidence
in position with Γk.

Let u(i)
k and t(i)

k be vectors of displacements and tractions along the boundary Γk belong-
ing to the BEM region Ωi. The displacements and tractions of the remaining boundary of
Ωi are denoted as ui and ti. Vectors u( j)

k and t( j)
k are displacements and tractions (as surface

distributed loads) along the FEM boundary ∂kΩ j. The displacements of the remaining
region Ω j are denoted as u j. Compatibility and equilibrium conditions along both faces
of the interface are established by imposing:

u(i)
k = u( j)

k

t(i)
k + t( j)

k = 0k

(4.12)

δu(i)
k = δu( j)

k

δt(i)
k + δt( j)

k = 0k

(4.13)

where it must be noticed that displacements and tractions and their sensitivities have the
same coupling equations. The equations obtained after collocating the SBIE throughout
the boundaries of Ωi can be written as: Hii Hik

Hki Hkk


 ui

u(i)
k

 −
 Gii Gik

Gki Gkk


 ti

t(i)
k

 =

 0i

0k

 (4.14)

Moreover, the global FEM equilibrium equation of the region Ωi is: K j j K jk

Kk j Kkk


 u j

u( j)
k

 −
 0ik

Qkk

 { t( j)
k

}
=

 f j

0k

 (4.15)

where Qkk is the matrix that transforms boundary distributed loads along the FEM bound-
ary ∂kΩ j into nodal loads. It is built by assembling the boundary distributed load matri-
ces Qt along ∂kΩ j, see Equation (2.21). Loads in the rest of the region can be included
through f j. Once coupling conditions are applied maintaining u( j)

k and t(i)
k as active degrees
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of freedom along the interface, the coupled system can be written as:
Hii Hik −Gik 0i j

Hki Hkk −Gkk 0k j

0ki Kkk Qkk Kk j

0 ji K jk 0 jk K j j




ui

u( j)
k

t(i)
k

u j


−


Gii

Gki

0ki

0 ji


{

ti

}
=


0i

0k

0k

f j


(4.16)

Finally, the boundary conditions are applied:
Aii Hik −Gik 0im

Aki Hkk −Gkk 0km

0ki Kkk Qkk Kkm

0mi Kmk 0mk Kmm




xi

u( j)
k

t(i)
k

um


=


Biix̃i

Bkix̃i

−Kknũn

fm −Kmnũn


(4.17)

where xi and x̃i are vectors of unknown and known field variables, respectively, related
to the BEM region, and um and ũn are unknown and known displacements, respectively,
related to the FEM region. Once this system of equations is solved, displacements and
tractions are known throughout the domain.

In order to solve the sensitivity problem, we proceed similarly to what has been done
so far, but collocating the δSBIE instead of the SBIE for the BEM region, and using
Equation (2.3) for the FEM region:

Aii Hik −Gik 0im

Aki Hkk −Gkk 0km

0ki Kkk Qkk Kkm

0mi Kmk 0mk Kmm




δxi

δu( j)
k

δt(i)
k

δum


=


Biiδx̃i

Bkiδx̃i

−Kknδũn

δfm −Kmnδũn


−


δHii δHik 0im 0in

δHki δHkk 0km 0kn

0ki δKkk δKkm δKkn

0mi δKmk δKmm δKmn




ui

u(i)
k

um

ũn

 +


δGii δGik

δGki δGkk

0ki −δQkk

0mi 0mk


{

ti

t(i)
k

}
(4.18)

where the δ notation is used instead of ∂/∂a for the FEM part. Note that all FEM matrices
can be calculated analytically (except for the numerical integration) as shown in Chapter
2. In particular, δQkk is calculated with the help of Equations (2.33) and (2.49).
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Chapter 5

Shape optimization of a simple wave
barrier

5.1 Introduction

Almost all the ingredients needed to perform the shape optimization of a wave barrier
have been described in the previous chapters. In this chapter, they are put together in
order to optimize a simple wave barrier.

The rest of the chapter is organized as follows. In Section 5.2, the simple wave barrier
problem is studied. Finally, Section 5.3 closes this report by giving the main conclusions,
and recommendations for further research.

5.2 Simple wave barrier

5.2.1 Definition

The design optimization of a simple straight wave barrier is considered. Figure 5.1 shows
a layout of the considered system, including the material properties of the soil region Ωs

and barrier region Ωb, and the design variables a1, a2, a3 and a4. A point source and a
point receiver are considered, which are spaced 15 meters. The point source oscillates at
25 Hz. The design space of the barrier is located in between. The design variable a1 is
the horizontal coordinate of the top of the barrier, which can vary from −5 to 5 meters.
The design variable a2 is the horizontal coordinate of the bottom of the barrier, which can
also vary from −5 to 5 meters. The third design variable a3 is the vertical coordinate of
the bottom of the barrier, which can also vary from −8 to −1 meters. The fourth design
variable a4 is the thickness of the barrier, which is assumed to vary from 0.3 to 1.5 meters.
According to Figure 5.1, the area of Ωb is simply a4

√
(a1 − a2)2 + (a3)2.

The design optimization is defined as:

min
a1,a2,a3,a4

ψ, ψ = 20 log10

(
|uwith barrier(7.5, 0)|
|uwithout barrier(7.5, 0)|

)
(5.1)
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Source Receiver(a1, 0)

(a2, a3)

Ωs: µ = 80 MPa, ν = 1/3, ρ = 2000 kg/m3, ξ = 0.05
Ωb: µ = 605 MPa, ν = 1/4, ρ = 2000 kg/m3, ξ = 0.05

Ωs

Ωb

x1 (m)

x2 (m)

(7.5, 0)(−7.5, 0)

a4

Figure 5.1: Layout of the studied simple wave barrier

such that:

a1 = [−5, 5]
a2 = [−5, 5]
a3 = [−8,−1]
a4 = [0.3, 1.5]

Amax ≥ a4

√
(a1 − a2)2 + (a3)2

(5.2)

Therefore, the objective function is a measure of the amplification of the displacement
|u| at the receiver due to the barrier, and hence it has to be minimized. The design space
allows any barrier within a rectangle between source and receiver, where the barrier al-
ways emerges at the soil surface. A simple economic constraint is defined by setting a
maximum barrier area Amax.

5.2.2 Sensitivity test
Before performing the design optimization, a sensitivity test is done in this section. This
test consists in calculating the sensitivities of the objective function with respect to all
the design variables using different methodologies and models. It allows us to verify that
almost every aspect of the methodology is correctly executed. Also, this test implicitly
validates the coupling conditions presented in Chapter 4.

The methodologies we are referring to are the Global Finite Difference (GFD) and the
Direct Differentiation Method (DDM) to calculate the sensitivities. Three models of the
problem are considered:

• BEM–BEM. All regions are BEM regions.
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• BEM–FEM 1. The half-plane is a BEM region, and the design space and the barrier
are FEM regions.

• BEM–FEM 2. The half-plane (including the design space) is a BEM region, and
the barrier is a FEM region.

GFD are calculated using a 2-point central finite difference formula. Note that each
mesh that GFD requires is generated by the pre-processor once the perturbation is defined,
hence the meshes are not necessarily topologically identical. The design velocity field that
DDM requires is defined by a 4-node quadrilateral design element that cover the barrier.
Additionally, for “BEM–BEM” and “BEM–FEM 2” models, the design mesh requires
two line design elements from the top of the barrier to the ends of the design space along
the soil surface. The four corners of the barrier are defined by the following points:

θ = arctan
a2 − a1

−a3
(5.3)

p1 =

(
a1 +

a4/2
cos θ

, 0
)

(5.4)

p2 =

(
a2 +

a4

2
cos θ, a3 +

a4

2
sin θ

)
(5.5)

p3 =

(
a2 −

a4

2
cos θ, a3 −

a4

2
sin θ

)
(5.6)

p4 =

(
a1 −

a4/2
cos θ

, 0
)

(5.7)

Taking into account this, the design velocity field at each one of the nodes of the quadri-
lateral design element is obtained by simply doing v(i) = ∂pi/∂a j. The two additional line
design elements have design velocity fields v(1) and v(4) at their start nodes, and a null
design velocity field at their ends.

In all the models, quadratic elements are used. The half-plane mesh is truncated at
x1 = −50 and x1 = 50 meters. The element sizes are 2.5 meters for elements outside
the design space (aprox. 3 elements per wavelenth), and a4 meters for elements inside
the design space (more than 5 elements per wavelenth). This sensitivity test is done
over two designs: a vertical barrier with a = (0, 0,−8, 0.5, and a inclined barrier with
a = (−4, 4,−8, 1). Figure 5.2 shows the meshes used in this section.

The results of this test are shown in Tables 5.1 and 5.2. These results demonstrate the
lack of robustness of GFD, especially for models that include a FEM region. However,
its simplicity allows us to validate the models using DDM. Results obtained from GFD
converge to the results obtained from DDM as the perturbation decreases. Generally, the
results obtained from different models and methodologies agree, except in the case of the
“BEM–FEM 1” model for the design variable a3 (vertical coordinate of the bottom part
of the barrier). Nonetheless, the discrepancy seems to be acceptable (≈ 10%).

5.2.3 Design optimization
The optimization function used in MATLAB is fminconwith the interior-point algorithm.
The objective function and its gradient is supplied by an user-defined function, where the
analysis model is launched and its results are processed in order to calculate the objective
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Figure 5.2: Meshes used in the sensitivity test: BEM–BEM (top), BEM–FEM 1 (middle),
BEM–FEM 2 (bottom); vertical barrier (left), inclined barrier (right)
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Methodology / Model ∆a j
dψ
da1

dψ
da2

dψ
da3

dψ
da4

GFD / BEM–BEM

10−1 -0.272123 -0.025787 0.047936 -2.730099
10−2 -0.272620 -0.025949 0.045517 -2.742033
10−3 -0.272535 -0.025951 0.048044 -2.727737
10−4 -0.272548 -0.025972 0.048062 -2.697366

DDM / BEM–BEM - -0.272383 -0.025988 0.0480537 -2.716126

GFD / BEM–FEM 1

10−1 -0.272386 -0.027116 0.038623 -2.738707
10−2 -0.265332 -0.034423 0.014281 -2.701757
10−3 -0.182082 -0.112729 0.012887 -2.832151
10−4 0.655976 -0.965777 -0.179035 -2.763377

DDM / BEM–FEM 1 - -0.270422 -0.024804 0.040647 -2.721775

GFD / BEM–FEM 2

10−1 -0.273811 -0.024663 0.046720 -2.732175
10−2 -0.272441 -0.026763 0.043196 -2.743785
10−3 -0.253422 -0.045722 0.045168 -2.741105
10−4 -0.067677 -0.231990 0.030587 -2.714976

DDM / BEM–FEM 1 - -0.274320 -0.024530 0.046884 -2.717310

Table 5.1: Sensitivities for a vertical barrier (a = (0, 0,−8, 0.5)

Methodology / Model ∆a j
dψ
da1

dψ
da2

dψ
da3

dψ
da4

GFD / BEM–BEM

10−1 0.918170 0.315681 -0.091428 -2.763727
10−2 0.918818 0.315490 -0.092140 -2.701609
10−3 0.918724 0.315770 -0.092117 -2.738099
10−4 0.918735 0.315631 -0.092111 -2.740870

DDM / BEM–BEM - 0.918243 0.315682 -0.092150 -2.754934

GFD / BEM–FEM 1

10−1 0.918748 0.313146 -0.099214 -2.691929
10−2 0.907295 0.367585 -0.095097 -2.568600
10−3 0.904674 0.316097 -0.073474 -2.557267
10−4 0.855978 0.385557 -0.199216 -2.821976

DDM / BEM–FEM 1 - 0.915422 0.309543 -0.079929 -2.706064

GFD / BEM–FEM 2

10−1 0.922270 0.306479 -0.095655 -2.744842
10−2 0.912900 0.315847 -0.091904 -2.686637
10−3 0.913033 0.316588 -0.091738 -2.723225
10−4 0.912735 0.321061 -0.091038 -2.721601

DDM / BEM–FEM 1 - 0.912321 0.316000 -0.091886 -2.739976

Table 5.2: Sensitivities for a inclined barrier (a = (−4, 4,−8, 1))
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Figure 5.3: ψ versus Amax

function and its gradient. Here, the BEM–BEM model is used as the analysis model.
The upper and lower bounds of the design variables are defined explicitly before calling
fmincon. The non-linear constraint is implemented by an user-defined function where it
is evaluated.

The shape optimization has been performed for a range of maximum areas Amax =

[1, 12]. By doing so, an approximation of the Pareto front is obtained for the conflicting
constraint Amax and objective function ψ. Three local minima have been observed when
starting from three different designs: astart = (0, 0,−8, 0.5), astart = (−2,−2,−8, 0.5) and
astart = (−4, 4,−8, 0.5). The results are shown in Tables 5.3, 5.4 and 5.5, and Figures 5.4,
5.5 and 5.6. The approximation of the Pareto front is shown in Figure 5.3.

5.3 Conclusions and further research
This report collects the results obtained during the research stay, which has been the
first contact of the author with FEM or BEM sensitivity analysis. It also contains some
developments done during the month after the stay.

The FEM sensitivity formulation, despite being relatively simple if the semianalytical
approach is used, is not trouble-free. For this reason, it was decided to take a step forward
and search for an analytical solution to the matrices differentiation. Among others, Olhoff

et al. [49] had offered a tractable solution. We have developed their formulation for two-
dimensional solid elements, and excellent results have been obtained. Their formulation is
more simple than it looks, and it is adviceable to make the effort for the sake of robustness.

The BEM sensitivity formulation is, however, much more involved. Almost one third
of this report is concerned to this formulation. The Variation Singular Boundary Integral
Equation for interior and boundary points have been developed for Laplace, Helmholtz,
elastostatics and elastodynamics problems. The corresponding chapter has been written
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Amax a1 a2 a3 a4 ψ

1 1.175 2.273 -3.147 0.300 -0.198
2 1.034 1.526 -6.648 0.300 -1.177
3 0.951 1.275 -7.633 0.393 -1.725
4 0.963 1.250 -7.799 0.513 -2.102
5 0.977 1.233 -7.923 0.631 -2.433
6 0.988 1.224 -8.000 0.750 -2.728
7 1.006 1.240 -8.000 0.875 -2.985
8 1.024 1.252 -8.000 1.000 -3.216
9 1.038 1.257 -8.000 1.125 -3.428

10 1.057 1.265 -8.000 1.250 -3.612
11 1.072 1.264 -8.000 1.375 -3.788
12 1.096 1.265 -8.000 1.500 -3.938

Table 5.3: Optimization results when astart = (0, 0,−8, 0.5)
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Figure 5.4: Layout of the optimized wave barrier varying Amax, astart = (0, 0,−8, 0.5).
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Amax a1 a2 a3 a4 ψ

1 -3.646 -5.000 -3.046 0.300 -0.429
2 -1.983 -3.827 -6.118 0.313 -1.304
3 -1.856 -3.807 -6.360 0.451 -1.722
4 -1.755 -3.800 -6.510 0.586 -2.087
5 -1.668 -3.808 -6.595 0.721 -2.421
6 -1.590 -3.835 -6.625 0.858 -2.734
7 -1.513 -3.881 -6.604 0.998 -3.034
8 -1.441 -3.941 -6.542 1.142 -3.330
9 -1.375 -3.999 -6.475 1.288 -3.616
10 -1.304 -4.043 -6.410 1.435 -3.906
11 -1.221 -3.961 -6.802 1.500 -4.156
12 -1.200 -3.709 -7.440 1.500 -4.216

Table 5.4: Optimization results when astart = (−2,−2,−8, 0.5)
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Figure 5.5: Layout of the optimized wave barrier varying Amax, astart = (−2,−2,−8, 0.5).
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Amax a1 a2 a3 a4 ψ

1 5.000 1.820 -1.000 0.300 -0.641
2 -1.983 -3.827 -6.118 0.313 -1.304
3 -1.856 -3.807 -6.360 0.451 -1.722
4 -5.000 -2.376 -5.018 0.706 -1.687
5 -5.000 -2.410 -5.123 0.871 -2.161
6 -5.000 -2.417 -5.228 1.029 -2.661
7 -5.000 -2.410 -5.334 1.180 -3.144
8 -5.000 -2.375 -5.443 1.324 -3.631
9 -4.995 -2.272 -5.580 1.448 -4.108
10 -5.000 -1.847 -5.874 1.500 -4.561
11 -5.000 -1.178 -6.259 1.500 -4.891
12 -5.000 -0.498 -6.613 1.500 -5.250

Table 5.5: Optimization results when astart = (−4, 4,−8, 0.5)

-9

-8

-7

-6

-5

-4

-3

-2

-1

 0

 1

-7 -6 -5 -4 -3 -2 -1  0  1  2  3  4  5  6  7

x
2

x
1

Figure 5.6: Layout of the optimized wave barrier varying Amax, astart = (−4, 4,−8, 0.5).
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trying to be very explicit and pedagogic. If one compares the results of the validation
problems, it is clear the superiority of the BEM over the FEM for wave propagation
problems. Its error levels for the same element size are much lower.

As it is well known, there are problems where neither the FEM nor the BEM is able to
solve them efficiently. For this reason, we have described and explained the classical cou-
pling conditions applied to the sensitivity analysis. It was shown that the direct coupling
is similar to any standard zero-order analysis, except that is more involved.

There are several aspects of these formulations that could be improved or expanded:

• The analytical differentiation of the matrices related to the solid isoparametric ele-
ments can be applied to structural elements, as shown by Olhoff et al. [49]. This is
very interesting in order to optimize designs where structural elements appear.

• Although this report is concerned with the shape optimization, it is not difficult to
include material optimization (sensitivities of material properties). This could be
used on identification problems.

• Concerning the DDM-BEM formulation, the δHBIE for the already studied prob-
lems (Laplace, Helmholtz, elastostatics and elastodynamics) could be obtained thanks
to the experience acquired when working on the present research.

• Formulate and implement the variational coupling of Belytschko [41] in the context
of sensitivity analysis. To author’s best knowledge, this is something that has not
been done. It would be interesting to evaluate if the improvement in accuracy that
this coupling would bring compensate its involved formulation.

• Obtain these formulations for three-dimensional problems.

• Study the possibilities of hybridization of gradient-based optimization and genetic
algorithms in order to get rid of the local minima.

The developed formulation could be applied to more interesting problems:

• The simple wave barrier studied in the present work is useful as an application
problem. A more complex wave barrier would be more interesting designs with
better performance and less costs. Also, in order to get a more robust design, the
objective function would be modified, which could be done in several directions.
Instead of considering a single frequency, a range of frequencies could be studied,
and hence the objective function must be modified accordingly. In the same way,
instead of using just one receiver, a zone of receivers can be defined.

• Given that we have developed BEM–BEM and BEM–FEM couplings for sensitivity
analysis in the two-dimensional context, it would be interesting to study of Fluid-
Structure, Structure-Soil-Structure, or Fluid-Soil-Structure Interaction problems.
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Appendix A

Free-term bi
lkjm of the δSBIE for

elastostatics

In this appendix, the values of the free-term bi
lkjm existing in the elastostatic (and elasto-

dynamic) δSBIE for boundary collocation points are presented, see Equation (3.150).

B = −
1

4π (1 − ν)
(A.1)

bi
1111 =

B
2

sin(θ1 − θ2)
[
− 4(ν − 1) cos(θ1 + θ2) + cos(3θ1 + θ2) + cos(θ1 + 3θ2)

]
(A.2)

bi
1112 = −

B
2

[
cos(2θ1) − cos(2θ2)

][
cos(2θ1) + cos(2θ2) − 2ν + 1

]
(A.3)

bi
1121 = −

B
2

[
cos(2θ1) − cos(2θ2)

][
cos(2θ1) + cos(2θ2) − 2ν + 3

]
(A.4)

bi
1122 = −

B
2

sin(θ1 − θ2)
[
− 4(ν − 1) cos(θ1 + θ2) + cos(3θ1 + θ2) + cos(θ1 + 3θ2)

]
(A.5)
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B
2

[
cos(2θ1) − cos(2θ2)
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cos(2θ1) + cos(2θ2) − 2ν + 1

]
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B
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Appendix B

Decomposition of elastodynamic
fundamental solution and its derivatives

The elastodynamic fundamental solution and its derivatives were presented in Equations
(3.201-3.205). In the present appendix, their main terms Ui, Vi, Ti and Ri are decomposed
by using the decomposition of Bessel functions shown in Equation (3.113). Note that
terms V3, R1, R4 and R6 have been omitted for brevity, see Equations (3.202) and (3.205).
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