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RESUMEN. 
 
Mediante la presente investigación se presenta una metodología para la 
optimización simultánea del diseño estructural de sistemas técnicos y de su 
estrategia de mantenimiento, para la cual se considera tanto el mantenimiento 
correctivo como el preventivo. En el ámbito de la investigación, el mantenimiento 
preventivo consiste en determinar el periodo óptimo para llevar a cabo las 
correspondientes tareas de mantenimiento, considerando los dispositivos 
previamente seleccionados para formar parte del diseño estructural del sistema.   
 
La citada metodología se basa en el acople de Algoritmos Evolutivos 
Multiobjetivo y la Simulación por Eventos Discretos. Por tanto, se requiere de un 
concienzudo estudio en relación con la resolución de problemas complejos en el 
ámbito de la ingeniería. Además, la Simulación por Eventos Discretos implica el 
uso de un enfoque en base a simulación, por lo que tal técnica debe ser analizada 
en detalle. 
 
Un minucioso estudio sobre la convergencia de las soluciones que el uso de la 
metodología aporta debe ser elaborado. Con tal objetivo, la metodología es 
aplicada a un caso de estudio a lo largo de toda la investigación. Diversos 
Algoritmos Evolutivos Multiobjetivo pertenecientes al estado del arte son 
aplicados, de modo que sus parámetros son estudiados siguiendo un método en 
cascada, de modo que: 

• En primer lugar, un conjunto de Algoritmos Evolutivos Multiobjetivo es 
escogido atendiendo al estado del arte, clasificados según el mecanismo 
empleado para selección de individuos. Tal criterio de clasificación es 
comúnmente empleado para diferenciar tales algoritmos. Además, sus 
parámetros son meticulosamente explorados con el propósito de 
identificar las configuraciones que presentan un mejor desempeño.  

• A continuación, deben considerarse diversas codificaciones y niveles de 
precisión en relación con los tiempos hasta iniciar una tarea de 
mantenimiento preventivo. La codificación presenta un impacto directo 
sobre el tamaño del cromosoma, pudiendo tener efecto en el desempeño 
sobre los algoritmos empleados. Por otra parte, el impacto de los niveles 
de precisión en relación con los tiempos hasta iniciar una tarea de 



mantenimiento preventivo puede aportar información interesante desde 
el punto de vista práctico. En concreto, horas, días y semanas son 
consideradas como unidades temporales para la planificación del 
mantenimiento preventivo. La flexibilidad en relación con la precisión 
puede resultar de interés para los tomadores de decisiones.  

• Finalmente, se estudia la multiobjetivización como técnica para el manejo 
de las funciones objetivo, con el propósito de determinar la idoneidad del 
uso de la citada técnica. 

 
Con el propósito de testar la escalabilidad y generalización de la metodología, 
esta es aplicada a sistemas de mayor complejidad en lo que al número de 
alternativas de diseño se refiere. El caso de estudio es un sistema hidráulico 
formado por un máximo de 7 dispositivos. El uso de la metodología se extiende 
con el propósito de estudiar, en primer lugar, un sistema hidráulico que dobla el 
número de dispositivos al considerar una segunda rama en paralelo, y, en 
segundo lugar, un sistema aún mayor en el que el número de dispositivos a tomar 
en cuanta varía entre 6 y 36 en función de las alternativas de diseño. Además, 
el uso de la metodología se extiende al aplicarla y testarla en otro campo de la 
ingeniería, con el propósito de aportar soluciones fiables para redes de 
comunicación para subestaciones eléctricas. 
 
Con el propósito de analizar los resultados obtenidos, el desempeño de las 
diferentes configuraciones es concienzudamente comparado al usar una métrica 
específica (el hipervolumen) y test estadísticos de significancia. Por tanto, como 
objetivo secundario de la presente investigación subyace el uso e interpretación 
de los resultados obtenidos. 
 
A continuación, se exponen las conclusiones alcanzadas tras el desarrollo de la 
investigación, en la que, como se indicó anteriormente, se acoplan Algoritmos 
Evolutivos Multiobjetivo y Simulación por Eventos Discretos, con el propósito de 
la optimización simultánea del diseño estructural de sistemas técnicos (en base 
a la selección automática del diseño y dispositivos redundantes) y de la 
estrategia de mantenimiento (basada en la determinación del periodo óptimo 
para realizar tareas de mantenimiento preventivo). Disponibilidad y Coste son los 
objetivos en conflicto a considerar. El acople de ambas técnicas fue previamente 



considerado por diversos autores para la resolución de ambos problemas por 
separado, pero nunca considerándolos conjuntamente, con el propósito de 
determinar el periodo óptimo para el inicio de las correspondientes tareas de 
mantenimiento preventivo. El Algoritmo Evolutivo Multiobjetivo aporta una 
población de individuos, cada uno de los mismos codificando una alternativa de 
diseño y su correspondiente estrategia de mantenimiento. 
 
Cada individuo representa una posible solución al problema, en la cual coexisten 
tanto las variables de decisión con relación al diseño estructural como las 
variables de decisión con respecto a la estrategia de mantenimiento. Tal idea 
implica la consideración a lo largo del proceso evolutivo de variables de decisión 
de diferente naturaleza, por lo que diversas transformaciones deben ser 
consideradas. Por una parte, se empleó codificación real cuando coexistieron 
variables de decisión de naturaleza binaria y entera para el diseño, y variables 
de decisión de naturaleza entera para la estrategia de mantenimiento. Por otra 
parte, se empleó codificación binaria cuando coexistieron variables de decisión 
de naturaleza binaria para el diseño, y variables de decisión de naturaleza entera 
para la estrategia de mantenimiento. En todos los casos, las transformaciones 
precisas cumplieron su función perfectamente. 
 
Una vez el Algoritmo Evolutivo Multiobjetivo suministra una población de 
individuos, estos son usados para modificar y evaluar el Perfil de Funcionabilidad 
del Sistema mediante Simulación por Eventos Discretos. Los individuos 
evolucionan generación tras generación hasta alcanzar el criterio de parada. 
 
Este proceso fue en primer lugar aplicado a un sistema técnico tomado como 
caso de estudio, para el que se aplicaron cinco Algoritmos Evolutivos 
Multiobjetivo pertenecientes al estado del arte (SMS-EMOA, MOEA/D, MOEA/D-
DE, NSGA-II y GDE3) y su desempeño fue rigurosamente comparado. 
Finalmente, se obtuvo un conjunto de soluciones óptimas no dominadas. 
 
Como conclusión a este estudio, cabe poner de manifiesto que el uso de 
Algoritmos Evolutivos Multiobjetivo acoplados a Simulación por Eventos 
Discretos para la optimización conjunta del diseño de sistemas y su estrategia 
de mantenimiento aporta soluciones de equilibrio Disponibilidad-Coste a 



problemas del mundo real, en los que se empleó información basada en 
experiencia de campo. Además, en relación con los Algoritmos Evolutivos 
Multiobjetivo empleados para la resolución del caso de estudio, los métodos que 
emplean como criterio para guiar la búsqueda de soluciones el indicador 
Hipervolumen (SMS-EMOA) y la dominancia de Pareto (NSGA-II y GDE3) 
presentaron mejor desempeño que los métodos basados en la descomposición 
del espacio de búsqueda (MOEA/D y MOEA/DDE). Sin embargo, el operador 
empleado para la creación de nuevos individuos no parece tener un efecto 
relevante, dado que los métodos que emplean Cruce Binario Simulado (SMS-
EMOA y NSGA-II) presentaron un desempeño similar al método que emplea 
Evolución Diferencial (GDE3).  
 
Una vez resuelto el caso de estudio mediante el uso de los diversos Algoritmos 
Evolutivos Multiobjetivo, las configuraciones que mostraron mejor desempeño se 
seleccionaron con el propósito de profundizar en el análisis. Por una parte, se 
analizó el efecto del tamaño de la muestra y su dirección extrema mínima, lo cual 
pone de manifiesto los beneficios del empleo de la metodología propuesta. Se 
demuestra la positiva sinergia del acople de Algoritmos Evolutivos Multiobjetivo 
y Simulación por Eventos Discretos cuando una única simulación por individuo 
de la población es empleada para la evaluación de las funciones objetivo, al 
aportar resultados competitivos. Tales resultados se confirman al contrastar con 
un análisis en base a valores promedio obtenidos atendiendo a ambas funciones 
objetivo para cada solución no dominada aportada por las diversas 
configuraciones. La metodología propuesta resulta ser un enfoque 
computacionalmente eficiente y robusto (no dependiente de los parámetros en 
relación con el número de muestras o la dirección de búsqueda para la 
minimización) en comparación con el uso de Simulación Monte Carlo, cuando se 
pretende resolver un problema de optimización multiobjetivo en el campo de la 
fiabilidad. Por otra parte, para el caso de estudio, el beneficio económico a partir 
del empleo de la metodología propuesta para la optimización conjunta del diseño 
estructural del sistema y su estrategia de mantenimiento se cuantifica en el 
intervalo de entre el 4 y el 10 por ciento.      
 
Con el propósito de demostrar la escalabilidad y generalización de la 
metodología propuesta, esta fue aplicada a dos sistemas de mayor complejidad. 



Ambos problemas se resolvieron de manera satisfactoria. Además, se realizó un 
estudio sobre el impacto en la modificación del tamaño del cromosoma para el 
sistema de mayor complejidad, para el que el conjunto de soluciones no 
dominadas aportadas cuando las variables de decisión del diseño presentan 
naturaleza binaria (cromosoma largo) presentó un mayor valor de hipervolumen 
que cuando las variables de decisión del diseño presentan naturaleza entera 
(cromosoma corto).     
 
Una vez definida, desarrollada, implementada y testada la metodología tanto 
para el caso de estudio como para sistemas de mayor complejidad, un estudio 
más profundo fue llevado a cabo. Tal estudio abarcó, en primer lugar, un 
experimento en relación con la codificación del problema para la comparación 
del desempeño de siete tipos de codificación (real, binaria con cruce de un punto, 
binaria con cruce de dos puntos, binaria con cruce uniforme, código Gray con 
cruce de un punto, código Gray con cruce de dos puntos y código Gray con cruce 
uniforme). En segundo lugar, el estudio consistió en un experimento en relación 
con la precisión, mediante la comparación del desempeño al usar codificación 
binaria con tres niveles de precisión para un rango de unidades temporales (la 
hora, el día y la semana), lo cual presenta un impacto en el tamaño del 
cromosoma (cuanto menor la unidad temporal, mayor el tamaño del 
cromosoma). En este caso, se empleó como Algoritmo Evolutivo Multiobjetivo el 
NSGA-II, ya que tal método resultó muy competitivo en el estudio elaborado 
previamente. Un conjunto de soluciones óptimas no dominadas fue obtenido en 
ambos experimentos, empleando el caso de estudio definido previamente como 
base para el desarrollo de este estudio. 
 
Con respecto al experimento sobre codificaciones, la codificación binaria con 
cruce de dos puntos resultó mejor ordenada cuando se aplicó la prueba de 
Friedman (en base a la distribución final aportada por el indicador Hipervolumen), 
aunque no se apreciaron diferencias estadísticamente significativas. En cuanto 
al experimento sobre precisión, la codificación binaria con cruce de dos puntos y 
la hora como unidad temporal resultó mejor ordenada cuando se aplicó la prueba 
de Friedman, aunque no se apreciaron diferencias estadísticamente 
significativas. Una interesante conclusión emerge a partir de este segundo 
experimento, la cual incide en la flexibilidad sobre la unidad temporal a emplear 



para planificar las tareas de mantenimiento preventivo. El uso de la hora, el día 
o la semana como unidad temporal no presenta efecto significativo en el 
desempeño, por lo que, bajo las condiciones de estudio, las tareas de 
mantenimiento preventivo pueden ser planificadas usando la semana como 
unidad temporal. Ello permite un mejor rango de tiempo para planificar en 
comparación al uso del día o la hora como unidad temporal. 
 
Una vez estudiados los diversos Algoritmos Evolutivos Multiobjetivo, las 
codificaciones y los niveles de precisión, el caso de estudio previamente 
estudiado vuelve a ser explorado, pero en esta ocasión se consideraron dos 
enfoques desde el punto de vista de la optimización multiobjetivo. Por una parte, 
un enfoque que atiende a dos objetivos, Disponibilidad y Coste. Por otra parte, 
un enfoque que atiende a tres objetivos, donde nuevamente, Disponibilidad y 
Coste son los objetivos a evaluar. Sin embargo, en este caso, el Coste es 
descompuesto en Coste de Adquisición y Coste de Operación, atendiendo a un 
enfoque de multiobjetivización.  
 
Con el propósito de identificar el enfoque de mejor desempeño, se lleva a cabo 
una concienzuda prueba de hipótesis. Esta consiste en comparar el desempeño 
de dos Algoritmos Evolutivos Multiobjetivo (SMS-EMOA y NSGA-II), cuando se 
consideran diversas configuraciones de los mismos. Se emplean en este caso 
codificación binaria y real. Cuando el enfoque de dos objetivos fue estudiado, no 
se encontraron diferencias significativas entre las configuraciones empleadas. 
Sin embargo, la configuración que obtuvo un mejor orden cuando se aplicó la 
prueba de Friedman se obtuvo cuando se empleó SMS-EMOA con codificación 
binaria y un gen por cromosoma como probabilidad de mutación. Cuando el 
enfoque de tres objetivos fue estudiado, tampoco se encontraron diferencias 
significativas entre las configuraciones empleadas. Sin embargo, la 
configuración que obtuvo un mejor orden cuando se aplicó la prueba de 
Friedman se obtuvo cuando se empleó NSGA-II con codificación real y 1.5 genes 
por cromosoma como probabilidad de mutación. 
 
A continuación, fueron comparadas las configuraciones que obtuvieron un mejor 
orden cuando se aplicó la prueba de Friedman bajo ambos enfoques. En esta 
ocasión, se encontraron diferencias significativas, por lo que es posible concluir 



que se obtuvo un mejor desempeño cuando se aplicó la multiobjetivización. 
Además, NSGA-II con codificación real y 1.5 genes por cromosoma como 
probabilidad de mutación resultó mejor ordenado cuando se aplicó la prueba de 
Friedman, aportando a su vez el valor más alto para el indicador hipervolumen 
en cuanto al promedio, mediano y máximo. Por tanto, tal configuración y enfoque 
puede ser recomendado para resolver el problema de la optimización conjunta 
del diseño y la estrategia de mantenimiento, la cual aporta el mejor balance 
Disponibilidad-Coste. 
 
Finalmente, la metodología propuesta se aplicó a un campo diferente de la 
ingeniería, con el propósito de suministrar diseños estructurales fiables para 
redes de comunicación para subestaciones eléctricas. Un caso de estudio 
específico fue explorado, para el cual se emplearon las conclusiones alcanzadas 
previamente como parámetros de configuración de los Algoritmos Evolutivos 
Multiobjetivo. Nuevamente, se atendió a dos enfoques en relación con la 
optimización multiobjetivo. Por una parte, un enfoque bajo dos objetivos, donde 
se consideraron Disponibilidad y Coste. Por otra parte, un enfoque bajo tres 
objetivos, donde se consideraron Disponibilidad y Coste, si bien este último fue 
descompuesto en Coste de Adquisición y de Operación (multiobjetivización). La 
aplicación de la metodología permite obtener soluciones de compromiso entre 
objetivos. Con el propósito de localizar la configuración de mejor desempeño, se 
realizó una concienzuda prueba de hipótesis. 
 
El proceso se aplicó a una sección de un subsistema que sigue el estándar 
IEC61850. Dicho subsistema es una bahía de línea de bus sencillo, de una 
pequeña subestación para la transformación de energía de 220 kV a 132 kV. De 
nuevo, se comparó el desempeño de dos Algoritmos Evolutivos Multiobjetivo 
(SMS-EMOA y NSGA-II), para lo cual se emplearon diversas configuraciones de 
tales métodos. 
 
En este caso, no se encontraron diferencias estadísticamente significativas 
cuando se empleó el enfoque de dos objetivos. Sin embargo, la configuración 
mejor ordenada según la prueba de Friedman se obtuvo cuando se empleó 
NSGA-II con codificación real y un gen por cromosoma como probabilidad de 
mutación. Cuando se empleó el enfoque de tres objetivos, se encontraron 



diferencias estadísticamente significativas. En este caso, el mejor desempeño se 
obtuvo cuando se empleó SMS-EMOA con codificación real y un gen por 
cromosoma como probabilidad de mutación. Las configuraciones mejor 
ordenadas se escogieron para su comparación, no encontrándose diferencias 
estadísticamente significativas en el desempeño en este caso. Sin embargo, la 
configuración mejor ordenada según la prueba de Friedman se obtuvo cuando 
se empleó la multiobjetivización (enfoque bajo tres objetivos). Por tanto, cabe 
concluir que la metodología aplicada es robusta al no darse diferencia 
estadísticamente significativa entre ambos enfoques. Sin embargo, un efecto 
positivo se pone de manifiesto al emplear la multiobjetivización al resultar mejor 
ordenado desde el punto de vista de la Prueba de Friedman. En este caso, SMS-
EMOA con codificación real y un gen por cromosoma como probabilidad de 
mutación fue la configuración que obtuvo un mejor orden desde el punto de vista 
de la prueba de Friedman. Además, obtuvo el mejor valor promedio, mediano, 
máximo y mínimo en cuanto al hipervolumen. Por tanto, tal configuración podría 
ser recomendada para la resolución de un problema de este tipo.  
 
Como se ha demostrado, la metodología propuesta es extensible a otros campos 
de la ingeniería para la resolución de problemas en los que se optimiza de 
manera conjunta el diseño y la estrategia de mantenimiento de sistemas.  
 
En relación con el futuro de la presente investigación, diversas líneas quedan 
abiertas: 

• La casuística estudiada a lo largo de la presente investigación en relación 
con la Fiabilidad del sistema está claramente definida y delimitada. Esta 
considera los siguientes aspectos, los cuales podrían ser extendidos tal y 
como se comenta a continuación. 

o Se consideran dos estados para el sistema, siendo estos el de 
operación o fallo. Mediante la atención a estados de deterioro, 
podrían ser considerados sistemas multi-estado. 

o Tras las reparaciones o actividades de mantenimiento correctivo, 
todos los dispositivos recuperan su estado tan-bueno-como-nuevo. 
Podrían considerarse reparaciones imperfectas. 

o Se han considerado redundancias activas, por lo que el sistema 
satisface la función requerida mientras las oportunas redundancias 



funcionen correctamente. Podrían considerarse otras 
redundancias tales como frías, cálidas o en estado de espera. 

o Cada dispositivo se considera como una unidad simple desde el 
punto de vista del mantenimiento. Un dispositivo de este tipo no 
puede ser descompuesto en menores niveles mantenibles. Podrían 
considerarse dispositivos de unidades múltiples en futuras 
investigaciones, así como múltiples modos de fallo. 

o Las actividades de mantenimiento preventivo se planifican en 
función del tiempo. Tales actividades podrían planificarse en 
función de la edad, uso o condición. 

o Las tareas de mantenimiento preventivo comienzan 
inmediatamente, una vez un dispositivo no satisface la función 
requerida, por lo que se considera la monitorización continua. Tal 
circunstancia podría no ser considerada por lo que podría 
atenderse al testeo del estado del dispositivo con el propósito de 
iniciar las correspondientes tareas de mantenimiento.  

o No se consideran dependencias entre dispositivos, por lo que estos 
operan de manera aislada. Podrían considerarse dependencias 
entre dispositivos. 

• En lo que a los Algoritmos Evolutivos Multiobjetivo hace referencia, se 
emplearon diversos métodos pertenecientes al estado del arte a lo largo 
de la presente investigación. Estos se consideran métodos estándar. 
Métodos más modernos podrían ser empleados con el propósito de 
analizar y comparar su desempeño. Además, cuando se exploró el 
enfoque bajo multiobjetivización, cuanto más complejo el sistema, se 
observó mayor diferencia estadísticamente significativa en el desempeño. 
Esta circunstancia podría ser explorada más profundamente al aplicar la 
metodología a diseños estructurales más complejos. 

 
Estos son algunos ejemplos sobre la dirección que podrían tomar futuras 
investigaciones. Como se observa, quedan abiertas diversas líneas de estudio. 
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0. CHAPTER 0: INTRODUCTION AND OBJECTIVES. 
 
0.1. Presentation of the research. 
 
In the reliability field, several studies have been developed at Centro de 
Aplicaciones Numéricas en Ingeniería (CEANI) of Instituto Universitario de 
Sistemas Inteligentes y Aplicaciones Numéricas en Ingeniería (SIANI) of 
Universidad de Las Palmas de Gran Canaria (ULPGC) since Professor Blas José 
Galván González presented his doctoral thesis in 1999 [1]. This was the main stone 
in a reliability research line which has been kept till recent days [2 - 4]. 
 
Furthermore, optimisation in the reliability field, and in special by using Evolutionary 
Algorithms in order to solve engineering problems, has been widely faced in our 
research institute [5 - 10]. For the present research, has been considered such a 
trajectory and research line in order to continue with the development of the 
knowledge. 
 
From the Reliability of technical systems’ point of view, Doctor K. Misra defined such 
a concept (Reliability) as “the probability of failure-free operation under specified 
conditions over an intended period of time” [11]. This definition leads to interest in 
the time taken for a system to fail (Time to Failure), which is a continuous random 
variable that can be represented by a continuous probability distribution. Therefore, 
the reliability concept does not allow studying events that occur after failure, so this 
is a concept regarding non-reparable elements. If the behaviour of reparable 
elements wants to be modelled, it will be necessary to refer to the Availability 
concept. The Doctors J. Andrews and T. Moss defined such a concept in three 
different senses [12]: 

• In relation to standby systems which are required to function on demand 
(e.g., safety protection systems), 

• In relation to the probability that systems are working at a particular time 
(e.g., continuously operating systems whose failure is revealed once it 
occurs and the repair process starts immediately), 
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• In relation to the fraction of the total time in which systems are available to 
perform their required function. 

 
The first definition is suitable for standby systems, whose function is required on 
demand. An example of this kind of systems are the protection systems. Trying to 
prevent dangerous situations, the protection system monitors if an undesirable 
event takes place. If such a protection system is in the failure state when its function 
is demanded, this will be unavailable. Since the demand can occur at any time, the 
more time the system operates, the better both its probability of working and 
availability. Another example lies in redundant systems. This kind of systems keeps 
on the standby state while the main system is operating. When the main system 
fails, the redundant system operation is demanded. In case of failure of the 
redundant system, such a failure is revealed when its operation is demanded. 
Hence, the repair procedure starts when the failure is detected.      
 
The second definition is appropriate for continuous operating systems, whose failure 
is disclosed at the moment. In this case, the repair procedure starts immediately.  
 
The third definition is interesting to estimate the performance of a process because 
it is possible to compute the total production from the fraction of time in which the 
system is satisfactorily operating. This definition claims about the possibility of 
systems of being in the operating state at different time intervals all along its life 
cycle or mission time. This is the reason why it is possible to model not only the time 
to failure but also the time to repair by employing the Availability concept. The cycle 
failure-repair is repeated up to complete the mission time. The probability of non-
operating for a system is represented by the concept Unavailability and it can be 
computed as Unavailability = 1 - Availability.     
 
It is possible to establish a direct relation between Reliability and Availability. Using 
the Availability concept is possible to model the complete life cycle for a reparable 
element. However, using the Reliability concept, it is possible to model the life of a 
reparable element up to the first failure occurs [13]. Previously, the relationship 
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between Reliability and Availability regarding time was claimed. The interest in the 
time to failure has already been mentioned regarding Reliability, however, when 
referring to Availability, the interest in the time encompasses not only the time to 
failure but also the time taken to repair the system (Time to Repair) and to recover 
the operating state.  
 
Working with reparable elements implies the main objective of achieving maximum 
Availability. When a repairable system is not available, the system enters an 
unproductive phase. Throughout this, not only are resources not generated, but 
also, they are consumed until the system is brought back to the available state. 
There are many strategies to improve the availability of reparable elements. This 
research pays attention to two particular strategies: Including redundant devices and 
determining the time period to carry out preventive maintenance tasks regarding the 
devices including in the system design.    
 
On the one hand, a redundancy is a component added to a subsystem from a series-
parallel configuration in order to increase the number of alternative paths [14]. 
Including alternative paths by using redundant devices makes possible that the 
system keeps on working although the main device has failed. Moreover, including 
redundant devices in systems requires a modification of the design.  
 
On the other hand, as it was explained above, when a reparable element is available 
it keeps on a productive phase. A reparable element may not be available because 
of a failure or a scheduled shutdown regarding a preventive maintenance activity. 
After a failure, the reparable element needs a time to repair and to recover the 
available state. However, after a scheduled shutdown in order to perform a 
preventive maintenance activity, the reparable element needs a time to develop 
such an activity and to recover the available state. Speaking in general, the time 
needed to perform a preventive maintenance activity is considered smaller than the 
time needed to repair an element (for reasons such as willing and trained human 
personnel, or available spare parts). Therefore, it is important to identify the optimum 
moment in which the system must be stopped, and a preventive maintenance 
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activity must be conducted. This should ideally be done before the occurrence of 
the failure but as close as possible to such a failure in order to maximise the total 
system available time. 
 
When projecting and building new industrial facilities, getting integrated design 
alternatives and maintenance strategies are of critical importance to achieve the 
physical assets optimal performance, which is needed to be competitive in the actual 
global markets. 
 
The present research explores the problem of achieving simultaneously design 
alternatives and maintenance strategies regarding such design alternatives, which 
optimise the performance of the physical assets. This is done from a multi-objective 
optimisation point of view by employing Multi-objective Evolutionary Algorithms. 
Optimisation is particularly useful when the number of potential solutions is high and 
achieving the best solution is very difficult. Instead of the best solution, some 
sufficiently good solutions can be obtained [15]. By this way, interesting information 
is supplied to the decision makers, who will have to decide what the preferable 
design is, taking into account their requirements. 
 
Furthermore, when the behaviour of a system wants to be emulated, the Discrete 
Event Simulation arises like a power tool to model complex systems, which can be 
analysed much more accurately due to a more realistic representation of their 
behaviour in practice. 
 
0.2. Objectives. 
 
For all above, the main objectives of the present research are summarising as 
follows: 

• A methodology to the simultaneous optimisation of systems’ structural design 
and their maintenance strategy pretends to be defined, implemented, and 
validated. Not only corrective maintenance but also preventive maintenance 
-by determining the periodic time to conduct the preventive maintenance 
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tasks for the devices included in the system’s design- must be considered for 
the maintenance strategy. 

• Such a methodology will couple Multi-objective Evolutionary Algorithms and 
Discrete Event Simulation. Therefore, a thoroughly study about Multi-
objective Evolutionary Algorithms to solve complex problems in the 
engineering field must be conducted. Moreover, since a simulation approach 
will be employed, such a technique must be analysed in detail. 

• A thoroughly study regarding the convergence of the solutions that the 
methodology supplies must be conducted. To do that, the methodology will 
be applied to a case study, which will be explored along the research. Several 
Multi-objective Evolutionary Algorithms will be applied, and their parameters 
will be studied by following a cascade method where: 

o Firstly, attending to the state-of-the-art, a set of Multi-objective 
Evolutionary Algorithms will be chosen by considering their 
mechanism to create new individual. This is due to the fact that such 
a criterion is commonly used to classify such algorithms. Moreover, in 
order to find out the configurations that present a better performance, 
the main parameters of the algorithms must be meticulously explored.  

o Secondly, the encodings and accuracy levels regarding times to start 
a preventive maintenance task must be considered. The encoding has 
a direct impact in the size of the chromosome, and it may have an 
effect in the performance of the algorithms that must be explored. 
Moreover, the impact of the accuracy levels regarding times to start a 
preventive maintenance task can reveal information from a practical 
point of view. Concretely, the hour, the day and the week will be 
considered as time units for planning preventive maintenance tasks. 
The flexibility regarding the time interval to conduct a preventive 
maintenance task can be helpful to the decision makers.        

o Finally, a technique regarding how to deal with the objective functions 
is attended to achieve a better performance. It is the case of the multi-
objectivisation technique, which is considered for the present 
research. 
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• In order to test the scalability and generalisation of the methodology, such a 
methodology will be applied to two more complex systems. The case study 
is a hydraulic system formed by a maximum of 7 devices. The methodology 
will be applied to consider a hydraulic system which doubles this number of 
devices on the and hand, and a bigger hydraulic system with a number of 
devices between 6 and 36 devices on the other hand. Moreover, extending 
the use of the methodology is followed, so this will be applied and tested in a 
different engineering field, in order to supply reliable architectural designs of 
Substation Communication Networks. 

• To analyse the achieved results, in all cases above mentioned, the 
performances are compared in detail by using a specific metric (the 
hypervolume) and statistical significance tests (including post-hoc analysis). 
Therefore, achieving the knowledge regarding how to use and to interpretate 
the outcomes of applying such techniques is required as a secondary 
objective of the research. 

 
0.3. Derived publications from the research. 
 
As a result of the conducted research, several publications and presentations were 
developed. They are described as follow: 
 
0.3.1. Indexed JCR contributions. 
 

• Cacereño A, Greiner D, Galván BJ. Multi-Objective Optimum Design and 
Maintenance of Safety Systems: An In-Depth Comparison Study Including 
Encoding and Scheduling Aspects with NSGA-II. Mathematics. 2021; 
9(15):1751. https://doi.org/10.3390/math9151751.        

 
0.3.2. Book chapters. 
 

• Cacereño A., Galván B., Greiner D. (2021) Solving Multi-objective Optimal 
Design and Maintenance for Systems Based on Calendar Times Using 
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NSGA-II. In: Gaspar-Cunha A., Periaux J., Giannakoglou K.C., Gauger N.R., 
Quagliarella D., Greiner D. (eds) Advances in Evolutionary and Deterministic 
Methods for Design, Optimization and Control in Engineering and Sciences. 
Computational Methods in Applied Sciences, vol 55. Springer, Cham. 
https://doi.org/10.1007/978-3-030-57422-2_16. 
 

• Cacereño A., Greiner D., Galván B. (2021) Multi-Objective Optimal Design 
and Maintenance for Systems Based on Calendar Times Using MOEA/D-DE. 
In: Vasile M., Quagliarella D. (eds) Advances in Uncertainty Quantification 
and Optimization Under Uncertainty with Aerospace Applications. UQOP 
2020. Space Technology Proceedings, vol 8. Springer, Cham. 
https://doi.org/10.1007/978-3-030-80542-5_5. 

 
0.3.3. Conferences. 
  

• A. Cacereño, B. Galván, D. Greiner. Multiobjective Optimal Design and 
Maintenance for Systems based on Calendar Times. 13th International 
Conference on Evolutionary and Deterministic Methods for Design, 
Optimisation and Control with Applications to Industrial and Societal 
Problems, EUROGEN 2019. Guimarães, Portugal (2019). 
 

• A. Cacereño, B. Galván, D. Greiner. Multiobjective Optimal Design and 
Maintenance for Systems based on Calendar Times using MOEA/D-DE. 
International Conference on Uncertainty Quantification & Optimisation, 
UQOP 2020. Brussels, Belgium (2020). 
 

• A. Cacereño, B. Galván, D. Greiner. Multiobjective Optimal Design and 
Maintenance for Systems based on Calendar Times using GDE3. 14th World 
Congress on Computational Mechanics (WCCM XIV) and 8th European 
Congress on Computational Methods in Applied Sciences and Engineering 
- ECCOMAS 2020. Paris, France (2021). 
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• A. Cacereño, D. Greiner, B. Galván. Optimización del Diseño y la Estrategia 
de Mantenimiento de Sistemas atendiendo a 3 objetivos: Indisponibilidad y 
Costes de Adquisición y Operación. Congreso de Métodos Numéricos en 
Ingeniería, 12-14 septiembre 2022. Las Palmas de Gran Canaria, España 
(2022) (Accepted). 

 
0.4. Structure of the document. 
 
The structure of the thesis document is organised as follows: Chapter 1 introduces 
some basic concepts on Reliability. Chapter 2 deals with Multi-objective 
Optimisation by using Evolutionary Algorithms. In Chapter 3, such a Multi-objective 
Optimisation by using Evolutionary Algorithms is focused on the reliability problem 
to solve. Chapter 4 describes the methodology to apply in order to solve the problem 
handled. Chapter 5 shows applications and their experimental results. Finally, 
Chapter 6 explains the conclusions and future research. 
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1. CHAPTER 1: BASIC CONCEPTS ON RELIABILITY. 
 
1.1. Background.  
 
Although an element may be well designed and built, it will end up failing eventually. 
The more useful probabilistic concepts to describe the performance of an element 
are Reliability and Availability. When reparable elements are considered, they 
usually start their useful life working satisfactorily. All along their life cycle they 
commute among operating and failure states. After failing, a repair task is carried 
out to recover the operating state. The performance of reparable elements can be 
measured by using their Availability, which relates the operating time and the total 
mission time or life cycle. The process until to failure, the process up to repair and 
finally, the whole process is described as follow.       
 
1.2. Time to failure. 
 
When a non-reparable element starts operating at time 𝑡𝑡 = 0, it is interesting to know 
some details about the time that such an element will be working. The time from 𝑡𝑡 =
0  up to the failure takes place it is known as the “time to failure”. If multiple 
experiments are conducted regarding an element, which is operating until the failure 
occurrence, the “time to failure” will not be the same in all cases. The “time to failure” 
will suffer variations so it behaves as a random variable 𝑇𝑇. Concretely, the “time to 
failure” can take any value within a real interval so it behaves as a continue random 
variable. 
 
As a continue random variable, the “time to failure” presents a cumulative function 
or distribution function 𝐹𝐹(𝑡𝑡) = 𝑃𝑃(𝑇𝑇 ≤ 𝑡𝑡), when 𝑡𝑡 > 0. Such a distribution function 
denotes the probability that a component fails within the interval (0, 𝑡𝑡]  or the 
probability that a component does not work beyond 𝑡𝑡. As a probability, it reaches a 
value of 0 ≤ 𝐹𝐹(𝑡𝑡) ≤ 1. The shape of a distribution function with value 0 at time 𝑡𝑡 = 0 
is shown in the Figure 1.1.       
 



 
CONTRIBUTIONS ON RELIABILITY TO RECONDITION THE MAINTENANCE PLAN AND THE DESIGN OF SYSTEMS 

BY USING EVOLUTIONARY ALGORITHMS 

 
 

 
 
 

10 

 
 
 
 
 
 
 
 
 
        
 

Figure 1.1: Distribution function. 

 
Moreover, the “time to failure” has a density function 𝑓𝑓(𝑡𝑡) so the area contained 
under such a density function is the unit and its probability of being located between 
the times values 𝑡𝑡1 and 𝑡𝑡2 given 𝑡𝑡1 < 𝑡𝑡2 is equal to the area contained among these 
two values. The Equation 1.1 shows the way to compute such a probability when 
𝑡𝑡1 = 0 y 𝑡𝑡2 = 𝑡𝑡 are considered.    
 

𝐹𝐹(𝑡𝑡) = 𝑃𝑃(𝑇𝑇 ≤ 𝑡𝑡) = � 𝑓𝑓(𝑢𝑢)𝑑𝑑𝑢𝑢
𝑡𝑡

0
 (1.1) 

 
It is possible to establish the relationship between 𝑓𝑓(𝑡𝑡)  and 𝐹𝐹(𝑡𝑡)  by using the 
Equation 1.2. 
 

𝑓𝑓(𝑡𝑡) =
𝑑𝑑
𝑑𝑑𝑡𝑡
𝐹𝐹(𝑡𝑡) (1.2) 

 
The shape of a density function is shown in the Figure 1.2.  
  

𝐹𝐹(𝑡𝑡) 

𝑡𝑡 

1 
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Figure 1.2: Density function.  

 
The probability that an element fails within the period [ 𝑡𝑡 , 𝑡𝑡 + 𝑑𝑑𝑡𝑡)  is equivalent 
to 𝑓𝑓(𝑡𝑡)𝑑𝑑𝑡𝑡 . The transition to the failure state regarding such an element can be 
characterised by employing the failure rate  ℎ(𝑡𝑡) . Thus, ℎ(𝑡𝑡)𝑑𝑑𝑡𝑡  represents the 
probability that an element fails within the interval [𝑡𝑡 , 𝑡𝑡 + 𝑑𝑑𝑡𝑡)  given that it was 
working within the interval [0, 𝑡𝑡).     
 
The shape of ℎ(𝑡𝑡) is shown in the Figure 1.3, which is denominated the “bath-tub” 
curve due to its characteristic shape.  
 
 
 
 
 
 
 
 
 
 

Figure 1.3: The “bath-tub” curve.  
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The failure rate usually is high during the initial phase. This is due to the appearance 
of hidden failures. Once the element survives such a phase, the failure rate trends 
to steady and to maintain at this level during a period of time. After that, an increment 
in the wear of the element is produced. Attending to the “bath-tub” curve, the lifetime 
of an element can be divided in three typical intervals: the “burn-in” period, the 
“useful-life” period and the “wear-out” period.  
 
1.3. Time to repair. 
 
Developing a similar process, it is possible to characterise the “time to repair”. As a 
continue random variable, it presents a cumulative or distribution function 𝐺𝐺(𝑡𝑡) 
which denotes the probability that a given failed component is repaired within the 
interval (0, 𝑡𝑡]. In this case, the transition from the failed state to the operating state 
is characterised by 𝑚𝑚(𝑡𝑡).     
 
1.4. Unavailability. 
 
The concepts “time to failure” and “time to repair” were previously introduced. 
Whereas the concept Reliability is related to the “time to failure”, the concept 
Maintainability is related to the “time to repair”. Under the Unavailability concept, 
both Reliability and Maintainability are related in order to define the way in which the 
system can fulfil the function for which it was designed, over a period of time. 
Andrews, J. and Moss, T. show how the availability can be calculated [12] by using 
the failure (𝑤𝑤(𝑡𝑡)) and repair (𝑣𝑣(𝑡𝑡)) intensities.  

• A device, which is continuously subjected to the failure and repair process, 
presents a failure probability in the time interval  [𝑡𝑡, 𝑡𝑡 + 𝑑𝑑𝑡𝑡) , given it was 
working at 𝑡𝑡 = 0, represented by 𝑤𝑤(𝑡𝑡)𝑑𝑑𝑡𝑡. Two situations lead to failure in 
[𝑡𝑡, 𝑡𝑡 + 𝑑𝑑𝑡𝑡): 

o The device works continuously from 0 to 𝑡𝑡 until the first failure in the 
time interval [𝑡𝑡, 𝑡𝑡 + 𝑑𝑑𝑡𝑡) (the probability of this is given by 𝑓𝑓(𝑡𝑡)𝑑𝑑𝑡𝑡, where 
𝑓𝑓(𝑡𝑡) is the failure density function). 
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o The device fails in [𝑡𝑡, 𝑡𝑡 + 𝑑𝑑𝑡𝑡) but this is not the first failure. In this 
second situation, the device has experienced one or more repairs prior 
to the failure and the last one was carried out in the interval [𝑢𝑢,𝑢𝑢 + 𝑑𝑑𝑢𝑢) 
(the probability of this is given by 𝑤𝑤(𝑢𝑢)𝑑𝑑𝑢𝑢 × 𝑓𝑓(𝑡𝑡 − 𝑢𝑢)𝑑𝑑𝑡𝑡. 

 
The repair time 𝑢𝑢  can occur at any point between 0 and 𝑡𝑡  so adding all 
possibilities gives the Equation 1.3. 

   

𝑤𝑤(𝑡𝑡)𝑑𝑑𝑡𝑡 = 𝑓𝑓(𝑡𝑡)𝑑𝑑𝑡𝑡 + � 𝑓𝑓(𝑡𝑡 − 𝑢𝑢)𝑣𝑣(𝑢𝑢)𝑑𝑑𝑢𝑢 𝑑𝑑𝑡𝑡
𝑡𝑡

0
 (1.3) 

 
• A repair can only occur in the interval  [𝑡𝑡, 𝑡𝑡 + 𝑑𝑑𝑡𝑡)  in case of failure has 

occurred at some interval [𝑢𝑢, 𝑢𝑢 + 𝑑𝑑𝑢𝑢)  prior to  𝑡𝑡 . The probability of this is 
(𝑡𝑡 − 𝑢𝑢)𝑑𝑑𝑡𝑡 × 𝑤𝑤(𝑢𝑢)𝑑𝑑𝑢𝑢, where 𝑤𝑤(𝑢𝑢)𝑑𝑑𝑢𝑢 is the probability of failing in [𝑢𝑢,𝑢𝑢 + 𝑑𝑑𝑢𝑢) 
given it was working at 𝑡𝑡 =  0, 𝑔𝑔(𝑡𝑡 − 𝑢𝑢)𝑑𝑑𝑡𝑡 is the probability of repair in the 
interval [𝑡𝑡, 𝑡𝑡 + 𝑑𝑑𝑡𝑡) given it has been in failed state since last failure in the 
interval [𝑢𝑢,𝑢𝑢 + 𝑑𝑑𝑢𝑢) and it was working at 𝑡𝑡 =  0 and knowing that 𝑔𝑔(𝑡𝑡) is the 
repair density function. Since 𝑢𝑢 can vary between 0 and 𝑡𝑡, the Equation 1.4 
can be obtained. 

𝑣𝑣(𝑡𝑡)𝑑𝑑𝑡𝑡 = � 𝑔𝑔(𝑡𝑡 − 𝑢𝑢)𝑤𝑤(𝑢𝑢)𝑑𝑑𝑢𝑢 𝑑𝑑𝑡𝑡
𝑡𝑡

0
 (1.4) 

 
• Cancelling 𝑑𝑑𝑡𝑡  from the Equations 1.3 and 1.4, the simultaneous integral 

equations defining the unconditional failure and repair intensities, which are 
shown in the Equations 1.5, are obtained.     
 

𝑤𝑤(𝑡𝑡) = 𝑓𝑓(𝑡𝑡) + � 𝑓𝑓(𝑡𝑡 − 𝑢𝑢)𝑣𝑣(𝑢𝑢)𝑑𝑑𝑢𝑢
𝑡𝑡

0
 

(1.5) 
𝑣𝑣(𝑡𝑡) = � 𝑔𝑔(𝑡𝑡 − 𝑢𝑢)𝑤𝑤(𝑢𝑢)𝑑𝑑𝑢𝑢

𝑡𝑡

0
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The Unavailability (𝑄𝑄(𝑡𝑡)) can be computed from the Equation 1.6.  
 

𝑄𝑄(𝑡𝑡) = � [𝑤𝑤(𝑢𝑢) − 𝑣𝑣(𝑢𝑢)]𝑑𝑑𝑢𝑢
𝑡𝑡

0
 (1.6) 

 
The opposite to the Unavailability 𝑄𝑄(𝑡𝑡) is the Availability 𝐴𝐴(𝑡𝑡), so 𝑄𝑄(𝑡𝑡) + 𝐴𝐴(𝑡𝑡) = 1. 
 
When a device follows exponential failure and repair intensities (constant failure and 
repair rates), its Availability can be found through the solutions of the Equations 1.5 
for 𝑤𝑤(𝑡𝑡) and 𝑣𝑣(𝑡𝑡), which can be carried out by using Laplace transforms. In this 
case, the Equation 1.7 is obtained so the Availability can be computed using the 
Mean Time to Failure (𝑀𝑀𝑇𝑇𝑇𝑇𝐹𝐹) and the Mean Time to Repair (𝑀𝑀𝑇𝑇𝑇𝑇𝑀𝑀).  

 

𝐴𝐴 =
𝑀𝑀𝑇𝑇𝑇𝑇𝐹𝐹

𝑀𝑀𝑇𝑇𝑇𝑇𝐹𝐹 + 𝑀𝑀𝑇𝑇𝑇𝑇𝑀𝑀
 (1.7) 

 
When a device does not follow exponential failure and/or repair intensities, finding 
the device Availability through the solutions of the Equations 1.5 for 𝑤𝑤(𝑡𝑡) and 𝑣𝑣(𝑡𝑡) 
might be complicated so a simulation approach can be suitable. Such a technique 
is explored along the present research. 
 
1.5. Simulation. 
 
When a new system is designed, the Discrete Event Simulation arises as a powerful 
modelling technique which allows complex systems to be analysed much more 
accurately due to a more realistic representation of their behaviour in practice. 
 
As it was previously explained, when a device does not follow exponential failure 
and/or repair intensities, finding its Availability by using the solutions of the 
Equations 1.5 for 𝑤𝑤(𝑡𝑡) and 𝑣𝑣(𝑡𝑡) might be hard so a simulation approach can be 
suitable. The Availability in the present research will be computed by using the 
Equation 1.8.   
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𝐴𝐴 =
∑ 𝑡𝑡𝑓𝑓𝑖𝑖
𝑛𝑛
𝑖𝑖=1

∑ 𝑡𝑡𝑓𝑓𝑖𝑖
𝑛𝑛
𝑖𝑖=1 + ∑ 𝑡𝑡𝑟𝑟𝑗𝑗

𝑚𝑚
𝑗𝑗=1

 (1.8) 

 
Where: 

• 𝑛𝑛 denotes the total number of operating times, 
• 𝑡𝑡𝑓𝑓𝑖𝑖 denotes the 𝑖𝑖-th operating time in hours (time to failure or time 

to start following a scheduled preventive maintenance activity), 
• 𝑚𝑚 denotes the total number of recovery times, 
• 𝑡𝑡𝑟𝑟𝑗𝑗  denotes the 𝑗𝑗 -th recovery time in hours (due to repair or 

preventive maintenance activity). 
 
Operating and recovery times are not previously known. They behave as random 
variables. If a historical record of both times is compiled and a statistical analysis is 
performed, operating and recovery times could be defined as probability density 
functions through their respective parameters. Those functions can arise from a 
specific typology (e.g., Exponential, Weibull, or Normal). The procedure to achieve 
random numbers, which follow a specific probability density function, is exposed in 
Ref. [12]. These numbers are used to compute the system’s Availability by 
employing the Equation 1.8.  Next, such a procedure is explained.  
   
1.5.1. Exponential distribution. 
 
The density function for the exponential distribution with mean 𝜇𝜇  satisfies the 
Equation 1.9. 

𝑓𝑓(𝑡𝑡) =
1
𝜇𝜇
𝑒𝑒−𝑡𝑡 𝜇𝜇�  (1.9) 

 
Such a distribution represents the variability of “times to failure” or “times to repair” 
with mean 𝜇𝜇  so random samples from this distribution can be obtained by first 
integrating to get the cumulative failure distribution 𝐹𝐹(𝑡𝑡), which is shown by the 
Equation 1.10.    
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𝐹𝐹(𝑡𝑡) = � 𝑓𝑓(𝑢𝑢)
𝑡𝑡

0
𝑑𝑑𝑢𝑢 = 1 − 𝑒𝑒−𝑡𝑡 𝜇𝜇�  (1.10) 

 
The cumulative failure distribution presents the same properties and range as the 
distribution of random numbers. Hence, taking a random sample is possible when 
a random number 𝑋𝑋  is generated and equated to 𝐹𝐹(𝑡𝑡)  (with  0 ≤ 𝐹𝐹(𝑡𝑡) ≤ 1) , as 
shown in the Equation 1.11.  
 

𝑋𝑋 = 1 − 𝑒𝑒−𝑡𝑡 𝜇𝜇�  (1.11) 

 
Rearranging gives the “time to failure” as is shown in the Equation 1.12. 
 

𝑡𝑡 = −𝜇𝜇 ln(1 − 𝑋𝑋) (1.12) 
 
If 𝑋𝑋 is uniform over [0,1], then 1 − 𝑋𝑋 so is. Therefore, the Equation 1.12 can be 
simplified as it is shown in the Equation 1.13.  
 

𝑡𝑡 = −𝜇𝜇 ln(𝑋𝑋) (1.13) 
 
Next, an example is developed. The procedure to generate a random “time to 
failure” that follows an exponential distribution is shown. In this case a “Mean Time 
to Failure” of 1500 hours is considered. Firstly, a random number between 0 and 1 
must be generated. Secondly, the Equation 1.13 is used to transform the sample. 
For instance, if the random number generated by the computer is 0.2508, the “time 
to failure” achieved will be 𝑡𝑡 = −1500 ln(0.3508) ≈ 1571 hours.    
 
1.5.2. Weibull distribution. 
 
Random samples can be achieved from the Weibull distribution in a similar way as 
for the exponential distribution. A Weibull distribution with parameters  𝛽𝛽  and 𝜂𝜂 
presents a density function as is shown in the Equation 1.14.  
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𝑓𝑓(𝑡𝑡) = 𝛽𝛽
𝑡𝑡𝛽𝛽−1

𝜂𝜂𝛽𝛽
𝑒𝑒−(𝑡𝑡 𝜂𝜂⁄ )𝛽𝛽 (1.14) 

 
The cumulative distribution is shown in the Equation 1.15. 
 

𝐹𝐹(𝑡𝑡) = 1 − 𝑒𝑒−(𝑡𝑡 𝜂𝜂⁄ )𝛽𝛽 (1.15) 

 
Random times can be achieved from using a random number 𝑋𝑋 as is shown in the 
Equation 1.16: 
 

𝑋𝑋 = 1 − 𝑒𝑒−(𝑡𝑡 𝜂𝜂⁄ )𝛽𝛽 

𝑒𝑒−(𝑡𝑡 𝜂𝜂⁄ )𝛽𝛽 = 1 − 𝑋𝑋 
(𝑡𝑡 𝜂𝜂⁄ )𝛽𝛽 = −ln (1 − 𝑋𝑋) 

𝑡𝑡 = 𝜂𝜂[−ln (1 − 𝑋𝑋)]1 𝛽𝛽⁄  𝑜𝑜 𝑡𝑡 = 𝜂𝜂[−ln (𝑋𝑋)]1 𝛽𝛽⁄   
 

(1.16) 

As an example, the procedure to generate a random “time to failure” is shown. Such 
a “time to failure” follows the Weibull distribution with parameters 𝛽𝛽  and 𝜂𝜂  with 
values 3 and 120, respectively. A random number is generated between 0 and 1, 
which is then transformed as is shown in the Equation 1.16. Considering that the 
random number supplied by the computer was 0.3508, the “time to failure” achieved 

will be 𝑡𝑡 = 120[−ln (0.3508)]1 3⁄ ≈ 121 hours. 
 
1.5.3. Normal Distribution. 
 
Achieving random samples from the normal distribution with media 𝜇𝜇 and standard 
deviation 𝜎𝜎 cannot be obtained by simple transposition of its formula. This is due to 
the fact that its density function, which is shown in the Equation 1.17, cannot be 
integrated to obtain a formula for 𝐹𝐹(𝑡𝑡).    
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𝑓𝑓(𝑡𝑡) =
1

𝜎𝜎√2𝜋𝜋
𝑒𝑒−

1
2[(𝑡𝑡−𝜇𝜇)/𝜎𝜎]2 (1.17) 

 
Therefore, the central limit theorem can be used. Considering the independent 
random variables 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛, which are randomly distributed and have mean 𝜇𝜇 

and variance 𝜎𝜎2. If 𝑆𝑆𝑛𝑛 = 𝑋𝑋1 +  𝑋𝑋2 + ⋯+ 𝑋𝑋𝑛𝑛 , the random variable (𝑆𝑆𝑛𝑛 − 𝑛𝑛𝜇𝜇)/𝜎𝜎√𝑛𝑛 is 
asymptotically normally distributed with mean 0 and standard deviation 1. The 
random numbers 𝑈𝑈(0,1) are identically distributed and may be used to form 𝑆𝑆𝑛𝑛. In 
practise, it is necessary to fix some finite number of 𝑛𝑛 so that the resulting 𝑆𝑆𝑛𝑛 will 
only be approximately normal. An interesting value of 𝑛𝑛 is 12, since 𝑋𝑋𝑖𝑖 presents 𝜇𝜇 =
0.5 and 𝜎𝜎2 = 1/12, so 𝑆𝑆𝑛𝑛 is 𝑁𝑁(6,1). Using the Equation 1.18, 12 random numbers 
𝑈𝑈(0,1)  were generated in order to achieve a random sample from the normal 
distribution. 
 

𝑋𝑋 = �𝑋𝑋𝑖𝑖

12

𝑖𝑖=1

 (1.18) 

 

By the central limit theorem 𝑋𝑋 is normally distributed with mean 6 and standard 
deviation 1. Time values can be achieved by using the Equation 1.19.   
 

𝑡𝑡 = (𝑋𝑋 − 6)𝜎𝜎 + 𝜇𝜇 (1.19) 
 

As an example, a random time that follows the normal distribution with mean 10 and 
standard deviation 2 is generated. Next, 12 random numbers between 0 and 1 are 
generated and summed as in the Equation 1.18. 
 

𝑋𝑋 = �𝑋𝑋𝑖𝑖

12

𝑖𝑖=1

= 0.12 + 0.24 + 0.32 + 0.15 + 0.56 + 0.93 + 0.82 + 0.62 + 0.53 + 0.25

+ 0.12 + 0.73 = 5.39 
 

Next, the Equation 1.19 is used to estimate such a time. 
  

𝑡𝑡 = (𝑋𝑋 − 6)𝜎𝜎 + 𝜇𝜇 = (5.39 − 6) · 2 + 10 = 8.78 hours 
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2. CHAPTER 2: MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS. 
 
2.1. Background. 
 
Solving complex problems with multiple feasible solutions is possible by employing 
optimisation. Optimisation allows finding one or more feasible solutions for a 
problem. Such solutions correspond to the extreme values of one or more objectives 
regarding the problem. When the problem has a single objective, it is called “single-
objective optimisation problem”. Conversely, when the problem has more than one 
objective, it is called “multi-objective optimisation problem” (MOP). Most of real-
world problems have different objectives that need to be optimised at the same time 
(often in conflict) and their solutions emerge from a set of solutions that represent 
the best compromise among objectives (Pareto optimal set) [16]. 
 
Assuming that the independent variable 𝑥𝑥  has 𝑛𝑛  dimensions and the MOP is a 
minimising problem, such a problem can be formulated as it is shown in the Equation 
2.1:   
 

min
𝑥𝑥
𝑓𝑓(𝑥𝑥) = min

𝑥𝑥
[𝑓𝑓1(𝑥𝑥),𝑓𝑓2(𝑥𝑥), … ,𝑓𝑓𝑚𝑚(𝑥𝑥)] (2.1) 

 
It means that the vector of functions 𝑓𝑓(𝑥𝑥) is going to be simultaneously minimised 
for the set of 𝑚𝑚 functions 𝑓𝑓𝑖𝑖(𝑥𝑥), where 𝑖𝑖 = 1,2, … ,𝑚𝑚. MOP’s can present constraints 
of both equality (Equation 2.2) and inequality (Equation 2.3), as well as limited 
values for the decision variables (Equation 2.4). Therefore, if such constraints are 
not satisfied, the found solutions will not be feasible.    
 

ℎ𝑘𝑘(𝑥𝑥) = 0,𝑘𝑘 = 1, 2, … ,𝐾𝐾 (2.2) 

𝑔𝑔𝑗𝑗(𝑥𝑥) ≥ 0, 𝑗𝑗 = 1, 2, … , 𝐽𝐽 (2.3) 

𝑥𝑥𝑖𝑖
𝑖𝑖𝑛𝑛𝑓𝑓 ≤ 𝑥𝑥 ≤ 𝑥𝑥𝑖𝑖

𝑠𝑠𝑠𝑠𝑠𝑠 , 𝑖𝑖 = 1, 2, … ,𝑛𝑛 (2.4) 
 
The main objectives in a MOP are [17]: 

1. Achieving a solution set as close as possible to the Pareto optimal front. 
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2. Finding a set of previous solutions as varied as possible along the front. 
 
When multi-objective optimisation is used, a solution set regarding a problem is 
looked for. Such a problem presents a minimum of two objectives in conflict. The 
achieved solution set is called Pareto front, due to the name of the economist 
Vilfredo Pareto. Vilfredo Pareto postulated the efficient mode of resources 
allocation, so such resources are efficiently allocated in the Pareto sense when it is 
unable to improve the welfare of any person without worsening the other. 
Commuting this sentence to the field of the multi-objective optimisation in 
engineering, it is possible to establish that the optimum solutions are the balanced 
solutions. From these solutions, it is not possible to improve one of the objectives 
without damaging another one. In Ref. [15], some concepts regarding the Pareto 
optimality are defined: 
 

• Domination: The point 𝑥𝑥∗ dominates the point 𝑥𝑥 if the following conditions are 
maintained: 

o 𝑓𝑓𝑖𝑖(𝑥𝑥∗) ≤ 𝑓𝑓𝑖𝑖(𝑥𝑥) ∀ 𝑖𝑖 ∈ [1,𝑘𝑘] 
o 𝑓𝑓𝑗𝑗(𝑥𝑥∗) < 𝑓𝑓𝑗𝑗(𝑥𝑥) for at least one 𝑗𝑗 ∈ [1,𝑘𝑘]. 

That is, 𝑥𝑥∗ is as good as 𝑥𝑥 for all objective function values and it is better than 
𝑥𝑥 for at least one objective function value. The notation 𝑥𝑥∗ ≻ 𝑥𝑥 is used to 
indecate that 𝑥𝑥∗ dominates 𝑥𝑥 from the mathematic point of view. 

 
• Weak domination: The point 𝑥𝑥∗ weakly dominates the point 𝑥𝑥 if 𝑓𝑓𝑖𝑖(𝑥𝑥∗) ≤

𝑓𝑓𝑖𝑖(𝑥𝑥) ∀ 𝑖𝑖 ∈ [1,𝑘𝑘], that is, 𝑥𝑥∗ is as good as 𝑥𝑥 for all objective function values. 
To indicate that 𝑥𝑥∗ weakly dominates 𝑥𝑥 the mathematical expression 𝑥𝑥∗ ≽ 𝑥𝑥 
is used. 
 

• Non-dominated: The point 𝑥𝑥∗ is non-dominated if there is not a point 𝑥𝑥 that 
dominates it. 
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• Pareto optimal points: A Pareto optimal point 𝑥𝑥∗  is a point that is not 
dominated by any other point 𝑥𝑥  in the search space. Mathematically, 
considering 𝑥𝑥∗ a Pareto optimal point: 

𝑥𝑥∗ ↔ ∄𝑥𝑥: (𝑓𝑓𝑖𝑖(𝑥𝑥) ≤ 𝑓𝑓𝑖𝑖(𝑥𝑥∗) ∀𝑖𝑖 ∈ [1,𝑘𝑘] ⋀ 𝑓𝑓𝑗𝑗(𝑥𝑥) < 𝑓𝑓𝑗𝑗(𝑥𝑥∗) ∃𝑗𝑗 ∈ [1,𝑘𝑘] 

 
• Pareto optimal set: The Pareto optimal set, which is denoted as 𝑃𝑃𝑠𝑠, is the set 

of all points 𝑥𝑥∗ that are non-dominated. 

𝑃𝑃𝑠𝑠 = �𝑥𝑥∗: �∄𝑥𝑥: (𝑓𝑓𝑖𝑖(𝑥𝑥) ≤ 𝑓𝑓𝑖𝑖(𝑥𝑥∗) ∀𝑖𝑖 ∈ [1,𝑘𝑘] ⋀ 𝑓𝑓𝑗𝑗(𝑥𝑥) < 𝑓𝑓𝑗𝑗(𝑥𝑥∗) ∃𝑗𝑗 ∈ [1,𝑘𝑘]�� 
 

• Pareto front: The Pareto front or non-dominated set, which is denoted as 𝑃𝑃𝑓𝑓, 

is the set of all function vectors 𝑓𝑓(𝑥𝑥) that corresponding to the Pareto set. 
𝑃𝑃𝑓𝑓 = {𝑓𝑓(𝑥𝑥∗): 𝑥𝑥∗ ∈ 𝑃𝑃𝑠𝑠} 

 
As an illustrative example, the Figure 2.1 shows a set of possible solutions for a two 
objectives problem, which are represented as crosses and points. In this case, 
crosses dominate points, due to the fact that a minimisation problem is being 
considered. 
 
 
 
 
 
 
 
 
 

Figure 2.1: Non-dominated set (crosses).  

 
2.2. Classic methods for Multi-objective Optimisation. 
 
Various studies regarding classic methods for Multi-objective Optimisation were 
previously developed. The one conducted by K. Miettinen [18] is an example. 

Objetivo 2 

Objetivo 1 
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Attending to the moment when the decision makers supply their preferences, three 
main approaches are considered [19]:    

1. A priori methods: In this case, the decision makers must stablish the order 
of preference among objectives before the process. Methods that follow to 
this kind of paradigm are the Value Function Method [20,21], the 
Lexicographic Ordering Method [22] or the Goal Programming Method [23]. 

2. Iterative methods: In this case, the decision makers must stablish and 
update their preferences among objectives at different moments along the 
process. Methods that follow to this paradigm are the Geoffrion-Dyer-
Feinberg Method [24], the Tchebicheff Method [25], the Reference Point 
Method [26], the GUESS Method [27] or the NIMBUS Method [28]. 

3. A posteriori methods: Once achieved the set of solutions, the decision 
makers must stablish their preferences. Methods that follow to this kind of 
paradigm are the Weighted Method [29,30] or the 𝜖𝜖-Constraint Method [31]. 

 
2.3. Multi-objective optimisation by employing Evolutionary Algorithms. 
 
Different metaheuristics have been used to solve optimisation problems. The most 
popular are the Evolutionary Algorithms, which are based on the emulation of the 
natural selection mechanism [32]. Such Algorithms are considered along the 
present research.  
 
2.3.1. Evolutionary Algorithms introduction. 
 
Evolutionary Algorithms are based on the evolutionary theory of species, which was 
initially proposed by Darwin in 1859 [33]. Evolutionary Algorithms are the older 
Evolutionary Strategies, which present some characteristics based on the principles 
of the natural selection proposed by Darwin. Such principles claim that the better 
adapted individuals survive and transmit their features to the offspring. The 
principles of natural selection are resumed as follows [15]: 
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• A biologic system includes a population of individuals and many of them can 
reproduce.  

• The individuals have a finite life. 
• There are variations in the population.  
• The more the ability to reproduce, the more the ability to survive.  

 
Evolutionary Algorithms emulate such features. When an optimisation problem must 
be solved, a random population can be generated as a solution set. The possible 
solutions are called “candidate solution” or “individual”, and they can be generated 
as digit strings. Each digit is called “allele”. The sequence of digits that determines 
the characteristic of an “individual” is called “gene”. Specific “genes” are called 
“genotypes” and the parameters represented by “genotypes” are called 
“phenotypes”. The “chromosome” is the set of genes of an “individual”. Once the 
population has been created, the best individuals have the greatest chance of 
reproducing. Conversely, the worst individuals have the lowest probability to 
reproduce. In this way, an offspring is generated from a population. Generation after 
generation, better adapted individuals are achieved, which can be solutions to the 
optimisation problem.     
 
Darwin proposed the basis of the species evolution theory; however, he did not 
explain how the genetic heredity takes place. Gregor Mendel was the first human 
being who understood such a mechanism so he could explain how natural selection 
works. Mendel presented his findings to the Natural History Society of Brünn in 1865 
[34], but his postulates were not as relevant as the theories proposed by Darwin 
were. Nevertheless, the Mendel’s postulates would be recovered at the beginning 
of XX century [35].    
 
Once the basis to invent computers were established (among other inventors, by 
von Neumann), the Italian mathematician Nils Barricelli developed the first Genetic 
Algorithm software in 1954 [36]. Other pioneers were the biologist Alexander Fraser 
[37] or George Box [38], who was more interested in solving engineering problems. 
Next, Ingo Rechenberg presented his first works in Evolution Strategies [39] in 1964, 
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and Lawrence Fogel presented the Evolutionary Programming [40] in 1966. 
However, John Holland, who had started to study the Genetic Algorithms in the 60’s, 
presented the mathematics of evolution in 1975 [41]. Due to the improvement of 
computing capabilities, research in the field of the Genetic Algorithms shoots up 
both in the 70’s and in the 80’s. A scientist consensus exists regarding David Shaffer 
designed the first Multi-objective Evolutionary Algorithm [42] in the middle of 80’s, 
which was called “Vector Evaluated Genetic Algorithm” (VEGA). 
 
2.3.2. Basic evolutionary operators. 
 
There are three basic operators, which are addressed to evolve a population of 
individuals. Their main objective consists of improving their fitness generation after 
generation. They are Selection, Crossover and Mutation. 
 
2.3.2.1. Selection operator. 
 
The Selection operator allows distinguishing between the best and worst adapted 
individuals from the population. Next, some methods to select individuals are shown: 

• Roulette-wheel selection or fitness-proportionate selection: This method was 
proposed by De Jong [43]. Attending to the fitness regarding the individuals 
of the population, selection probabilities are set. In this way, choosing 
individuals with better fitness is more likely. Such probabilities are drawn in a 
roulette, as shown in the Figure 2.2. Selecting an individual is possible when 
the roulette is spun. 

 
 
 
 
 
 
 
 

Figure 2.2: Roulette-wheel selection or fitness-proportionate selection.  

Individual1 

Individual2 

Individual3 
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• Stochastic Universal Sampling: Baker [44] proposed this method to solve a 
problem that the Roulette-wheel selection presents. Individuals with high 
fitness have high probability of not being selected. Since an individual has 
40% probability of being selected, there is 60% probability of being selected 
that is shared by the rest of individuals. This implies that such an individual 
with high fitness has 60% probability of not being selected when the roulette 
is spun. Attending to the number of individuals to choose, uniformly spaced 
pointers are distributed, and the spinner is spun once. For instance, the 
Figure 2.3 shows how to select two individuals when the spinner is spun 
once.  

 
 
 
 
  
   
      
 

Figure 2.3: Stochastic Universal Sampling (selection of 2 individuals).  

 
• Rank-Based Selection: In this case, the individuals are ordered by attending 

to their fitness. Next, a rank is given depending on such an order. The worst 
fitness individual achieves 1 as a rank, and so on up to reach the best 
achieved individual. Finally, the individuals are selected attending to the rank 
[45]. 

• Tournament Selection: In this case, several individuals from the population 
are chosen and the best of them is selected. 
    

  

Individual1 

Individual2 

Individual3 
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2.3.2.2. Crossover or recombination operator. 
 
This operator guarantees that the selected individuals share a part of their genetic 
features in order to generate new individuals for the next generation. Some methods 
that are employed to implement the crossover operator are as follows: 

• One-Point Crossover: It was proposed by Holland [41]. The chosen 
individuals exchange their genetic information from a specific point of the 
string. Considering the individuals 𝑥𝑥1 and 𝑥𝑥2: 
 

𝑥𝑥1 = [𝑥𝑥1(1) 𝑥𝑥1(2) … 𝑥𝑥1(𝑚𝑚 − 1) 𝑥𝑥1(𝑚𝑚) … 𝑥𝑥1(𝑛𝑛)] 
𝑥𝑥2 = [𝑥𝑥2(1) 𝑥𝑥2(2) … 𝑥𝑥2(𝑚𝑚− 1) 𝑥𝑥2(𝑚𝑚) … 𝑥𝑥2(𝑛𝑛)] 

 
Their chromosomes are formed by 𝑛𝑛 alleles or features. A point 𝑚𝑚 is selected 
so the information is crossed from such a point. The offspring is formed by 
individuals 𝑦𝑦1 and 𝑦𝑦2:  

𝑦𝑦1 = [𝑥𝑥1(1) 𝑥𝑥1(2) … 𝑥𝑥1(𝑚𝑚 − 1) 𝑥𝑥2(𝑚𝑚) … 𝑥𝑥2(𝑛𝑛)] 
𝑦𝑦2 = [𝑥𝑥2(1) 𝑥𝑥2(2) … 𝑥𝑥2(𝑚𝑚 − 1) 𝑥𝑥1(𝑚𝑚) … 𝑥𝑥1(𝑛𝑛)] 

The crossover point 𝑚𝑚 is randomly generated. 
• Two-Point Crossover: It was proposed by DeJong [43]. In this case, two 

points 𝑚𝑚 y 𝑘𝑘 are selected to conduct the crossover. Therefore, the individuals 
𝑥𝑥1 and 𝑥𝑥2: 

𝑥𝑥1 = [𝑥𝑥1(1) 𝑥𝑥1(2) …𝑥𝑥1(𝑚𝑚− 1) 𝑥𝑥1(𝑚𝑚) … 𝑥𝑥1(𝑘𝑘) 𝑥𝑥1(𝑘𝑘 + 1) … 𝑥𝑥1(𝑛𝑛)] 
𝑥𝑥2 = [𝑥𝑥2(1) 𝑥𝑥2(2) … 𝑥𝑥2(𝑚𝑚− 1) 𝑥𝑥2(𝑚𝑚) … 𝑥𝑥2(𝑘𝑘) 𝑥𝑥2(𝑘𝑘 + 1) … 𝑥𝑥2(𝑛𝑛)] 

Such individuals are transformed as it is shown: 
𝑥𝑥1 = [𝑥𝑥1(1) 𝑥𝑥1(2) … 𝑥𝑥1(𝑚𝑚 − 1) 𝑥𝑥2(𝑚𝑚) … 𝑥𝑥2(𝑘𝑘) 𝑥𝑥1(𝑘𝑘 + 1) … 𝑥𝑥1(𝑛𝑛)] 
𝑥𝑥2 = [𝑥𝑥2(1) 𝑥𝑥2(2) …𝑥𝑥2(𝑚𝑚− 1) 𝑥𝑥1(𝑚𝑚) … 𝑥𝑥1(𝑘𝑘) 𝑥𝑥2(𝑘𝑘 + 1) … 𝑥𝑥2(𝑛𝑛)] 

The original individuals exchange the genetic information among alleles 𝑚𝑚 
and 𝑘𝑘. 

• Uniform Crossover: It was proposed by Syswerda [46]. In this case, the 
exchange decision is taken regarding each allele with a 50% probability. 
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• Multi-Parent Crossover: It was proposed by Bremermann [47]. It consists of 
choosing randomly features from several individuals in order to build a new 
individual. 

• Simulated Binary Crossover: The above Crossover types are used for both 
discrete and real encoding. The Simulated Binary Crossover is specific for 
problems in a continuous domain. The offspring are created from the original 
individuals 𝑥𝑥1 and 𝑥𝑥2 [48]:  

𝑦𝑦1(𝑘𝑘) = (1 2⁄ )[(1 − 𝛽𝛽𝑘𝑘)𝑥𝑥1(𝑘𝑘) + (1 + 𝛽𝛽𝑘𝑘)𝑥𝑥2(𝑘𝑘)] 
𝑦𝑦2(𝑘𝑘) = (1 2⁄ )[(1 + 𝛽𝛽𝑘𝑘)𝑥𝑥1(𝑘𝑘) + (1 − 𝛽𝛽𝑘𝑘)𝑥𝑥2(𝑘𝑘)] 

In this case, the location of the feature in the individual genetic string is 
represented by 𝑘𝑘 and 𝛽𝛽𝑘𝑘 is a random number from the density function: 

𝑃𝑃𝑃𝑃𝐹𝐹 = �
1

2� (𝜂𝜂 + 1)𝛽𝛽𝜂𝜂 , 0 ≤ 𝛽𝛽 ≤ 1
1

2� (𝜂𝜂 + 1)𝛽𝛽−(𝜂𝜂−2),𝛽𝛽 > 1 
 

Where 𝜂𝜂  is a non-negative real number, whose recommended value by 
several authors [48] is between 0 and 5. 
 

2.3.2.3. Mutation operator. 
 
Although mutation is a biologic low likely process, it is important regarding the 
Evolutionary Algorithms. It allows exploring new solutions for the problem. Its 
implementation basically consists of considering a mutation probability (it is typically 
smaller than 2%). Such a mutation probability is applied to each allele of the 
chromosome achieved after crossing the original individuals. Therefore, variations 
in the chromosome have a probability of occurrence. Some examples are shown as 
follows [15]. 

• Uniform Mutation Centred at 𝑥𝑥𝑖𝑖(𝑘𝑘): This type of mutation can be written as 
follows: 

𝑥𝑥𝑖𝑖(𝑘𝑘) = � 𝑥𝑥𝑖𝑖(𝑘𝑘) 𝑠𝑠𝑖𝑖 𝑟𝑟 ≥ 𝜌𝜌
𝑈𝑈[𝑥𝑥𝑖𝑖(𝑘𝑘) − 𝛼𝛼𝑖𝑖(𝑘𝑘),𝑥𝑥𝑖𝑖(𝑘𝑘) + 𝛼𝛼𝑖𝑖(𝑘𝑘)]  𝑠𝑠𝑖𝑖 𝑟𝑟 < 𝜌𝜌 

Where 𝑟𝑟 is a random number from a uniform distribution between 0 and 1, 𝜌𝜌 
is the mutation rate and 𝛼𝛼𝑖𝑖(𝑘𝑘)  is the user-defined mutation magnitude. 
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Therefore, each feature 𝑥𝑥𝑖𝑖(𝑘𝑘) of the individual 𝑥𝑥𝑖𝑖  mutes if 𝑟𝑟 < 𝜌𝜌. In such a 
case, the feature 𝑥𝑥𝑖𝑖(𝑘𝑘) varies regarding the 𝛼𝛼𝑖𝑖(𝑘𝑘) magnitude. 

• Uniform Mutation Centred at the Middle of the Search Domain: This type of 
mutation can be written as follows: 

𝑥𝑥𝑖𝑖(𝑘𝑘) = � 𝑥𝑥𝑖𝑖(𝑘𝑘) 𝑠𝑠𝑖𝑖 𝑟𝑟 ≥ 𝜌𝜌
𝑈𝑈[𝑥𝑥𝑚𝑚𝑖𝑖𝑛𝑛(𝑘𝑘),𝑥𝑥𝑚𝑚𝑚𝑚𝑥𝑥(𝑘𝑘)]  𝑠𝑠𝑖𝑖 𝑟𝑟 < 𝜌𝜌 

Where 𝑟𝑟 is a random number from a uniform distribution between 0 and 1, 
and 𝜌𝜌  denotes the mutation rate. Each feature 𝑥𝑥𝑖𝑖(𝑘𝑘)  of the individual 𝑥𝑥𝑖𝑖 
mutes if  𝑟𝑟 < 𝜌𝜌 . In such a case, the feature 𝑥𝑥𝑖𝑖(𝑘𝑘)  varies regarding the 
magnitude achieved when a random number is generated from a uniformly 
distributed distribution within the values of the domain.   

 
2.3.2.4. Other interesting operators. 
 
Although the basic operators regarding Evolutionary Algorithms were described 
above, there are other important operators that have allowed supplying excellent 
solutions to managed problems by Evolutionary Algorithms.    

• Fitness sharing: It was introduced by Goldberg and Richardson [49]. This is 
an operator that allows devaluing the fitness of an individual in the population, 
when such an individual is located in a crowding area. This allows 
maintaining the diversity within the population.  

• Elitism: It consists of injecting the best individuals achieved from a generation 
to the next. In this way, the knowledge achieved by the algorithm persists. 
Zitzler introduced formally such a concept [50] in multi-objective evolutionary 
algorithms. Normally, an external population is used in which the found non-
dominated individuals are stored all along the evolutionary process.    

  
2.3.3. Multi-objective Evolutionary Algorithms: The First Generation. 
 
As explained above, the “Vector Evaluated Genetic Algorithm” (VEGA) [42] is 
considered as the first Multi-objective Evolutionary Algorithm. It was David Goldberg 
who included the Pareto Optimality concept to the Evolutionary Algorithms [42], so 



 
CONTRIBUTIONS ON RELIABILITY TO RECONDITION THE MAINTENANCE PLAN AND THE DESIGN OF SYSTEMS 

BY USING EVOLUTIONARY ALGORITHMS 

 
 

 
 
 

29 

such a point brought the division to the first-generation Evolutionary Algorithms. On 
the one hand, the Evolutionary Algorithms non-based on Pareto dominance, and on 
the other hand, the Evolutionary Algorithms based on such a criterion. 
 
Both Algorithms VEGA and VOES (Vector‐Optimized Evolution Strategy) [51] are 

examples of the first-generation Algorithms non-based on Pareto dominance. VEGA 
basically consists of partitioning, generation after generation, the population into as 
many different subpopulations as functions are optimised. Each sub-population is 
probabilistically generated by following the fitness of the individuals. Next, 
recombination and mutation are applied in order to create a new offspring. VOES is 
based on the diploid cell concept, which is the cell that presents two homolog 
chromosomes in its core. In this method, each individual is codified with a dominant 
solution and a recessive solution, so the evaluation of the individuals is achieved 
from the weighing of both solutions. 
 
After publishing the Goldberg’s ideas [32], almost all Multi-objective Evolutionary 
Algorithms have such influence. Basically, Goldberg suggested to locate a set of 
solutions from the population, which are non-dominates from the Pareto point of 
view. A superior rank is allocated to such solutions. The procedure is repeated for 
the rest of solutions until a rank is allocated to each one. This mechanism allows 
selecting solutions according to their rank. Some examples of Algorithms based on 
the non-dominance concept are:    

• Non-dominated Sorting Genetic Algorithm (NSGA): This Algorithm was 
proposed by Srinivas y Deb [52]. The individuals of the population are 
classified based on the non-dominance criterion, so the non-dominated 
individuals fall into the same category. A fictional fitness value, which is 
proportional to the population size, is allocated to such individuals so they 
have a similar reproductive potential. In order to maintain the diversity along 
the Pareto front, a fitness sharing function is applied. Next, the individuals 
from this category are ignored and the process is repeated for the rest of 
individuals.     
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• Niched-Pareto Genetic Algorithm (NPGA): It was proposed by Horn, 
Nafploitis and Goldberg [53]. This Algorithm uses tournament selection 
based on the Pareto dominance. Two individuals are randomly chosen from 
the population and compared with a subset of such a population. When one 
individual is dominated by the subset and the other one is not, the non-
dominated individual wins the tournament. Any other situation implies a draw, 
so the tournament is solved by using the fitness sharing. 

• Multi-Objective Genetic Algorithm (MOGA): This Algorithm was proposed by 
Fonseca and Fleming [54]. In this case, the individual rank is computed by 
considering the number of individuals of the population that dominate such 
an individual. The highest fitness value is assigned to the non-dominated 
individuals, whereas the dominated individuals are penalised based on the 
population density relative to the region that they belong to.    
  

2.3.4. Multi-objective Evolutionary Algorithms: The Second Generation. 
 
The second generation of Multi-objective Evolutionary Algorithms starts when the 
elitism becomes the standard mechanism [55]. Next, some representative 
Evolutionary Algorithms of such a generation are shown: 

• Strength Pareto Evolutionary Algorithm (SPEA): In this Algorithm proposed 
by Zitzler and Thiele [50], the non-dominated individuals from each 
generation are stored in a file. A strength value is computed regarding each 
individual in the file by dividing the number of individuals from the population 
that such an individual dominates, and the total number of individuals plus 
one. The fitness for each individual is computed regarding the strength value 
of the solutions which are dominated by such an individual. This process 
considers both the proximity to the true Pareto front and the distribution of 
the solutions. Furthermore, the size of the file is limited in order to avoid its 
excessive growth. 

• Pareto Archived Evolution Strategy (PAES): It was introduced by Knowles 
and Corne [56]. It presents an original approach to maintain the diversity, 
which consists of dividing the search space by using a georeferenced grid. 
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In this way, it is possible to check the number of individuals that fall within 
each grid regarding their fitness. The best adapted solutions are stored in the 
external file, as in the previous case, so the ordination of individuals is based 
on both dominance and density in the grid. 

• Non-dominated Sorting Genetic Algorithm II (NSGA-II): This Algorithm [57] is 
an improved version of NSGA. In this case, the elitism is implemented by 
employing a strategy that consists of including the best adapted individuals 
in the next generation. Besides ordering the individuals based on the non-
dominance criterion, in order to maintain the diversity, the crowding is 
considered. In this way, the more the crowding distance, the more favoured 
the individuals which belong to the same front. This Algorithm is more 
efficient than the previous version and it is considered a referent method. 

 

Other methods have been proposed, such as PESA (Pareto Envelope-based 
Selection Algorithm) [58], SPEA2 [59] or NSGA-II with controlled elitism [60].  
 
2.3.5. Evolutionary Algorithms based on the selection criterion. 
 

Nowadays, it exists a consensus from authors [61][62] which establishes a 
classification of the Multi-objective Evolutionary Algorithms based on their selection 
mechanism. 

• Methods based on Pareto dominance: Such methods order the individuals 
attending to two levels. The first level is governed by the Pareto dominance 
and the second one by the contribution to diversity. The contribution from 
individuals to diversity is considered when such individuals belong to same 
dominance level. This criterion is used by methods such as NSGA-II [57] or 
SPEA2 [59]. 

• Methods based on indicators: These methods guide the search by using an 
indicator of the performance measure. The more commonly used indicator is 
the Hypervolume, which is employed by methods such as SMS-EMOA [63], 
FV-EMOA [64] or HypE [65].  
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• Methods based on decomposition of the search space: These methods 
decompose the problem in several sub-problems, which are simultaneously 
optimised. The convergence and diversity on solutions is achieved by 
employing several scalarising functions. This criterion is used by methods 
such as MOEA/D [66], NSGA-III [67] or MOGLS [68].      

  
Attending to such a classification paradigm, five methods from the state-of-the-art 
are paid attention along the present research, which have been widely employed by 
the scientific community. Such methods are used in order to test and compare the 
performance from each one. The five methods are: 

• Methods based on Pareto dominance: The methods NSGA-II [57] and GDE3 
[69] are studied. In the case of GDE3, Differential Evolution [70] is used as a 
mechanism to create new individuals. 

• Methods based on indicators: The SMS-EMOA [63] method is studied. 
• Methods based on decomposition of the search space: The MOEA/D [66] is 

studied. Moreover, the MOEA/D-DE [71] is studied, which uses Differential 
Evolution as a mechanism to create new individuals. 

   
2.3.5.1. Non-dominated Sorting Genetic Algorithm II (NSGA-II). 
 

This method [57] carries out a double operation over the individuals of the 
population. On the one hand, the individuals are classified in relation to non-
dominance levels or fronts in the sense of Pareto.  On the other hand, the diversity 
is maintained when the crowding distance is computed in order to discriminate 
between individuals from the same front. 
 

In order to classify the individuals of the population in non-dominance levels or 
fronts, two parameters are computed for each individual or solution  𝑝𝑝 ; the 𝑛𝑛𝑠𝑠 

parameter or number of solutions which dominate the solution  𝑝𝑝 , and the 𝑆𝑆𝑠𝑠 

parameter or set of solutions which is dominated by the solution 𝑝𝑝. All solutions with 
parameter 𝑛𝑛𝑠𝑠 = 0  belong to the first non-dominance front. Next, the set of 

solutions 𝑆𝑆𝑠𝑠 is consulted for each solution from the first front and the dominance 
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count 𝑛𝑛𝑠𝑠 is reduced by a unit. In this way, the solutions which reaches the 𝑛𝑛𝑠𝑠 value 

of zero are commuted to the second front. The process is repeated for the solutions 
included in the second front and so on till all solutions are integrated in different 
fronts. 
  
In order to maintain the diversity, the first version of the method [50] had a function 
to measure the fitness sharing. Such a mechanism is replaced in NSGA-II, which 
has an approach to compare the crowding distance between solutions. This allows 
simplifying the procedure of the previous version. In order to estimate the crowding 
distance for the solutions around a specific solution of the population, it is computed 
the distance to the solutions located at both sides of such a specific solution and 
under the projection of each objective. Such a quantity is employed to estimate the 
formed perimeter of the cuboid when the closest neighbours are used as vertexes, 
and it is defined a crowding distance. This concept is illustrated in the Figure 2.4.        
 

 
 
 
 
 
 
 
 
 

Figure 2.4: Crowding distance for the solution 𝑖𝑖.  
 

 Ordering the population by attending to the objective function value in ascend order 
is needed to compute the crowding distance. Next, an infinite value is assigned to 
the solutions with extreme values regarding each objective function. On the other 
hand, a distance value equal to the normalised absolute difference in the objective 
function values regarding the two adjacent solutions is assigned to the intermediate 
solutions. Such a calculation is repeated for all objectives and finally, the total 
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crowding distance is computed as the sum of the individual distance values 
regarding each objective. Such values must be previously normalised.        
 
Firstly, the selection mechanism looks at the ranks and non-dominance fronts. 
Secondly, in case of two individuals belong to the same front, the individual with the 
smaller crowding distance is preferred. The method starts generating a random 
population 𝑃𝑃0. This is ordered based on the non-dominance criterion. A rank or front 
number is assigned to each solution which is equal to the non-dominance level. At 
first, the tournament selection, recombination and mutation are employed in order 
to create an offspring 𝑄𝑄0 with size 𝑁𝑁. Since the elitism is introduced when the actual 
population is compared to the best non-dominated solution from the previous 
population, the process is different after the initial generation. In order to create next 
generations, a population with a size of 2𝑁𝑁 is generated, which combines 𝑃𝑃𝑖𝑖 and 𝑄𝑄𝑖𝑖 
where 𝑖𝑖 represents the 𝑖𝑖-th generation. If the size of the first front is smaller than 𝑁𝑁, 
all the solutions contained in the front 𝐹𝐹1 will belong to the next generation. The 
solutions from the next fronts will be assigned in an ordered way until completing 
the population. In case of exceeding the population size, the individuals from the 
last front included in the population must be ordered regarding the crowding 
distance. Finally, the more crowded individuals are rejected till complete the 
population. The procedure is shown in the Figure 2.5.  
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Figure 2.5: NSGA-II method procedure. 

 
2.3.5.2. Third Evolution Step of Generalized Differential Evolution (GDE3). 
 
This method [69] employed Differential Evolution (DE) as an operator [70] in order 
to create new individuals. The DE is based on the idea of taking the difference vector 
between two individuals and adding a scaled version of such a difference to a third 
individual. In this way, a new candidate solution is created. As an example, 
considering two individuals 𝑥𝑥1 and 𝑥𝑥2 from a population 𝑁𝑁, a scaled version of the 
difference between such individuals is added to a third individual 𝑥𝑥3. Therefore, a 
mutation vector 𝑣𝑣𝑖𝑖 = 𝑥𝑥3 + 𝐹𝐹(𝑥𝑥2 − 𝑥𝑥1)  is achieved, where 𝐹𝐹  is a scale factor with 
typical value between 0.4 and 0.9 [15]. After creating such a mutation, this is crossed 
with any individual employed along the procedure in order to create a test vector 𝑢𝑢𝑖𝑖, 
where 𝑖𝑖 represents the individual whom the test vector was created.  
 

𝑢𝑢𝑖𝑖𝑗𝑗 = �
𝑣𝑣𝑖𝑖𝑗𝑗 𝑖𝑖𝑓𝑓 �𝑟𝑟𝑐𝑐𝑗𝑗 < 𝐶𝐶𝑀𝑀� 𝑜𝑜𝑟𝑟 (𝑗𝑗 = ℑ𝑟𝑟)
𝑥𝑥𝑖𝑖𝑗𝑗 𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑟𝑟𝑤𝑤𝑖𝑖𝑠𝑠𝑒𝑒
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Where 𝑖𝑖 denotes the individual from which the test vector was created, 𝑗𝑗 denotes 
the 𝑗𝑗-th feature or dimension for the individual  𝑖𝑖 , 𝑟𝑟𝑐𝑐𝑗𝑗  denotes a random number 

between 0 and 1 which is taken from a uniform distribution, 𝐶𝐶𝑀𝑀 is the constant 
crossing rate (typical values between 0.1 and 1 [15]) and ℑ𝑟𝑟 is a random integer 
number which is taken from a uniform distribution with value between 0 and the 
individual maximum dimension. Therefore, the test vector 𝑢𝑢𝑖𝑖  is a component-by-
component combination from the individual 𝑥𝑥𝑖𝑖  and the mutant vector  𝑣𝑣𝑖𝑖. 
ℑ𝑟𝑟 guarantees that 𝑥𝑥𝑖𝑖 and 𝑢𝑢𝑖𝑖 will never be equals. Once the crossing is generated, 
𝑥𝑥𝑖𝑖 and 𝑢𝑢𝑖𝑖 are compared so the best adapted goes to the next generation. 
 
Regarding the GDE3 method, the first version extended the Differential Evolution 
(DE) for constrained multi-objective optimisation. It was achieved by modifying the 
DE’s rule selection. It consisted of replacing, for the next generation, the old vector 
in favour of the test vector when such a test vector dominated weakly to the old 
vector regarding the constraints. The non-dominated vectors were not ordered 
during the optimisation process. There is not a mechanism in order to maintain the 
distribution and spreading of the solutions. Furthermore, there is not a repository for 
the non-dominated vectors. Although GDE supplied good solutions, it was sensitive 
to the control parameters selection.          
 
Afterwards, GDE was modified in order to take decisions based on the crowding 
distance when both the vector test and the original vector were feasible and non-
dominated one by the other. Such a modification improved the distribution and 
spreading of the solutions, but it slowed down the convergence of the population. It 
occurs since vectors far from the Pareto front are favoured instead of favouring the 
convergence of all vectors near to the Pareto front. Such a second version of GDE 
was still sensitive regarding the control parameters selection. 
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The third GDE version is extended to 𝑀𝑀 objectives problems with 𝐾𝐾 constraints. The 
GDE3 selection is based on the rules as follows [69]:  

• In the case of infeasible vectors, the test vector is selected when it weakly 
dominates the original vector in the constraint violation space. Otherwise, the 
original vector is selected. 

• In the case of feasible and infeasible vectors, the feasible vector is selected. 
• When both vectors are feasible, the test vector is selected when weakly 

domain the original vector in the objective function space. When the original 
vector dominates the test vector, the original vector is selected. When neither 
vector dominates each other in the objective function space, both vectors are 
selected for the next generation.  

 
After a generation, the population size might have been enlarged. In such a 
situation, the population must decrease to the original size by employing a similar 
selection approach to the one used in NSGA-II. In this case, the ordination process 
of non-dominated solutions is modified in order to consider the constraints, and the 
selection base on the crowding distance is improved to boost a better distribution of 
the solutions. 
 
2.3.5.3. SMS-EMOA: Multi-objective Selection based on hypervolume.       
 
Reaching the true Pareto front may be complicated. Therefore, some methods 
employ a variety of indicators in order to measure the approximation quality. One of 
the most relevant indicators is the Hypervolume [72]. The SMS-EMOA method [63] 
follows the Fleisher [73] idea. It claims that given a search space and a reference 
point which is dominated by the Pareto optimal solutions, maximising the 
Hypervolume is like finding the Pareto set.        
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Figure 2.6: Hypervolume contributions from the individuals 1 and 2.  

 
The algorithm classifies the solutions in fronts or levels based on the non-dominance 
criterion used by NSGA-II. Next, the Hypervolume is employed as a selection 
criterion in order to discard the individual with the worst level, which presents the 
lowest contribution to improve the Hypervolume.  
 
The algorithm starts from an initial population and a new individual is created by 
applying the corresponding evolutionary operators. Such an individual will be part 
of the next generation whether it can replace another individual by supplying an 
improvement regarding the Hypervolume. The Figure 2.6 shows how the individuals 
of the front formed by crosses dominate the individuals of the front formed by points. 
The reference point is further located. The contribution to the Hypervolume due to 
the individual 2 is smaller than the contribution due to the individual 1. The individual 
2 would be discarded from the population.  
 
2.3.5.4. MOEA/D: Multi-objective Evolutionary Algorithm based on 

Decomposition. 
 
Decomposition is a traditional strategy in Multi-objective Optimisation [66]. The 
MOEA/D algorithm decomposes the Multi-objective Optimisation Problem into N 
single objective optimisation sub-problems by using weighted vector and scalarising 
functions. Such typical scalarising functions used by MOEA/D present several 
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approaches such as weighted sum, Tchebicheff or penalty-based boundary 
intersection (PBI).  
  
Once the problem has been decomposed, MOEA/D solves simultaneously the sub-
problems by evolving a population of individuals or solutions. Generation after 
generation, the population is formed by the best-found solutions regarding each sub-
problem. The vicinity relationships between such sub-problems are defined based 
on the distances among their integration coefficient vectors. The optimum solutions 
of two neighbour sub-problems should be similar. Each sub-problem is optimised by 
using exclusively information from its neighbour sub-problems.      
 
2.3.5.5. MOEA/D-DE: Multi-objective Evolutionary Algorithm based on 

Decomposition with Differential Evolution. 
 
This method is a MOEA/D version, which is based on Differential Evolution [71]. 
This version is especially skilful to deal with complex forms regarding the Pareto set.   
 
2.3.6. Comparative indicators. 
 
The main objective in multi-objective optimisation consists of driving the search of 
solutions towards the Pareto frontier, achieving a diverse and width front with 
uniformity regarding such solutions. Once achieved the solutions front to the 
problem, the use of a quality indicator is needed. Two basic ways to classify the 
indicators are considered: Attending to the aspects that indicators measure when 
the approximation set or solutions front is evaluated and, attending to the number 
of approximation’s sets or solutions’ fronts which are evaluated [74]. In the first way, 
the indicators can be grouped as follows [75]: 

• Cardinality indicators: Indicators which count the number of solutions 
contained by the approximation set. 

• Precision indicators: Indicators which indicate the distance to the 
theoretical Pareto optimal front. A reference set is taken into account when 
the theoretical Pareto optimal front is not known. 
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• Diversity indicators: Indicators which refer to the distribution and extension 
of solutions along the front. 

 
In the second way, indicators differ between two types: 

• Unary indicators: Indicators which receive an approximation set as a 
parameter. 

• Binary indicators: Indicators which receive two approximation sets to be 
compared.  

 
Many indicators and quality indicators have been proposed in order to measure and 
compare the performance of solutions or approximations supplied by methods. The 
most used in the Multi-objective Evolutionary Optimisation [74] are the Hypervolume 
[72], the Generational Distance [76] and Epsilon (𝜖𝜖) [77]. In the case of the present 
research, the Hypervolume is used as an indicator. This unary indicator considers 
the aspects previously cited: Precision, diversity and cardinality. It is an indicator 
widely accepted and used because it offers the following features [78]:         

• When an approximation set dominates to other one, the Hypervolume of the 
dominant set is bigger than the other set is. 

• The approximation set that reaches the maximum Hypervolume value 
regarding a problem contains all the Pareto optimum solutions. 

 
As an indicator capable of measuring the precision, the Hypervolume requires to 
select a reference point to compute the space covered by the solutions in the 
objective space. 
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3. CHAPTER 3: MULTI-OBJECTIVE OPTIMISATION BY USING 
EVOLUTIONARY ALGORITHMS IN THE RELIABILITY FIELD. 

 
3.1. Generalities. 
 
In a changing world regarding the technological development, the greater the 
possibility of implementing reliable systems, the greater the demand from 
consumers. This implies requesting high features in the contracted services and 
purchased products. Such a circumstance is not only a challenge but also an 
opportunity. Therefore, optimising the performance of physical assets is vital in a 
highly competitive market. Optimisation involves, in formal terms, defining the 
decision variables, the constraints and the objective function or functions, which 
describe the performance for the engineering problem. From such a definition, 
looking for the combination of the values of the decision variables is managed in 
order to achieve the wished objective.  
 
From the structural design optimisation of complex systems point of view, Coit and 
Zio [79] classified the eras of the research evolution as follows: 

• Era of Mathematical Programming, 
• Era of Pragmatism, 
• Era of Active Reliability Improvement. 

 
They think that the Era of Mathematical Programming made possible to place the 
methodology bases to solve optimisation problems regarding the systems’ 
Reliability. The viability of the methods and their applications were demonstrated. It 
is possible to emphasise, from such an era, the Dynamic Programming [80], the 
Linear Programming (or Entire Programming) [81], the Non-Linear Programming 
[82] and the Evolutionary Algorithms, whose bases were proposed by Holland. Such 
an author introduced the fundamental concepts regarding the Evolutionary 
Algorithms [83]. The methodologies developed throughout this era allowed solving 
reliability optimisation problems in a mathematically rigorous manner.   
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The Era of Pragmatism arose from the need to address more complex problems. 
More realistic behaviours were considered from the Reliability point of view. In this 
era, the Genetic Algorithms and other metaheuristics presented a dominant use. It 
is possible to emphasise as contributions of such an era the treatment of Multi-state 
Systems [84], Uncertainty [85] or several kinds of Redundancies [86].             
 
Finally, the Era of Active Reliability Improvement was born from the new capabilities 
to compile and transmit information regarding the failure of devices in changing 
environments by using sensors in order to analyse and re-evaluate the system’s 
Reliability. In this field, it is possible to emphasise the Dynamic Systems Reliability 
Models [87] and the System Reliability Optimisation customised for specific subset 
of users [88]. 
 
 
 
 
 
 
 
 
 

Figure 3.1: Series-parallel system.  

 
From the design of complex systems point of view, the redundancy allocation 
problem is one of the more studied. This one is handled along the present research. 
The basic problem consists of optimising the structural design of a series-parallel 
system such as the one shown in the Figure 3.1. Deciding the number of redundant 
devices is needed for the several sub-systems in order to fulfil the objective. Such 
an objective may consist of maximising the Availability while operational Cost is 
minimising. In the present research, the problem is addressed in stages as it will be 
exposed later. At the beginning, a small dimension problem will be studied where 
the number of design alternatives is reduced. Next, a more complex problem will be 
solved where the number of redundant devices must be decided regarding several 
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sub-systems. Therefore, the number of design alternatives will be bigger. In order 
to solve the problem, Evolutionary Algorithms are used as the basis of the 
methodology. Furthermore, attending to the proposed classification by Coit et al., 
the present study goes into the uncertainty dealing field. Distinguishing between 
random and epistemic uncertainty is common in the Reliability and Risk Analysis 
field [89]. The present research is closer to the first one due to the fact that it is 
referred to random phenomena, so the probabilistic model is more appropriate when 
such phenomena must be described. Such a randomness is employed when times 
to failure and times to repair are generated for the devices that form the system. 
These times follow their respective probability density functions. Such a functions 
are characterised from the parameterisation of their features, which are achieved 
from operational data statistical analysis. Some publications can supply such data 
[90] [91]. Finally, active redundancy is the type of redundancy that is considered for 
the present research. Such a redundancy involves that all devices are active along 
the mission time, so the system fulfil the required function while opportune 
redundancies work.             
 
Up to now, the present section has attended to the Reliability optimisation from the 
structural design point of view. Speaking in general, devices suffer from wear due 
to internal (derived from operation) and external factors (derived from the 
environment where they work). Nowadays, companies are aware of maintenance 
activities have consequences in benefits. Such activities are the most relevant costs 
along the life cycle of the system. A better control of non-available times of systems 
are directly related to production and such control is possible by conducting 
preventive maintenance activities.  
 
An interesting review regarding the maintenance optimisation was supplied by 
Jonge y Scarf [92], where a first differentiation between systems with single-unit and 
multi-units were done. A single-unit system is a system which cannot be 
decomposed in lower maintainable levels. Therefore, such a system is considered 
as a unit from the maintenance point of view. Conversely, a multi-unit system is a 
system which can be decomposed in lower-level maintainable units. In the present 
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research, multi-unit systems are considered. De Jonge et al. continue the 
categorisation by attending to the deterioration states space, which are considered 
as follows: 

• Deterioration process with two states: Operating and failed states. 
• Deterioration process with three states: A third state is including between 

the operating and failed states. In this case, the states are called good, 
defective and failed (the delay-time model). 

• Deterioration process with a discrete state space: This model presents a 
countable and finite number of states. 

• Deterioration process with a continuous state space: In this case, the 
deterioration level can take values within a specific interval.  

 
A deterioration process with two states is considered for the present research. The 
devices that form the system design can satisfy or not the required conditions. 
Moreover, both preventive and corrective maintenance activities are considered in 
relation to such devices. De Jonge et al. consider that maintenance activities should 
be planned based on time, age, use or condition. In the case of the present research, 
the preventive maintenance activities are planned based on calendar times. 
Prognostic, predictive and condition based are terms associated with preventive 
maintenance that is planned based on condition reports. In the case of the present 
research, the corrective maintenance activities are conducted based on condition 
because such activities are carried out depending on the device state. The 
preventive maintenance activity starts immediately once a device does not satisfy 
the required function so the continue monitorization of the system is considered.  
Attending to the repairs, these can be considered as perfect (the device recovers 
the as-good-as-new state) or imperfect. For the present research, repairs are 
considered as perfect, so the corrective maintenance activities restore the as-good-
as-new state. Regarding maintenance, dependencies between devices are not 
considered, so each device works isolated. Therefore, several opened lines exist 
for future research. 
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3.2. Design optimisation: Redundancy allocation problem. 
 
As explained before, regarding systems design optimisation on the Reliability field, 
the redundancy allocation problem has been widely studied. Solving such a problem 
follows increasing the systems’ Reliability (or Availability) by adding redundant 
devices to the basic design.  
 
Several techniques have been employed in order to solve such a problem, such as 
Dynamic Programming [93], Linear Programming [94] or Non-Linear Programming 
[82]. However, from the present research point of view, addressing the problem by 
using Evolutionary Algorithms is of interest.  
 
3.2.1. Solving the problem by using Evolutionary Algorithms. 
 
Few studies were conducted regarding Evolutionary Algorithms in the Reliability 
field [95] before the one conducted by Coit and Smith [96]. They developed a 
specific Genetic Algorithm to the design optimisation of series-parallel systems and 
multiple component choice. Such a study sets out two alternatives: Reliability 
maximisation or cost minimisation, both subjected to constraints. This brings into 
the light the single-objective character of such an approach. Other studies that follow 
a similar approach were conducted after: 

• Levitin et al. [84] presented an optimisation model to multi-state systems, 
where the redundancy allocation problem was solved. Both the system and 
the devices present a range of performance levels. They employed a Genetic 
Algorithm where the cost is minimised by considering the performance level. 

• Cantoni et al. [97] coupled Genetic Algorithms and Monte Carlo Simulation 
to the optimal industrial plant design. Their approach follows maximising an 
objective where several costs (acquisitions, repairs, penalties regarding 
downtime and environment damages) are subtracted to the profit. 

• Ouzineb et al. [98] managed the redundancy allocation problem for series-
parallel systems with multi-state reparable components (attending to several 
reliability levels). They developed an original tabu search meta-heuristic 
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optimisation method. It determines the minimal cost system configuration 
when constraints are based on availability. 

• Bendjeghaba y Ouahdi [99] studied the redundancy allocation problem for a 
multi-state power system by using an Ant Colony System as an optimisation 
method. They minimise the cost when availability restrictions are considered. 

• Ying-Shen et al. [100] proposed an optimisation model based on a Genetic 
Algorithm in order to improve the design efficiency. Their approach follows 
maximising the relationship between availability and cost when the problem 
is subjected to restrictions. Such restrictions consider the Mean Time to 
Failure and the Mean Time to Repair. 

• Zou et al. [101] proposed a Harmony Search Algorithm to solve reliability 
problems. Their approach looks for maximising the reliability based on 
several constraints such as cost, volume of the component and its weight. 

• Wang and Li [102] proposed a hybrid algorithm based on Particle Swarm 
Optimisation and Local Search. The authors employed the cost under 
availability constraints as an objective function. 

• Valian et al. [103] used an improved version of Cuckoo Search Algorithm for 
reliability optimisation problems where reliability is maximised by using a 
single objective function. Such an objective function includes constraints. 

• Pourkarim et al. [104] presented a different approach in relation to the classic 
formulation for the redundancy allocation problem. In this case, they 
considered a three-states model (working with full performance, working with 
half performance and a failed state). They employed a Genetic Algorithm to 
maximise the system’s reliability when a constraint is considered. Such a 
constraint is form by the total cost of the system, which includes the cost of 
redundant components, the internal connection cost, and the technical and 
organizational activity costs.   

• Heish [105] proposed an Evolutionary Algorithm inspired by the bacterial 
behaviour, which is applied to the redundancy allocation problem in multi-
level systems. As an objective function, the system reliability is maximised 
when cost constraints are considered. 
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• Xu et al. [106] focused the redundancy allocation problem for multi-state 
systems that are subjected to common failure causes. They proposed a novel 
Discrete Bat Algorithm in which they minimise the cost based on availability 
constraints.    

 
Other authors proposed the simultaneous optimisation of several objectives by 
aggregation. In this case, an objective function is built in which objectives are 
accumulated and (sometimes) weighted. Although multiple objectives are optimised 
at the same time, a single objective function is attended. Some studies under this 
philosophy are shown as follows: 

• Elegbede y Adjallah [107] described a methodology based on Genetic 
Algorithms in which the authors optimised availability and cost for series-
parallel reparable systems. They converted the multi-objective optimisation 
problem into a single-objective optimisation problem by using a weighting 
technique. 

• Sahoo et al. [108] employed a Genetic Algorithm to solve the optimum design 
of systems based on evaluating reliability intervals. As objective functions, 
they considered maximum reliability and minimum cost, weight and volume. 
Their approach consisted of building a single objective function where the 
objectives are related. 

• Li et al. [109] proposed a two-stages approach for system reliability 
optimisation. At first, a set of Pareto solutions is identified by applying Multi-
objective Evolutionary Algorithms (NSGA and NSGA-II). Next, the front is 
reduced by using a Multi-objective Selection Algorithm. As an objective, the 
authors maximise a function to measure the relative performance in which 
profit and cost are related. 

• Azadeh et al. [110] studied an optimisation problem to planning redundancies 
for a system with warm stand-by redundancy (failure probability bigger than 
zero and lower than the failure probability for an operating device) where the 
devices are considered as non-reparable and multi-state. Genetic Algorithms 
were used to solve the problem and as objective functions they employed 
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acquisition cost, time to develop the activities and reliability. They used a 
single function, which involves such parameters.      

 
However, other authors considered the redundancy allocation problem by 
employing Evolutionary Algorithms from a multi-objective point of view. This is the 
interesting focus regarding the present research. Next, a significant set of 
contributions in such a field are cited:   

• Bussaca et al. [111] employed a Multi-objective Genetic Algorithm to optimise 
the design of a safety system by considering redundancy allocation. As 
objective functions, they used, on the one hand, a profit function in which 
several costs (acquisition, installation, repairs, and penalties due to missed 
delivery of the agreed service) are subtracted regarding the benefits, and on 
the other hand, the system reliability. The authors considered that the devices 
are subjected to constant failure rates. 

• Marsaguerra et al. [112] coupled Genetic Algorithms and Monte Carlo 
Simulation to solve the network optimum design problem. They looked for 
maximising the estimated network reliability and minimising its associated 
variance. Not only component types with uncertain regarding reliability but 
also redundancy levels were considered as decision variables. 

• Greiner et al. [5] introduced original methodologies for the optimum design of 
safety systems from a multi-objective point of view (based on fault trees 
which are evaluated by using the weight method) by employed several 
Evolutionary Multi-objective Algorithms (SPEA2, NSGA-II and NSGA-II with 
controlled elitism). As objective functions, the authors considered 
unavailability and cost.  

• Tian and Zuo [113] proposed a multi-objective optimisation model to 
redundancy allocation for multi-state series-parallel systems. The authors 
employed a Genetic Algorithm to solve the optimisation model based on 
physical programming. As objective functions the authors maximise the 
performance of the systems and minimise cost and weight.   

• Salazar et al. [7] developed a multi-objective formulation to solve several 
problems regarding the optimum design of systems. The authors used 
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NSGA-II as an optimisation methods and reliability and cost as objective 
functions. 

• Zhao et al. [114] employed the first Ant Colony Algorithm to reliability 
optimisation based on series-parallel systems. As objective functions they 
considered reliability, cost and weight.  

• In order to interpret the high number of obtained solutions when the Pareto 
optimum set is achieved for a problem, Taboada et al. [115] presented two 
methods to reduce the solutions on a Pareto optimum set. The first one is 
based on a pseudo-ranking scheme and the second one uses crowding 
techniques proper from data mining. They solved the redundancy allocation 
problem to demonstrate the efficacy of the methods. They used the genetic 
algorithm NSGA in order to achieve an initial set of optimum solutions. As 
objective functions, they maximise reliability and minimise cost and weight. 

• Chiang and Cheng [116] proposed a Multi-objective Genetic Algorithm based 
on simulated annealing to solve optimisation and redundancy allocation 
problems for series-parallel reparable systems. They considered two cases 
based on references above cited; Elegbede et al. [107], where maximum 
availability and minimum cost are pretended, and Busacca et al. [111], where 
both availability and the profit function, which subtracts costs to benefits, are 
maximised. 

• Limbourg and Kochs [117] applied feature models (an original method from 
software engineering for complex design) and a Multi-objective Evolutionary 
Algorithm (derived from NSGA-II with external repository) for probabilistic 
purposes. As objective functions they maximise the life distribution of the 
system and minimise its cost. 

• Tobaoda et al. [118] introduced a Multi-objective Evolutionary Algorithm 
based on Genetic Algorithms to solve multiple objective multi-state reliability 
optimization design problems. They evaluate the reliability system indexes 
by using an approach based on Universal Moment Generating Functions. As 
objective functions they maximise the system’s reliability and minimise both 
cost and weight. 
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• Kumar et al. [119] proposed a multi-objective formulation and a methodology 
to solve the multi-level redundancy allocation problem by introducing a 
hierarchical environment based on Genetic Algorithms (SPEA2 and NSGA-
II). As objective functions, reliability and cost are considered. 

• Huang et al. [120] proposed a niched Pareto Genetic Algorithm based to 
solve reliability design problems. By using such an approach, they look for a 
high number of feasible solutions in order to supply a high number of 
alternatives to choose by the decision maker. As objective functions they 
employed reliability and cost. 

• Lins et al. [121] coupled Genetic Algorithms and Monte Carlo Simulation to 
solve the redundancy allocation problem for series-parallel reparable 
systems subjected to corrective maintenance activities. As objective 
functions they considered reliability and cost. 

• Lins et al. [122] coupled Genetic Algorithms and Monte Carlo Simulation to 
solve the redundancy allocation problem for series-parallel reparable 
systems subjected to imperfect repairs. As objective functions they employed 
availability and cost, where acquisition, repair, maintenance teams and 
unavailability costs were considered.  

• Chambari et al. [123] formulated the redundancy allocation problem for non-
reparable systems. The decision is taken by choosing between active and 
cold-standby components and deciding the redundancy level regarding each 
subsystem. The authors considered both non-constant failure rates and 
imperfect transitions to redundant cold-standby components. They employed 
two metaheuristics, the Genetic Algorithm NSGA-II and optimisation by 
Particle Swarm Optimisation. As objective functions they used maximum 
reliability and minimum cost. 

• Safari [124] proposed a variant for the Genetic Algorithm NSGA-II to solve 
his new mathematic formulation in order to supply solutions to the 
redundancy allocation problem. They considered both active and cold-
standby devices. As objectives they employed reliability and cost. 

• Khalili-Damghani et al. [125] proposed a novel multi-objective Particle Swarm 
Optimization method for solving reliability redundancy allocation problems. 
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They considered two states for the devices. As objective functions the 
authors considered reliability, which is maximised, and cost and weight, 
which are minimised. 

• Zoulfaghari et al. [13] presented a Non-Linear Programming mixed model to 
analyse the availability optimisation for a system with a specific structure, 
which uses both repairable and non-repairable components. In order to 
localise the solution to the proposed model, the authors developed an 
efficient Genetic Algorithm to maximise reliability and minimise cost. 

• Jiansheng et al. [126] introduced uncertainty theory regarding failure rates, 
repair rates and other involved coefficients to solve the redundancy allocation 
problem for repairable series-parallel systems. In order to solve such a 
problem, they proposed an algorithm based on Artificial Bee Colony. As 
objective functions the authors employed reliability and cost. 

• Ardakan et al. [127] solved the redundancy allocation problem by proposing 
to use mixed redundancies, which are formed by the combination of active 
and cold-standby redundancies or without failure up to start operating. They 
employed NSGA-II as an optimisation method and reliability and cost as 
objective functions. 

• Ghorabaee et al. [128] considered the redundancy allocation problem with k-
out-of-n sub-systems. As objective functions the authors considered 
reliability and cost when weight is considered as a constraint. The authors 
were based on NSGA-II as an optimisation method, although they introduced 
a modification to preserve the diversity and to manage the constraints. 

• Amiri and Khajeh [129] considered the redundancy allocation problem for 
repairable systems. They used NSGA-II as an optimisation method and 
reliability and cost as objective functions. 

• Jahromi and Feizabadi [130] developed a formulation to solve the 
redundancy allocation problem when components were not considered 
homogeneous. Reliability and cost were taken as objective functions 
whereas NSGA-II was used as an optimisation method.  

• Kayedpour et al. [131] developed an integrated algorithm to solve reliability 
design problems considering instantaneous availability, repairable 
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components and a selection of configuration strategies (parallel, cold or 
warm) based on Markov processes and the NSGA-II method. As an 
optimisation method, the authors took maximum availability and minimum 
cost.  

• Samanta and Basu [132] proposed an Attraction-based Particle Swarm 
Optimisation (APSO) model to solve availability allocation problems for 
systems with repairable components. The authors considered the non-linear 
behaviour for the system by introducing fuzzy theory to manage 
uncertainties. They used availability and cost as objective functions. The 
traditional Particle Swarm Optimisation model was improved in this case. 

• Sharifi et al. [133] presented an original multi-objective model to solve the 
redundancy allocation problem for systems with sub-systems considered as 
weighted-k-out-of-n parallel. They used NSGA-II as an optimisation method 
and reliability and cost as objective functions. 

• De Paula et al. [134] proposed a solution to the redundancy allocation 
problem in which dependency between failures for redundant devices is 
considered. They employed a stochastic approach based on Markov chains 
and next, they solved the multi-objective problem by using the Genetic 
Algorithm NSGA-II. As objective functions they maximise availability and 
minimise cost. As a result, they show the number of redundant devices and 
the percentage of resources to use when maintenance activities must be 
done. 

• Chambari et al. [135] proposed a bi-objective simulation-based optimisation 
model to redundancy allocation in series-parallel systems with homogeneous 
components. The authors maximise the system reliability and minimise the 
cost, while NSGA-II is used as optimisation method. Optimal component 
types, the redundancy level, and the redundancy strategy (active, cold 
standby, mixed or K-mixed) with imperfect switching were considered. 
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3.2.2. Considerations for the optimum design in the present research. 
 
In the Reliability field, the most widely studied multi-objective design optimisation 
problems look for maximising reliability and minimising cost. Similar objectives are 
followed in the present research, although in this case, the objective to maximise 
consists of availability since repairable systems are exclusively considered. 
 
The present research addresses the design optimisation problem regarding 
redundancy allocation by stages. In a first stage, a small dimension problem is 
solved in which a few design alternatives are considered. In a second stage, a bigger 
dimension problem is considered, in which the number of redundant devices must 
be chosen for each device included in the basic design of the system. Such stages 
allow testing the methodology at first in a lower complex case study, due to the fact 
that the present research not only looks for the optimum design of the system (as in 
the bibliography above cited) but also looks for determining simultaneously the 
optimum maintenance strategy (considering both corrective and preventive 
maintenance), as it was explained before.     
  
3.3. Preventive maintenance optimisation. 
 
As it was exposed before, de Jonge and Scarf [92] distinguish maintenance tasks 
in two blocks, corrective and preventive maintenance activities. Although some 
references cited regarding the systems design optimisation attend to corrective 
maintenance [13,118,122,125,129,131,132], the present research considers both 
corrective (repairs after failure) and preventive maintenance. Such preventive 
maintenances activities are attended next. 
 
The necessity of considering preventive maintenance activities was identified by 
industries a few decades ago. Before companies would be aware of considering 
preventive maintenance in order to improve the efficiency and reliability of 
processes, maintenance activities were carried out after failure. When a repairable 
system is not available, such a system enters an unproductive phase [136] where 
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not only resources are not generated, but also, they are consumed until recovering 
the system’s available state. A repairable system is not available because either a 
failure (after such a failure a repair or corrective maintenance activity is required) or 
a programmed shutdown in order to conduct a preventive maintenance activity. 
When a preventive maintenance activity is carried out, the unproductive phase is 
better controlled than when repairs must be performed because of a failure. Such a 
situation is due to circumstances such as the spares are located and available or 
maintenance human teams are trained and prepared. 
 
This research considers the preventive maintenance activities planning. Several 
techniques have been employed to solve such a problem by different authors. For 
instance, Integer Programming by Kralj et al. [137] or Mixed Integer Linear 
Programming by Charest et al. [138]. However, the present research attends to 
solve the problem by using Evolutionary Algorithms. 
 
3.3.1. Preventive Maintenance Planning by using Evolutionary Algorithms.        
 
Evolutionary Algorithms have been widely employed to solve the preventive 
maintenance planning problem, both from a single-objective point of view and a 
multi-objective point of view. Some references can be cited regarding the single-
objective optimisation by employing Evolutionary Algorithms. 

• Marseguerra and Zio [139] coupled Genetic Algorithms and Monte Carlo 
Simulation within the context of plant logistic management. This involves 
taking decisions regarding maintenance and repairs strategies. Monte Carlo 
simulation allows considering practical aspects such as stand-by operation 
modes, deteriorating repairs, sequences of periodic maintenances, number 
of repair teams available for different kinds of repair interventions. The 
objective function consists of maximising a profit function in which several 
cots are considered. 

• Tsai et al. [140] developed a periodic preventive maintenance plan for a 
system subjected to deteriorated component. Simple preventive 
maintenance and preventive replacement are considered as preventive 
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maintenance activities. The degradation of components is modelled by a 
dynamic reliability equation, whereas the effect from preventive 
maintenance activities is based on an age reduction model. The combination 
of activities for a component regarding the maintenance cost and the 
improvement of the life of the system are considered. In order to decide the 
best combination of activities related to each preventive maintenance period, 
a Genetic Algorithm is employed. Such a Genetic Algorithm maximises an 
index, which measures the best combination of activities. 

• Bris et al. [141] presented a methodology to minimise the cost derived from 
preventive maintenance activities for series-parallel systems based on the 
Birnbaum importance factor. The authors employed Monte Carlo simulation 
to evaluate the system availability, and Genetic Algorithms to minimise the 
cost while some constraints regarding the computed availability are 
considered. Afterwards, Samrout et al. [142] started from this approach and 
applied the Ant Colony Algorithm. In this case, the results were improved. 

• Lapa et al. [143] defined inspections as a specific class of preventive 
maintenance activity and maintenance as a non-periodic task. From such 
ideas the authors developed a methodology to plan and optimise the survival 
test policy base on Genetic Algorithms, minimising the average system 
unavailability during the mission time. 

• Lapa et al. [144] presented a methodology to evaluate the preventive 
maintenance policy based on a cost-reliability model, which allows using 
flexible intervals between maintenance activities. In order to solve the 
problem, the authors employed a Genetic Algorithm, in which the objective 
function is a linear combination of the impact from a specific maintenance 
policy and the cost regarding such a policy. 

• Hadivi [145] presented a novel approach based on Genetic Algorithms to 
optimise the maintenance calendar for a nuclear plant during its renovation. 
To do that, the cessation of electricity supply is considered. As an objective 
function, three parameters are weighted: risk, cost and the losses incurred 
when a maintenance schedule is created. 
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• Wang and Lin [146] presented a Genetic Algorithm to minimise the 
preventive maintenance cost for series-parallel systems. Such an algorithm 
considers the intrinsic properties of reparable systems, when the structure 
reliability of block diagrams and the maintenance priorities of components 
are attended. In this way, the component importance is measured, the more 
relevant components are identified, and the maintenance priority is 
stablished. The optimum maintenance periods are determined by minimising 
the total cost subjected to reliability constraints. 

• Wang and Lin [147] determined the optimum maintenance periods for the 
component of series-parallel systems by using an improved Particle Swarm 
Optimisation method. The cost derived from the periodic preventive 
maintenance is minimised as an objective function. 

• Lin and Wang [148] presented a Hybrid Genetic Algorithm to optimise the 
periodic preventive maintenance for series-parallel systems. The Genetic 
Algorithm considers the intrinsic properties of repairable systems, when the 
structure reliability of block diagrams, the maintenance priorities of 
components and their maintenance periods are attended. In this way, the 
component importance is measured, the more relevant components are 
identified, and the maintenance priority is stablished. The optimum 
maintenance periods are determined by minimising the total cost subjected 
to availability constraints. 

• Wong et al. [149] proposed a method to plan both production management 
and the maintenance tasks, when several types of maintenance tasks and 
needed resources are considered. A Genetic Algorithm is considered in 
which the time interval between the first job and the final job is minimised 
(makespan). 

• Zade and Fakhrzad [150] solved the periodic maintenance planning problem 
for a machine with non-resumable jobs. The authors minimised the time 
between the first job of the first machine and the final job of the last machine 
(makespan). Moreover, two strategies are attended: on the one hand, to 
develop the maintenance after a determined time period, and on the other 
and, to consider the maximum number of jobs that a special tool can 
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develop. A dynamic Genetic Algorithm is proposed to minimise an objective 
function that depends on the needed time to carry out the maintenance 
tasks, the jobs without workers (because other jobs were assigned to such 
workers) and work times. 

• Zheng et al. [151] suggested using condition-based maintenance as a 
preventive maintenance strategy. They solve the flexible job shop 
scheduling problem when preventive maintenance is included. An integrated 
Genetic Algorithm is applied to plan flexible jobs and afterwards the 
preventive maintenance is inserted to the solution by an insertion algorithm. 
As an objective function, the time between the first and the last job (included 
preventive maintenance) is minimised. 

• Canh Vu et al. [152] presented a dynamic maintenance grouping strategy 
for multi-component systems based on the economic cost. Such a cost may 
be improved due to grouping maintenance activities or get worse because 
of shutdowns of the system. The authors developed a Genetic Algorithm to 
maximise the economic profit derived from grouping maintenance activities. 

• Yin et al. [153] developed an integrated model of statistical process control 
and maintenance decisions. Depending on a monitoring policy based on 
calendar, it is carried out corrective maintenance after failure or preventive 
maintenance in case of loss of production. 

• Xiao et al. [154] proposed a model to the simultaneous optimisation of 
production scheduling and machine group preventive maintenance for 
systems by employing a Genetic Algorithm. Such a Genetic Algorithm 
minimises the global cost due to loss of production, preventive maintenance, 
minimal repair for unexpected failures and tardiness. 

• Maatouk et al. [155] solved the preventive maintenance optimisation 
problem for multi-state series-parallel systems. They employed a Genetic 
Algorithm controlled by fuzzy logic. The cost function is minimised with the 
restriction of the required availability at determined time. 

• Zhang and Zeng [156] studied the joint optimisation of the strategy for 
periodic condition-based opportunistic preventive maintenance and a policy 
for the provision of spare parts. Depending on the state of deterioration of 
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the system and spare parts inventory, maintenance activities are ordered. 
The authors employed a Genetic Algorithm to minimise a cost function in 
which inspections, maintenance and spare parts are considered.  

• Yahyatabar y Najafi [157] solved the problem of minimising the periodic 
preventive maintenance for series-parallel systems. The authors determine 
the number of preventive maintenance activities for each system device 
regarding reliability constraints. An Invasive Weed Optimization Algorithm 
were used in which the cost due to preventive maintenance actions 
subjected to reliability constraints is minimised. 

• Rahmati et al. [158] developed an integrated condition-based maintenance 
and stochastic flexible job shop scheduling problem. Such a problem attends 
to both corrective and preventive maintenance. To do that, the degradation 
level of the component and a threshold are compared in order to start the 
preventive maintenance tasks. A Harmony Search Optimisation Algorithm is 
used to solve the problem. The time between the first and the last task is 
minimised in this case. 

• Dahia et al. [159] proposed a maintenance model that considers three 
actions: minimal repairs, a periodic overhaul and a complete renewal. 
Employing a Genetic Algorithm as an optimisation method, the minimum 
cost for preventive maintenance is determined for multi-component systems 
when reliability constraints are attended.  

 
Other authors dealt with the various objective simultaneous optimisation, although 
they do that by aggregation. In this case, the authors build a single objective function 
in which the objectives are accumulated and (in occasions) weighted. Some studies 
under such a consideration are: 

• Quan et al. [160] considered to find out a cost-effective schedule to achieve 
a balanced solution between the task to plan and the size work force. To do 
that, the authors employed a non-conventional Multi-objective Evolutionary 
Algorithm by introducing a form of utility theory to find Pareto optimal 
solutions. As objective functions, they minimise simultaneously the number 
of workers and time to develop a set of preventive maintenance tasks.  
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• Carlos et al. [161] employed Particle Swarm Optimisation and a tolerance 
interval-based approach to manage uncertainty, in order to achieve a flexible 
variation rank to develop the preventive maintenance activities instead of 
supplying a constant time interval. The authors used a single objective 
function in which the effectiveness of the availability and the cost are 
weighted. 

• Balaji et al. [162] formulated the maintenance scheduling problem by exact 
time intervals for power generation units. They used a mixed integer 
optimization mathematic model which is attended by Differential Evolution in 
order to minimise the operational cost. To do that, the authors build a cost 
function in which production, operation and maintenance cost are 
considered.  

• Zhang et al. [163] proposed a new economical optimisation model to make 
up decisions about non-periodic maintenance for deteriorating system. The 
authors designed a Particle Swarm Optimisation Algorithm that combines 
heuristic rules to solve the multi-objective problem. Such a problem is 
formulated in order to minimise the total cost, which considers the maximum 
maintenance periods, the maximum number of inspections per maintenance 
period and the inspection interval per maintenance period.  

 
Nevertheless, the present research studies how to solve the preventive 
maintenance scheduling problem by employing Multi-objective Evolutionary 
Algorithms. Under such an umbrella, it is possible to cite the studies conducted by 
several authors:  

• Muñoz et al. [164] presented an approach based on Genetic Algorithms and 
focused on the global and constrained optimisation of surveillance and 
maintenance of components based on risk and cost criteria. 

• Marseguerra et al. [165] coupled Genetic Algorithms and Monte Carlo 
simulation in order to optimise profit and availability when maintenance and 
repair strategies must be considered. The Monte Carlo simulation was used 
to model the system’s degradation while the Genetic Algorithm was used to 
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determine the optimal degradation level beyond which preventive 
maintenance must be performed. 

• Martorell et al. [166] proposed a methodology for the Integrated Multi-Criteria 
Decision-Making to determine the parameters of technical specifications and 
maintenance equipment based on safety. The authors employed a Genetic 
Algorithm when reliability, availability and maintenance were the considered 
criteria. 

• Gao et al. [167] studied the flexible job shop scheduling problem attending to 
availability constraints which affect maintenance tasks. They used a Genetic 
Algorithm in order to minimise the makespan (time that elapses from the start 
of work to the end), time expended on a machine and the total time expended 
on all machines. 

• Oyarbide-Zubillaga et al. [168] coupled Discrete Event Simulation and 
Genetic Algorithms (NSGA-II) to identify the optimal preventive maintenance 
frequency for multi-equipment systems under cost and profit criteria.  

• Berrichi et al. [169] proposed a method to solve the simultaneous production 
and maintenance scheduling problem. The authors used the Weighted Sum 
Genetic Algorithm (WSGA) and NSGA-II as optimisation methods to compare 
their performances. As objective functions, they worked with makespan and 
unavailability due to maintenance tasks. 

• Sánchez et al. [170] employed Genetic Algorithms for the optimisation of 
testing and maintenance tasks with unavailability and cost as objective 
functions. The authors considered the epistemic uncertainty in relation to 
imperfect repairs. 

• Berrichi et al. [171] solved the joint production and preventive maintenance-
scheduling problem by using a Multi-objective Ant Colony Algorithm and 
taking availability and cost as objective functions.  

• Moradi et al. [172] studied simultaneously the production and preventive 
maintenance scheduling problem in order to minimise the global time 
invested in production tasks and the unavailability due to preventive 
maintenance activities. They used four Genetic Algorithms: NSGA-II, NRGA 
(Non-ranking Genetic Algorithm), CDRNSGA-II (NSGA-II with Composite 
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Dispatching Rule and active scheduling) and CDRNRGA (NRGA with 
Composite Dispatching Rule and active scheduling). 

• Wang and Pham [173] employed a Genetic Algorithm to estimate the 
preventive maintenance interval by considering imperfect repairs and the 
number of preventive maintenance activities before a component needs to 
be replaced. They used availability and cost as objective functions. 

• Ben Ali et al. [174] developed an elitist Genetic Algorithm to deal with the 
production and maintenance-scheduling problem. To do that, the authors 
minimise both makespan and cost. 

• Hnaien and Yalaoui [175] considered the production and maintenance-
scheduling problem by minimising the makespan and the delay between the 
real and the theoretical maintenance frequency for two machines. They used 
NSGA-II and SPEA2, including two novel versions based on the Johnson 
Algorithm. 

• Suresh and Kumarappan [176] presented a model for the maintenance 
scheduling of generators employing hybrid Improved Binary Particle Swarm 
Optimisation (IBPSO). As objective functions, the authors considered a 
reduction in the loss of load probability and minimisation of the annual supply 
reserve ratio deviation for a power system. 

• Li et al. [177] presented a novel Discrete Artificial Bee Colony Algorithm for 
the flexible job-shop scheduling problem in which maintenance activities are 
considered. The authors employed as objective functions the makespan, the 
total workload of machines and the workload of the critical machine. 

• Gao et al. [178] studied the preventive maintenance considering the dynamic 
interval for multi-component systems. The authors solved the problem by 
using Genetic Algorithms whereas availability and cost were considered as 
objective functions. 

• Wang and Liu [179] considered the optimisation of parallel-machine-
scheduling integrated with two kinds of resources (machines and moulds) 
and preventive maintenance planning. The authors employed makespan and 
availability as objective functions and NSGA-II as an optimisation method. 
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• Piasson et al. [180] proposed a model to solve the problem of optimising the 
reliability-centred maintenance planning of an electric power distribution 
system. The authors employed NSGA-II in order to achieve the Pareto 
optimal front and, as objective functions, they minimised the cost due to 
maintenance activities and maximised the index of reliability of the whole 
system. 

• Sheikhalishahi et al. [181] presented an open shop scheduling model that 
considers human errors and preventive maintenance. They considered three 
objective functions: human error, maintenance and production factors. The 
authors used NSGA-II and SPEA2 as optimisation methods. As well as that, 
they used another Evolutionary Algorithm, the Multi-Objective Particle Swarm 
Optimisation (MOPSO) method. 

• An et al. [182] built an integrated optimisation model including the flexible job-
shop scheduling problem to reduce the energy consumption in the 
manufacturing sector. The authors considered the degradation effects and 
imperfect maintenance. They proposed a Hybrid Multi-objective Evolutionary 
Algorithm considering the makespan, total tardiness, total production cost 
and total energy consumption as objective functions. 

• Boufellouh and Belkaid [183] proposed a bi-objective model, which 
determines the production scheduling, the maintenance planning and the 
resource supply rate decisions in order to minimise the makespan and the 
total production costs (including maintenance, resource consumption and 
resource inventory costs). The authors used NSGA-II and BOPSO (Bi-
Objective Particle Swarm Optimization) as Evolutionary Optimisation 
Algorithms. 

• Bressi et al. [184] proposed a methodology to minimise the present value of 
the life cycle maintenance costs and maximise the life cycle quality level of 
the railway track-bed by considering different levels of reliability. They used 
a Genetic Algorithm to achieve optimal solutions. 

• Zhang and Yang [185] proposed a multi-objective model of maintenance 
planning and resource allocation for wind farms by using NSGA-II. The 
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authors considered the implementation of maintenance tasks by considering 
the minimal total resources and at the minimal penalty cost. 
 

3.3.2. Considering the optimum preventive maintenance strategy in the 
present research. 

 
The preventive maintenance scheduling optimisation problem more studied from the 
multi-objective point of view consists of maximising availability (or minimise 
unavailability) and minimising costs. Such objectives are explored in the present 
research. 
 
Particularising, the periodic preventive maintenance scheduling optimisation 
problem is considered so the main target consists of determining the periodic 
optimum interval between preventive maintenance tasks regarding each one of the 
system’s devices. Furthermore, several time units are explored so preventive 
maintenance tasks can be defined by using accuracy levels as it was claimed 
between the objectives of the present research.  
 
3.4. Simultaneous optimisation of the design and the preventive maintenance 

scheduling. 
 
Up to now, several studies developed from different authors in the Reliability field 
have been cited. Such studies face on the optimisation of either the system’s 
structural design or its preventive maintenance scheduling. However, the present 
research considers the simultaneous optimisation of both the system’s structural 
design (by redundancy allocation) and its preventive maintenance scheduling (by 
determining the periodic time to conduct preventive maintenance tasks). The 
objectives considered are maximum availability and minimum cost. Some studies 
regarding such a research line were carried out before, as an example, Zhu et al. 
[186] considered the redundancy allocation problem and the sequential preventive 
maintenance scheduling when imperfect repairs are considered. The authors 
presented a stochastic programming model which is subjected to uncertainty 
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regarding how the system is going to be used in future. However, the present 
research focuses on Evolutionary Algorithms (due to their demonstrated power) and 
Discrete Event Simulations (due to its capacity of representing the behaviour of 
systems). 
 
3.4.1. Simultaneous optimisation of systems design and their preventive 

maintenance scheduling by using Evolutionary Algorithms. 
 
Several authors focused on solving the problem from a single-objective point of 
view. 

• Levitin and Lisnianski [187] presented the first formulation of the joint 
redundancy and maintenance optimisation problem for multi-state systems 
by using a Genetic Algorithm as an optimisation method. The objective 
function consisted of adding the acquisition costs, the maintenance costs and 
the penalties due to unsatisfied demand.  

• Monga and Zuo [188] developed a model to design series-parallel systems 
based on reliability. Such a model considers the deterioration of components 
in order to minimise the life cycle cost. Moreover, the authors proposed 
several equations to model the effects of preventive maintenance in the 
failure rates of systems and quantify the protection rate. They optimise the 
annual average cost of the system by using Genetic Algorithms. 

• Nourelfath et al. [189] formulated a joint redundancy and imperfect preventive 
maintenance planning optimisation model based on Markov processes and 
universal moment generating function, in order to evaluate availability and 
cost for multistate systems using Genetic Algorithms and Tabu search.   

 
A few studies were conducted up to now under the umbrella of Multi-objective 
Evolutionary Algorithms. 

• In Galván et al. [8], a methodology for Integrated Safety System Design and 
Maintenance Optimisation based on a bi-level evolutionary process was 
presented. While the inner loop is devoted to find the optimum maintenance 
strategy for a given design, the outer loop looks for the optimum system’s 
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design. The authors used Multi-objective Evolutionary Algorithms based on 
domination criterion (such as NSGA-II) as optimisation methods and several 
codifications were compared. Cost and unavailability were used as objective 
functions. 

• Okasha and Frangopol [190] considered the simultaneous optimisation of 
design and maintenance during the life cycle by using Genetic Algorithms 
(NSGA-II). They studied the system reliability, redundancy and life-cycle cost 
as objective functions.  

• Adjoul et al. [191] described an original approach to the simultaneous 
optimisation of design and maintenance of multi-component industrial 
systems improving their performances with reliability and cost as objective 
functions. They used a two-level Genetic Algorithm based on NSGA-II: the 
first optimises the design based on reliability and cost, and the second one 
optimises the dynamic maintenance plan. 

 
3.4.2. Proposed solution. 
 
This research studies the simultaneous optimisation of design and preventive 
maintenance strategy by coupling Multi-objective Evolutionary Algorithms and 
Discrete Event Simulation; a technique that has achieved good results in the 
Reliability field. Coupling Multi-objective Evolutionary Algorithms and Discrete 
Simulation has been studied, on the one hand, in order to optimise the structural 
design both from a single objective point of view [97] and from a multi-objective point 
of view [112]. On the other hand, it has been studied in order to optimise the 
preventive maintenance scheduling both from a single objective point of view 
[139][141] and from a multi-objective point of view [165][168]. Moreover, only a few 
works have been developed looking at the design and corrective maintenance 
strategy simultaneously [121][122]. Nevertheless, to the knowledge of the author of 
the present research, coupling Multi-objective Evolutionary Algorithms and Discrete 
Event Simulation has not been explored for the joint optimisation of the design and 
preventive maintenance strategy as in the current study. Galván et al. [8] coupled 
the Non-Sorting Genetic Algorithm (NSGA-II) and Monte Carlo Simulation in order 
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to achieve the optimum design and surveillance test intervals. In this study, the main 
objective regarding the preventive maintenance strategy consists of supplying the 
optimum period of time to conduct such activities.  
 
As it was indicated in the Chapter II of the present research, several state-of-the-art 
Multi-objective Evolutionary Algorithms are studied (NSGA-II, GDE3, SMS-EMOA, 
MOEA/D and MOEA/D-DE). The NSGA-II method has been widely employed in the 
Reliability field. However, do not occur the same for the rest of the cited state-of-
the-art Multi-objective Evolutionary Algorithms, which have not been so widely 
explored.      
 
3.5. Multi-objectivisation. 
 
In order to improve the performance for single objective optimisation problems, 
several authors have considered using multi-objective algorithms with exclusive 
dependency on the genotypic values [192]. Such a technique has been termed 
multi-objectivisation. Although Loius and Rawlins previously discussed its principles 
[193], the term multi-objectivisation was firstly used by Knowles et al. [194]. Two 
types of multi-objectivisation were distinguished by the authors. On the one hand, 
decomposition, which is based on decomposing the main objective into several 
components. On the other hand, aggregation, which is based on considering some 
additional objectives (helper-objectives) that are used in combination with the main 
objective. Multi-objectivisation has been used to manage complex optimisation 
problems in several fields [195-198] where some advantages were reported in terms 
of performance.  
 
The use of multi-objectivisation for multi-objective problems has not received so 
much attention. Ishibuchi et al. [199] solved a problem with two objectives after 
transforming such a problem into a four-objective problem under a decomposition 
approach. Using an aggregation approach, Zheng et al. [200] introduced a helper-
task to promote positive inter-task knowledge transfer in a multi-task optimisation 
problem. Here, the multi-objectivisation technique is explored under the 
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decomposition approach, in order to compare the performance achieved when two 
and three objectives are used. Availability and Cost are the objectives considered 
for the two-objective problem. In this case, the Cost considers both Acquisition and 
Operating Costs. In order to decompose the Cost, the multi-objectivisation of this 
objective consists of separating Acquisition and Operating Costs. Therefore, the 
objectives for the three-objective problem are Availability, Acquisition Cost and 
Operating Cost. 
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4. CHAPTER 4: RELIABILITY PROBLEM HANDLED: METHODOLOGY. 
 
4.1. Determining the Availability from Functionability Profiles. 
 
The concept Availability was defined in the Chapter I of the present research as “the 
fraction of the total time in which systems are available to perform their required 
function” [12]. Technical systems are developed and built to fulfil a determined 
function. Therefore, the “functionality” is an important feature, which is related to the 
capacity of systems to perform its mission. Moreover, systems must satisfy some 
requirements that are named as “satisfactory features” (e.g., flow or density). 
Furthermore, specifying the “operation conditions” under which the system must 
operate is needed (e.g., humidity or temperature). Such three aspects come 
together on the “Functionability Profile” (FP) concept, which was introduced by 
Knezevic [201]. It is defined as “the capacity of systems to fulfil the required function 
under determined features when such systems are used as it is specified”.  
 
Speaking in general, systems fulfil their function at the beginning of their useful life. 
Nevertheless, irreversible changes appear over time so variations regarding the 
system behaviour take place. The deviation of such variations regarding the 
satisfactory features brings into the light the occurrence of the failure. Such a failure 
causes the transition from the operating to the failure state. The capacity to fulfil the 
required function for reparable systems can be recovered by carrying out a 
corrective maintenance task. The operating process for the system up to failure and 
its subsequent recovery can be graphically shown by its Functionability Profile. Such 
a Functionability Profile describes how the state of a reparable system fluctuates 
between the operating (time to failure) and the recovery (time to repair) state along 
its mission time. An example of a Functionability Profile can be seen in the Figure 
4.1. 
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Figure 4.1: Functionability Profile. 

 

The Functionability Profile follows operating times �𝑡𝑡𝑓𝑓1, 𝑡𝑡𝑓𝑓2, … , 𝑡𝑡𝑓𝑓𝑛𝑛�  and recovery 

times (𝑡𝑡𝑟𝑟1, 𝑡𝑡𝑟𝑟2, … , 𝑡𝑡𝑟𝑟𝑛𝑛). Up to now, operating times are considered as times to failures 
(TF) and recovery times as times to repair (TR). After a failure, a corrective 
maintenance activity is conducted. Within the high level of the Functionability Profile, 
the system is fulfilling its function. Conversely, within the low level, the system is 
being recovered by conducting corrective maintenance. From the Figure 4.1, it can 
be seen that the failure occurs after a period of satisfactory operation 𝑡𝑡𝑓𝑓 and next, a 

period of recovery 𝑡𝑡𝑟𝑟 is needed in order to recover the operating state. 
 
Once finalised the mission time, both operating and recovery times are known. As 
it was shown in the Chapter I of the present research, when the devices of a system 
follow exponential failure and repair intensities (constant failure and repair rates), 
the Availability of the system can be computed by employing the Equation 4.1, which 
appears at reference [12].     
 

𝐴𝐴 =
𝑀𝑀𝑇𝑇𝑇𝑇𝐹𝐹

𝑀𝑀𝑇𝑇𝑇𝑇𝐹𝐹 + 𝑀𝑀𝑇𝑇𝑇𝑇𝑀𝑀
 (4.1) 
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Where 𝑀𝑀𝑇𝑇𝑇𝑇𝐹𝐹 denotes the Mean Time to Failure and 𝑀𝑀𝑇𝑇𝑇𝑇𝑀𝑀 denotes the Mean Time 
to Repair. When the devices of a system do not follow exponential failure and repair 
intensities, a simulation approach can be suitable. The behaviour of the system can 
be simulated along its mission time. Therefore, at the end of the process, operating 
and recovery times can be characterised. Once known such information, the 
Availability will be able to be computed by using the Equation 4.2.     
 

𝐴𝐴 =
∑ 𝑡𝑡𝑓𝑓𝑖𝑖𝑛𝑛
𝑖𝑖=1

∑ 𝑡𝑡𝑓𝑓𝑖𝑖𝑛𝑛
𝑖𝑖=1 + ∑ 𝑡𝑡𝑟𝑟𝑗𝑗𝑚𝑚

𝑖𝑖=1
 (4.2) 

 
Where 𝑛𝑛 denotes the total number of operating times (times to failure), 𝑡𝑡𝑓𝑓𝑖𝑖 denotes 

the 𝑖𝑖-th operation time, 𝑚𝑚 denotes the total number of recovery times (times to 
repair) and 𝑡𝑡𝑟𝑟𝑗𝑗 denotes the 𝑗𝑗-th recovery time.   

 
4.2. Building the Functionability Profile from Discrete Event Simulation. 
 
Using Discrete Event Simulation has shown its power because it allows analysing 
complex systems much more accurately due to a more realistic representation of 
their behaviour in practice. Employing such a technique, the devices’ Functionability 
Profile of a system can be built by generating random numbers, which follow a 
specific distribution function. In this way, times to failure (TF) and times to repair 
(TR) can be generated so a good approximation regarding the true Functionability 
Profile for the devices can be built and finally, the Functionability Profile of the whole 
system. Once the system’s Functionability Profile is known, it is possible to compute 
the Availability by employing the Equation 4.2. 
 
The process consists of building the life cycle of each device, which moves between 
the operating and the repair states. To do that, a random number that follows the 
distribution function regarding times to failure (TF) is generated (as commented in 
the Chapter I), so the device is operating until the failure takes place at such a 
moment. Next, a new random number that follows the distribution function regarding 
times to repair (TR) is generated (as commented in the Chapter I), so the device 
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does not recover the operating state up to finish such a repair. The process is 
repeated until concluding the mission time. Such a process is schematised as 
follows:   
 

1. The system mission time is set, so the process continues for each device 
included in the design. 

2. The Functionability Profile (FP) of the device, which is included in the design, 
is initialised. 

3. A random time to failure 𝑡𝑡𝑓𝑓 and a time to repair after failure 𝑡𝑡𝑟𝑟 are generated, 

both following their respective distribution function. Both are included in the 
device Functionability Profile.   

4. The third point is repeated up to generate the complete device’s 
Functionability Profile.  

5. From the second to the fourth points are repeated up to generate the 
Functionability Profiles regarding the devices included in the system design. 

6. Once such Functionability Profiles are built, the system’s Functionability 
Profile can be built, by following the structure of the system regarding each 
step of time.  

 
4.3. Modifying the Functionability Profile. 
 
In the previous section, it was shown how to build the devices’ Functionability Profile 
of a system and finally, the system’s Functionability Profile. It is possible to improve 
the system Availability by including preventive maintenance activities in the devices’ 
Functionability Profiles. 
 
Up to now, it has been explained that the Functionability Profile represents a 
repeated cycle, which is formed by operating and recovery times. The operating 
times were considered as times to failure (TF) and the recovery times were 
considered as times to repair (TR) after failure. Conducting preventive maintenance 
for the devices included in the system’s design involves modifying their respective 
Functionability Profiles. This is due to the fact that an operating time could be not 
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only a time to failure (TF) but also a time to start a preventive maintenance task 
(TM). On the other hand, a recovery time could be not only a time to repair (TR) but 
also a time to conduct a preventive maintenance task (TCM). Such a situation will 
be considered regarding the Equation 4.2. Therefore, for the present research, the 
main reasons why a system is not available are the failure (after such a failure, a 
time to repair is needed) or the preventive maintenance (a time to conduct such an 
activity is needed). 
  
When the unavailability of the system is due to conduct a preventive maintenance 
task, the unproductive phase is more controlled because it consists of a scheduling 
shutdown, so human teams and materials are prepared and available, as examples. 
 
Preventive maintenance activities allow modelling to users the system’s 
Functionability Profile. In this way, such users can be sure that the system satisfy 
the desired functions. They are interested in keeping the available state for the 
system as time as possible in order to achieve the best performance. When the 
system is operating, earnings are generated regarding its availability. Conversely, 
when such a system must be recovered, investments must be applied in order to 
return the operating status. Thus, the users of the system are interested in managing 
its Functionability Profile in order to improve the system’s Availability. 
 
Therefore, it is needed to modify the procedure to build the Functionability Profile, 
which was shown in the previous section, in order to include preventive maintenance 
tasks. Again, the process consists of building the life cycle of the system regarding 
each device included in the system design, which move between operating and 
recovery states. For the previous process, a random number that follows the time 
to failure distribution functions regarding each device was needed in order to 
characterise an operating time. In this occasion, a random number that follows the 
time to start a preventive maintenance task (TM) distribution function regarding each 
device is needed too. In this way, if the time to failure (TF) is smaller than the time 
to start a preventive maintenance task (TM), such a failure takes place. Therefore, 
this section of the device’s Functionability Profile is formed by the time to failure 
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(TF), which is followed by the corresponding time to repair (TR). Conversely, if the 
time to failure (TF) is bigger than the time to start a preventive maintenance task 
(TM), such a preventive maintenance task takes place. In this case, this section of 
the device’s Functionability Profile is formed by the time to start a preventive 
maintenance task (TM), which is followed by the corresponding time to conduct such 
a preventive maintenance task (TCM). The process is repeated up to finish the 
mission time. Such a process is schematised as follows: 
 

1. The system mission time is set, so the process continues for each device 
included in the design. 

2. The Functionability Profile (FP) of the device, which is included in the design, 
is initialised. 

3. A random time to start a preventive maintenance task (TM) is supplied by 
the corresponding decision variables from the Evolutionary Algorithm. On 
the other hand, a time to conduct a preventive maintenance task (TCM) is 
randomly generated. 

4. A random time to failure (TF) is generated, which follows its distribution 
function.  

5. In case of TM > TF, the failure takes place prior to conduct the preventive 
maintenance task. Therefore, a time to repair (TR) must be randomly created 
by using the repair distribution function. This section of the device’s life cycle 
is formed by the (TF) value as an operating time and the (TR) value as a 
recovery time. 

6. In case of TM < TF, the preventive maintenance task is conducted prior to 
fail. Thus, this section of the device life cycle is formed by the (TM) value as 
an operating time and the (TCM) value as a recovery time. 

7. The steps fourth to sixth are repeated up to generate the complete device’s 
Functionability Profile.  

8. The steps second to seventh are repeated up to generate the Functionability 
Profiles regarding the devices included in the system design. 
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9. Once such Functionability Profiles are built, the system’s Functionability 
Profile can be built, by following the structure of the system regarding each 
step of time.  

  
The procedure is shown in the Figure 4.2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.2: Procedure to modify the system Functionality Profile. 
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4.4. An example of construction and modification of the system’s 
Functionability Profile. 

 
In order to illustrate the procedure explained above, next, a simple example is 
shown. The Availability of a system is computed from its Functionability Profile point 
of view. The system structure is shown in the Figure 4.3. 
 
 
 
 

Figure 4.3: System with two devices in series. 

 
As a started point, it is considered that the individual (solution) from the population 
employed to compute the system’s Availability supplies a time to start a preventive 
maintenance task (TM) for the devices 1 and 2 of 5- and 7-time units, respectively. 
Moreover, it is considered that their respective times to conduct a preventive 
maintenance time (TCM) have been generated so values of 2- and 3-time units were 
achieved, respectively.  
 
In order to generate the Functionability Profile for the device 1, a time to failure (TF) 
must be generated, following its corresponding distribution function. Such a time to 
failure is generated as it was explained in the Chapter I. As an example, considering 
that the time to failure follows an exponential distribution function with Mean Time 
to Failure of 5-time units, and the random number generated reaches a value of 0.3, 
the process supplied a time to failure (TF) of 6-time units. 
 

𝑇𝑇𝐹𝐹 = −5 · ln(0.3) ≅ 6 
 
In this case, the time to failure (TF) overcomes the time to start a preventive 
maintenance task (TM) of 5-time units. Therefore, such a preventive maintenance 
task takes place before the failure. This section of the device’s Functionability Profile 
will be formed by 5-time units due to the time to start the preventive maintenance 

Device 1 Device 2 
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task (TM) and 2-time units due to the time to conduct such a preventive maintenance 
task (TCM) for the device 1. Such a situation is shown in the Figure 4.4. 
 

Device 1 1 1 1 1 1 0 0            

 
Figure 4.4: Including TM + TCM in the Functionability Profile. 

 
Next, a new time to failure (TF) is generated by following the corresponding 
distribution function. In this occasion, the random number generated was 0.45, so 
the time to failure (TF) achieved is 4-time units. 
 
 

𝑇𝑇𝐹𝐹 = −5 · ln(0.45) ≅ 4 
 
Since the achieved time to failure (TF) is lower than the time to start a preventive 
maintenance task (TCM), the failure takes place before starting the preventive 
maintenance task. In this occasion, a time to repair (TR) is needed so it is generated 
as a random number that follows the corresponding distribution function. A normal 
distribution with mean 5 and standard deviation of 2 is considered. As it was 
explained in the Chapter I, a set of 12 random numbers is generated, as an example: 
0.136 – 0.245 – 0.123 – 0.489 – 0.389 – 0.214 – 0.312 – 0.785 – 0.345 – 0.614 – 
0.822 – 0.503. The time to repair (TR) is computed as follows: 
  

𝑋𝑋 = �𝑋𝑋𝑖𝑖

12

𝑖𝑖=1

= 4,977 

𝑇𝑇𝑀𝑀 = (𝑋𝑋 − 6)𝜎𝜎 + 𝜇𝜇 = (4,977 − 6)2 + 5 ≅ 3 
 
Therefore, this section of the device Functionability Profile will be formed by 4-time 
units due to the time to failure (TF) and the 3-time units due to the time to repair 
(TR) for the device 1. Such a situation is shown in the Figure 4.5. 
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Device 1 1 1 1 1 1 0 0 1 1 1 1 0 0 0     
 

Figure 4.5: Including TF + TR in the Functionability Profile. 

 
The process is repeated till completing the mission time, as it is shown the Figure 
4.6. 
 

Device 1 1 1 1 1 1 0 0 1 1 1 1 0 0 0 1 1 0 0 
 

Figure 4.6: Functionability profile for the device 1. 

 
The process is repeated for the device 2. As an example, it is considered that the 
result achieved is as it is shown in the Figure 4.7. 
 

Device 2 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 0 0 0 
 

Figure 4.7: Functionability profile for the device 2. 

 
From the devices’ Functionability Profiles and following the serial-parallel logical for 
the system’s structure (serial in this case), the system’s Functionability Profile can 
be generated, as it is shown in the Figure 4.8. 
 

Device 1 1 1 1 1 1 0 0 1 1 1 1 0 0 0 1 1 0 0 
Device 2 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 0 0 0 
System 1 1 1 1 0 0 0 0 1 1 1 0 0 0 1 0 0 0 

 
Figure 4.8: Building the system’s Functionability Profile. 

 
The system was in operating state for 8-time units while it was in failure state for 10-
time units. The system’s Availability is computed by using the Equation 4.2 as 
follows: 
 

𝐴𝐴 =
8

8 + 10
= 0.44 
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4.5. Multi-objective Optimisation of the design and maintenance strategy. 
 
In the Chapter II of the present research, the basic principles of multi-objective 
optimisation by using Evolutionary Algorithms were presented. The details to 
consider when the system’s design and its maintenance strategy pretends to be 
jointly optimised are shown next. 
 
4.5.1. Objective functions. 
 
The joint multi-objective optimisation of the system design and its maintenance 
strategy will supply a set of feasible and balanced solutions among objectives, which 
will be distributed along the non-dominated solutions front. In the present research, 
maximum Availability and minimum Cost are the objectives to consider. The 
Availability is computed by employing the objective function supplied by the 
Equation 4.2. Regarding such an Equation, as operating times 𝑡𝑡𝑓𝑓𝑖𝑖, both times to 

failure and times to start a preventive maintenance task can be considered, 
whereas, as recovery times 𝑡𝑡𝑟𝑟𝑖𝑖 , both times to repair and times to conduct a 
preventive maintenance task can be respectively considered. The Cost can be 
computed by considering several aspects such as acquisition costs or costs due 
corrective and preventive maintenance tasks. The basic objective function 
employed to compute the Operating Cost is shown in the Equation 4.3, where 𝐶𝐶 
denotes the system’s Operation Cost, which is quantified in economic units, 𝑞𝑞 
denotes the global number of corrective maintenance tasks, 𝑐𝑐𝑐𝑐𝑖𝑖 denotes the cost 
due to the 𝑖𝑖 -th corrective maintenance task, 𝑝𝑝  denotes the global number of 
preventive maintenance tasks and 𝑐𝑐𝑝𝑝𝑗𝑗 denotes the cost due to the 𝑗𝑗-th preventive 

maintenance task. Both 𝑐𝑐𝑐𝑐𝑖𝑖 and 𝑐𝑐𝑝𝑝𝑗𝑗  are computed by multiplying the cost per hour 

regarding each type of maintenance task and the number of hours dedicated to such 
maintenance tasks. 
 

𝐶𝐶 = �𝑐𝑐𝑐𝑐𝑖𝑖

𝑞𝑞

𝑖𝑖=1

+ �𝑐𝑐𝑝𝑝𝑗𝑗

𝑠𝑠

𝑖𝑖=1

 (4.3) 
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In addition, it is possible to consider the Acquisition and Replace (if this one is 
needed) Costs due to each device included in the system design as it is shown in 
the Equation 4.4. 
  

𝐶𝐶 = ��𝑐𝑐𝑚𝑚𝑘𝑘 + �(𝑃𝑃𝑖𝑖 + 𝑐𝑐𝑐𝑐𝑖𝑖)
𝑞𝑞

𝑖𝑖=1

+ �𝑐𝑐𝑝𝑝𝑗𝑗

𝑠𝑠

𝑗𝑗=1

�
𝑑𝑑

𝑘𝑘=1

 (4.4) 

 
Where 𝐶𝐶 denotes the total Cost, which is quantified in economic units, 𝑑𝑑 denotes 
the maximum number of devices included in the system’s design, 𝑐𝑐𝑚𝑚𝑘𝑘 denotes the 
acquisition cost regarding the 𝑘𝑘-th device, 𝑞𝑞 denotes the global number of corrective 
maintenance tasks regarding the 𝑘𝑘-th device, 𝑃𝑃𝑖𝑖 denotes the cost regarding the 𝑖𝑖-th 
replace (if it is needed and it is related to corrective maintenance tasks) for the 𝑘𝑘-th 
device, 𝑐𝑐𝑐𝑐𝑖𝑖 denotes the cost in relation to the 𝑖𝑖-th corrective maintenance task for 
the 𝑘𝑘-th device, 𝑝𝑝 denotes the count of preventive maintenance tasks regarding the 
𝑘𝑘-th device and 𝑐𝑐𝑝𝑝𝑗𝑗 denotes the cost regarding the 𝑗𝑗-th preventive maintenance task 

for the 𝑘𝑘-th device. Again, both 𝑐𝑐𝑐𝑐𝑖𝑖 and 𝑐𝑐𝑝𝑝𝑗𝑗 are computed by multiplying the cost per 

hour regarding each type of maintenance task and the number of hours dedicated 
to such maintenance tasks. 
 
Note that when the multi-objectivization technique is applied, the total Cost is 
decomposed between the Acquisition Cost, which is computed by using the 
Equation 4.4 when ∑ 𝑐𝑐𝑚𝑚𝑘𝑘𝑑𝑑

𝑘𝑘=1  is considered exclusively, and the Operating Cost, 

which is computed by using ∑ �∑ (𝑃𝑃𝑖𝑖 + 𝑐𝑐𝑐𝑐𝑖𝑖)
𝑞𝑞
𝑖𝑖=1 + ∑ 𝑐𝑐𝑝𝑝𝑗𝑗

𝑠𝑠
𝑗𝑗=1 �𝑑𝑑

𝑘𝑘=1  exclusively. 

 
4.5.2. Decision variables, constraints and encoding. 
 
The decision variables are a fundamental element on optimisation due to such 
variables form the chromosome, which represent possible solutions to the problem. 
In the present research, two types of decision variables are used, on the one hand, 
decision variables regarding the design and, on the other hand, decision variables 
regarding the maintenance strategy. The decision variables regarding the design 
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consider design alternatives by redundancy allocation for the sub-systems that form 
the whole system. The decision variables regarding the maintenance strategy 
express a schedule to conduct preventive maintenance tasks regarding the devices 
included in the design alternative, when maximum Availability and minimum Cost 
are desired. 
 
Constraints are limits to the values that the decision variables can reach. In the case 
of decision variables regarding the design, the limit consists of the maximum number 
of devices that can be allocated for each sub-system. Such a limit can be subjected 
to budget constraints or available space, as examples. In the case of decision 
variables that refers to preventive maintenance, a premature preventive 
maintenance task could be conducted if a minimum time were not considered. 
Conversely, a reckless preventive maintenance task could be conducted if a 
maximum time were not defined. Therefore, the decision variables must present 
feasible values between limits. 
 
In order to explore the solutions to the problem in depth, in the present research, 
both real and binary encoding are explored. Moreover, as an extension of the binary 
encoding, the Gray code is explored too. A mix between real and binary encoding 
is avoided so solutions are achieved from a real or binary approach. However, the 
decision variables regarding the design could have binary or integer nature, 
whereas the decision variables regarding maintenance have an integer nature. 
Therefore, some transformation must be done in order to achieve their true values 
as follows. 
 
4.5.2.1. Real encoding. 
 
For real encoding, the decision variables included in the chromosome take real 
values between 0 and 1. Therefore, at the moment of evaluating the objective 
functions, the decision variables must be transformed according to their range of 
feasible values. Next, in order to show how this technique works, two optimisation 
design problems are considered. Firstly, decision variables with binary nature are 



 
CONTRIBUTIONS ON RELIABILITY TO RECONDITION THE MAINTENANCE PLAN AND THE DESIGN OF SYSTEMS 

BY USING EVOLUTIONARY ALGORITHMS 

 
 

 
 
 

81 

considered because they refer to the inclusion or not of a redundant device. 
Secondly, decision variables with integer nature are considered because they refer 
to the number of redundant devices that can be included as redundancies in a sub-
system. Regarding the maintenance strategy, both problems consider decision 
variables with integer nature. 
 
Decision variables with binary nature for the design. 
 
In this problem, both decision variables with binary nature (regarding design) and 
decision variables with integer nature (regarding periodic preventive maintenance) 
coexist. However, both types of decision variables are codified as real numbers, 
which reach values between 0 and 1 along the evolutionary process. Therefore, 
when the objective functions are going to be evaluated, the decision variables must 
be transformed between their respective limits as follows: 

• The decision variables with binary nature (regarding design) must be round 
to the nearest integer. When the value supplied is 0, the respective device 
is not included in the design whereas 1 implies the opposite. An illustrative 
example is shown in the Figure 4.9. For a system formed by a single device 
(Device 1), a design alternative is considered in order to include a parallel 
second device (Device 2) as a redundant device.  

 
 
 
 
 
 

Figure 4.9: A device (Device 1) with a parallel redundancy (Device 2). 

 
In this case, a single decision variable regarding design is needed because 
it would be used in order to decide the inclusion or not inclusion of the 
Device 2 in the system. Such a decision variable has integer nature so 0 
indicates that the device is not included and 1 the opposite. The alternatives 
to consider at the moment of evaluating the objective functions are: 

Device 1 

Device 2 
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→ A decision variable value smaller than 0.5 implies not to consider the 
inclusion of the device in the system design. 

→ A decision variable value equal or bigger than 0.5 implies to consider 
the inclusion of the device in the system design. 

• The decision variables with integer nature (regarding maintenance) must be 
transformed because they must achieve values within the interval 
[𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛,𝑇𝑇𝑀𝑀𝑚𝑚𝑚𝑚𝑥𝑥], where 𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛 denotes the minimum operating time to start 
a scheduled preventive maintenance task for the referred device and 𝑇𝑇𝑀𝑀𝑚𝑚𝑚𝑚𝑥𝑥 
denotes the maximum operating time to start a scheduled preventive 
maintenance task for the referred device. Both values must be previously 
stablished. The Equation 4.5 shows how the transformation must be done. 

 

𝑇𝑇𝑀𝑀𝑖𝑖 = 𝑟𝑟𝑜𝑜𝑢𝑢𝑛𝑛𝑑𝑑 (𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛𝑖𝑖 + 𝑀𝑀𝑖𝑖 · �𝑇𝑇𝑀𝑀𝑚𝑚𝑚𝑚𝑥𝑥𝑖𝑖 − 𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛𝑖𝑖�) (4.5) 

 
Where 𝑇𝑇𝑀𝑀𝑖𝑖 is the true value for the time to start a preventive maintenance 
task for the device 𝑖𝑖 , 𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛𝑖𝑖  and 𝑇𝑇𝑀𝑀𝑚𝑚𝑚𝑚𝑥𝑥𝑖𝑖  denote the minimum and 

maximum values that the time to start a preventive maintenance task can 
take for the device 𝑖𝑖  and 𝑀𝑀𝑖𝑖 is the value of the decision variable referred to 
the device 𝑖𝑖. As an example, considering a device with a 𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛 of 4,380 
hours and a 𝑇𝑇𝑀𝑀𝑚𝑚𝑚𝑚𝑥𝑥  of 8,760 hours whose decision variable regarding 
preventive maintenance presents a value of 0.423, the true value for the 
time to start a preventive maintenance task reaches a value of 4,380 + 0.423 
· (8,760 − 4,380) = 6,233 hours. 

 
Note that such transformations take place on purpose of evaluating the objective 
functions. Therefore, such a procedure does not affect to the values of the decision 
variables from the chromosome, which are exclusively modified by the evolutionary 
process. 
 
Finally, the chromosome would be formed by a number of decision variables equal 
to the number of considered redundancies and the number of times to start a 
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preventive maintenance task, one per device to be considered for the design 
alternatives. Following the previous example, which is referred by the Figure 4.9, 
three decision variables would form the chromosome; one of them to consider the 
inclusion of Device 2 as a redundant device (𝑃𝑃1) and two of them to consider the 
optimum time to start a preventive maintenance task (𝑀𝑀1,𝑀𝑀2) (one regarding the 
Device 1 and other one regarding the Device 2, which is not considered if it is not 
included in the design). 
 

[𝑃𝑃1][𝑀𝑀1,𝑀𝑀2] → 𝑀𝑀í𝑛𝑛𝑖𝑖𝑚𝑚𝑢𝑢𝑚𝑚 (𝑈𝑈𝑛𝑛𝑈𝑈𝑣𝑣𝑈𝑈𝑖𝑖𝑈𝑈𝑈𝑈𝑈𝑈𝑖𝑖𝑈𝑈𝑖𝑖𝑡𝑡𝑦𝑦,𝐶𝐶𝑜𝑜𝑠𝑠𝑡𝑡) 
 

Decision variables with integer nature for the design. 
 

In this case, decision variables with integer nature are considered for both the 
design and the maintenance strategy. As in the previous case, both types of 
decision variables are codified as real numbers that reach values between 0 and 1 
along the evolutionary process. Therefore, when the objective functions are going 
to be evaluated, the decision variables must be transformed between their 
respective limits as follows: 

• The decision variables regarding the structure of the system can take values 
between 1 and 𝑑𝑑𝑖𝑖, where 𝑑𝑑𝑖𝑖 denotes the maximum number of devices that 
can be included in the sub-system 𝑖𝑖. As an example, the Figure 4.10 shows, 
a system which is formed by two sub-systems (𝑖𝑖 = 2), with a maximum 
number of 2 devices for the sub-system 1 (𝑑𝑑1 = 2) and 3 for the sub-system 
2 (𝑑𝑑2 = 3). 

 
 
 
 
 
 
 
 
 

Figure 4.10: A System with 2 sub-systems with 2 and 3 devices, respectively. 
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Device 3 
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Such variables must be transformed in order to evaluate the objective 
functions because they must achieve values within the interval [1,𝑑𝑑𝑖𝑖], where 
𝑑𝑑𝑖𝑖 presents values previously fixed. The Equation 4.6 shows the base to 
transform such variables. 
 

𝐸𝐸𝑖𝑖 = 𝑟𝑟𝑜𝑜𝑢𝑢𝑛𝑛𝑑𝑑_𝑓𝑓𝑈𝑈𝑜𝑜𝑜𝑜𝑟𝑟(𝑁𝑁𝑚𝑚𝑖𝑖𝑛𝑛𝑖𝑖 + 𝑃𝑃𝑖𝑖 · 𝑑𝑑𝑖𝑖) (4.6) 
 

Where 𝐸𝐸𝑖𝑖 is the number of devices included in the sub-system 𝑖𝑖, 𝑁𝑁𝑚𝑚𝑖𝑖𝑛𝑛𝑖𝑖 is the 

minimum number of devices included in the sub-system 𝑖𝑖  and 𝑃𝑃𝑖𝑖  is the 
value that the decision variable takes for the sub-system 𝑖𝑖. It can be seen 
that the real number achieved is rounded down because the number of 
devices is an integer. As an example, if it is considered a sub-system with 
at least 1 device, a maximum of 3 devices (𝑑𝑑𝑖𝑖 = 3) and a decision variable 
𝑋𝑋 with a value of 0.5342, the number of devices 𝐸𝐸 would be 2. A restriction 
must be considered in case of a value of 1 for 𝑃𝑃 (it almost impossible but as 
a real number, it can achieve values from 0 to 1). In this case, 𝐸𝐸𝑖𝑖 = 𝑑𝑑𝑖𝑖. 

• The decision variables with integer nature (regarding maintenance) must be 
transformed by following the procedure previously explained regarding how 
to manage the decision variables with binary nature for the design (see the 
Equation 4.5). 

 
Finally, the chromosome would be formed by a number of decision variables equal 
to the number of sub-systems considered for the system’s structure (one per sub-
system, where the number of its devices is included) and the periodic times to start 
a preventive maintenance task (one decision variable per device that can be 
included in the design). Considering the previous example, which is referred in the 
Figure 4.10, 7 decision variables are needed in order to code such an example; 2 
of them regarding the devices to include for each sub-system (𝑃𝑃1,𝑃𝑃2 ) and 5 
regarding the maintenance strategy (𝑀𝑀1,𝑀𝑀2,𝑀𝑀3,𝑀𝑀4,𝑀𝑀5), one per device that can be 
included in the design.   
 

[𝑃𝑃1,𝑃𝑃2][𝑀𝑀1,𝑀𝑀2,𝑀𝑀3,𝑀𝑀4,𝑀𝑀5] → 𝑀𝑀í𝑛𝑛𝑖𝑖𝑚𝑚𝑢𝑢𝑚𝑚 (𝑈𝑈𝑛𝑛𝑈𝑈𝑣𝑣𝑈𝑈𝑖𝑖𝑈𝑈𝑈𝑈𝑈𝑈𝑖𝑖𝑈𝑈𝑖𝑖𝑡𝑡𝑦𝑦,𝐶𝐶𝑜𝑜𝑠𝑠𝑡𝑡) 
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4.5.2.2. Natural binary encoding. 
 
In this case, all the decision variables included in the chromosome are binary and 
they take values between 0 and 1. As in the previous section, the decision variables 
must be transformed according to their range of feasible values. Next, in order to 
show how this technique works, the way to codify the chromosome is shown when 
the design optimisation is considered. Decision variables with binary nature are 
considered because they refer exclusively to include or not a redundant device. 
Regarding the maintenance strategy, decision variables with integer nature are 
considered. However, they use binary encoding so they must be transformed as it 
is shown. 
 
Decision variables with binary nature for the design. 
 
In this problem, both the decision variables with binary nature (regarding design) 
and the decision variables with integer nature (regarding periodic preventive 
maintenance) coexist. However, both types of decision variables are codified as 
binary numbers, which take values of 0 or 1 along the evolutionary process. 
Therefore, when the objective functions are going to be evaluated, the decision 
variables must be transformed between their respective limits as follows: 

• The decision variables with binary nature do not need to be processed so 
when the value supplied is 0, the respective device is not included in the 
design whereas 1 implies the opposite. Reconsidering the example from the 
Figure 4.9, where a basic system is formed by a single device (Device 1) 
and such a system could contain a parallel second device (Device 2) as a 
redundancy. A single decision variable regarding the design is needed 
because it would be used in order to decide the inclusion or not inclusion of 
the Device 2 in the system. Due to such a decision variable takes a binary 
value, its transformation is not needed. Reconsidering the example from the 
Figure 4.10, which consists of a system formed by two sub-systems with a 
maximum number of 2 redundant devices for the sub-system 1 and 3 for the 
sub-system 2, 3 decision variables would be needed (one of them for the 
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sub-system 1 – Device 2, and two of them for the sub-system 2 – Devices 
4 and 5). The devices 1 and 3 are the main devices so they are always 
considered. Due to such decision variables take a binary value, their 
transformation is not needed, as in the previous example. 

• The decision variables with integer nature (regarding maintenance) must 
use binary encoding in order to be included in the chromosome. Next, they 
must be transformed in integer numbers in order to evaluate the objective 
functions. Such decision variables must achieve values within the interval 
[𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛,𝑇𝑇𝑀𝑀𝑚𝑚𝑚𝑚𝑥𝑥] , where 𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛  denotes the minimum time to start a 
scheduled preventive maintenance task for the referred device and 𝑇𝑇𝑀𝑀𝑚𝑚𝑚𝑚𝑥𝑥 
denotes the maximum time to start a scheduled preventive maintenance 
task for the referred device. Both values must be previously stablished. 
→ In order to include the decision variables in the chromosome, the 

binary scale must consider as a minimum value the value 𝑇𝑇𝑀𝑀𝑚𝑚𝑚𝑚𝑥𝑥 −
𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛 . A decision variable value smaller than 0.5 implies not to 
consider the inclusion of the device in the system design. Such a 
situation involves a high probability of overcoming the feasible values 
for the considered scale. As an example, it is possible to consider a 
device with 𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛  and 𝑇𝑇𝑀𝑀𝑚𝑚𝑚𝑚𝑥𝑥  values of 2,920 and 8,760 hours, 
respectively. The difference 𝑇𝑇𝑀𝑀𝑚𝑚𝑚𝑚𝑥𝑥 − 𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛 reaches a value of 5,840 
hours, which is the minimum steps to consider in the scale. In order to 
have such a number of steps, a number 𝑛𝑛 of bits is needed, which 
must satisfy 2𝑛𝑛 ≥ 5840. Therefore, 𝑛𝑛 = 13 bits. However, a 13 bits 
scale can take 213 = 8192 steps. Therefore, a relationship between 
the step values of the binary scale and the equivalent real scale is 
needed in order to evaluate the objective functions. Such a 
relationship can be achieved by using the Equation 4.7. 
 

𝑀𝑀 =
𝑇𝑇𝑀𝑀𝑚𝑚𝑚𝑚𝑥𝑥 − 𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛

2𝑛𝑛
 (4.7) 
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Reconsidering the example, 𝑀𝑀 takes a value of: 
 

𝑀𝑀 =
8,760 − 2,920

213
= 0.712890625 

 
In order to achieve the true value of the time to start a preventive 
maintenance task, the Equation 4.8 must be employed. 
 

𝑇𝑇𝑀𝑀𝑖𝑖 = 𝑟𝑟𝑜𝑜𝑢𝑢𝑛𝑛𝑑𝑑 �𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛𝑖𝑖 + 𝐵𝐵𝑖𝑖 · 𝑀𝑀𝑖𝑖� (4.8) 

 
Where 𝑇𝑇𝑀𝑀 denotes the integer value of the time to start a preventive 
maintenance task for the device 𝑖𝑖, 𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛𝑖𝑖 denotes the minimum time 

to start a preventive maintenance task for the device 𝑖𝑖, 𝐵𝐵 denotes the 
decimal value which is equivalent to the binary number supplied by 
the decision variables for the device 𝑖𝑖 and 𝑀𝑀𝑖𝑖 denotes the scale factor 
previously computed by using the Equation 4.7. Following the 
example, in case of decision variable values of 1100110001110 , 
which denotes an integer number of 6,542, the transformed value 
would be 6,542 × 0.712890625 = 4,663.7 ≈ 4,664 . Such a value is 
included in the scale of feasible values with a maximum of 5,840 
steps. In order to achieve the true value of the time to start a 
preventive maintenance task within the interval [𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛,𝑇𝑇𝑀𝑀𝑚𝑚𝑚𝑚𝑥𝑥] , 
adding the 𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛 value is needed, so a 𝑇𝑇𝑀𝑀 value of 6,542 achieved 
from the chromosome is equivalent to a true value of the time to start 
preventive maintenance task of 𝑇𝑇𝑃𝑃𝑚𝑚𝑖𝑖𝑛𝑛 + 4,664 = 2,920 + 4,664 =
7,584 hours.    

 
As it was explained before, such transformations take place on purpose of 
evaluating the objective functions. Therefore, such a procedure does not affect to 
the decision variables in the chromosome, which are exclusively modified by the 
evolutionary process. 
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Finally, the chromosome would be formed by a number of decision variables equal 
to the number of considered redundancies (1 bit per each sub-system) and the 
number of bits needed to represent the range of values 𝑇𝑇𝑀𝑀𝑚𝑚𝑚𝑚𝑥𝑥 − 𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛, for the 
devices that can be included in the system design. 
 
4.5.2.3. Gray code. 
 
As in the case of binary encoding, the decision variables included in the 
chromosome takes values of 0 or 1 due to the Gray code is employed. The 
difference between both codifications (binary and Gray) consists of using the Gray 
code, which is named reflected binary too. Such a code is a way to represent 
numbers in which the codification of two neighbour numbers differs in only one bit 
[202]. The decimal numbers between 0 and 7 are represented in the Table 4.1 when 
both the binary and the Gray code are used. 
 

Decimal number Binary number Gray number 
0 000 000 
1 001 001 
2 010 011 
3 011 010 
4 100 110 
5 101 111 
6 110 101 
7 111 100 

 
 Binary and Gray numbers. 

 
When binary encoding is used, consecutive numbers can differ in more than one 
bit. This is the case of the numbers 1 (codified as 001) and 2 (codified as 010). Both 
numbers differ in two bits. The more extreme case takes place between the numbers 
3 (codified as 011) and 4 (codified as 100), where all bits differ. Conversely, when 
the Gray code is employed, two consecutive numbers differ in only one bit as it is 
shown in the Table 4.1. Employing the Gray code makes easier to optimise regular 
functions (functions that do not suddenly vary), because small changes in the code 
have small changes on the function values as a result. Apart from this, the binary 
encoding presents a better behaviour in problems with a high number of local 
minima (in the order of the middle of points in the research space). A successful 
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application in Evolutionary Multicriteria Optimization when Gray code is used was 
presented by Greiner et al. [203]. The used encoding may have a big impact in the 
performance of an Evolutionary Algorithm so it must not be ignored [15]. This is the 
reason why studying both the binary and the Gray code is considered for the present 
research. 
 
As in the previous case, the decision variables must be transformed at the moment 
of evaluating the objective functions. Such transformations are like the ones 
exposed in the previous section, so they are not explained again. 
 
4.5.2.4. Other considerations regarding the decision variables. 
 
Attending to the way to study the domain (discrete or continuous) for the considered 
problem, some encoding alternatives were shown before. Another interesting 
aspect to analyse consists of the accuracy regarding the solutions to the problem. 
 
Preventive maintenance tasks can be scheduled based on several time units. Such 
tasks could be scheduled by using, for instance, the hour, the days, the week or the 
month as a time unit. Groups of them could be used, such as each three days or 
two weeks, in case of being useful to users. It could be non-significant to schedule 
a preventive maintenance task attending on a specific hour. It could enough to 
consider it within a range of 24 hours of a day. 
 
Although such a circumstance has not impact in case of employing real encoding, it 
could have when binary encoding is used. As explained before, when real encoding 
is used, a change in the scale must be done from the real decision variables to the 
used time unit. Therefore, such a time unit could be the hour, the day, the week or 
any other. Conversely, such a circumstance is not valid when binary encoding is 
used because the length of the chromosome must represent the complete scale 
between feasible values. This is the reason why the larger the chromosome, the 
more the time unit accuracy to be analysed. If one week is used as a time unit, 1 bit 
will be needed. However, if the day is used, 3 bits will be needed (it is not enough 
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using a number of bits 𝑛𝑛 = 2, because 2𝑛𝑛 = 4 scale positions and 7 positions are 
needed. At least a number of bits 𝑛𝑛 = 3 must be used because 2𝑛𝑛 = 8 available 
scale positions). The increment is higher in case of using the hour. The possible 
impact due to the chromosome length is considered for the present research. 
 
4.5.3. Parameterizing the optimization methods considered. 
 
As it was explained in the Chapter II, five state-of-the-art Multi-objective Evolutionary 
Algorithms are considered along the present research. These are NSGA-II (Non-
dominated Sorting Genetic Algorithm II), GDE3 (Third Evolution Step of Generalized 
Differential Evolution), SMS-EMOA (Multi-objective Selection based on Dominated 
Hypervolume), MOAE/D (Multi-objective evolutionary algorithm based on 
decomposition) and MOEA/D-DE, which is like MOAE/D but using Differential 
Evolution. 
 
Setting the parameters is important in order to address a successful process. Next, 
the main parameters regarding the method employed are defined, and their values 
are exposed. The parameter tested values were chosen from experiments, 
recommendations from literature and common practices in the evolutionary 
algorithms field: 
 

• Mutation Rate (PrM): The expectation of the number of genes mutating. The 
central value is equivalent to the inverse of the decision variables.  Two more 
probabilities, one above and the other below the central value (1.5/decision 
variables and 0.5/decision variables, respectively) have been set to the 
methods that use Simulated Binary Crossover (SMS-EMOA, MOEA/D and 
NSGA-II). For binary encoding, the central value is explored because more 
types of crossover are explored. 

• Mutation Distribution index (disM): The distribution index of polynomial 
mutation. This is set to the typical value of 20 for the present case study. A 
thorough study was previously conducted, and the parameter showed a low 
impact in the performance. 
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• Crossover Probability (PrC): The probability of doing crossover when the 
Simulated Binary Crossover is used. The crossover operator has an impact 
on the creation of new individuals. It is set to values of 0.9 and 1 for the 
present research. 

• Crossover Distribution index (disC): This is the crossover distribution index 
when the Simulated Binary Crossover is used. It is 20 for the present 
research. A thorough study was previously conducted, and the parameter 
showed a low impact in the performance. 

• Crossover Rate (CR): The crossover operator has the function of mixing the 
genetic information among chromosomes to create new individuals. In 
Differential Evolution (GDE3, MOEA/D-DE), each gene is crossed (or not) 
depending on a probability variable referred as the Crossover Rate. The 
typical value for the Crossover Rate is between 0.1 and 1.0 [15]. For the 
present research, the Crossover Rate parameter is set to 0.9 given that a 
large CR often speeds convergence [70]. 

• Scale Factor (F): In Differential Evolution, the mutation operator alters the 
genes of the chromosome by adding a scaled difference vector from two 
chosen chromosomes to a third chromosome. The difference vector is 
scaled by using the Scale Factor. The typical value for the Scale Factor is 
between 0.4 and 0.9 [15]. For the present research, values of 0.4, 0.5 and 
0.6 are tested. 

• Scalarizing function (Approach): The MOEA/D method decomposes a multi-
objective optimisation problem into different single-objective sub-problems 
by using a set of weighted vectors and a scalarizing function. Typical 
scalarizing functions for MOEA/D include the weighted sum, Tchebycheff 
and Penalty-based Boundary Intersection (PBI). Following results from the 
Ref. [204], in which the Tchebycheff approach performed well, such an 
approach is used for the present research. 

• Probability of choosing parents locally (𝛿𝛿): A value used widely [71,205,206] 
is 0.9. 

• Replacement mechanism (𝑛𝑛𝑟𝑟): The replacement mechanism improves the 
quality of the population in terms of dominance, and it also maintains the 
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diversity. A high-quality offspring solution could replace most current 
solutions in favour of its neighbouring solution [205], which implies a 
decrease in diversity. The parameter 𝑛𝑛𝑟𝑟 is used to establish the maximum 
number of solutions that can be replaced by a high-quality offspring. A 
proposed empirical rule [206] consists of considering 𝑛𝑛𝑟𝑟 = 0.01·𝑁𝑁, as being 
𝑁𝑁 the population size (note that 𝑛𝑛𝑟𝑟 must be an integer value). 

 
As population sizes, 50, 100 and 150 individuals are considered. The population 
size plays a crucial role on maintaining the equilibrium between exploration and 
exploitation. When optimal solutions are searched, populations with excessive size 
could lead to slow convergences, whereas populations with few individuals could 
lead to premature stagnation, converging to local optimums [32,207,208]. Each 
configuration is executed 21 times (for statistical purposes) and 10,000,000 
evaluations is used as the stopping criterion. 
 
4.6. Employed indicator. 
 
In the Chapter II of the present research, the employed indicator was exposed. Such 
an indicator is the Hypervolume [72]. 
 
4.7. Results analysis. 
 
As it was exposed above, the employed indicator to measure the performance of 
the experiments in this research is the Hypervolume indicator. Once defined the set 
of experiment to conduct, 21 executions per each Multi-objective Evolutionary 
Algorithm configuration are executed for statistical purpose. In this way, softening 
the effect due to the random generation of the initial population is pretended. 
Therefore, launching only one execution could supply an optimistic or pessimistic 
hypervolume value. In that case, the result achieved for the experiment could not 
be conclusive. 
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Once the end of the evolutionary process is reached, the resulted information is 
extracted, exploited and analysed. It is interesting to observe the evolution of the 
hypervolume indicator all along the optimisation process so graphic information is 
supplied regarding the average value achieved by the 21 executions till reaching the 
stopping criterion. An example can be seen in the Figure 4.11. 
 

 
 
 
 
 
 
 
 
 

Figure 4.11: Hypervolume evolution vs. the number of evaluations. 
 

On the other hand, box plots are created regarding the achieved Hypervolume 
values at the end of the process, so the results are described visually and 
information in relation to the group of data is brought into the light. In this way, three 
quartiles (the second one coincides with the median), the maximum and the 
minimum values are shown. An example can be seen in the Figure 4.12. 
 
  
 
 
 
 
 
 
 
 

Figure 4.12: An example of box plot. 
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Besides the visual information previously cited, the Average, Mean, Maximum, 
Minimum and Standard Deviation values regarding the reached hypervolume from 
21 executions is shown for each experiment. 
 
Once developed the experiments, a procedure to compare their performances is 
needed. As a general rule, the followed procedure consists of conducting a rigorous 
statistical test, which was proposed by García and Herrera [209]. It starts by carrying 
out the Friedmans’ test, which is a non-parametric test that allows detecting 
significance differences between the achieved performances and rejecting the null 
hypothesis (𝐻𝐻0) in such a case. The null hypothesis establishes that the mean of a 
set represents the mean of other one (𝐻𝐻0: 𝜃𝜃1 = 𝜃𝜃2 = ⋯ = 𝜃𝜃𝑘𝑘). In order to conduct 
the test, the ranks are computed from the achieved results. The rank 1 is set to the 
best, the rank 2 is set to the next best and so on till set a rank to each result. The p-
value is computed by employing the Friedman’s test, which stablishes if the null 
hypothesis is accepted or rejected. The p-value is a useful datum, which represents 
the smallest significant value that can result in the rejection of the null hypothesis. 
The p-value provides information about whether a statistical hypothesis test is 
significant (or not), and it also indicates how significant the result is: The smaller the 
p-value (< 0.05), the stronger the evidence against the null hypothesis. 
 
In case of rejection (differences found), a post-hoc test is carried out in order to find 
out the concrete pairwise comparisons which produce such differences. The 
procedure to conduct multiple comparisons followed in this research was described 
by García and Herrera. However, some exceptions are applied. Sometimes, 
although the Friedman’s test claims that differences exist, such a procedure does 
not detect them due to the accuracy of the post-hoc test. In this case, the signed-
rank Wilcoxon test is employed as it was recommended by Benavoli et al. [210]. 
 
Finally, the non-dominated front is achieved, which is formed by the best-balanced 
Availability-Cost solutions. Such a front presents an hypervolume value, which is 
computed by employing the method proposed by Fonseca et al. [211]. 
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4.8. Software platform. 
 
In order to implement the code that allows optimising both the design and the 
maintenance strategy, employing the PlatEMO [212] platform (1.6 version) was 
considered. Programmed in MATLAB, the open-source PlatEMO platform includes 
more than 160 Multi-objective Evolutionary Algorithms, more than 300 multi-
objective test problems and several widely used performance indicators. Therefore, 
a new problem was implemented in PlatEMO. A work flux diagram is shown in the 
Figure 4.13, in order to explain how the created functions are related. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.13: Diagram of relationships between generated functions. 

 
Next, a short description of the programmed codes is presented. 

• Design and maintenance optimisation: PlatEMO uses a file as the basis of 
the main problem, which allows initiating the process (Initialisation of the 
Functionability Profile). Generation after generation, it launches the section 
of the code that sets up and computes the objective functions (Generate and 
Evaluate the Functionability Profile). Moreover, it connects the implemented 
code with the rest of the platform, which launches the selected Multi-objective 
Evolutionary Algorithm. It receives as input parameters the type of operation 
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(“initiate” or “evaluate”), the object that stores the parameters values (failure 
rates, recovery rates, mission time, …) and the decision variables 
(population). As output parameters, the decision variables values, the 
objective functions values and the design alternative (setting 0 for the 
preventive maintenance period regarding non-selected devices) are 
returned. 

• Initialisation of the Functionability Profile: This function receives as input 
parameters the decision variables (population) and the object where the 
values of the parameters of interest are stored. It starts randomly generating 
the individuals of the population (create individual) and next, the 
Functionability Profile is built, which is needed in order to evaluate the 
objective functions. To do that, the relevant data for the analysed device are 
extracted (extract data) and next, the time to failure and the time to repair are 
generated (generate TF – generate TR). Once generated the Functionability 
Profiles for all devices (as it was explained in the Section 4.3), the system’s 
Functionability Profile is built (mapping). Once built the system’s 
Functionability Profile, the objective functions are evaluated (following the 
Equations 4.2 and 4.3 or 4.4). The function returns the decision variables, the 
objective function values, and the design alternative. 

• Create individual: This function receives the object which stores the values 
of the parameters of interest. It starts randomly generating an individual of 
the population and next, it is transformed to its true values (as it was exposed 
in the Section 4.5.2), because they are needed in order to build the 
Functionability Profile. The function returns the decision variable values 
(population) and the representation of the design. 

• Extract data: This function receives the object which stores the values of the 
parameters of interest. Depending on the type of device, the information to 
consider is extracted (minimum and maximum time to failure, minimum and 
maximum time to repair, failure rate, …). The function returns such 
information. 

• Generate TF: This function receives the needed information to generate a 
time to failure that follows the respective distribution function. The code 



 
CONTRIBUTIONS ON RELIABILITY TO RECONDITION THE MAINTENANCE PLAN AND THE DESIGN OF SYSTEMS 

BY USING EVOLUTIONARY ALGORITHMS 

 
 

 
 
 

97 

allows generating exponential, normal, logarithmic and Weibull distribution 
functions. It is easy to extend to other distribution functions. The function 
returns the generated time to failure. 

• Generate TR: This function receives the needed information to generate a 
time to repair that follows the respective distribution function. The code allows 
generating exponential, normal, logarithmic and Weibull distribution 
functions. It is easy to extend to other distribution functions. The function 
returns the generated time to repair. 

• Mapping: This function receives as input parameters the generated 
Functionability Profiles for the included devices in the system’s design. From 
them, the system’s Functionability Profile is generated by considering its 
structure. The function returns such a Functionability Profile so the objective 
functions can be computed. 

• Generate and evaluate the Functionability Profile: Once the process has 
been initiated, when the second generation is reached, the evolutionary 
process continues with this function. From the Figure 4.13, it can be seen 
that this function connects to almost all the functions which were accessed 
when the Functionability Profile was initiated. However, in this case, the 
function that allows extracting an individual from the population is called 
whereas generating a new population is avoided. This function receives as 
input parameters the decision variables (population) and the object where the 
values of the parameters of interest are stored. It starts extracting the 
individuals of the population (extract individual) and next, the Functionability 
Profile is built, which is needed in order to evaluate the objective functions. 
The function returns the decision variables, the objective function values and 
the design alternative. 

• Extract individual: This function receives the population or decision variable 
values and the object which stores the values of the parameters of interest. 
The information is used in order to transform the decision variables to their 
true values (as it was exposed in the Section 4.5.2), due to such values are 
needed to build the devices’ Functionability Profiles. The function returns the 
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values of the decision variables (population) and their representation 
regarding the design by their transformations. 

 
4.9. Parallel executions. 
 
Due to the hardness of the problem, a High-Performance Computer (HPC) was used 
in the optimisation process. The HPC is composed by 28 calculation nodes and one 
access or front-end node. Each calculation node consists of 2 processors Intel Xeon 
E5645 Westmere-EP with 6 cores each and 48 GB of RAM memory, allowing 336 
executions to be simultaneously run. 
 
Note that PlatEMO is designed to employ Windows as an operative system. The 
employed HPC uses Linux as an operative system, so some changes were 
developed to PlatEMO in order to create a compiled file to execute from commands. 
 
4.9.1. Executing PlatEMO by using commands. 
 
PlatEMO can be executed by employing its friendly User Interfase or by commands. 
In order to use the HPC, employing commands is needed. Depending on the method 
and the operator used in PlatEMO, several commands can be employed. Next, the 
main command used for the present research are explained. 
 
4.9.1.1. Executing when real encoding is considered. 
 
Depending on the optimisation method, several parameters are needed. 
 
Using the NSGA-II method: 
 
The employed command is as follows: 
 
-algorithm,@NSGAII,-problem,@TESIS-operator,@EAreal,-N,50,-evaluation,1000,-EAreal_parameter,PrM-disM-PrC-disC 

 
Next, the details regarding each parameter are commented. 
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• -algorithm: It denotes that the next parameter consists of the method to 
employ. 

• @NSGAII: It denotes that the method to employ is the NSGA-II. 
• -problem: It denotes that the next parameter consists of the problem to solve. 
• @TESIS: It denotes the name of the problem to solve (Design and 

Maintenance). 
• -operator: It denotes that the next parameter consists of the operator to use. 
• @EAreal: It denotes that real encoding is going to be used. 
• -N: It denotes that the next parameter consists of the population size. 
• 50: It denotes that (as an example) the population size is 50 individuals. 
• -evaluation: It denotes that the next parameter consists of the number of 

evaluations of the objective functions, which is considered as a stopping 
criterion. 

• 1000: It denotes that (as an example) 1000 evaluations of the objective 
functions are going to be considered. 

• -EAreal_parameter: It denotes that next, the configuration parameters for the 
operator are going to be specified. These are the mutation rate (PrM), the 
mutation distribution index (disM), the crossover probability (PrC) and the 
crossover distribution index (disC), respectively. 

 
Using the SMS-EMOA method: 
 
The employed command is as follows: 
 
-algorithm,@SMSEMOA,-problem,@TESIS,-operator,@EAreal,-N,100,-evaluation,1000,-EAreal_parameter,PrC-disC-PrM-
disM 

 
It can be seen that the command line is quite similar. However, the method to use 
in this case is written as SMSEMOA. 
 
  



 
CONTRIBUTIONS ON RELIABILITY TO RECONDITION THE MAINTENANCE PLAN AND THE DESIGN OF SYSTEMS 

BY USING EVOLUTIONARY ALGORITHMS 

 
 

 
 
 

100 

Using the MOEA/D method: 
 
The employed command is as follows: 
 
-algorithm,@MOEAD,-problem,@TESIS,-operator,@EAreal,-N,100,-evaluation,1000,-EAreal_parameter,PrC-disC-PrM-
disM,-MOEAD_parameter,approach 

 
In this case, besides the different inclusion of the method (MOEAD), a specific 
parameter for this method is needed, which is named approach, or scalarising 
function. The implemented in PlatEMO scalarising functions are as follows: 

• Approach = 1. Intersection Limit based on Penalties (PBI). 
• Approach = 2. Tchebycheff. 
• Approach = 3. Normalised Tchebycheff. 
• Approach = 4. Modified Tchebycheff.   

   
Using the MOEA/D-DE method. 
 
The employed command is as follows: 
 
-algorithm,@MOEADDE,-problem,@TESIS,-operator,@DE,-N,100,-evaluation,1000,-DE_parameter,CR-F-PrM-disM,-
MOEADDE_parameter,𝛿𝛿-𝑛𝑛𝑟𝑟 

 
In this case, the method is assigned as MOEADDE and differential evolution 
parameters must be included. Besides the mutation rate (PrM) and the mutation 
distribution index (disM), the Crossover Rate (CR) and the scale factor (F) must be 
supplied. Furthermore, the proper parameters of the method must be supplied; the 
probability of choosing parents locally (𝛿𝛿) and the replacement mechanism (𝑛𝑛𝑟𝑟)  
 
Using the GDE3 method. 
 
The employed command is as follows: 
 
-algorithm,@GDE3,-problem,@TESIS,-operator,@DE,-N,100,-evaluation,1000,-DE_parameter,CR-F-PrM-disM 
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Besides the reference to the method GDE3, the differential evolution parameters 
must be included, like in the case of using MOEA/D-DE. 
 
4.9.1.2. Executing when binary encoding is considered. 
 
For the present research, two methods were explored when binary encoding was 
used: NSGA-II and SMS-EMOA. The used command could be as: 
 
-algorithm,@NSGAII,-problem,@TESIS,-operator,@EAbinary,-N,50,-evaluation,10000000,-EAbinary_parameter,PrC 

 
In this case, the operator is referenced as @EAbinary and the crossover probability 
is used as a single parameter. 
 
4.9.2. Executing PlatEMO by using the HPC. 
 
Once described how PlatEMO is executed by using commands, a code to read such 
parameters and to launch PlatEMO in the High-Performance Computer is needed. 
Such a code builds the command to execute PlatEMO and finally, receives the 
results at the end of the process. Such results consist of the hypervolume evolution 
and the final population. 
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5. CHAPTER 5: APPLICATIONS. EXPERIMENTAL RESULTS. 
 
In the present chapter, the methodology which was presented in the Chapter IV is 
applied when several studies are faced. To do that, a case study is presented and 
analysed. 

1. The first study looks for exploring the efficiency and knowledge of the 
methodology, which consists of optimising simultaneously systems design 
alternatives and their maintenance strategies (including preventive 
maintenance). Finding the best set of non-dominated solutions is searched 
for by employing the system availability with taking into consideration the 
associated operational cost, while automatically selecting the system 
devices. Multi-objective Evolutionary Algorithms and Discrete Event 
Simulation are coupled. Each solution supplied by the Multi-Objective 
Evolutionary Algorithm is analysed by employing Discrete Event Simulation 
in a procedure that looks at the effect of including periodic preventive 
maintenance tasks all along the mission time. An industrial case study is 
solved and a comparison of the performance of five state-of-the art Multi-
objective Evolutionary Algorithms is handled. A real encoding approach is 
explored, and the hour is used as a time unit to define the operating and 
recovery times. Furthermore, the effect of the discrete event sampling size is 
analysed with useful insights about the synergies of Multi-objective 
Evolutionary Algorithms and Discrete Event Simulation. Finally, the 
methodology is expanded to more complex systems which are successfully 
solved. 

2. Once the methodology was thoroughly studied under a real encoding 
approach when the hour is used as a time unit, such a methodology is deeper 
explored in a second study. This consists of extending the case study when 
binary encoding is used, and both the day and the week are employed as a 
time unit. Some applications might be benefited depending on the encoding. 
Moreover, the flexibility regarding the time unit to schedule preventive 
maintenance tasks could have a positive impact when such tasks must be 
managed. 
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3. With the third study, which is applied to the same case study, the effect of 
multi-objectivisation is explored when the Cost objective considers not only 
the Operational Cost but also the Acquisition Cost. Therefore, the cost 
objective is considered on both a two-objective approach (Availability-Cost) 
and a three-objective approach, where the Cost objective is decomposes 
between Operational and Acquisition Cost (Availability-Operational Cost-
Acquisition Cost). 

  
Once the methodology was thoroughly analysed, it is extended to other engineering 
field. The three studies cited above refer to the hydraulic engineering field. In order 
to test the applicability of the methodology, a fourth study is developed in which such 
a methodology is applied to a Substation Communication Networks (SCN) 
architecture in the energy field. 
 
5.1. Case study. 
 
A containment spray injection system (CSIS) of a nuclear power plant is used along 
the present chapter to develop several experiments. Such a system presents a 
simplified model that is shown in the Figure 5.1.  
 

 
Figure 5.1: Containment spray injection system. 

 
The model is made by employing impulsion pumps (𝑃𝑃𝑖𝑖) and cut valves (𝑉𝑉𝑖𝑖). The 
mission of the CSIS consists of the injection of borated water into the containment 
to wipe radioactive contamination released after a loss of coolant accident. As it is 
shown, the redundancies are limited to the valve V4 and the pump P2. Such devices 



 
CONTRIBUTIONS ON RELIABILITY TO RECONDITION THE MAINTENANCE PLAN AND THE DESIGN OF SYSTEMS 

BY USING EVOLUTIONARY ALGORITHMS 

 
 

 
 
 

104 

may be or not included in the design of the system. Although the case study is based 
on the application presented by Greiner et al. [5], the data employed in this case 
were updated (and previously used by Cacereño et al. [213]). Such data, are defined 
as follows: 

• Life Cycle: System mission time. It uses the hour as a time unit. 
• Corrective Maintenance Cost: The cost involved in developing a repair task 

to recover the system after a failure. It is expressed in economic units per 
hour. 

• Preventive Maintenance Cost: The cost involved in developing a Preventive 
Maintenance task. It is expressed in relation to the Corrective Maintenance 
Cost. 

• Pump 𝑇𝑇𝐹𝐹𝑚𝑚𝑖𝑖𝑛𝑛:  Minimum operation time to failure for a pump without 
Preventive Maintenance. It uses the hour as a time unit. 

• Pump 𝑇𝑇𝐹𝐹𝑚𝑚𝑚𝑚𝑥𝑥:  Maximum operation time to failure for a pump without 
Preventive Maintenance. It uses the hour as a time unit. 

• Pump 𝑇𝑇𝐹𝐹 𝜆𝜆: Failure rate for a pump, which follows an exponential failure 
distribution. It is expressed as failures per hour. 

• Pump 𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛. Minimum time to repair or duration of a corrective maintenance 
task for a pump. It uses the hour as a time unit. 

• Pump 𝑇𝑇𝑀𝑀𝑚𝑚𝑚𝑚𝑥𝑥.  Maximum time to repair or duration of a corrective 
maintenance task for a pump. It uses the hour as a time unit. 

• Pump 𝑇𝑇𝑀𝑀 𝜇𝜇. Mean for the normal distribution followed for the time to repair 
assumed for a pump. It uses the hour as a time unit. 

• Pump 𝑇𝑇𝑀𝑀 𝜎𝜎. Standard deviation for the normal distribution followed for the 
time to repair assumed for a pump. It uses the hour as a time unit. 

• Pump 𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛.  Minimum operation time to start a scheduled preventive 
maintenance task for a pump. It uses the hour as a time unit. 

• Pump 𝑇𝑇𝑀𝑀𝑚𝑚𝑚𝑚𝑥𝑥 . Maximum operation time to start a scheduled preventive 
maintenance task for a pump. It uses the hour as a time unit. 

• Pump 𝑇𝑇𝐶𝐶𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛. Minimum time to conduct a preventive maintenance task for 
a pump. It uses the hour as a time unit. 
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• Pump 𝑇𝑇𝐶𝐶𝑀𝑀𝑚𝑚𝑚𝑚𝑥𝑥. Maximum time to conduct a preventive maintenance task for 
a pump. It uses the hour as a time unit. 

• Valve 𝑇𝑇𝐹𝐹𝑚𝑚𝑖𝑖𝑛𝑛. Minimum operation time to failure for a valve without preventive 
maintenance. It uses the hour as a time unit. 

• Valve 𝑇𝑇𝐹𝐹𝑚𝑚𝑚𝑚𝑥𝑥. Maximum operation time to failure for a valve without preventive 
maintenance. It uses the hour as a time unit. 

• Valve 𝑇𝑇𝐹𝐹 𝜆𝜆 . Failure rate for a valve, which follows an exponential failure 
distribution. It is expressed as failures per hour. 

• Valve 𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛. Minimum time to repair or duration of a corrective maintenance 
task for a valve. It uses the hour as a time unit. 

• Valve 𝑇𝑇𝑀𝑀𝑚𝑚𝑚𝑚𝑥𝑥. Maximum time to repair or duration of a corrective maintenance 
task for a valve. It uses the hour as a time unit. 

• Valve 𝑇𝑇𝑀𝑀 𝜇𝜇. Mean for the normal distribution followed for the time to repair 
assumed for a valve. It uses the hour as a time unit. 

• Valve 𝑇𝑇𝑀𝑀 𝜎𝜎. Standard deviation for the normal distribution followed for the 
time to repair assumed for a valve. It uses the hour as a time unit. 

• Valve 𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛.  Minimum operation time to start a scheduled preventive 
maintenance task for a valve. It uses the hour as a time unit. 

• Valve 𝑇𝑇𝑀𝑀𝑚𝑚𝑚𝑚𝑥𝑥.  Maximum operation time to start a scheduled preventive 
maintenance task for a valve. It uses the hour as a time unit. 

• Valve 𝑇𝑇𝐶𝐶𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛. Minimum time to conduct a preventive maintenance task for 
a valve. It uses the hour as a time unit. 

• Valve 𝑇𝑇𝐶𝐶𝑀𝑀𝑚𝑚𝑚𝑚𝑥𝑥. Maximum time to conduct a preventive maintenance task for 
a valve. It uses the hour as a time unit.  

 
The values employed regarding each parameter are summarised in the Table 5.1. 
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Parameter Value Source 
Life cycle or mission time 700.800 hours - 
Corrective Maintenance Cost 0,5 economic units/hour  MRI* 
Preventive Maintenance Cost 0,125 economic units/hour  MRI* 
Pump 𝑇𝑇𝐹𝐹𝑚𝑚𝑖𝑖𝑛𝑛 1 hour MRI* 
Pump 𝑇𝑇𝐹𝐹𝑚𝑚𝑚𝑚𝑥𝑥 70.800 hours MRI* 
Pump 𝑇𝑇𝐹𝐹 𝜆𝜆 159,57x10-6 failures/hour OREDA 2009 
Pump 𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛 1 hour MRI* 
Pump 𝑇𝑇𝑀𝑀𝑚𝑚𝑚𝑚𝑥𝑥 24,33 hours 𝜇𝜇 + 4𝜎𝜎 
Pump 𝑇𝑇𝑀𝑀𝜇𝜇 11 hours OREDA 2009 
Pump 𝑇𝑇𝑀𝑀𝜎𝜎 3,33 hours (𝜇𝜇 − 𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛)/3 
Pump 𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛 2.920 hours MRI* 
Pump 𝑇𝑇𝑀𝑀𝑚𝑚𝑚𝑚𝑥𝑥 8.760 hours MRI* 
Pump 𝑇𝑇𝐶𝐶𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛 4 hours MRI* 
Pump 𝑇𝑇𝐶𝐶𝑀𝑀𝑚𝑚𝑚𝑚𝑥𝑥 8 hours MRI* 
Valve 𝑇𝑇𝐹𝐹𝑚𝑚𝑖𝑖𝑛𝑛 1 hour MRI* 
Valve 𝑇𝑇𝐹𝐹𝑚𝑚𝑚𝑚𝑥𝑥 70.800 hours MRI* 
Valve 𝑇𝑇𝐹𝐹 𝜆𝜆 44,61x10-6 failures/hour OREDA 2009 
Valve 𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛 1 hour MRI* 
Valve 𝑇𝑇𝑀𝑀𝑚𝑚𝑚𝑚𝑥𝑥 20,83 hours 𝜇𝜇 + 4𝜎𝜎 
Valve 𝑇𝑇𝑀𝑀𝜇𝜇 9,5 hours OREDA 2009 
Valve 𝑇𝑇𝑀𝑀𝜎𝜎 2,83 hours (𝜇𝜇 − 𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛)/3 
Valve 𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛 8.760 hours MRI* 
Valve 𝑇𝑇𝑀𝑀𝑚𝑚𝑚𝑚𝑥𝑥 30.040 hours MRI* 
Valve 𝑇𝑇𝐶𝐶𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛 1 hours MRI* 
Valve  𝑇𝑇𝐶𝐶𝑀𝑀𝑚𝑚𝑚𝑚𝑥𝑥 3 hours MRI* 
*MRI = Machinery Reliability Institute   

 
 Reliability and cost data. 

 
The data were obtained from specific literature [90], expert judgement (based on the 
professional experience from the Machinery & Reliability Institute (MRI), Alabama, 
USA) or mathematics relationships. In this sense, the 𝑇𝑇𝑀𝑀 𝜎𝜎 for valves and pumps 
have been set in relation to the 𝜇𝜇 of their respective normal distribution functions 
and their 𝑇𝑇𝐶𝐶𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛 previously established. Regarding the 𝑇𝑇𝐶𝐶𝑀𝑀𝑚𝑚𝑚𝑚𝑥𝑥, it is known that 
the 99.7% of the values of a normally distributed variable are included into the 
interval 𝜇𝜇 ±  3𝜎𝜎. In this case, the interval is extended to 𝜇𝜇 ±  4𝜎𝜎, taking into account 
anecdotal further values. The optimisation objectives consist of maximising the 
system Availability and minimising, the Operational Cost due to shutdowns (both 
because the system is being repaired and because the system is being maintained) 
and, in some cases the Acquisition Cost. To do that: 

• Establishing the optimum period to perform the preventive maintenance 
tasks for the system’s devices is needed, and, 
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• Deciding the inclusion of the redundant devices P2 and/or V4 by evaluating 
design alternatives is needed. Including redundant devices will improve the 
system Availability but it will also increase the Costs. 
 

5.2. Testing the methodology. 
 
5.2.1. Background. 
 
Achieving the physical assets optimal performance is of critical importance when 
new industrial facilities are projected and built. Getting integrated design alternatives 
and maintenance strategies help to the decision makers to improve such 
performance. Coupling Evolutionary Algorithms and Discrete Event Simulation has 
been explored both in relation to systems design and maintenance strategies. 
However, it was not simultaneously considered when both the corrective and the 
preventive maintenance - consisting of supplying the optimum period of time to 
conduct a preventive maintenance task - are taken into account.  
 
As it was explained above, the proposed methodology is thoroughly explored in this 
first study in order to find the best set of non-dominated solutions when the system’s 
Availability and the Operational Cost are considered as objective functions. The 
industrial case study previously presented is solved and a comparison of the 
performance of five state-of-the art Multi-objective Evolutionary Algorithms is 
handled. A real encoding approach is explored, and the hour is used as a time unit. 
A deep discussion is faced regarding the effect of the discrete event sampling size 
with useful insights about the synergies of Multi-objective Evolutionary Algorithms 
and Discrete Event Simulation. Finally, the methodology is expanded to more 
complex systems which are successfully solved. 
 
5.2.2. Detailing the study. 
 
As it was commented above, the system’s Availability and its Operational Cost are 
considered as the objective functions for this first study. Such objectives are 
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computed by using the Equations 4.2 and 4.3 from the Chapter IV. Maximum 
Availability and minimum Operational Cost are desirable. The more investment in 
preventive maintenance, the greater the system Availability. Conversely, it implies 
the growth of unwanted Operational Cost and constitutes a conflict between 
objectives. The methodology which was shown in the Chapter IV is applied to the 
containment spray injection system (CSIS) of a nuclear power plant. The structure 
of the system is shown in the Figure 5.1. A comparative between the performances 
achieved from several multi-objective optimisation methods (SMS-EMOA, MOEA/D, 
MOEA/D-DE, NSGA-II y GDE3) and configurations of them is developed.  
 
Evolutionary Algorithms employ a population of individuals (chromosomes), which 
represent candidate solutions to the problem to solve. As real encoding is used for 
the present study, each chromosome will be formed by a string of real numbers, 
which take 0 as the minimum value and 1 as the maximum value. Each string will 
be codified as [𝑃𝑃1 𝑃𝑃2 𝑀𝑀1 𝑀𝑀2 𝑀𝑀3 𝑀𝑀4 𝑀𝑀5 𝑀𝑀6 𝑀𝑀7], where the presence of the redundant 
devices P2 and V4, is defined by the decision variables 𝑃𝑃1 and 𝑃𝑃2, respectively. The 
optimum time to start a preventive maintenance task regarding each device is 
denoted by the decision variables 𝑀𝑀1  to 𝑀𝑀7 . As it was explained in the section 
4.5.2.1 of the Chapter IV, such variables must be transformed in order to build the 
system’s Functionability Profile and evaluate the objective functions. 

• The decision variables 𝑃𝑃1 and 𝑃𝑃2 are rounded to the nearest integer, where 
0 indicates that the device is not included and 1 the opposite. 

• The decision variables 𝑀𝑀1 to 𝑀𝑀7 must be transformed to values within the 
interval [𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛,𝑇𝑇𝑀𝑀𝑚𝑚𝑚𝑚𝑥𝑥] by following the Equation 4.5 from the Chapter IV. 
The applied transformations are shown in the Equations 5.1 and 5.2 for 
pumps and valves, respectively. 

 
𝑇𝑇𝑀𝑀1,4,5,6,7 = 𝑟𝑟𝑜𝑜𝑢𝑢𝑛𝑛𝑑𝑑 (2,920 + 𝑀𝑀1,4,5,6,7 · (8,760 − 2,920)) (5.1) 

𝑇𝑇𝑀𝑀2,3 = 𝑟𝑟𝑜𝑜𝑢𝑢𝑛𝑛𝑑𝑑 (8,760 + 𝑀𝑀2,3 · (35,040 − 8,760)) (5.2) 
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The set of parameters to configure the experiments are shown in the Table 5.2. In 
the Section 4.5.3 from the Chapter IV, information regarding both the meaning of 
each variable and the process to set the values is supplied. 
 

Method Population (N) PrM disM PrC disC CR F Approach 𝜹𝜹 𝒏𝒏𝒓𝒓 
SMS-EMOA 50 -100 -150 0.5-1-1.5 20 0.9 20 - - - - - 
MOEA/D 50 -100 -150 0.5-1-1.5 20 0.9 20 - - Tchebycheff - - 
MOEA/D-DE 50 -100 -150 1 20 - - 0.9 0.4-0.5-0.6 - 0.9 1 
NSGA-II 50 -100 -150 0.5-1-1.5 20 0.9 20 - - - - - 
GDE3 50 -100 -150 1 20 - - 0.9 0.4-0.5-0.6 - - - 

 
 Parameters to configure the experiments. 

 
Each method was executed by using population sizes (𝑁𝑁) of 50, 100 and 150 
individuals respectively. Population size plays a crucial role in maintaining the 
equilibrium between exploration and exploitation. When optimal solutions are 
searched, populations with excessive size could lead to slow convergences, 
whereas populations with few individuals could lead to premature stagnation, 
converging to local optimums [32,207,208]. Nine different configurations of the five 
methods were simulated and each configuration was executed 21 times (for 
statistical purposes). A total of 10,000,000 evaluations was used as the stopping 
criterion. 
 
In order to evaluate the objective functions, building the system’s Functionability 
Profile (as it was exposed in the Section 4.3 from the Chapter IV) is needed. Scale 
factors in relation to the value of the objective functions must be used in order to 
achieve a dispersed nondominated front with the unit as a maximum value 
(normalised objective functions values). The values were obtained by using a 
practical approach. The values of the scale factors are extracted from the values of 
the objective functions when the optimisation process starts. This approach 
assumes that the values of the objective functions will improve over the course of 
the evolutionary process. The scale factors were set as follows: 

• The scale factor employed to compute the Operational Cost was 1,700 
economic units. 

• The scale factor used to compute the system Unavailability was 0.003. 
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Finally, a two-dimensional reference point is needed in order to compute the 
Hypervolume indicator. The reference point must cover the values limited by the 
scale factors, which restrict the values of the objective functions to a maximum of 
one. The reference point was set to (2,2). After achieving a compiled version of 
PlatEMO, which includes the code to solve the systems design and maintenance 
strategy problem, this was executed by using the High-Performance Computer. In 
the Section 4.8 from the Chapter IV, the codes generated and included in the 
PlatEMO software platform are shown.  
 
5.2.3. Results and discussions. 
 

In the Section 4.7 from the Chapter IV, the followed procedure to show the results 
is explained. This consists of showing the evolution of the hypervolume (average 
from 21 executions per configuration) in relation to the number of evaluations. 
Moreover, box plots are created regarding the achieved values at the end of the 
process, so the results are visually exposed and information in relation to the group 
of data is brought into the light. Besides the visual information previously cited, the 
Average, Mean, Maximum, Minimum and Standard Deviation regarding the reached 
hypervolume values (from 21 executions) is shown for each experiment. Next, a 
rigorous statistical test is conducted in order to find differences between 
performances. Finally, the non-dominated front is achieved, which is formed by the 
best-balanced Availability-Cost solutions. 
 
5.2.3.1. Results from each Multi-objective Evolutionary Algorithms. 
 

The consumed computational time is shown in the Table 5.3. The average time 
denotes the computational time regarding each one of twenty-one executions and 
nine different configurations (real time consumed). The sequential time denotes the 
computational time that would have been needed in case of not employing the High-
Performance Computer. The computational time demonstrates the importance of 
using the High-Performance Computer, which allows parallel processes. The 
relationship between methods, configurations and identifiers can be seen in the 
Table 5.4 (columns 1 to 3). 
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Method Average time Sequential Time 
SMS-EMOA 5 days, 17 hours and 32 minutes 2 years, 11 months, 18 days and 17 hours 
MOEA/D 5 days, 14 hours and 46 minutes 2 years, 10 months, 27 days and 5 hours 
MOEA/D-DE 2 days, 16 hours and 40 minutes 1 year, 4 months, 22 days and 15 hours 
NSGA-II 2 days, 18 hours and 18 minutes 1 year, 5 months, 5 days and 3 hours 
GDE3 2 days, 18 hours and 38 minutes 1 year, 5 months, 7 days and 16 hours 
TOTAL  10 years, 1 month, 20 days and 9 hours 

 
 Computational cost (consumed time). 

 
Method Identifier Configuration Average Median Max. Min. St. Deviation Av. Rank 
SMS-EMOA ID1 N = 50 - PrM = 0.5 2.2878 2.2876 2.3158 2.2604 0.0135 5.619 

ID2 N = 100 - PrM = 0.5 2.2910 2.2940 2.3228 2.2573 0.0156 4.476 
ID3 N = 150 - PrM = 0.5 2.2982 2.2978 2.3223 2.2687 0.0142 3.428 
ID4 N = 50 - PrM = 1.0 2.2831 2.2803 2.3079 2.2663 0.0114 6.381 
ID5 N = 100 - PrM = 1.0 2.2887 2.2829 2.3252 2.2659 0.0160 5.523 
ID6 N = 150 - PrM = 1.0 2.2919 2.2914 2.3330 2.2665 0.0168 4.857 
ID7 N = 50 - PrM = 1.5 2.2871 2.2861 2.3137 2.2595 0.0174 5.333 
ID8 N = 100 - PrM = 1.5 2.2894 2.2875 2.3211 2.2690 0.0160 5.381 
ID9 N = 150 - PrM = 1.5 2.2950 2.2952 2.3126 2.2710 0.0101 4.000 

p-Value 0.018 
MOEA/D ID1 N = 50 - PrM = 0.5 2.2563 2.2502 2.2912 2.1834 0.0256 4.380 

ID2 N = 100 - PrM = 0.5 2.2420 2.2510 2.2723 2.1689 0.0251 5.523 
ID3 N = 150 - PrM = 0.5 2.2392 2.2448 2.2898 2.1283 0.0322 5.857 
ID4 N = 50 - PrM = 1.0 2.2374 2.2443 2.2750 2.1540 0.0329 5.904 
ID5 N = 100 - PrM = 1.0 2.2495 2.2580 2.2993 2.2058 0.0248 4.714 
ID6 N = 150 - PrM = 1.0 2.2592 2.2664 2.3116 2.2071 0.0278 4.190 
ID7 N = 50 - PrM = 1.5 2.2482 2.2534 2.2894 2.1737 0.0266 5.190 
ID8 N = 100 - PrM = 1.5 2.2448 2.2547 2.2868 2.1493 0.0346 4.904 
ID9 N = 150 - PrM = 1.5 2.2575 2.2524 2.3150 2.2029 0.0258 4.333 

p-Value 0.292 
MOEA/D-DE ID1 N = 50 - F = 0.4 2.2689 2.2694 2.2999 2.2462 0.0147 5.857 

ID2 N = 100 - F = 0.4 2.2767 2.2728 2.3261 2.2508 0.0162 4.428 
ID3 N = 150 - F = 0.4 2.2743 2.2770 2.3030 2.2546 0.0138 4.809 
ID4 N = 50 - F = 0.5 2.2676 2.2655 2.3098 2.2474 0.0160 6.050 
ID5 N = 100 - F = 0.5 2.2828 2.2851 2.2364 2.2554 0.0157 3.571 
ID6 N = 150 - F = 0.5 2.2764 2.2770 2.3152 2.2469 0.0157 4.523 
ID7 N = 50 - F = 0.6 2.2647 2.2636 2.3041 2.2307 0.0143 6.619 
ID8 N = 100 - F = 0.6 2.2764 2.2786 2.3110 2.2449 0.0202 4.761 
ID9 N = 150 - F = 0.6 2.2757 2.2752 2.3062 2.2395 0.0159 4.333 

p-Value 0.005 
NSGA-II ID1 N = 50 - PrM = 0.5 2.2831 2.2859 2.3180 2.2611 0.0162 5.809 

ID2 N = 100 - PrM = 0.5 2.2864 2.2872 2.3007 2.2625 0.0118 5.095 
ID3 N = 150 - PrM = 0.5 2.2955 2.3011 2.3227 2.2635 0.0186 4.142 
ID4 N = 50 - PrM = 1.0 2.2801 2.2820 2.3070 2.2606 0.0141 6.571 
ID5 N = 100 - PrM = 1.0 2.2944 2.2941 2.3390 2.2714 0.0163 4.190 
ID6 N = 150 - PrM = 1.0 2.2874 2.2871 2.3217 2.2623 0.0174 5.333 
ID7 N = 50 - PrM = 1.5 2.2898 2.2879 2.3277 2.2534 0.0240 5.285 
ID8 N = 100 - PrM = 1.5 2.2931 2.2895 2.3266 2.2658 0.0166 4.557 
ID9 N = 150 - PrM = 1.5 2.2957 2.2941 2.3281 2.2592 0.0158 4.000 

p-Value 0.035 
GDE3 ID1 N = 50 - F = 0.4 2.2851 2.2853 2.3166 2.2613 0.0125 5.619 

ID2 N = 100 - F = 0.4 2.2864 2.2886 2.3018 2.2663 0.0093 5.381 
ID3 N = 150 - F = 0.4 2.2852 2.2905 2.3000 2.2666 0.0116 5.809 
ID4 N = 50 - F = 0.5 2.2957 2.2884 2.3376 2.2679 0.0209 4.571 
ID5 N = 100 - F = 0.5 2.2875 2.2827 2.3194 2.2627 0.0171 5.571 
ID6 N = 150 - F = 0.5 2.2927 2.2932 2.3210 2.2684 0.0137 4.142 
ID7 N = 50 - F = 0.6 2.2946 2.2898 2.3575 2.2540 0.0224 4.571 
ID8 N = 100 - F = 0.6 2.2897 2.2929 2.3236 2.2555 0.0149 4.666 
ID9 N = 150 - F = 0.6 2.2901 2.2897 2.3191 2.2610 0.0124 4.666 

p-Value 0.439 
 

 Id’s, config., Hyperv. statistics and statistical test. 
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Next, some figures regarding the hypervolume evolution in relation to the number of 
evaluations and each Multi-objective Evolutionary Algorithm are shown. Firstly, the 
global evolution is shown. Secondly, the evolution from 9 to 10 million evaluations 
(the end of the process) is shown. 
 

 
 

Figure 5.2:  Hypervolume average vs. evaluations (SMS-EMOA). 
 

 
 

Figure 5.3:  Hypervolume average vs. evaluations, detail (SMS-EMOA). 
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Figure 5.4:  Hypervolume average vs. evaluations (MOEA/D). 

 

 
 

Figure 5.5:  Hypervolume average vs. evaluations, detail (MOEA/D). 
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Figure 5.6:  Hypervolume average vs. evaluations (MOEA/D-DE). 

 

 
 

Figure 5.7:  Hypervolume average vs. evaluations, detail (MOEA/D-DE). 
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Figure 5.8:  Hypervolume average vs. evaluations (NSGA-II). 

 

 
 

Figure 5.9:  Hypervolume average vs. evaluations, detail (NSGA-II). 
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Figure 5.10:  Hypervolume average vs. evaluations (GDE3). 

 

 
 

Figure 5.11:  Hypervolume average vs. evaluations, detail (GDE3). 
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At the end of the process, it can be seen that: 
• When the SMS-EMOA method is used, the configuration with identifier ID3 

(population of 150 individuals and 0.5 gene per chromosome as a mutation 
rate) reaches the highest Hypervolume average value. 

• When the MOEA/D method is employed, the configuration with identifier ID6 
(population of 150 individuals and 1.0 gene per chromosome as a mutation 
rate) reaches the highest Hypervolume average value. 

• When the MOEA/D-DE method is employed, the configuration with identifier 
ID5 (population of 100 individuals and 0.5 as an F parameter) reaches the 
highest Hypervolume average value. 

• When the NSGAII method is used, the configuration with identifier ID9 
(population of 150 individuals and 1.5 gene per chromosome as a mutation 
rate) reaches the highest Hypervolume average value. 

• When the GDE3 method is employed, the configuration with identifier ID4 
(population of 50 individuals and 0.5 as an F parameter) reaches the highest 
Hypervolume average value. 

 

Box plots of the Hypervolume values distribution at the end of the process are shown 
between the Figures 5.12 to 5.16. 
 

 
Figure 5.12: Hypervolume Box plots (SMS-EMOA, ID’s as in the Table 5.4). 
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Figure 5.13: Hypervolume Box plots (MOEA/D, ID’s as in the Table 5.4). 

 

 
 

Figure 5.14: Hypervolume Box plots (MOEA/D-DE, ID’s as in the Table 5.4). 
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Figure 5.15: Hypervolume Box plots (NSGA-II, ID’s as in the Table 5.4). 

 

 
 

Figure 5.16: Hypervolume Box plots (GDE3, ID’s as in the Table 5.4). 
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Such box plots summarise the statistical information included in the Table 5.4 
(columns 4 to 8), which makes reference to the Hypervolume Average, Median, 
Maximum, Minimum and Standard Deviation values reached at the end of the 
process. It is possible to conclude: 

• Attending to the SMS-EMOA method, the configuration with identifier ID3 
(population of 150 individuals and 0.5 gene per chromosome as a mutation 
rate) reaches the highest Hypervolume Average and Median values, the 
configuration with identifier ID6 (population of 150 individuals and 1 gene per 
chromosome as a mutation rate) presents the highest Hypervolume 
Maximum value, while the configuration with identifier ID9 (population of 150 
individuals and 1.5 gene per chromosome as a mutation rate) reaches the 
highest Hypervolume Minimum and presents the lowest Standard Deviation 
values. 

• Regarding the MOEA/D method, the configuration with identifier ID6 
(population of 150 individuals and 1 gene per chromosome as a mutation 
rate) reaches the highest Hypervolume Average, Median and Minimum 
values, the configuration with identifier ID9 (population of 150 individuals and 
1.5 gene per chromosome as a mutation rate) reaches the highest 
Hypervolume Maximum value and the configuration with identifier ID5 
(population of 100 individuals and 1 gene per chromosome as a mutation 
rate) presents the lowest Standard Deviation value. 

• In relation to the MOEA/D-DE method, the configuration with identifier ID5 
(population of 100 individuals and 0.5 as an F parameter) reaches the highest 
Hypervolume Average, Median and Minimum values, the configuration with 
identifier ID2 (population of 100 individuals and 0.4 as an F parameter) 
reaches the highest Hypervolume Maximum value and the configuration with 
identifier ID3 (population of 150 individuals and 0.4 as an F parameter) 
presents the lowest Standard Deviation value. 

• Attending to the NSGA-II method, the configuration with identifier ID9 
(population of 150 individuals and 1.5 gene per chromosome as a mutation) 
reaches the highest Hypervolume Average value, the configuration with 
identifier ID3 (population of 150 individuals and 0.5 gene per chromosome as 
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a mutation rate) reaches the highest Hypervolume Median value, the 
configuration with identifier ID5 (population of 100 individuals and 1 gene per 
chromosome as a mutation rate) reaches the highest Hypervolume Maximum 
and Minimum values, and the configuration with identifier ID2 (population of 
100 individuals and 0.5 gene per chromosome as a mutation rate) presents 
the lowest Hypervolume Standard Deviation value. 

• Finally, regarding the GDE3 method, the configuration with identifier ID4 
(population of 50 individuals and 0.5 as an F parameter) reaches the highest 
Hypervolume Average value, the configuration with identifier ID8 (population 
of 100 individuals and 0.6 as an F parameter) reaches the highest 
Hypervolume Median value, the configuration with identifier ID7 (population 
of 50 individuals and 0.6 as an F parameter) reaches the highest 
Hypervolume Maximum value, the configuration with identifier ID6 
(population of 150 individuals and 0.5 as an F parameter) reaches the highest 
Hypervolume Minimum value and the configuration with identifier ID2 
(population of 100 individuals and 0.4 as an F parameter) presents the lowest 
Hypervolume Standard Deviation value. 

 
In order to determine if one of the nine configurations per method performs better 
than any other, a statistical significance hypothesis test was conducted. The 
Average Ranks computed by using the Friedman’s test are shown in the Table 5.4 
(column 9). It can be seen that: 

• Regarding the SMS-EMOA method, the configuration with identifier ID3 
(population of 150 individuals and 0.5 gene per chromosome as a mutation 
rate) presents the best Average Rank (in order to maximise the Hypervolume, 
the Average Rank must be as low as possible). However, the p-value 
computed (0.018) implies that the null hypothesis (𝐻𝐻0) can be rejected (p-
value<0.05). Therefore, it is possible to conclude that, in the studied 
conditions, there are configurations that perform better than others. In order 
to find the concrete pairwise comparisons that produce differences, a post-
hoc test was conducted. The Shaffer’s test was used to compare the 
configuration with identifier ID3, which produced the best Average Rank in 
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relation to the Friedman’s test, with the rest of configurations. The adjusted 
p-values achieved inform the rejection or acceptance of the null hypothesis. 
The null hypothesis states that there are no significant differences among the 
behaviour of the configurations. The result regarding the comparisons is 
shown in the Table 5.5. It is possible to conclude that the configuration with 
identifier ID3 performs better than the configuration with identifier ID4 
(population of 50 individuals and 1 gene per chromosome as a mutation rate) 
but is not possible to establish that the configuration with identifier ID3 
performs better than any other. The configurations with identifiers ID3 (with 
population of 150 individuals and 0.5 gene per chromosome as a mutation 
rate) and ID9 (with population of 150 individuals and 1.5 gene per 
chromosome as a mutation rate) presented the lowest Average Ranks (as it 
is shown in the Table 5.4), so they are selected for the final comparison study 
among methods.  

 
Method Test Comparison p-value Conclusion 
SMS-EMOA Shaffer ID3 - ID4 0.0171 < 0.05 The null hypothesis is rejected 

ID1 - ID3 0.2673 > 0.05 The null hypothesis is not rejected 
ID3 - ID5 0.3687 > 0.05 The null hypothesis is not rejected 
ID3 - ID8 0.5847 > 0.05 The null hypothesis is not rejected 
ID3 - ID7 0.6779 > 0.05 The null hypothesis is not rejected 
ID3 - ID6 2.0013 > 0.05 The null hypothesis is not rejected 
ID2 - ID3 4.7330 > 0.05 The null hypothesis is not rejected 
ID3 - ID9 5.4885 > 0.05 The null hypothesis is not rejected 

MOEA/D-DE  Shaffer ID5 - ID7 0.0111 < 0.05 The null hypothesis is rejected 
ID4 - ID5 0.0790 > 0.05 The null hypothesis is not rejected 
ID1 - ID5 0.1915 > 0.05 The null hypothesis is not rejected 
ID3 - ID5 2.6919 > 0.05 The null hypothesis is not rejected 
ID5 - ID8 2.8612 > 0.05 The null hypothesis is not rejected 
ID5 - ID6 4.1567 > 0.05 The null hypothesis is not rejected 
ID2 - ID5 4.6574 > 0.05 The null hypothesis is not rejected 
ID5 - ID9 4.7752 > 0.05 The null hypothesis is not rejected 

NSGA-II Wilcoxon ID4 - ID9 0.0117 < 0.05 The null hypothesis is rejected 
ID1 - ID9 0.0250 < 0.05 The null hypothesis is rejected 
ID2 - ID9 0.0680 > 0.05 The null hypothesis is not rejected 
ID6 - ID9 0.1592 > 0.05 The null hypothesis is not rejected 
ID7 - ID9 0.3754 > 0.05 The null hypothesis is not rejected 
ID8 - ID9 0.5202 > 0.05 The null hypothesis is not rejected 
ID5 - ID9 0.59012 > 0.05 The null hypothesis is not rejected 
ID3 - ID9 0.9584 > 0.05 The null hypothesis is not rejected 

 
 P-values from the hypothesis tests. 

 
 
 



 
CONTRIBUTIONS ON RELIABILITY TO RECONDITION THE MAINTENANCE PLAN AND THE DESIGN OF SYSTEMS 

BY USING EVOLUTIONARY ALGORITHMS 

 
 

 
 
 

123 

• Attending to the MOEA/D method, the configuration with identifier ID6 
(population of 150 individuals and 1.0 gene per chromosome mutation rate) 
presents the best Average Rank. However, the p-value computed (0.292) 
implies that the null hypothesis (𝐻𝐻0) can not be rejected (p-value>0.05), so it 
is possible to conclude that, in the studied conditions, no one single 
configuration performs better than any other. However, the configurations 
with identifiers ID6 (population of 150 individuals and 1.0 gene per 
chromosome as a mutation rate) and ID9 (population of 150 individuals and 
1.5 gene per chromosome as a mutation rate) presented the lowest Average 
Ranks (as it shown in the Table 5.4), so they are selected for the final 
comparison study between methods. 

• In relation to the MOEA/D-DE method, the configuration with identifier ID5 
(population of 100 individuals and 0.5 as an F parameter) presents the best 
Average Rank. However, the p-value computed (0.005) implies that the null 
hypothesis (𝐻𝐻0) can be rejected (p-value<0.05), so, in the studied conditions, 
there are configurations that perform better than others. In order to find the 
concrete pairwise comparisons that produce differences, a post-hoc test was 
carried out. The Shaffer’s test was used to compare the configuration with 
identifier ID5, which produced the lowest Average Rank in relation to the 
Friedman’s test, with the rest of the configurations. The result related to the 
comparisons is shown in the Table 5.5. The configuration with identifier ID5 
performs better than the configuration with identifier ID7 (population of 50 
individuals and 0.6 as an F parameter) but it is not possible to establish that 
the configuration with identifier ID5 performs better than any other. The 
configurations with identifiers ID5 (population of 100 individuals and 0.5 as 
an F parameter) and ID9 (with population of 150 individuals and 0.6 as an F 
parameter) presented the lowest Average Ranks when the Friedman’s test 
was used (as it is shown in the Table 5.4), so they were selected for the final 
comparison study among methods. 

• Regarding the NSGA-II method, the configuration with identifier ID9 
(population of 150 individuals and 1.5 gene per chromosome as a mutation 
rate) presents the best Average Rank. However, the p-value computed 
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(0.035) implies that the null hypothesis (𝐻𝐻0) can be rejected (p-value<0.05), 
so, in the studied conditions, there are some configurations that perform 
better than others. In order to find the concrete pairwise comparisons that 
produce such differences, a post-hoc test was conducted. The Shaffer’s test 
was used to compare the configuration with identifier ID9, which produced 
the best Average Rank in relation to the Friedman’s test, with the rest of 
configurations. With the obtained results (all post-hoc comparisons produced 
adjusted p-values bigger than 0.05), it is not possible to conclude that the 
configuration with identifier ID9 performs better than any other. While the 
Friedman’s test establishes that significant differences exist among 
configurations, the accuracy level of the Shaffer’s test does not allow for such 
a determination, as it was explained by Benavoli et al. [210]. They 
recommend carrying out the pairwise comparisons of the post-hoc analysis 
by using the Wilcoxon signed-rank test. The results of the Wilcoxon signed-
rank test, in which the configuration with identifier ID9 is compared with the 
rest of the configurations, are shown in the Table 5.5. The configuration with 
identifier ID9 performs better than both the configuration with identifier ID1 
(population of 50 individuals and 0.5 gene per chromosome as a mutation 
rate) and the configuration with identifier ID4 (population of 50 individuals and 
1 gene per chromosome as a mutation rate). The configurations with 
identifiers ID9 (with population of 150 individuals and 1.5 gene per 
chromosome as a mutation rate) and ID3 (with population of 150 individuals 
and 0.5 gene per chromosome as a mutation rate) presented the lowest 
Average Ranks (as it is shown in the Table 5.4), so they were selected for 
the final comparison study among methods. 

• Finally, for the GDE3 method, the configuration with identifier ID6 (population 
of 150 individuals and 0.5 as an F parameter) presents the best Average 
Rank. However, the p-value obtained (0.439) implies that the null hypothesis 
(𝐻𝐻0) cannot be rejected (p-value>0.05), so, in the studied conditions, no one 
configuration performs better than any other. However, the configurations 
with identifiers ID6 (population of 150 individuals and 0.5 as an F parameter) 
and ID4 (population of 50 individuals and 0.5 as an F parameter), presented 
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the lowest Average Ranks (as it is shown in the Table 5.4), so they were 
selected for the final comparison study among methods. 

 
The best accumulated non-dominated solutions obtained from the last generation 
of the evolutionary process for all executions and all configurations of each method 
are used to compute their respective accumulated Hypervolume values (as it was 
described by Fonseca et al [211]). Such values are shown in the Table 5.6 where, 
as it is expected, each method reaches a higher value than the shown Hypervolume 
Maximum values in the Table 5.4 (column 6), respectively. 
 

Methods Hypervolume Accumulated Value 
SMS-EMOA 2.4087 
MOEA/D 2.3844 
MOEA/D-DE 2.3991 
NSGA-II 2.4068 
GDE3 2.4057 
All methods 2.4179 

 
 Hypervolume Accumulated Values. 

 
5.2.3.2. Comparing all methods. 
 
In the Table 5.3, both the sequential and the actual computational time, which were 
taken by the global optimisation process, are shown. The computational cost shows 
the vital importance of employing the High-Performance Computer. Previously, the 
configurations with the best Average Ranks according to the Friedman’s test from 
all the analysed methods were selected to be globally compared. These 
configurations are shown in the Table 5.7 (columns 2 and 3). 
 

Identifier Method Configuration Average Median Max. Min. St. Deviation Av. Rank 
ID1 SMS-EMOA N = 150 – PrM = 0.5 2.2982 2.2978 2.3223 2.2687 0.0142 3.666 
ID2 SMS-EMOA N = 150 – PrM = 1.5 2.2950 2.2952 2.3126 2.2710 0.0101 3.809 
ID3 MOEA/D N = 150 – PrM = 1.0 2.2592 2.2664 2.3116 2.2071 0.0278 7.999 
ID4 MOEA/D N = 150 – PrM = 1.5 2.2575 2.2524 2.3150 2.2029 0.0258 8.666 
ID5 MOEA/D-DE N = 100 – F = 0.5 2.2828 2.2851 2.3064 2.2554 0.0153 5.952 
ID6 MOEA/D-DE N = 150 – F = 0.6 2.2757 2.2752 2.3062 2.2395 0.0155 7.047 
ID7 NSGA-II N = 150 – PrM = 1.5 2.2957 2.2941 2.3281 2.2592 0.0158 4.190 
ID8 NSGA-II N = 150 – PrM = 0.5 2.2955 2.3011 2.3227 2.2635 0.0186 4.523 
ID9 GDE3 N = 50 – F = 0.5 2.2957 2.2884 2.3376 2.2679 0.0209 4.476 
ID10 GDE3 N = 150 – F = 0.5 2.2927 2.2932 2.3210 2.2684 0.0137 4.666 

p-Value 8.2·10−11 
 

 Id’s, config., Hyperv. statistics and statistical test (all methods). 
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The Hypervolume average values evolution in relation to the evaluations number is 
shown in the Figure 5.17. The evolution from 9 to 10 million evaluations (the end of 
the process) is shown in the Figure 5.18. The configuration with identifier ID1 (with 
SMS-EMOA as an optimisation method, population of 150 individuals and 0.5 gene 
per chromosome as a mutation rate) reaches the highest Hypervolume Average 
value at the end of the process.  
 
Moreover, box plots of the Hypervolume values distribution at the end of the process 
are shown in the Figure 5.19. They represent the statistical information supplied by 
the Table 5.7 (columns 4 to 8), in which it can be seen that the configuration with 
identifier ID1 (with SMS-EMOA as an optimisation method, population of 150 
individuals and 0.5 gene per chromosome as a mutation rate) reaches the highest 
Hypervolume Average value, the configuration with identifier ID8 (with NSGA-II as 
an optimisation method, population of 150 individuals and 0.5 gene per 
chromosome as a mutation rate) reaches the highest Hypervolume Median value, 
the configuration with identifier ID9 (with GDE3 as an optimisation method, 
population of 50 individuals and 0.5 as an F parameter) presents the highest 
Hypervolume Maximum value, while the configuration with identifier ID2 (with SMS-
EMOA as an optimisation method, population of 150 individuals and 1.5 gene per 
chromosome as a mutation rate) presents both the highest Hypervolume Minimum 
value and the lowest Hypervolume Standard Deviation value.  
 
In order to determine of any configuration performs better than any other, a 
statistical significance hypothesis test was carried out. The Average Ranks 
computed by using the Friedman’s test are shown in the Table 5.7 (column 9). The 
configuration with identifier ID1 (with SMS-EMOA as an optimisation method, 
population of 150 individuals and 0.5 gene per chromosome as a mutation rate) 
produces the lowest Average Rank. However, the p-value computed (8.2594·10−11) 
implies that the null hypothesis (𝐻𝐻0) can be rejected (p-value < 0.05), so, in the 
studied conditions, there are configurations that perform better than others. 
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Figure 5.17: Hypervolume average vs. evaluations (all methods). 

 

 
 

Figure 5.18:  Hypervolume average vs. evaluations, detail (all methods). 
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Figure 5.19: Hypervolume Box plots (ID’s. as in the Table 5.7). 

 
In order to find the concrete pairwise comparisons that produce such differences, a 
post-hoc test was conducted. The Shaffer’s test was used to compare the 
configuration with identifier ID1 (with SMS-EMOA as an optimisation method, 
population of 150 individuals and 0.5 gene per chromosome as a mutation rate), 
which produces the lowest Average Rank regarding the Friedman’s test, with the 
rest of configurations. The results regarding the comparisons are shown in the Table 
5.8. In the conditions of the experiment, the configuration with identifier ID1 performs 
better than the configurations with identifiers ID3 - ID4 (with MOEA/D as an 
optimisation method) and ID6 (with MOEA/D-DE as an optimisation method, 
population of 150 individuals and 0.6 as an F parameter) but is not possible to 
conclude that the configuration with identifier ID1 performs better than any other. 
The best accumulated non-dominated solutions obtained were used to compute the 
accumulated Hypervolume, whose value was 2.4179 and it is shown in the Table 
5.6. As it is expected, the value is higher than 2.4087, the maximum accumulated 
value achieved after the evolutionary process for the SMS-EMOA method. 
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Comparison p-value Conclusion 

ID1 - ID4 3.929·10−6 < 0.05 The null hypothesis is rejected 
ID1 - ID3 1.267·10−4 < 0.05 The null hypothesis is rejected 
ID1 - ID6 0.0085 < 0.05 The null hypothesis is rejected 
ID1 - ID5 0.3463 > 0.05 The null hypothesis is not rejected 
ID1 - ID10 4.8365 > 0.05 The null hypothesis is not rejected 
ID1 - ID8 5.3842 > 0.05 The null hypothesis is not rejected 
ID1 - ID9 5.3842 > 0.05 The null hypothesis is not rejected 
ID1 - ID7 5.3842 > 0.05 The null hypothesis is not rejected 
ID1 - ID2 5.3842 > 0.05 The null hypothesis is not rejected 

 
 P-values from the hypothesis tests. 

 
The results of the analysis bring into light the better performance of the methods 
based on Indicators (SMS-EMOA) and Non-dominance (NSGA-II or GDE3) in 
comparison to the methods based on Decomposition (MOEA/D or MOEA/D-DE). 
However, the operator which creates new individuals does not appear to have a 
significant effect, since methods that use Simulated Binary Crossover (SMS-EMOA 
or NSGA-II) supplied a similar performance to a method that uses Differential 
Evolution (GDE3). 
 

Id Q Cost [e.u.] V1 [h] P2 [h] P3 [h] V4 [h] V5 [h] V6 [h] V7 [h] 
1 0.002898 861.38 27381 0 8760 0 34918 35040 35040 
2 0.002812 877.12 17745 0 8760 0 34540 23997 34502 
3 0.002500 993.50 31882 0 8735 32414 31364 27007 31499 
4 0.002439 999.13 29494 0 8139 18708 24634 30543 26541 
5 0.002396 1041.38   24766 0 8579 29319 24758 24663 32581 
6 0.002370 1101.38 34380 0 8760 19098 11756 32930 35040 
7 0.001640 1371.38 27808 8677 8760 0 26387 17704 28967 
8 0.001504 1407.12 16434 8727 7582 0 18220 30929 35040 
9 0.001495 1419.50 33877 8593 8671 0 34445 26119 33225 

10 0.001410 1421.50 20519 8524 8754 0 25417 24732 34207 
11 0.001316 1422.38 35040 8735 7927 0 23549 28082 21479 
12 0.001281 1450.62 35040 7249 8257 0 25526 30376 35040 
13 0.001246 1461.50 32755 8636 8220 0 22498 33016 30125 
14 0.001214 1465.12 32667 8358 7756 0 30657 34271 29494 
15 0.000973 1507.50 34928 7929 7908 11683 24182 34593 26275 
16 0.000940 1523.38 30443 8130 8462 29999 34282 34286 34317 
17 0.000876 1577.88 34470 8760 7246 27465 29267 35040 34730 
18 0.000789 1595.88 33247 7286 8050 32526 10911 29935 34312 
19 0.000749 1698.62 28281 8338 7367 19399 17608 32848 31220 

 
  Non-dominated solutions. 
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The non-dominated solutions to the problem provided at the end of the evolutionary 
process from all executions, all configurations and all methods are shown in the 
Figure 5.20. In the Table 5.9, all optimum solutions belonging to the achieved non-
dominated front are shown. The Unavailability (Q) is shown as a fraction, the Cost 
is shown in economic units and the rest of the variables represent, for the respective 
devices, the optimum times to allow scheduling the preventive maintenance tasks 
when the hour is used as a time unit. 
 

 
 

Figure 5.20: Accumulated non-dominated front. 

 
The solution with the lowest Cost (ID1) (861.38 economic units) presents the biggest 
Unavailability (0.002898). These values are followed by periodic optimum times to 
start a maintenance task (hours) measured from the moment in which the system 
mission time starts (time to perform the preventive maintenance task is not 
included). For the solution ID1, the periodic optimum times to start a preventive 
maintenance task for the devices P2 and V4 are not supplied. This is because the 
design alternative does not include such devices. The opposite case shows the 
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biggest Cost (ID19) (1,698.62 economic units) and the lowest Unavailability 
(0.000749). For the solution ID19, periodic optimum times to start a preventive 
maintenance task are supplied for all devices. This is because the design alternative 
includes the devices P2 and V4 as redundant devices. Other optimum solutions 
were found in these two solutions and can be seen in the Table 5.9. The decision 
makers should decide which is the preferable design when their individual 
requirements are considered. Depending on the application case, the company 
might have a cost threshold (e.g., due to financial budget constraints) and observing 
the attained non-dominated solutions, the solution/design with best non-availability 
corresponding to that cost could be chosen. Alternatively, the company might have 
a non-availability threshold (e.g., due to a legal norm) and observing the attained 
nondominated solutions, the solution/design with best cost corresponding to that 
non-availability could be chosen. 
 

 
 

Figure 5.21: Clustered accumulated non-dominated front and design options. 
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Moreover, the solutions have been clustered in the Figure 5.21 according to their 
final design. Such solutions are shown in ascending order regarding the Cost from 
ID1 to ID19 and from the left to the right respectively. The solutions contained in the 
Cluster 1 (the solutions 1 to 2, see also the Table 5.9) are the solutions in which 
non-redundant devices have been included in the design. In this case, devices 
placed in series are exclusively contained in the system. These solutions present 
the lowest Cost and the biggest Unavailability. The solutions contained in the Cluster 
2 (the solutions 3 to 6, see also the Table 5.9) are the solutions in which a redundant 
valve has been included in the design as a parallel device. These solutions present 
a bigger Cost and a lower Unavailability than the solutions contained in the Cluster 
1. The solutions contained in the Cluster 3 (the solutions 7 to 14, see also the Table 
5.9) are the solutions in which a redundant pump has been included in the design 
as a parallel device. These solutions present a higher Cost and a lower 
Unavailability than the solutions contained in the Clusters 1 and 2. Finally, the 
solutions contained in the Cluster 4 (the solutions 15 to 19, see also the Table 5.9) 
are the solutions in which both a redundant valve and a redundant pump have been 
included in the design as parallel devices. These solutions present the biggest Cost 
and the lowest Unavailability.  
 
5.2.4. Discussion. 
 
From the previous study, the configuration with the best behaviour based on the 
hypervolume indicator from the Friedman’s test point of view was found (SMS-
EMOA as an optimisation method, population of 150 individuals and 0.5 gene per 
chromosome as a mutation rate). Such a configuration is taken as a reference of 
the proposed methodology analysis in this subsection. Next, a discussion is opened 
regarding two interesting aspects: first, the effect of the sampling size when Discrete 
Event Simulation and Multi-objective Evolutionary Algorithms are coupled, and 
second, the quantification of the economic cost savings when the methodology is 
applied. 
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5.2.4.1. Discrete Event Simulation coupled to Multi-objective Evolutionary 
Algorithms: the effect of sampling size. 

 
The proposed methodology employs a single discrete simulation per individual of 
the population in order to characterise the system behaviour and then, the objective 
functions are evaluated. Next, the effect of varying the sampling size is analysed 
with an equivalent number of fitness evaluations. Summarizing the procedure: the 
Functionability Profile of the system was built sample size times for each individual 
of the population and the objective functions (Availability and Operational Cost) were 
computed after as many times. The configuration of the case study with the best 
average rank from the Friedman’s test point of view (SMS-EMOA, population size 
of 150 individuals, and a mutation rate of 0.5 gene per chromosome, see Table 5.7, 
column 9) was taken as a reference (and mentioned as ‘direct SMS-EMOA’). In 
addition to this case (sample size equal to 1), sample sizes of 10, 100 and 1000 for 
each solution evaluated by the multi-objective evolutionary algorithm were tested. 
To foster equivalent purpose (attain the best non-dominated solutions) this 
procedure is equivalent to execute multiple simulations (as many as the chosen 
sample size) taking the minimal extreme value as a representative of the distribution 
achieved. However, in multi-objective optimization the non-dominated direction 
(non-dominated lower extreme value) of each solution is not known a priori and it 
depends on its relative position versus other nondominated solutions. Therefore, 
cases of taking as minimal extreme value either: 1) minimal unavailability, 2) minimal 
cost, or 3) a minimal equal weighted unavailability-cost (which is equivalent also to 
the Manhattan distance of both objectives) have been tested. The proposed 
methodology (single sample size, direct SMS-EMOA) is compared to those nine 
combinations (three minimal extreme values with three sample sizes each) and with 
a standard random search as an optimization baseline; all cases sharing an 
equivalent total stopping criterion of 10.000.000 evaluations of the fitness functions 
and being executed in 21 independent runs each. The set of configurations is shown 
in the Table 5.10. 
 
 



 
CONTRIBUTIONS ON RELIABILITY TO RECONDITION THE MAINTENANCE PLAN AND THE DESIGN OF SYSTEMS 

BY USING EVOLUTIONARY ALGORITHMS 

 
 

 
 
 

134 

 
Identifier Criterion Sampling size Average Median Max. Min. St. Deviation Av. Rank 

ID1 Min. Unavailab. 10 2.2905 2.2827 2.3242 2.2692 0.0173 4.523 
ID2 Min. Cost. 10 2.2869 2.2889 2.3095 2.2649 0.0116 4.619 
ID3 Min. Unav.+ Min. Cost. 10 2.2823 2.2799 2.3119 2.2602 0.0131 5.857 
ID4 Min. Unavailab. 100 2.2898 2.2878 2.3208 2.2662 0.0156 4.095 
ID5 Min. Cost. 100 2.2841 2.2855 2.3122 2.2565 0.0141 5.285 
ID6 Min. Unav.+ Min. Cost. 100 2.2804 2.2798 2.3069 2.2595 0.0105 6.095 
ID7 Min. Unavailab. 1000 2.2769 2.2737 2.3601 2.2473 0.0232 7.190 
ID8 Min. Cost. 1000 2.2658 2.2614 2.3240 2.2479 0.0182 8.714 
ID9 Min. Unav.+ Min. Cost. 1000 2.2833 2.2848 2.3295 2.2467 0.0203 5.857 
ID10 Random Search 1 2.2408 2.2386 2.2865 2.2149 0.0175 10.571 
ID11 Direct SMS-EMOA 1 2.2982 2.2978 2.3223 2.2687 0.0142 3.190 

p-Value 6.6712·10−11 

 
 Id’s, config., Hyperv. statistics and statistical test (multiple simulations). 

 

 
 

Figure 5.22: Hypervolume box plots (multiple simulations). 

 
Box plots of the Hypervolume values distribution at the end of the process are shown 
in the Figure 5.22. As it is expected, the method based on random search (the 
configuration ID10) presents the worst performance. Moreover, the configuration 
with identifier ID11 (which uses the direct SMSEMOA) shows the highest 
Hypervolume median and average values. The configuration with identifier ID7 
(which looks for minimum unavailability when 1000 evaluations of the objective 
functions per individual are computed) presents the highest Hypervolume maximum 
value and the configuration with identifier ID1 (which looks for minimum 
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unavailability when 10 evaluations of the objective functions per individual are 
computed) supplies the highest Hypervolume minimum value. These, and other 
measures obtained, are shown in the Table 5.10 (columns 4 to 8). 
 
In order to quantify if any one of the configurations performed better than any other, 
a statistical significance hypothesis test was conducted. The average ranks 
computed by following the Friedman’s test are shown in the Table 5.10 (column 9). 
The configuration with identifier ID11, which uses the direct SMS-EMOA, produced 
the lowest average rank. After a similar number of evaluations, the direct SMS-
EMOA achieved the first order regarding the hypothesis test. Moreover, the p-value 
computed (6.6712·10−11) implies that the null hypothesis (𝐻𝐻0) can be rejected (p-
value < 0.05), so, in the studied conditions, there are configurations that perform 
better than others. In order to find the concrete pairwise comparisons that produce 
such differences, a post-hoc test was conducted. The Shaffer’s test was used to 
compare the configuration with identifier ID11 with the rest of configurations. The 
results regarding the comparisons are shown in the Table 5.11. 
 

Comparison p-value Conclusion 
ID10 - ID11 3.049·10−11 < 0.05 The null hypothesis is rejected 
ID8 - ID11 3.052·10−6 < 0.05 The null hypothesis is rejected 
ID7 - ID11 0.003 < 0.05 The null hypothesis is rejected 
ID6 - ID11 0.1679 > 0.05 The null hypothesis is not rejected 
ID3 - ID11 0.3304 > 0.05 The null hypothesis is not rejected 
ID9 - ID11 0.3304 > 0.05 The null hypothesis is not rejected 
ID5 - ID11 1.2602 > 0.05 The null hypothesis is not rejected 
ID2 - ID11 3.5815 > 0.05 The null hypothesis is not rejected 
ID1 - ID11 4.0463 > 0.05 The null hypothesis is not rejected 
ID4 - ID11 4.5206 > 0.05 The null hypothesis is not rejected 

 
 P-values from the hypothesis tests (multiple simulations). 

 
The hypothesis test shows that the direct SMS-EMOA achieved the best average 
rank from the Friedman’s test point of view. Moreover, it shows significant 
differences regarding some of the configurations (ID7, ID8 and ID10) so a better 
behaviour is expected when the direct SMS-EMOA is used. Next, the configurations 
with the best average rank from each extreme studied (minimum unavailability, 
minimum cost and minimum weighted unavailability-cost) were selected to compare 
the results in front of using the direct SMS-EMOA. Their non-dominated solutions 
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are shown in the Figure 5.23. It can be seen that the maximum Hypervolume is 
covered when the direct SMS-EMOA is used (with a value of 2.3832). Finally, the 
accumulated non-dominated front from the Figure 5.23 is shown in the Figure 5.24. 
It can be seen that there are not solutions that follow minimising the unavailability 
(marked as a □) on the left side of the Figure 5.24 as is expected. It is because the 

solutions on the left side present a best cost, which is contrary to obtaining more 
solutions with a smaller unavailability. Conversely, there are not solutions that follow 
minimising the cost (marked as a △) on the right side of the Figure 5.24 as is 

expected. It is because the solutions on the right side present best unavailability, 
which is contrary to obtaining more economical solutions. It can be seen how the 
solutions supplied by the direct SMSEMOA (marked as an ×) are spread along the 
non-dominated front. 
 

 
 

Figure 5.23: Accumulated non-dominated solutions (multiple simulations). 
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Figure 5.24: Accumulated non-dominated front (multiple simulations). 

 
Summarising, the results of sampling size analysis enhance the benefits of the 
proposed methodology showing the positive synergy among Discrete Event 
Simulation and Multi-objective Evolutionary Algorithms, where only a single 
simulation per individual is enough in the fitness function evaluation to attain very 
competitive results. 
 
A further analysis of the non-dominated solutions of the previous results based in 
their representative averages instead of their best values attained was conducted: 
For each non-dominated solution at the final generation (after 10.000.000 
evaluations) of each of the 21 independent executions of the previous experiments, 
10.000 discrete simulations were executed, and their objective functions were 
computed. Then, the unavailability and cost averages were used as representative 
values of the distribution of each solution. In this way, for each extreme non-
dominated solution achieved previously, the centre of its distribution was located. 
These central solutions are the solutions that would be achieved by executing a 
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Monte Carlo simulation when considering the average as the representative value 
of the distribution. Box plots of the Hypervolume values distribution regarding each 
configuration are shown in the Figure 5.25. Statistical information regarding this 
experiment is shown in the Table 5.12. It can be seen that the configuration with 
identifier ID3 (which looks for minimum weighted unavailability-cost when 100 
evaluations of the objective functions per individual are considered) presents both 
the best median and maximum Hypervolume values. 
 

 
 

Figure 5.25:  Hypervolume box plots (simulated centres). 

 
Identifier Criterion Sampling size Average Median Max. Min. St. Deviation Av. Rank 

ID1 Min. Unavailab. 10 1.5783 1.5785 1.5797 1.5750 0.0012 2.809 
ID2 Min. Cost. 10 1.5754 1.5773 1.5780 1.5732 0.0015 6.619 
ID3 Min. Unav.+ Min. Cost. 10 1.5790 1.5796 1.5812 1.5752 0.0015 1.904 
ID4 Min. Unavailab. 100 1.5770 1.5777 1.5792 1.5707 0.0021 4.476 
ID5 Min. Cost. 100 1.5771 1.5773 1.5793 1.5746 0.0009 4.809 
ID6 Min. Unav.+ Min. Cost. 100 1.5774 1.5772 1.5809 1.5751 0.0016 4.523 
ID7 Min. Unavailab. 1000 1.5741 1.5741 1.5766 1.5714 0.0015 8.285 
ID8 Min. Cost. 1000 1.5743 1.4741 1.5796 1.5703 0.0027 7.666 
ID9 Min. Unav.+ Min. Cost. 1000 1.5684 1.5681 1.5759 1.5655 0.0023 9.809 
ID10 Random Search 1 1.5626 1.5660 1.5686 1.5532 0.0060 10.857 
ID11 Direct SMS-EMOA 1 1.5777 1.5776 1.5788 1.5765 0.0007 4.238 

p-Value 9.26·10−11 

 
 Id’s, config., Hyperv. statistics and statistical test (centres). 
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In order to establish if any configuration performed better than any other, a statistical 
significance hypothesis test was conducted. The average ranks computed by using 
the Friedman’s test are shown in the Table 5.12. The configuration with identifier 
ID3 (which looks for minimum weighted unavailability-cost when 10 evaluations of 
the objective functions per individual are used) produced the lowest average rank, 
while the proposed methodology, the configuration with identifier ID11 -direct SMS-
EMOA- was ranked third out of eleven configurations. Moreover, the p-value 
computed (9.2629·10−11) implies that the null hypothesis (𝐻𝐻0) can be rejected (p-
value < 0.05), so, in the studied conditions, there are configurations that perform 
better than others. In order to find the concrete pairwise comparisons that produce 
such differences, a post-hoc test was carried out. The Shaffer’s test was used to 
compare the proposed methodology ID11 -direct SMS-EMOA- with the rest of 
configurations. The results regarding the comparisons are shown in the Table 5.13. 
The configuration with identifier ID11 performs better than ID7, ID8, ID9 and ID10, 
while no other configuration outperforms the proposed methodology. Moreover, the 
Hypothesis test shows that non-significant differences were found among the direct 
SMS-EMOA and configuration ID3 with the best results from the Friedman’s test 
point of view. However, the way to know a priori which would be the best values and 
their influence in the optimization outcome, either of the sampling size parameter or 
either of the minimum extreme value parameter is not determined. For example, if 
we focus on each value of sampling size, we could observe that in the case of 
sampling size 10 (ID1 to ID3), the best ordered case was the minimum equal-
weighted unavailability-cost extreme (ID3), while in the case of sampling size 100 
(ID4 to ID6), the best ordered case was the cost extreme (ID4), and finally in the 
case of sampling size 1000 (ID7 to ID9), the best ordered case was the unavailability 
extreme (ID8). Therefore, depending on the sampling sizes all the minimum extreme 
directions could have been the best options according to the attained results of the 
experiment. Hence, there are many parameters to explore in very expensive 
computational processes. On the contrary, the proposed methodology is parameter-
less due to a single sampling size and therefore due to its implicit management of 
the non-dominated solutions by the selection operator of the evolutionary multi-
objective algorithm. 
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In summary, the proposed methodology as it is shown in the insight results and 
discussion of the case study, is a computationally efficient and robust approach 
(non-parameter dependent regarding the number of samples or the minimal search 
direction) versus the use of Monte Carlo simulation-based approaches when facing 
the multi-objective optimization reliability problem handled. 
 

Comparison p-value Conclusion 
ID10 - ID11 4.502·10−9 < 0.05 The null hypothesis is rejected 
ID9 - ID11 2.353·10−6 < 0.05 The null hypothesis is rejected 
ID7 - ID11 0.0028 < 0.05 The null hypothesis is rejected 
ID8 - ID11 0.0250 > 0.05 The null hypothesis is rejected 
ID2 - ID11 0.4401 > 0.05 The null hypothesis is not rejected 
ID3 - ID11 0.4751 > 0.05 The null hypothesis is not rejected 
ID1 - ID11 1.7907 > 0.05 The null hypothesis is not rejected 
ID5 - ID11 3.8171 > 0.05 The null hypothesis is not rejected 
ID6 - ID11 3.8171 > 0.05 The null hypothesis is not rejected 
ID4 - ID11 3.8171 > 0.05 The null hypothesis is not rejected 

 
 P-values from Shaffer’s test from simulated centres (centres). 

 
5.2.4.2. Quantification of the operation cost saved. 
 
In order to evaluate the cost savings attained by the proposed methodology in the 
case study by using the direct SMS-EMOA, a comparison with a standard random 
search has been tested. Therefore, each individual of the population (the design –
devices involved in- and maintenance strategy) was randomly generated and the 
objective functions were evaluated after. The total number of solutions generated 
was equivalent to the stopping criterion of the direct SMS-EMOA (10,000,000) at 
each of the 21 independent executions. The configuration of the case study with 
best average rank from the Friedman’s test point of view (SMS-EMOA, population 
size of 150 individuals, and mutation rate of 0.5 gene per chromosome, as it is seen 
in the Table 5.7, column 9) was taken as reference. In both compared cases (direct 
SMS-EMOA and random search), the 21 independent executions were ordered by 
their Hypervolume values, and the median case (11th ordered) was taken as 
reference, as is shown in the Figure 5.26. 
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Figure 5.26: Non-dominated fronts -direct SMS-EMOA and random search- (median case out of 21 independent executions). 

 

 
 

Figure 5.27: Global non-dominated front (median direct SMS-EMOA and median random search). 
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The Hypervolume covered by the methodology (2.2977) is better than the 
Hypervolume covered by the random search (2.2385); hence, the non-dominated 
front obtained by the proposed methodology is better than the non-dominated front 
obtained by the random search. From those sets, their joint non-dominated front is 
shown in the Figure 5.27, where all solutions except a single one (by chance) were 
attained by the proposed methodology. 
 
In order to quantify what is the benefit of using the direct SMS-EMOA, characteristic 
solutions identified as ID1 and ID3 (taken from direct SMS-EMOA) and ID2 and ID4 
(taken from random search) have been chosen to compare. These solutions are 
shown both in the Table 5.14 and in the Figure 5.26. Comparing the solutions with 
the best cost from the Table 5.14 (ID1 and ID2), it can be seen that the solution ID1 
(achieved from the direct SMS-EMOA) is not only more economic but also more 
reliable than the solution ID2 (achieved from the random search). Comparing the 
economic cost of the solutions ID1 and ID2, the solution ID1 presents an 
improvement of a 4%. The better the unavailability, the bigger the impact of the 
methodology in terms of cost benefits. Comparing the solutions with the best 
unavailability from the Table 5.14 (ID3 and ID4), it can be seen that the solution ID3 
(achieved from the direct SMS-EMOA) is not only more economic but also more 
reliable than the solution ID4 (achieved from the random search). The difference 
between the solutions ID3 and ID4 reaches an economic cost of a 10% lower. Then 
in the conditions of the experiment, using the direct SMS-EMOA produces a positive 
impact not only from the economic point of view but also from the availability point 
of view. 
 

Id Method Q Cost [ue] V1 [h] P2 [h] P3 [h] V4 [h] V5 [h] V6 [h] V7 [h] 
1 SMS-EMOA 0.002974 923.75 25434 0 8691 0 21781 33457 31259 
2 Random search 0.003055 962.12 15810 0 8621 0 16584 23113 24667 
3 SMS-EMOA 0.000819 1838.37 33858 7700 8678 16795 24190 33248 28461 
4 Random Search 0.000903 2057.75 34514 4711 4946 29724 28028 25410 32408 

 
  Extreme solutions taken from the Figure 5.26. 
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5.2.5. Testing the methodology in more complex applications. 
 
Two applications are faced in order to demonstrate the viability of applying the 
methodology. The Application Case A consists of an extension of the main case 
study by adding a second branch. The Application Case B consists of a system 
whose structure is more complex, and the number and kind of devices is bigger. 
 
5.2.5.1. Application Case A: The case study with double branch. 
 
This application consists of an extension of the case study, which is a basic model 
of a containment spray injection system. In this case, a second branch is included 
as it is shown in the Figure 5.28. A similar structure was analysed by Greiner et al 
[5]. As in the case study, it is necessary to establish the optimum period to perform 
a preventive maintenance activity for the system devices and it is necessary to 
decide whether to include redundant devices such as the pump P2, the pump P9, 
the Valve V4 and the Valve V11 by evaluating design alternatives. Hence, the 
number of components of the Application Case A can vary from 10 to 14 
automatically as an outcome from the evolutionary algorithm search. The 
chromosomes are codified as follows: 
 

[𝑃𝑃1 𝑃𝑃2 𝑃𝑃3 𝑃𝑃4 𝑀𝑀1 𝑀𝑀2 𝑀𝑀3 𝑀𝑀4 𝑀𝑀5 𝑀𝑀6 𝑀𝑀7 𝑀𝑀8 𝑀𝑀9 𝑀𝑀10 𝑀𝑀11 𝑀𝑀12 𝑀𝑀13 𝑀𝑀14] 
 
The presence of redundant devices P2, V4, P9 and V11 is defined by the decision 
variables 𝑃𝑃1, 𝑃𝑃2, 𝑃𝑃3 and 𝑃𝑃4 respectively, and the optimum time to start a preventive 
maintenance activity in relation to each device is represented by the decision 
variables 𝑀𝑀1 to 𝑀𝑀14. They must be transformed to evaluate the objective functions 
as claimed in the Section 4.5.2.1 of the Chapter IV. This application was executed 
attending to the configuration that presented the best behaviour from the case study, 
as it is shown in the Table 5.15. 
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Figure 5.28: Application Case A: Double branch CSIS. 

 
Description Setting 
Method SMS-EMOA 
Population 150 
Mutation rate 0.5 
Mutation distribution index 20 
Crossover probability 0.9 
Crossover distribution index 20 
Number of evaluations 10.000.000 
Number of executions 21 

 
 Parameters configuration for the Application Cases A and B. 

 
The scale factors in relation to the value of the objective functions used with the 
purpose of achieving an equally dispersed non-dominated front with the unit as a 
maximum value of each objective were as follows: 

• The scale factor employed to compute the Cost was 4,500 economic units. 
• The scale factor employed to compute the system Unavailability was 

0.00004. 
 
Firstly, the experiment was conducted based on the proposed methodology. 
Additionally, to tune the effect of automatic devices selection, a second problem was 
run where the structural design was based on the mandatory selection of all devices. 
Box plots of the Hypervolume values distribution at the end of the process are shown 
in the Figure 5.29. The configuration with identifier ID1, which uses the proposed 



 
CONTRIBUTIONS ON RELIABILITY TO RECONDITION THE MAINTENANCE PLAN AND THE DESIGN OF SYSTEMS 

BY USING EVOLUTIONARY ALGORITHMS 

 
 

 
 
 

145 

methodology, presents the best median Hypervolume value. Statistical information 
regarding the Hypervolume reached when 21 independent executions were carried 
out is shown in the Table 5.16. The configuration with identifier ID1 presents the 
best statistics. Moreover, the configuration with identifier ID1 presented the best 
average rank from the Friedman’s test point of view, and the p-value achieved of 
4.592·10−6 establishes that the configuration ID1 performs better than the 
configuration ID2. The nondominated solutions achieved by the proposed 
methodology (marked as a ×) are shown in the Figure 5.30. The accumulated 
Hypervolume computed in this case out of 21 independent executions reached a 
value of 3.1146. Moreover, the non-dominated solutions are detailed in the Table 
5.17. It can be seen that the devices P2, V4, P9 and V11 are not included in the 
design. The non-dominated solutions achieved based on the mandatory selection 
(marked as an O) are shown in the Figure 5.30. The accumulated Hypervolume 
computed in this case out of 21 independent executions reached a value of 3.1004. 
It can be seen that the hypervolume covered by the non-dominated solutions 
achieved by the proposed methodology is bigger than the hypervolume covered by 
the non-dominated solutions achieved by the mandatory selection of all devices; 
also, the former non-dominated solutions, which are identified as ID1, ID2 and ID3, 
dominate the latter non-dominated solutions. The proposed methodology was able 
to find optimum non-dominated solutions for the system. 
 
Finally, the Figure 5.31 shows the non-dominated solutions achieved both for the 
case study (marked as a ×) and for the Application Case A (marked as a △). It can 

be seen that both fronts are complementary. The set of solutions of the non-
dominated front achieved by the case study present a lower cost and a bigger 
unavailability than the set of solutions of the non-dominated front achieved by the 
Application Case A. The Application Case A is more reliable (lower unavailability) 
and more expensive (higher cost) since its solutions are composed by two parallel 
branches and with more components than the case study. Nevertheless, this is the 
reason why a bigger economic investment is needed to maintain the system. The 
decision makers should determine whether the benefit of applying better 
unavailability designs supports the increase in economic investment. 
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Figure 5.29:  Box plots of Hypervolume (App. Case A). 

 
Identifier Criterion Average Median Max. Min. St. Deviation Av. Rank 

ID1 Proposed methodology 3.0963 3.0958 3.1130 3.0834 0.0082 1.000 
ID2 Mandatory selection 2.4600 2.4628 2.4904 2.4286 0.0146 2.000 

p-Value 4.59·10−6 

 
 Id’s, config., Hyperv. statistics and statistical test (App. Case A). 

 
Id Q Cost [ue] V1 [h] P2 [h] P3 [h] V4 [h] V5 [h] V6 [h] V7 [h] 
1 0.000012842465 1990.75 11231 0 8105 0 19999 27523 21384 
2 0.000001426940 1994.62 13651 0 8745 0 11242 21832 26738 
3 0.000000000000 2032.00 17883 0 8352 0 32021 17390 20798 
   V8 [h] P9 [h] P10 [h] V11 [h] V12 [h] V13 [h] V14 [h] 
   17516 0 8430 0 21274 21836 30564 
   23110 0 8754 0 24284 23167 31445 
   29361 0 8467 0 17758 19825 22320 

 
  Non-dominated solutions (App. Case A). 
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Figure 5.30:  Accumulated non-dominated solutions and designs (App. Case A). 

 

 
 

Figure 5.31:  Accumulated non-dominated solutions from both the case study and the App. Case A. 
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5.2.5.2. Application Case B: An extended model for the Containment Spray 
System of a Nuclear Power Plant. 

 

The Application Case B is based on an industrial case presented by Galván et al. 
[8] It consists of a Pressured Water Reactor (PWR) Containment Spray System, 
which is designed to provide particular and different functions inside the containment 
of a PWR, such as the borated water injection function. In the case study, a 
simplified model of this system was studied. In this case, an extended model is 
studied as it is shown in the Figure 5.32. 

 
Figure 5.32:  Application Case B: Base line. 

 
The system consists of two separated trains, each one formed by centrifugal pumps 
and valves to control the flow of borated water from the Refuelling Water Storage 
Tank. The main devices are the single Valves (V1, V2 and V9), the Motor Driven 
Pumps (P4 and P5), the Motor Operated Valves (M3, M6, M7, M8 and M10) and 
One Way Valves (NR11 and NR12). The aim is the simultaneous optimisation of the 
system structural design (with automatic selection of devices) and its maintenance 
strategy with some considerations: 

• Each position may locate a maximum of three redundant devices in parallel, 
so the maximum number of devices is thirty-six as is shown in the Figure 
5.33, 

• The devices V1, P4, V9, M10, NR11 and NR12 are mandatory as it is shown 
in the Figure 5.34, 

• When the device M8 is not included in the design, the line is considered a 
tube, 
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• When the device P5 is not included in the design, the device M7 cannot be 
included, 

• The device M3 might be included in the design when the device V2 or/and 
the device P5 is/are included, 

• As in the Application Case A, to tune the effect of automatic devices 
selection, a second problem was run where the structural design was based 
on the mandatory selection of a minimum of a device per position. 

    

 
Figure 5.33: Application Case B: The most complex possible design. 

 

 
Figure 5.34: Application Case B: The simplest possible design. 

 
As in the case study, the chromosome codification includes the period of time to 
conduct a preventive maintenance task for the system’s devices. Moreover, it is 
necessary to decide the inclusion of redundant devices by evaluating design 
alternatives; the number of devices of the Application Case B may vary from 6 to 36 
automatically as an outcome from the evolutionary algorithm search.  
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In this application, two types of chromosome codifications are considered and 
compared: 

• Long Chromosome codification: Formed by 66 decision variables, which are 
30 for the design and 36 for the maintenance strategy. Six components are 
mandatory so 30 design decision variables are necessary to decide whether 
the rest of the devices are or not included in the design. The system can 
contain a maximum of 36 devices so this is the number of the decision 
variables for the preventive maintenance strategy, 

• Short Chromosome codification: Formed by 48 decision variables, which are 
12 for the design and 36 for the maintenance strategy. In this case, the 12 
design decision variables are scaled to entire values so they may take a 
maximum value of three (the required transformation was explained in the 
Section 4.5.2.1 from the Chapter IV, Equation 4.6). As in the previous case, 
the system may contain a maximum of 36 devices so this is the number of 
the decision variables for the preventive maintenance strategy. 

 
In summary, in this section, four problems solving Application Case B were 
executed: long chromosome and the proposed methodology, short chromosome 
and the proposed methodology, long chromosome and mandatory selection of a 
minimum of a device per position, and short chromosome and mandatory selection 
of a minimum of a device per position. 
 
The data used are shown in the Table 5.18. As in the Application Case A, this 
Application Case B was executed attending to the multi-objective evolutionary 
optimisation configuration which presented the best performance in the case study, 
which is shown in the Table 5.15. The scale factors in relation to the value of the 
objective functions used with the purpose of achieving an equally dispersed non-
dominated front with the unit as a maximum value of each objective were as follows: 

• The scale factor used to compute the Cost was 6,000 economic units, 
• The scale factor used to compute the system Unavailability was 0.00083. 
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Parameter Value Source 
Life cycle or mission time .438,000 hours - 
(V) Corrective Maintenance Cost 15 units/hour  Galván et al. [8] 
(P) Corrective Maintenance Cost 15 units/hour Galván et al. [8] 
(M) Corrective Maintenance Cost 20 units/hour Galván et al. [8] 
(NR) Corrective Maintenance Cost 15 units/hour Galván et al. [8] 
(V) Preventive Maintenance Cost 15 units/hour  Galván et al. [8] 
(P) Preventive Maintenance Cost 15 units/hour Galván et al. [8] 
(M) Preventive Maintenance Cost 20 units/hour Galván et al. [8] 
(NR) Preventive Maintenance Cost 15 units/hour Galván et al. [8] 
(V) 𝑇𝑇𝐹𝐹𝑚𝑚𝑖𝑖𝑛𝑛 1 hour MRI* 
(V) 𝑇𝑇𝐹𝐹𝑚𝑚𝑚𝑚𝑥𝑥 70.800 hours MRI* 
(V) 𝑇𝑇𝐹𝐹 𝜆𝜆 5,83x10-6 failures/hour Galván et al. [8] 
(V) 𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛 1 hour MRI* 
(V) 𝑇𝑇𝑀𝑀𝑚𝑚𝑚𝑚𝑥𝑥 5 hours 𝜇𝜇 + 3𝜎𝜎 
(V) 𝑇𝑇𝑀𝑀𝜇𝜇 3 hours Galván et al. [8] 
(V) 𝑇𝑇𝑀𝑀𝜎𝜎 0.67 hours (𝜇𝜇 − 𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛)/3 
(V) 𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛 8,760 hours MRI* 
(V) 𝑇𝑇𝑀𝑀𝑚𝑚𝑚𝑚𝑥𝑥 35,040 hours MRI* 
(V) 𝑇𝑇𝐶𝐶𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛 1 hours MRI* 
(V) 𝑇𝑇𝐶𝐶𝑀𝑀𝑚𝑚𝑚𝑚𝑥𝑥 1 hours 𝜇𝜇 + 3𝜎𝜎 
(V) 𝑇𝑇𝐶𝐶𝑀𝑀𝜇𝜇 1 hours Galván et al. [8] 
(V) 𝑇𝑇𝐶𝐶𝑀𝑀𝜎𝜎 0 hours (𝜇𝜇 − 𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛)/3 
(P) 𝑇𝑇𝐹𝐹𝑚𝑚𝑖𝑖𝑛𝑛 1 hour MRI* 
(P) 𝑇𝑇𝐹𝐹𝑚𝑚𝑚𝑚𝑥𝑥 70.800 hours MRI* 
(P) 𝑇𝑇𝐹𝐹 𝜆𝜆 3,89x10-6 failures/hour Galván et al. [8] 
(P) 𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛 1 hour MRI* 
(P) 𝑇𝑇𝑀𝑀𝑚𝑚𝑚𝑚𝑥𝑥 47 hours 𝜇𝜇 + 3𝜎𝜎 
(P) 𝑇𝑇𝑀𝑀𝜇𝜇 24 hours Galván et al. [8] 
(P) 𝑇𝑇𝑀𝑀𝜎𝜎 7.67 hours (𝜇𝜇 − 𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛)/3 
(P) 𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛 2,920 hours MRI* 
(P) 𝑇𝑇𝑀𝑀𝑚𝑚𝑚𝑚𝑥𝑥 8,760 hours MRI* 
(P) 𝑇𝑇𝐶𝐶𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛 1 hours MRI* 
(P) 𝑇𝑇𝐶𝐶𝑀𝑀𝑚𝑚𝑚𝑚𝑥𝑥 1 hours 𝜇𝜇 + 3𝜎𝜎 
(P) 𝑇𝑇𝐶𝐶𝑀𝑀𝜇𝜇 4 hours Galván et al. [8] 
(P) 𝑇𝑇𝐶𝐶𝑀𝑀𝜎𝜎 1 hours (𝜇𝜇 − 𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛)/3 
(M) 𝑇𝑇𝐹𝐹𝑚𝑚𝑖𝑖𝑛𝑛 1 hour MRI* 
(M) 𝑇𝑇𝐹𝐹𝑚𝑚𝑚𝑚𝑥𝑥 70.800 hours MRI* 
(M) 𝑇𝑇𝐹𝐹 𝜆𝜆 5,9x10-6 failures/hour Galván et al. [8] 
(M) 𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛 1 hour MRI* 
(M) 𝑇𝑇𝑀𝑀𝑚𝑚𝑚𝑚𝑥𝑥 5 hours 𝜇𝜇 + 3𝜎𝜎 
(M) 𝑇𝑇𝑀𝑀𝜇𝜇 3 hours Galván et al. [8] 
(M) 𝑇𝑇𝑀𝑀𝜎𝜎 0.67 hours (𝜇𝜇 − 𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛)/3 
(M) 𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛 8,760 hours MRI* 
(M) 𝑇𝑇𝑀𝑀𝑚𝑚𝑚𝑚𝑥𝑥 35,040 hours MRI* 
(M) 𝑇𝑇𝐶𝐶𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛 1 hours MRI* 
(M) 𝑇𝑇𝐶𝐶𝑀𝑀𝑚𝑚𝑚𝑚𝑥𝑥 1 hours 𝜇𝜇 + 3𝜎𝜎 
(M) 𝑇𝑇𝐶𝐶𝑀𝑀𝜇𝜇 1 hours Galván et al. [8] 
(M) 𝑇𝑇𝐶𝐶𝑀𝑀𝜎𝜎 0 hours (𝜇𝜇 − 𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛)/3 
(NR) 𝑇𝑇𝐹𝐹𝑚𝑚𝑖𝑖𝑛𝑛 1 hour MRI* 
(NR) 𝑇𝑇𝐹𝐹𝑚𝑚𝑚𝑚𝑥𝑥 70.800 hours MRI* 
(NR) 𝑇𝑇𝐹𝐹 𝜆𝜆 5,9x10-6 failures/hour Galván et al. [8] 
(NR) 𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛 1 hour MRI* 
(NR) 𝑇𝑇𝑀𝑀𝑚𝑚𝑚𝑚𝑥𝑥 5 hours 𝜇𝜇 + 3𝜎𝜎 
(NR) 𝑇𝑇𝑀𝑀𝜇𝜇 3 hours Galván et al. [8] 
(NR) 𝑇𝑇𝑀𝑀𝜎𝜎 0.67 hours (𝜇𝜇 − 𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛)/3 
(NR) 𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛 8,760 hours MRI* 
(NR) 𝑇𝑇𝑀𝑀𝑚𝑚𝑚𝑚𝑥𝑥 35,040 hours MRI* 
(NR) 𝑇𝑇𝐶𝐶𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛 1 hours MRI* 
(NR) 𝑇𝑇𝐶𝐶𝑀𝑀𝑚𝑚𝑚𝑚𝑥𝑥 1 hours 𝜇𝜇 + 3𝜎𝜎 
(NR) 𝑇𝑇𝐶𝐶𝑀𝑀𝜇𝜇 1 hours Galván et al. [8] 
(NR) 𝑇𝑇𝐶𝐶𝑀𝑀𝜎𝜎 0 hours (𝜇𝜇 − 𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛)/3 
*MRI = Machinery Reliability Institute 

 
 Data set (App. Case B). 
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Box plots of the Hypervolume values distribution at the end of the process are shown 
in the Figure 5.35. The identifiers (ID) are referred in the Table 5.19. It can be seen 
that the configuration with identifier ID3, which employs the short chromosome and 
the proposed methodology, presents the best median Hypervolume value. 
Statistical information regarding the Hypervolume reached when 21 independent 
executions were carried out is shown in the Table 5.19. The configuration with 
identifier ID3 presents the best Hypervolume average, median, minimum and 
standard deviation values, whereas the configuration with identifier ID1, which uses 
the long chromosome and the proposed methodology, presents the best 
Hypervolume maximum value. Moreover, the configuration with identifier ID3 
presents the best average rank from the Friedman’s test point of view, and the p-
value achieved of 7.666·10−11 establishes that the configuration ID3 performs better 
than some other. 
 

 
Figure 5.35: Box plots of Hypervolume (App. Case B). 

 
Identifier Criterion Average Median Max. Min. St. Deviation Av. Rank 

ID1 Long chromosome - Proposed methodology 3.7434 3.7380 3.7779 3.7224 0.0135 1.5714 
ID2 Long chromosome - Mandatory selection 3.4778 3.4757 3.5197 3.4457 0.0181 3.6190 
ID3 Short chromosome - Proposed methodology 3.7438 3.7434 3.7676 3.7233 0.0108 1.4285 
ID4 Short chromosome - Mandatory selection 3.4859 3.4867 3.5230 3.4573 0.0145 3.3809 

p-Value 7.66·10−11 
 

 Id’s, config., Hyperv. statistics and statistical test (App. Case B). 
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Finally, the Shaffer’s test was used to compare the configuration with identifier ID3 
and the rest of configurations. Statistical significant difference was found regarding 
the configurations with identifiers ID2 and ID4 (both with mandatory selection of 
devices) as it is shown in the Table 5.20. Therefore, in the studied conditions, the 
best performance is achieved when the proposed methodology is employed. 
Furthermore, the best order from the Friedman’s test is achieved when only one 
decision variable per position for the system design is used (the short chromosome). 
 

Comparison p-value Conclusion 
ID2 - ID3 2.304·10−7 < 0.05 The null hypothesis is rejected 
ID3 - ID4 2.868·10−6 < 0.05 The null hypothesis is rejected 
ID1 - ID3 1.1001 > 0.05 The null hypothesis is not rejected 

 
 P-values from Shaffer’s test (App. Case B). 

 
The non-dominated solutions achieved when the long chromosome and the 
proposed methodology are used (marked as ×) are shown in the Figure 5.36. The 
accumulated Hypervolume computed out of 21 independent executions is 3.7809. 
The non-dominated solutions achieved when the long chromosome and the 
mandatory selection of a minimum of a device per position, are used (marked as O) 
cover an accumulated Hypervolume computed out of 21 independent executions of 
3.5196. The non-dominated solutions achieved when the short chromosome and 
the proposed methodology are used (marked as □ ) cover an accumulated 

Hypervolume computed out of 21 independent executions of 3.7702. Finally, the 
non-dominated solutions achieved when the short chromosome and the mandatory 
selection of a minimum of a device per position are used (marked as △) cover an 

accumulated Hypervolume computed out of 21 independent executions of 3.5230. 
In the Figure 5.37, the non-dominated solutions, which belong to the non-dominated 
front from all configurations, were extracted. The detail of the solutions is shown in 
the Table 5.21. Solutions L1, L2 and L3 are solutions supplied when the long 
chromosome and the proposed methodology are used. Solutions S1, S2 and S3 are 
solutions supplied when the short chromosome and the proposed methodology are 
used. Finally, the SM1 solution is a solution achieved when using the short 
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chromosome and the mandatory selection of devices. Each solution presents its 
cost, unavailability and periodic times to start a preventive maintenance activity 
regarding each device included in the design, as it is shown in the Table 5.21. The 
design alternatives are shown in the Figures 5.38 to 5.43. It can be seen that the 
solution L1 (the less expensive design), whose design is shown in the Figure 5.38, 
belongs to the simplest design, as it is shown in the Figure 5.34. On the contrary, it 
can be seen that the solution SM1, whose design is shown in the Figure 5.43, is the 
more reliable solution with an unavailability equal to 0.0. This is because the system 
was kept in the operating state all along the mission time for the discrete simulation 
that describes its behaviour. All the four tested methods were able to achieve best 
solutions with same unavailability value, as it is shown in the bottom right part of the 
Figure 5.36, although with slight differences in the cost attained. 
 

 
 

Figure 5.36: Accumulated non-dominated solutions (App. Case B). 
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Figure 5.37: Global non-dominated front (App. Case B). 

 
Id Q Cost [ue] V1 [h] V2 [h] M3 [h] P4 [h] P5 [h] M6 [h] 
L1 0.000150684 628.00 34812 - - 8603 - - 
L2 0.000148401 676.00 35040 - - 8751 - - 
S1 0.000146118 755.00 33167 - - 8437 - - 
L3 0.000045662 798.00 33668 - - 8590 8356 - 
S2 0.000031963 978.00 34390 - - 8452-7787 - - 
S3 0.000027397 1,111.00 34820 - - 8127 7921 - 

SM1 0.000000000 1,431.00 35038 33698 24164 8214 8750 20442 
   M7 [h] M8 [h] V9 [h] M10 [h] NR11 [h] NR12 [h] 
   - - 35040 10643 27565 17670 
   - - 32096 30768 21823-28100 24906 
   - 10149 33617 18317 35040 9822 
   - - 32598 24984 11763 24185 
   - - 32201 29526-10617 17637 30224-18493 
   - - 31937 33602 23771 23035 
   20313-20820 29945-21985 31666 23579 15473 28511 

 
  Non-dominated solutions (App. Case B, id’s as in the Figure 5.37). 
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Figure 5.38: L1 solution (Cost = 628.00 - Q = 1.5068·10−4). 

 
 

Figure 5.39: L2 solution (Cost = 676.00 - Q = 1.4844·10−4). 

 
 

Figure 5.40: S1 solution (Cost = 755.00 - Q = 1.4611·10−4). 
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Figure 5.41: L3 and S3 solutions (Cost = 798.00 - Q = 4.5662·10−5, Cost = 1111.00 - Q = 2.7397·10−5, respectively). 

 
 

Figure 5.42: S2 solution (Cost = 978.00 - Q = 3.1963·10−5). 

 
 

Figure 5.43: SM1 solution (Cost = 1431.00 - Q = 0.0000). 
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5.2.5.3. Discussion. 
 
The application of the proposed methodology to both application cases 
demonstrates that its generalisation and scalability is viable. It has been possible to 
extend the methodology to more complex systems and balanced unavailability-cost 
solutions could be found with automatic selection of system devices. It was 
interesting to compare the proposed methodology with the cases with mandatory 
selection of devices.  
 
In the Application Case A, the proposed methodology avoids choosing single 
devices located in parallel. Once the non-dominated solutions from the mandatory 
selection of devices are achieved, it could be seen that the achieved non-dominated 
solutions from the proposed methodology dominated the previously cited solutions. 
Hence, the solutions with single devices located in parallel are not optimal solutions. 
They were rejected by the Multi-objective Evolutionary Algorithm along the 
evolutionary process. 
 
Regarding the Application Case B, two chromosome codifications (short and long) 
were explored. Statistically non-significant differences were found regarding the 
length of the chromosome, however, the short chromosome resulted firstly ordered 
by the Friedman’s test. It can be seen that solutions from both codifications belong 
to the accumulated non-dominated front. Nevertheless, generally speaking, the 
solutions with better cost and worse unavailability were achieved from the long 
chromosome; conversely, the solutions with worse cost and better unavailability 
were achieved from the short chromosome. Therefore, depending on the features 
of the solutions to achieve it could be better to use one or another codification to 
solve complex problems in the proposed methodology. In any case, the proposed 
methodology with either of the two tested types of chromosome codifications were 
able to attain a distributed set of non-dominated solutions along the whole front as 
it is shown in the Figures 5.35 (Hypervolume distributions) and 5.36. 
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The proposed methodology is a powerful tool for decision makers (e.g.: chief of 
engineering, manager of company) in order to plan the systems with simultaneous 
optimum maintenance cost and unavailability and automatic selection of systems 
components. It is possible to attain an optimum set of non-dominated solutions with 
minimum cost and minimum unavailability: it can be observed as the set of solutions 
where for each value of cost, the best unavailability is shown, or alternatively, the 
set of solutions where for each value of unavailability the best value of cost is shown. 
 
5.3. Testing encoding and time units. 
 
5.3.1. Background. 
 
This study is currently published [213]. The methodology proposed to promote the 
improvement of the system Availability by optimising the design and the 
maintenance strategy by using Multi-objective Evolutionary Algorithms and Discrete 
Event Simulation was previously explored. Several Multi-objective Evolutionary 
Algorithms were employed under a real encoding approach and the hour was used 
as a time unit. In that case, the best ordered configuration from the Friedman’s test 
point of view was obtained when the SMS-EMOA was employed as an optimisation 
method, with a population size of 150 individuals and a mutation rate of 0.5 gene 
per chromosome. However, using the NSGA-II method resulted very competitive 
due to the fact that non-statistically significant differences were found regarding the 
performance from such methods. The NSGA-II method is one of the most widely 
employed in order to solve Reliability problems, how it can be checked by reviewing 
the Chapter III of the present research. 
 
In this second study, the previous one is extended and a deeper exploration using 
the NSGA-II method is developed. The case study previously presented is analysed 
again. However, in this case, the possible impact on the solutions as a result of 
different encodings, parameter configurations and chromosome lengths, which 
affect the accuracy levels when scheduling preventive maintenance, are attended. 
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Then, some binary encoding alternatives are explored, looking for possible 
advantages and disadvantages to encode the real-world problem considered as the 
case study. Moreover, an accuracy-level experiment for the preventive maintenance 
strategy is considered. The first part of the study determines the optimum periodical 
time to start a preventive maintenance activity when the hour is used as a time unit. 
Two more levels are explored in the second part of the study: the day and the week 
as a time unit. There are preventive maintenance tasks whose accuracy level in time 
can be of little importance. It may not be important to determine the exact instant for 
their development, being enough to define the day or the week. Therefore, the effect 
of several chromosome lengths is explored looking for improving the evolutionary 
process. Summarising the scope of the present study: 

• In this job, seven encoding alternatives are thoroughly explored: Real 
encoding (with Simulated Binary Crossover), Binary encoding (with 1-point 
Crossover), Binary encoding (with 2-point Crossover), Binary encoding (with 
Uniform Crossover), Gray encoding (with 1-point Crossover), Gray encoding 
(with 2-point Crossover) and Gray encoding (with Uniform Crossover). Their 
performances are compared by using the Hypervolume indicator and 
statistical significance tests. 

• Additionally, three accuracy levels on time are explored for the binary 
encoding; hours, days and weeks, in order to analyse the effect on both the 
chromosome length in the evolutionary search and the final non-dominated 
set of solutions. Their performances are compared by using the Hypervolume 
indicator and statistical significance tests. 

 
5.3.2. Description of the conducted experiments. 
 
Two sets of experiment comparisons were developed: firstly, comparing several 
encodings (real, binary and Gray), and secondly, comparing several accuracies in 
binary encoding. 
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5.3.2.1. Comparing encodings. 
 
In the present study, testing whether there is a significant difference between the 
performances of the different encodings is intended. Depending on the encoding 
type, each individual is codified as follows: 
 
Real encoding: The chromosome is formed by strings of real numbers (with 0 as a 
minimum value and 1 as a maximum value) following the shape 
[𝑃𝑃1 𝑃𝑃2 𝑀𝑀1 𝑀𝑀2 𝑀𝑀3 𝑀𝑀4 𝑀𝑀5 𝑀𝑀6 𝑀𝑀7]. The presence of the redundant devices P2 and V4, 
is defined by the decision variables 𝑃𝑃1 and 𝑃𝑃2, respectively. The optimum time to 
start a preventive maintenance task for each system device is denoted by the 
decision variables 𝑀𝑀1 to 𝑀𝑀7. The values of the decision variables must be scaled 
and rounded, i.e., 𝑃𝑃1 and 𝑃𝑃2 are rounded to the nearest integer (0 implies that the 
respective device is not selected whereas 1 implies the opposite). 𝑀𝑀1  to 𝑀𝑀7  are 
scaled between the respective 𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛 and 𝑇𝑇𝑀𝑀𝑚𝑚𝑚𝑚𝑥𝑥 (depending on the device) and 
rounded to the nearest integer by using the Equation 4.5 from the Chapter IV (e.g., 
the decision variable 𝑀𝑀1 denotes the time to start a preventive maintenance task for 
the valve V1, whose 𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛 and 𝑇𝑇𝑀𝑀𝑚𝑚𝑚𝑚𝑥𝑥  reach values of 8,760 hours and 35,040 
hours, respectively. If the value of the decision variable 𝑀𝑀1 is 0.532, the value of the 
time to start a preventive maintenance task is 8,760 + 0.532 x (35,040 - 8,760) ≈ 23 
hours). 
 
Binary encoding: The chromosome is formed by binary number strings that can 
vary between 0 and 1, where the total number of bits is 103 and they are: 

• 𝑃𝑃1: This denotes the presence of the pump P2 in the system design (0 implies 
that the respective device is not considered whereas 1 implies the opposite). 

• 𝑃𝑃2: This denotes the presence of the valve V4 in the system design (0 implies 
that the respective device is not considered whereas 1 implies the opposite). 

• 𝑀𝑀3 to 𝑀𝑀17: These denote the time to start a preventive maintenance task for 
the valve V1. A binary scale that allows representing the numbers from 
𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛 and 𝑇𝑇𝑀𝑀𝑚𝑚𝑚𝑚𝑥𝑥 is needed. 𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛 has a value of 8,760 hours and 𝑇𝑇𝑀𝑀𝑚𝑚𝑚𝑚𝑥𝑥 
has a value of 35,040 hours. Therefore, 35,040 - 8760 = 26,280 steps are 
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needed, where the step 0 denotes a time of 8,760 hours and the step 26,279 
denotes a time of 35,040 hours. A binary scale with at least 26,280 steps 
involves using 15 bits (as 26,280 steps lies between 214 = 16,384 and 215 = 
32,768). Since 26,280 steps are needed and 32,768 are available on the 
scale, an equivalent relationship must be used. Each step in the scale of 
32,768 steps denotes 26,768 / 32,768 = 0.8020019531 steps in the scale of 
26,768 steps. Therefore, it is possible to calculate the time to start a 
preventive maintenance task (in hours) by using the scale change that is 
shown by the Equation 5.3 (based on the Equation 4.6 from the Chapter IV), 
where 𝐵𝐵 represents the decimal value of the binary string 𝑀𝑀3 to 𝑀𝑀17 (e.g., if 
the values of the decision variables in binary encoding are 
101101100011101, the decimal value in the scale of 32,768 steps is 23,325. 
If 26,768 steps are scaled, the number achieved is 23,325 x 0.8020019531 
= 18,707 steps. Therefore, the time to start a preventive maintenance task 
reaches 8,760 + 18,707 ≈ 25 hours). 

 
𝑇𝑇𝑀𝑀 = 𝑟𝑟𝑜𝑜𝑢𝑢𝑛𝑛𝑑𝑑 (𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛 + 𝐵𝐵 · 0.8020019531) (5.3) 

 
• 𝑀𝑀18 to 𝑀𝑀30: These denote the time to start a preventive maintenance task for 

the pump P2. A binary scale that allows representing numbers from 𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛 
and 𝑇𝑇𝑀𝑀𝑚𝑚𝑚𝑚𝑥𝑥 is needed. 𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛 has a value of 2,920 hours and 𝑇𝑇𝑀𝑀𝑚𝑚𝑚𝑚𝑥𝑥 has a 
value of 8,760 hours. Therefore, 8,760 - 2,920 = 5,840 steps are needed, 
where the step 0 denotes the time of 2,920 hours and the step 5,839 
represents the time of 8,760 hours. A binary scale with at least 5,840 steps 
involves using 13 bits (as 5,840 steps lies between 212 = 4,096 and 213 = 
8,192). Since 5,840 steps are needed and 8,142 are available on the scale, 
an equivalent relationship must be used. Each step in the scale of 8,142 
represents 5,840 / 8,192 = 0.712890625 steps on a scale of 5840 steps. 
Therefore, it is possible to calculate the time to start a preventive 
maintenance task (hours) by using the scale change that is shown by the 
Equation 5.4, where 𝐵𝐵 represents the decimal value of the binary string 𝑀𝑀18 
to 𝑀𝑀30 (e.g., if the values of the decision variables in binary encoding are 
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1011011000111, such a value on a scale of 8,192 steps is 5,831. If 5,840 
steps are scaled, the number achieved is 5,831 x 0.712890625 = 4,157 steps. 
Therefore, the true time to start a preventive maintenance task reaches 2,920 
+ 4,157 ≈ 7 hours). 
 

𝑇𝑇𝑀𝑀 = 𝑟𝑟𝑜𝑜𝑢𝑢𝑛𝑛𝑑𝑑 (𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛 + 𝐵𝐵 · 0.712890625) (5.4) 
 

• 𝑀𝑀31 to 𝑀𝑀43: These denote the time to start a preventive maintenance task for 
the pump P3. The behaviour of its encoding is like the behaviour explained 
for the pump P2. 

• 𝑀𝑀44 to 𝑀𝑀58: These denote the time to start a preventive maintenance task for 
the valve V4. The behaviour of its encoding is like the behaviour explained 
for the valve V1. 

• 𝑀𝑀59 to 𝑀𝑀73: These denote the time to start a preventive maintenance task for 
the valve V5. The behaviour of its encoding is like the behaviour explained 
for the valve V1. 

• 𝑀𝑀74 to 𝑀𝑀88: These denote the time to start a preventive maintenance task for 
the valve V6. The behaviour of its encoding is like the behaviour explained 
for the valve V1. 

• 𝑀𝑀89 to 𝑀𝑀103: These denote the time to start a preventive maintenance task 
for the valve V7. The behaviour of its encoding is like the behaviour explained 
for the valve V1. 

 
Gray encoding: Some details regarding the Gray code were previously presented 
in the Section 4.5.2.3 of the Chapter IV. In addition to the standard binary encoding, 
the Gray code is used in this research.  
 
Therefore, the performance of the real, the standard binary and the Gray encodings 
are compared. 
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5.3.2.2. Comparing Accuracies. 
 
A second experiment is developed, which consists of studying the possible impact 
depending on the size of the chromosome. In the encoding experiment, the hour is 
used by the chromosomes as a measure of time. In this case, based on the idea 
that the exact hour to develop a preventive maintenance task is not needed, the day 
and the week are used as measures of time. Therefore, in these cases, the solution 
regarding the preventive maintenance strategy consists of supplying the time to start 
a preventive maintenance task with the day or the week as a time unit, respectively. 
The consequence is a reduction in the size of the chromosome, which is applied to 
the binary encoding as follows: 
 
Binary encoding - Days: The chromosome is formed by binary number strings that 
can vary between 0 and 1, where the total number of bits is 73 and they are: 

• 𝑃𝑃1: This denotes the presence of the pump P2 in the system design (0 implies 
that the device is not selected whereas 1 implies the opposite). 

• 𝑃𝑃2: This denotes the presence of the valve V4 in the system design (0 implies 
that the device is not selected whereas 1 implies the opposite). 

• 𝑀𝑀3 to 𝑀𝑀13: These denote the time to start a preventive maintenance task for 
the valve V1. A binary scale that allows representing the numbers from 
𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛 to 𝑇𝑇𝑀𝑀𝑚𝑚𝑚𝑚𝑥𝑥 expressed in days as a time unit is needed. 𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛 has a 
value of 8,760 hours (equivalent to 365 days) and 𝑇𝑇𝑀𝑀𝑚𝑚𝑚𝑚𝑥𝑥  has a value of 
35,040 hours (equivalent to 1,460 days). Therefore, 1,460 - 365 = 1,095 steps 
are needed, where the step 0 denotes the time of 365 days, and the step 
1,094 denotes the time of 1,460 days. A binary scale with at least 1,095 steps 
involves using 11 bits (due to the fact that 1,095 lies between 210 = 1,024 and 
211 = 2,048). Since 1095 steps are needed and 2048 are available on the 
scale, an equivalent relationship must be used. Each step on the scale of 
2,048 steps represents 1,095 / 2,048 = 0.5346679688 steps on a scale of 
1,095 steps. Therefore, it is possible to achieve the time to start a preventive 
maintenance activity (days) by using the scale change that is shown by the 
Equation 5.5, where 𝐵𝐵 represents the decimal value of the binary string 𝑀𝑀3 
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to 𝑀𝑀13 (e.g., if the values of the decision variables on the binary encoding are 
10110110001, the decimal value on the scale of 2,048 steps will be 1,457. 
Scaling to a scale of 1,095 steps, the number achieved is 1,457 x 
0.5346679688 = 779 steps. Therefore, the time to start a preventive 
maintenance task reaches 779 + 365 = 1,144 days). 
 

𝑇𝑇𝑀𝑀 = 𝑟𝑟𝑜𝑜𝑢𝑢𝑛𝑛𝑑𝑑 (𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛 + 𝐵𝐵 · 0.5346679688) (5.5) 
 

• 𝑀𝑀14 to 𝑀𝑀21: These denote the time to start a preventive maintenance task for 
the pump P2. A binary scale that allows representing the numbers from 
𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛 to 𝑇𝑇𝑀𝑀𝑚𝑚𝑚𝑚𝑥𝑥 expressed in days as a time unit is needed. 𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛 has a 
value of 2,920 hours (equivalent to 122 days) and 𝑇𝑇𝑀𝑀𝑚𝑚𝑚𝑚𝑥𝑥  has a value of 
8,760 (equivalent to 365 days). Therefore, 365 - 122 = 243 steps are needed, 
where the step 0 denotes the time of 122 days, and the step 242 represents 
the time of 365 days. A binary scale with at least 243 steps involves using 8 
bits (as 243 lies between 27 = 128 and 28 = 256). Since 243 steps are needed 
and 256 are available on the scale, an equivalent relationship must be used. 
Each step in the scale of 256 represents 243 / 256 = 0.94921875 steps in the 
scale of 243 steps. Therefore, it is possible to achieve the true time to start a 
preventive maintenance task (days) by using the scale change that is shown 
by the Equation 5.6, where 𝐵𝐵 represents the decimal value of the binary 
string 𝑀𝑀14  to 𝑀𝑀21  (e.g., if the values of the decision variables in binary 
encoding are 10110110, the value on the scale of 256 steps is 182. Scaling 
to a scale of 243 steps, the number achieved is 182 x 0.94921875 = 173 
steps. Therefore, the true time to start a preventive maintenance task 
reaches 173 + 122 = 295 days). 
 

𝑇𝑇𝑀𝑀 = 𝑟𝑟𝑜𝑜𝑢𝑢𝑛𝑛𝑑𝑑 (𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛 + 𝐵𝐵 · 0.94921875) (5.6) 
 

• 𝑀𝑀22 to 𝑀𝑀29: These denote the time to start a preventive maintenance task for 
the pump P3. The behaviour of its encoding is like the behaviour explained 
for the pump P2. 
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• 𝑀𝑀30 to 𝑀𝑀40: These denote the time to start a preventive maintenance task for 
the valve V4. The behaviour of its encoding is like the behaviour explained 
for the valve V1. 

• 𝑀𝑀41 to 𝑀𝑀51: These denote the time to start a preventive maintenance task for 
the valve V5. The behaviour of its encoding is like the behaviour explained 
for the valve V1. 

• 𝑀𝑀52 to 𝑀𝑀62: These denote the time to start a preventive maintenance task for 
the valve V6. The behaviour of its encoding is like the behaviour explained 
for the valve V1. 

• 𝑀𝑀63 to 𝑀𝑀73: These denote the time to start a preventive maintenance task for 
the valve V7. The behaviour of its encoding is like the behaviour explained 
for the valve V1. 

 
Binary encoding - Weeks: The chromosome is formed by binary number strings 
that can vary between 0 and 1, where the total number of bits is 54 and they are: 

• 𝑃𝑃1: This denotes the presence of the pump P2 in the system design (0 implies 
that the device is not selected whereas 1 implies the opposite). 

• 𝑃𝑃2: This denotes the presence of the valve V4 in the system design (0 implies 
that the device is not selected whereas 1 implies the opposite). 

• 𝑀𝑀3 to 𝑀𝑀10: These denote the time to start a preventive maintenance task for 
the valve V1. A binary scale that allows representing the numbers from 
𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛 to 𝑇𝑇𝑀𝑀𝑚𝑚𝑚𝑚𝑥𝑥 expressed in weeks as a time unit is needed. 𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛 has a 
value of 8,760 hours (equivalent to 52 weeks) and 𝑇𝑇𝑀𝑀𝑚𝑚𝑚𝑚𝑥𝑥  has a value of 
35,040 hours (equivalent to 209 weeks) so 209 - 52 = 157 steps are needed, 
where the step 0 represents a time of 52 weeks, and the step 156 denotes a 
time of 209 weeks. A binary scale with at least 157 steps involves using 8 
bits (as 157 lies between 27 = 128 and 28 = 256). Since 157 steps are needed 
and 256 are available on the scale, an equivalent relationship must be used. 
Each step on a 256-steps scale represents 157 / 256 = 0.61328125 steps on 
the 157-steps scale. Therefore, it is possible to achieve the time to start a 
preventive maintenance task (weeks) by using the scale change that is 
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shown by the Equation 5.7, where 𝐵𝐵 represents the decimal value of the 
binary string 𝑀𝑀3 to 𝑀𝑀10 (e.g., if the values of the decision variables in binary 
encoding are 10110110, the decimal value in the scale of 256 steps will be 
182. Working with a scale of 157 steps, the number achieved is 182 x 
0.61328125 = 112 steps. Therefore, the time to start a preventive 
maintenance task reaches 52 + 112 = 164 weeks). 
 

𝑇𝑇𝑀𝑀 = 𝑟𝑟𝑜𝑜𝑢𝑢𝑛𝑛𝑑𝑑 (𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛 + 𝐵𝐵 · 0.61328125) (5.7) 
 

• 𝑀𝑀11 to 𝑀𝑀16: These denote the time to start a preventive maintenance task for 
the pump P2. A binary scale that allows representing the numbers from 
𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛 to 𝑇𝑇𝑀𝑀𝑚𝑚𝑚𝑚𝑥𝑥 expressed in weeks as a time unit is needed. 𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛 has a 
value of 2,920 hours (equivalent to 17 weeks) and 𝑇𝑇𝑀𝑀𝑚𝑚𝑚𝑚𝑥𝑥  has a value of 
8,760 hours (equivalent to 52 weeks), Therefore, 52 - 17 = 35 steps are 
needed, where the step 0 represents the time of 17 weeks and the step 34 
represents the time of 52 weeks. A binary scale with at least 35 steps involves 
using 6 bits (as 35 lies between 25 = 32 and 26 = 64). Since 35 steps are 
needed and 64 are available on the scale, an equivalent relationship must be 
used. Each step on the scale of 64-steps scale represents 35 / 64 = 0.546875 
steps in the 35-steps scale. Therefore, it is possible to achieve the time to 
start a preventive maintenance task (weeks) by using the scale change that 
is shown by the Equation 5.8, where 𝐵𝐵 represents the decimal value of the 
binary string 𝑀𝑀11 to 𝑀𝑀16 (e.g., if the values of the decision variables in binary 
encoding are 101101, the value in the scale of 64 steps will be 45. Scaling 
on the 35-steps scale, the number achieved is 45 x 0.546875 = 25 steps. 
Therefore, the true time to start a preventive maintenance task reaches 17 + 
45 = 62 weeks). 
 

𝑇𝑇𝑀𝑀 = 𝑟𝑟𝑜𝑜𝑢𝑢𝑛𝑛𝑑𝑑 (𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛 + 𝐵𝐵 · 0.546875) (5.8) 
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• 𝑀𝑀17 to 𝑀𝑀22: These denote the time to start a preventive maintenance task for 
the pump P3. The behaviour of its encoding is like the behaviour explained 
for the pump P2. 

• 𝑀𝑀23 to 𝑀𝑀30: These denote the time to start a preventive maintenance task for 
the valve V4. The behaviour of its encoding is like the behaviour explained 
for the valve V1. 

• 𝑀𝑀31 to 𝑀𝑀38: These denote the time to start a preventive maintenance task for 
the valve V5. The behaviour of its encoding is like the behaviour explained 
for the valve V1. 

• 𝑀𝑀39 to 𝑀𝑀46: These denote the time to start a preventive maintenance task for 
the valve V6. The behaviour of its encoding is like the behaviour explained 
for the valve V1. 

• 𝑀𝑀47 to 𝑀𝑀54: These denote the time to start a preventive maintenance task for 
the valve V7. The behaviour of its encoding is like the behaviour explained 
for the valve V1. 

 

Summarising, the longitude of the chromosome is 103 bits when the hour is used 
as a time unit, 73 when the day is used as a time unit and 54 when the week is used 
as a time unit.  
 
5.3.2.3. NSGA-II Configuration. 
 
The parameters used to configure the NSGA-II method are shown in Table 5.22. 
 

Method Experiment Encoding Crossover Time unit Population PrM disM PrC disC 

NSGA-II 

Encoding 

Real SBX Hour 

50 -100 -150 0.5-1-1.5 

20 

1 

20 
Standard Binary 1-point (1PX) Hour 

- - 

Standard Binary 2-point (2PX) Hour 
Standard Binary Uniform (UX) Hour 
Gray 1-point (1PX) Hour 
Gray 2-point (2PX) Hour 
Gray Uniform (UX) Hour 

Accuracy 

Standard Binary 1-point (1PX) Day 
Standard Binary 2-point (2PX) Day 
Standard Binary Uniform (UX) Day 
Standard Binary 1-point (1PX) Week 
Standard Binary 2-point (2PX) Week 
Standard Binary Uniform (UX) Week 

 
 Parameters to configure the experiments. 
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Depending on the encoding applied, specific parameters must be set, which are 
described below. The type of crossover used during the optimisation process is 
different because depends on the encoding. The Simulated Binary Crossover (SBX) 
is used for real encoding while one-point (1PX), two-point (2PX) and uniform 
crossover (UX) are used for binary and Gray encodings. The population sizes used 
are 50, 100 and 150 individuals. Like in the first study, the mutation rates (PrM) are 
0.5, 1 and 1.5 genes per chromosome. The crossover probability (PrC) is set to 1 in 
all cases. 
 
Each configuration was executed 21 times (for statistical purposes) with 10,000,000 
evaluations used as the stopping criterion. Scale factors in relation to the value of 
the objective functions were used with the purpose of achieving a dispersed non-
dominated front with the unit as maximum value. Again, the values are obtained by 
following a practical approach in which the values of the scale factors are extracted 
from the values of the objective functions when the optimisation process starts. The 
scale factors are as follows: 

• The scale factor used to compute the Cost is 1,700 economic units. 
• The scale factor used to compute the system Unavailability is 0.003. 

 
Finally, a two-dimensional reference point is needed to compute the Hypervolume 
indicator. The cited point must cover the values limited by the scale factors, which 
restricts the values of the objective functions to a maximum of one. The reference 
point is set to (2,2). Again, the PlatEMO platform is used to develop the study. 
 
5.3.3. Results. 
 
Due to the complexity of the problem, a general-purpose calculation cluster (High-
Performance Computer) was used during the computational process. The cluster is 
composed by 28 calculation nodes and one access node. Each calculation node 
consists of 2 Intel Xeon E5645 Westmere-EP processors with 6 cores each and 48 
GB of RAM memory, allowing 336 executions to be run simultaneously. 
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Once the results were obtained, valuable information emerged. For each analysed 
case, the following information is provided: Firstly, information regarding the 
computational process is given with the purpose of showing the complexity of the 
problem and its computational cost. It consists of the time taken for 21 executions 
of the nine configurations (three population sizes and three mutation rates) related 
to each analysed case. Secondly, the values of the main measures achieved for the 
final evaluation in 21 executions are shown. These measures are the Average, 
Median, Minimum, Maximum and Standard Deviation values of the Hypervolume 
indicator (HV). Thirdly, in order to establish the existence of significant differences 
between the performance of the studied cases, a rigorous statistical analysis is 
conducted. The Friedman’s test allows significant differences among results 
obtained to be detected, and the null hypothesis (𝐻𝐻0) to be rejected in that case. 
Finally, the Hypervolume is computed for the accumulated non-dominated solutions 
obtained (the non-dominated front). These represent the best equilibrium solutions 
among the objectives. 
 
Once the configurations were ordered according to the Friedman’s test values, one 
configuration from each analysed case is used for the final comparison taking the 
two experiments into consideration: one looking at encodings and the other looking 
at to accuracy. In each case, additional information is given. The Hypervolume 
indicator average value evolution (in 21 executions) is shown for each configuration. 
Moreover, box plots are given for the Hypervolume values distribution after the 
stopping criterion is reached. In addition, the Friedman’s test is used to detect 
significant differences among the performance of the configurations for each 
experiment. Finally, the accumulated best non-dominated solutions obtained (non-
dominated front) are shown. 
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5.3.3.1. Encoding Experiment. 
 
Real encoding. 
 
The results of using real encoding with simulated binary crossover are shown below. 
This experiment was previously developed for the first study, so the achieved results 
are similar. The computational time consumed is shown in the Table 5.23.  
 

Encoding Time Unit Average time Sequential Time 
Real SBX Hour 2 days, 18 hours and 18 minutes 1 year, 5 months, 5 days, 3 hours and 25 minutes 
Binary 1PX Hour 2 days, 18 hours and 38 minutes 1 year, 5 months, 7 days, 16 hours and 49 minutes 
Binary 2PX Hour 2 days, 22 hours and 41 minutes 1 year, 5 months, 13 days, 1 hours and 40 minutes 
Binary U Hour 3 days, 1 hour and 5 minutes 1 year, 6 months, 28 days, 2 hours and 34 minutes 
Gray 1PX Hour 2 days, 19 hours and 48 minutes 1 year, 5 months, 16 days, 21 hours and 27 minutes 
Gray 2PX Hour 2 days, 21 hours and 40 minutes 1 year, 6 months, 1 days, 5 hours and 42 minutes 
Gray UX Hour 2 days, 20 hours and 15 minutes 1 year, 5 months, 20 days, 11 hours and 12 minutes 
TOTAL 20 days, 3 hours and 1 minutes 10 years, 4 months, 6 days, 2 hours and 18 minutes 

 
 Computational cost (encoding experiment). 

 
The average time is the computational time regarding each one of 21 executions 
and nine different configurations (real time consumed). The sequential time is the 
computational time that would have been needed in case of not using the High-
Performance Computer.  
 
The relationship between the method configurations (where N represents the 
population size and PrM the mutation rate) and identifiers is shown in the Table 
5.24. Moreover, statistical information regarding the Hypervolume value at the end 
of the evolutionary process is shown (average, median, maximum, minimum and 
standard deviation, out of 21 independent executions). It is possible to conclude that 
the configuration with the identifier ID9 (with a population of 150 individuals and 
mutation rate of 1.5 gene per chromosome) presents the highest Hypervolume 
average value, the configuration with identifier ID3 (population of 150 individuals 
and 0.5 gene per chromosome as a mutation rate) reaches the highest Hypervolume 
median value, the configuration with identifier ID5 (population of 100 individuals and 
1 gene per chromosome as a mutation rate) reaches the highest Hypervolume 
maximum and minimum values, and the configuration with identifier ID2 (population 
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of 100 individuals and 0.5 gene per chromosome as a mutation rate) presents the 
lowest Hypervolume standard deviation value. 
 

Identifier Configuration Average Median Max. Min. St. Deviation Av. Rank 
ID1 N = 50 – PrM = 0.5 2.2831 2.2859 2.3180 2.2611 0.0162 5.809 
ID2 N = 100 – PrM = 0.5 2.2864 2.2872 2.3007 2.2625 0.0118 5.095 
ID3 N = 150 – PrM = 0.5 2.2955 2.3011 2.3227 2.2635 0.0186 4.142 
ID4 N = 50 – PrM = 1.0 2.2801 2.2820 2.3070 2.2606 0.0141 6.571 
ID5 N = 100 – PrM = 1.0 2.2944 2.2941 2.3390 2.2714 0.0163 4.190 
ID6 N = 150 – PrM = 1.0 2.2874 2.2871 2.3217 2.2623 0.0174 5.333 
ID7 N = 50 – PrM = 1.5 2.2898 2.2879 2.3277 2.2534 0.0240 5.285 
ID8 N = 100 – PrM = 1.5 2.2931 2.2895 2.3266 2.2658 0.0166 4.557 
ID9 N = 150 – PrM = 1.5 2.2957 2.2941 2.3281 2.2592 0.0158 4.000 

p-Value 0.035 
 

 Id’s, config., Hyperv. statistics and statistical test (real encoding). 

 
In order to establish the best behaviour amongst the configurations, a statistical 
significance hypothesis test was conducted. The average ranks computed by using 
the Friedman’s test and the p-value obtained (a value bigger than 0.05 implies that 
the null hypothesis cannot be rejected, suggesting that all configurations perform in 
a similar way) are shown in the Table 5.24. It can be seen that the configuration with 
identifier ID3 (population of 150 individuals and mutation rate of 0.5 gene per 
chromosome) presents the best average rank (in order to maximise the 
Hypervolume, the average rank must be as low as possible), so it was selected for 
the final comparison study among encoding configurations. 
 
Finally, the best accumulated non-dominated solutions obtained from the final 
generation for all executions and all configurations were used to compute the 
accumulated Hypervolume, whose value was 2.4068. As it is expected, the value is 
higher than 2.3390, the maximum value that is shown in the Table 5.24. 
 
Standard Binary Encoding. 
 
The results of using standard binary encoding with one-point, two-point and uniform 
crossover are shown below. The computational time consumed by each one is 
shown in the Table 5.23. The relationship between the method configurations and 
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the identifiers is shown in the Table 5.25. Moreover, statistical information regarding 
the Hypervolume value at the end of the evolutionary process is shown. 
 
For the binary encoding with one-point crossover (B1PX), it is possible to conclude 
that the configuration with identifier ID8 (population of 100 individuals and mutation 
rate of 1.5 gene per chromosome) presents both the highest Hypervolume average 
value and the highest Hypervolume median value, the configuration with identifier 
ID7 (population of 50 individuals and a mutation rate of 1.5 gene per chromosome) 
presents the highest Hypervolume maximum value, the configuration with identifier 
ID2 (population of 100 individuals and a mutation rate of 0.5 gene per chromosome) 
presents the highest Hypervolume minimum value, and the configuration with 
identifier ID6 (population of 150 individuals and a mutation rate of 1 gene per 
chromosome) presents the lowest Hypervolume standard deviation. 
 

Encoding Identifier Configuration Average Median Max. Min. St. Deviation Av. Rank 

B1PX 

ID1 N = 50 – PrM = 0.5 2.2844 2.2843 2.3297 2.2496 0.0175 5.523 
ID2 N = 100 – PrM = 0.5 2.2933 2.2927 2.3336 2.2703 0.0163 4.428 
ID3 N = 150 – PrM = 0.5 2.2892 2.2921 2.3313 2.2554 0.0171 4.809 
ID4 N = 50 – PrM = 1.0 2.2921 2.2913 2.3253 2.2566 0.0175 4.523 
ID5 N = 100 – PrM = 1.0 2.2846 2.2826 2.3200 2.2548 0.0156 5.666 
ID6 N = 150 – PrM = 1.0 2.2894 2.2824 2.3216 2.2697 0.0144 4.999 
ID7 N = 50 – PrM = 1.5 2.2821 2.2777 2.3396 2.2599 0.0189 6.285 
ID8 N = 100 – PrM = 1.5 2.2943 2.3003 2.3126 2.2640 0.0153 3.714 
ID9 N = 150 – PrM = 1.5 2.2885 2.2891 2.3394 2.2616 0.0166 5.047 

p-Value 0.114 

B2PX 

ID1 N = 50 – PrM = 0.5 2.2877  2.2861 2.3253 2.2401 0.0216 5.428 
ID2 N = 100 – PrM = 0.5 2.2975 2.2961 2.3436 2.2714 0.0220 4.428 
ID3 N = 150 – PrM = 0.5 2.2889 2.2888 2.3627 2.2630 0.0218 5.238 
ID4 N = 50 – PrM = 1.0 2.2898 2.2866 2.3186 2.2612 0.0155 5.047 
ID5 N = 100 – PrM = 1.0 2.2894 2.2920 2.3056 2.2638 0.0089 4.523 
ID6 N = 150 – PrM = 1.0 2.2903 2.2910 2.3215 2.2644 0.0157 5.047 
ID7 N = 50 – PrM = 1.5 2.2902 2.2891 2.3483 2.2571 0.0180 4.666 
ID8 N = 100 – PrM = 1.5 2.2867 2.2865 2.3326 2.2606 0.0177 5.428 
ID9 N = 150 – PrM = 1.5 2.2861 2.2844 2.3107 2.2463 0.0178 5.190 

p-Value 0.923 

BUX 

ID1 N = 50 – PrM = 0.5 2.2889  2.2902 2.3048 2.2611 0.0129 5.142 
ID2 N = 100 – PrM = 0.5 2.2920 2.2925 2.3163 2.2647 0.0155 4.142 
ID3 N = 150 – PrM = 0.5 2.2904 2.2905 2.3265 2.2576 0.0164 4.809 
ID4 N = 50 – PrM = 1.0 2.2904 2.2869 2.3497 2.2702 0.0170 4.619 
ID5 N = 100 – PrM = 1.0 2.2972 2.2938 2.3332 2.2660 0.0218 4.190 
ID6 N = 150 – PrM = 1.0 2.2921 2.2882 2.3488 2.2687 0.0211 5.047 
ID7 N = 50 – PrM = 1.5 2.2865 2.2847 2.3207 2.2622 0.0164 5.666 
ID8 N = 100 – PrM = 1.5 2.2858 2.2835 2.3148 2.2579 0.0142 5.666 
ID9 N = 150 – PrM = 1.5 2.2823 2.2844 2.3036 2.2562 0.0129 5.714 

p-Value 0.397 
 

 Id’s, config., Hyperv. statistics and statistical test (binary encoding). 
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For the binary encoding with two-point crossover (B2PX), it is possible to conclude 
that the configuration with identifier ID2 (population of 100 individuals and a mutation 
rate of 0.5 gene per chromosome) presents the highest Hypervolume average 
value, the highest Hypervolume median value and the highest Hypervolume 
minimum value. The configuration with identifier ID3 (population of 150 individuals 
and a mutation rate of 0.5 gene per chromosome) presents the highest 
Hypervolume maximum value and the configuration with identifier ID5 (population 
of 100 individuals and a mutation rate of 1 gene per chromosome) presents the 
lowest Hypervolume standard deviation value. 
 
For the binary encoding with uniform crossover (BUX), it is possible to conclude that 
the configuration with identifier ID5 (population of 100 individuals and a mutation 
rate of 1 gene per chromosome) presents the highest Hypervolume average value 
and the highest Hypervolume median value. The configuration with identifier ID4 
(population of 50 individuals and a mutation rate of 1 gene per chromosome) 
presents the highest Hypervolume maximum value and the highest Hypervolume 
minimum value. Finally, both the configuration with identifier ID1 (population of 50 
individuals and mutation rate of 0.5 gene per chromosome) and the configuration 
with identifier ID9 (population of 150 individuals and mutation rate of 1.5 gene per 
chromosome) present the lowest Hypervolume standard deviation value. 
 
In order to establish the best behaviour amongst the configurations, a statistical 
significance hypothesis test was conducted. The average ranks computed by using 
the Friedman’s test and the p-value obtained (a value bigger than 0.05 implies that 
the null hypothesis cannot be rejected, suggesting that all configurations perform in 
a similar way) are shown in the Table 5.25. The configuration with identifier ID8 
(population of 100 individuals and a mutation rate of 1.5 gene per chromosome) 
presents the best average rank for the binary encoding with one-point crossover. 
The configuration with identifier ID2 (population of 100 individuals and mutation rate 
of 0.5 gene per chromosome) presents the best average rank for the binary 
encoding with two-point crossover. Finally, the configuration with identifier ID5 
(population of 100 individuals and a mutation rate of 1 gene per chromosome) 
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presents the best average rank for the binary encoding with uniform crossover. 
These configurations are selected for the final comparison study among encoding 
configurations which is shown later. The best accumulated non-dominated solutions 
obtained from the final generation for all executions and all configurations were used 
to compute the accumulated Hypervolume whose values were 2.4227, 2.4378 and 
2.4134 for the binary encoding with one-point, two-point and uniform crossover, 
respectively. As it is expected, the values are higher than 2.3396, 2.3627 and 
2.3497, the maximum values that are shown in the Table 5.25, respectively. 
 
Gray encoding. 
 
The results of employing the Gray encoding with one-point, two-point and uniform 
crossover are shown below. The computational time consumed by each one is 
shown in the Table 5.23. The relationship between the method configurations and 
the identifiers is shown in the Table 5.26. Moreover, statistical information in relation 
to the Hypervolume value at the end of the evolutionary process is shown. For the 
Gray encoding with one-point crossover (G1PX), it is possible to conclude that the 
configuration with identifier ID2 (population of 100 individuals and mutation rate of 
0.5 gene per chromosome) presents the highest Hypervolume average value, the 
highest Hypervolume median value and the highest Hypervolume maximum value. 
The configuration with identifier ID4 (population of 50 individuals and mutation rate 
of 1 gene per chromosome) presents both the highest Hypervolume minimum value 
and the lowest Hypervolume standard deviation value. 
 
For the Gray encoding with two-point crossover (G2PX), it is possible to conclude 
that the configuration with identifier ID9 (population of 150 individuals and mutation 
rate of 1.5 gene per chromosome) presents the highest Hypervolume average 
value, the highest Hypervolume median value, the highest Hypervolume maximum 
value and the highest Hypervolume minimum value. The configuration with identifier 
ID5 (population of 100 individuals and mutation rate of 1 gene per chromosome) 
presents the lowest Hypervolume standard deviation value. 
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Encoding Identifier Configuration Average Median Max. Min. St. Deviation Av. Rank 

G1PX 

ID1 N = 50 – PrM = 0.5 2.2880 2.2846 2.3280 2.2652 0.0148 4.857 
ID2 N = 100 – PrM = 0.5 2.2938 2.2954 2.3556 2.2640 0.0198 4.333 
ID3 N = 150 – PrM = 0.5 2.2833 2.2855 2.3040 2.2626 0.0109 6.047 
ID4 N = 50 – PrM = 1.0 2.2922 2.2905 2.3175 2.2762 0.0108 4.285 
ID5 N = 100 – PrM = 1.0 2.2918 2.2893 2.3347 2.2647 0.0177 4.142 
ID6 N = 150 – PrM = 1.0 2.2830 2.2791 2.3043 2.2611 0.0123 6.095 
ID7 N = 50 – PrM = 1.5 2.2894 2.2926 2.3171 2.2526 0.0171 4.333 
ID8 N = 100 – PrM = 1.5 2.2827 2.2847 2.3149 2.2608 0.0139 5.714 
ID9 N = 150 – PrM = 1.5 2.2894 2.2836 2.3224 2.2692 0.0169 5.190 

p-Value 0.081 

G2PX 

ID1 N = 50 – PrM = 0.5 2.2860 2.2814 2.3192 2.2577 0.0149 5.333 
ID2 N = 100 – PrM = 0.5 2.2869 2.2906 2.3206 2.2556 0.0197 5.285 
ID3 N = 150 – PrM = 0.5 2.2857 2.2833 2.3112 2.2519 0.0124 4.571 
ID4 N = 50 – PrM = 1.0 2.2880 2.2818 2.3186 2.2659 0.0166 5.000 
ID5 N = 100 – PrM = 1.0 2.2843 2.2836 2.3004 2.2658 0.0098 5.142 
ID6 N = 150 – PrM = 1.0 2.2900 2.2870 2.3256 2.2640 0.0162 4.285 
ID7 N = 50 – PrM = 1.5 2.2832 2.2783 2.3205 2.2617 0.0177 5.476 
ID8 N = 100 – PrM = 1.5 2.2848 2.2842 2.3140 2.2585 0.0142 5.619 
ID9 N = 150 – PrM = 1.5 2.2936 2.2911 2.3364 2.2684 0.0178 4.285 

p-Value 0.683 

GUX 

ID1 N = 50 – PrM = 0.5 2.2846 2.2791 2.3334 2.2540 0.0199 4.857 
ID2 N = 100 – PrM = 0.5 2.2833 2.2801 2.3060 2.2634 0.0109 5.047 
ID3 N = 150 – PrM = 0.5 2.2843 2.2852 2.3077 2.2665 0.0129 4.999 
ID4 N = 50 – PrM = 1.0 2.2871 2.2807 2.3358 2.2683 0.0174 4.904 
ID5 N = 100 – PrM = 1.0 2.2898 2.2858 2.3167 2.2611 0.0165 4.333 
ID6 N = 150 – PrM = 1.0 2.2832 2.2848 2.3048 2.2615 0.0116 5.095 
ID7 N = 50 – PrM = 1.5 2.2856 2.2836 2.3140 2.2608 0.0154 5.523 
ID8 N = 100 – PrM = 1.5 2.2875 2.2866 2.3099 2.2524 0.0149 4.190 
ID9 N = 150 – PrM = 1.5 2.2803 2.2745 2.3150 2.2638 0.0163 6.047 

p-Value 0.532 
 

 Id’s, config., Hyperv. statistics and statistical test (Gray encoding). 

 
For the Gray encoding with uniform crossover (GUX), it is possible to conclude that 
the configuration with identifier ID5 (population of 100 individuals and a mutation 
rate of 1 gene per chromosome) presents the highest Hypervolume average value, 
the configuration with identifier ID8 (population of 100 individuals and a mutation 
rate of 1.5 gene per chromosome) presents the highest Hypervolume median value, 
the configuration with identifier ID4 (population of 50 individuals and a mutation rate 
of 1 gene per chromosome) presents both the highest Hypervolume maximum value 
and the highest Hypervolume minimum value and the configuration with identifier 
ID2 (population of 100 individuals and a mutation rate of 0.5 gene per chromosome) 
presents the lowest Hypervolume standard deviation value. 
 
In order to establish the best behaviour amongst the configurations, a statistical 
significance hypothesis test was conducted. The average ranks computed by using 
the Friedman’s test and the p-value obtained are shown in the Table 5.26. It can be 
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seen that the configuration with identifier ID5 (population of 100 individuals and 
mutation rate of 1 gene per chromosome) presents the best average rank for the 
Gray encoding with one-point crossover. It can be seen that the configurations with 
identifiers ID6 (population of 150 individuals and mutation rate of 1 gene per 
chromosome) and ID9 (population of 150 individuals and mutation rate of 1.5 gene 
per chromosome) present the best average rank for the Gray encoding with two-
point crossover. Finally, it can be seen that the configuration with identifier ID8 
(population of 100 individuals and mutation rate of 1.5 gene per chromosome) 
presents the best average rank for the Gray encoding with uniform crossover. These 
configurations were selected for the final comparison study among encoding 
configurations, which is shown later. The best accumulated non-dominated 
solutions obtained from the final generation of the evolutionary process for all 
executions and all configurations were used to compute the accumulated 
Hypervolume, whose values were 2.4130, 2.4050 and 2.4038 for the Gray encoding 
with one-point, two-point and uniform crossover, respectively. As expected, the 
values are higher than 2.3556, 2.3364 and 2.3358, the maximum values shown in 
the Table 5.26, respectively. 
 

Comparing Encoding Configurations. 
 

The total computational time consumed is shown in the Table 5.23. The 
computational cost shows the importance of employing the High-Performance 
Computer. Previously, the configurations with the best average rank according to 
the Friedman’s test were selected to be globally compared. These configurations 
are shown in the Table 5.27. 
 

Identifier Description Configuration Average Median Max. Min. St. Deviation Av. Rank 
ID1 Real N = 150 – PrM = 0.5 2.2955 2.3011 2.3227 2.2635 0.0186 4.047 
ID2 Binary 1P N = 100 – PrM = 1.5 2.2943 2.3003 2.3126 2.2640 0.0153 4.190 
ID3 Binary 2P N = 100 – PrM = 0.5 2.2975 2.2961 2.3436 2.2714 0.0220 3.809 
ID4 Binary U N = 100 – PrM = 1.0 2.2972 2.2938 2.3332 2.2660 0.0218 4.285 
ID5 Gray 1P N = 100 – PrM = 1.0 2.2918 2.2893 2.3347 2.2647 0.0177 4.904 
ID6 Gray 2P N = 150 – PrM = 1.0 2.2900 2.2870 2.3256 2.2640 0.0162 4.952 
ID7 Gray 2P N = 150 – PrM = 1.5 2.2936 2.2911 2.3364 2.2684 0.0178 4.571 
ID8 Gray U N = 100 – PrM = 1.5 2.2875 2.2866 2.3099 2.2524 0.0149 5.238 

p-Value 0.528 
 

 Id’s, config., Hyperv. statistics and statistical test (enc. experiment). 
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The Hypervolume average values evolution versus the evaluations number is shown 
in the Figure 5.44. The detail for the final evaluations (last million fitness function 
evaluations, from 9 to 10 million) is shown in the Figure 5.45.  
 

 
 

Figure 5.44:  Hypervolume Average vs. evaluations (enc. experiment). 
 

 
 

Figure 5.45:  Hypervolume Average vs. evaluations, detail (enc. experiment). 
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It can be seen that the configuration with identifier ID3 (with binary encoding and 
two-point crossover, population of 100 individuals and mutation rate of 0.5 gene per 
chromosome) reaches the highest Hypervolume average value. 
 
Box plots of the Hypervolume values distribution at the end of the process are shown 
in the Figure 5.46. Statistical information in relation to the Hypervolume value at the 
end of the evolutionary process is shown in the Table 5.27. It can be seen that the 
configuration with identifier ID3 (with Binary encoding and two-point crossover, 
population of 100 individuals and a mutation rate of 0.5 gene per chromosome) 
presents the highest Hypervolume average value, the highest Hypervolume 
maximum value and the highest Hypervolume minimum value. The configuration 
with identifier ID1 (with real encoding, population of 150 individuals and a mutation 
rate of 0.5 gene per chromosome) presents the highest Hypervolume median value. 
Finally, the configuration with identifier ID9 (with Gray encoding and uniform 
crossover, population of 100 individuals and a mutation rate of 1.5 gene per 
chromosome) presents the lowest Hypervolume standard deviation value. 
 

 
 

Figure 5.46:  Hypervolume box plots (enc. experiment). 
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In order to determine if one of the configurations performs better than any other, a 
statistical significance hypothesis test was conducted. The average ranks computed 
by using the Friedman’s test are shown in the Table 5.27. The configuration with 
identifier ID3 (with binary encoding and two-point crossover, population of 100 
individuals and a mutation rate of 0.5 gene per chromosome) presents the best 
average rank. However, the p-value computed (0.528) implies that the null 
hypothesis (𝐻𝐻0) cannot be rejected (p-value > 0.05), so it is possible to conclude 
that, in the studied conditions, all configurations perform similar. 
 
The best accumulated non-dominated solutions obtained from all the selected 
encodings and configurations were used to compute the accumulated Hypervolume, 
whose value is 2.4588. As it is expected, the value is higher than 2.4378, the 
maximum accumulated value obtained after the evolutionary process for the 
standard binary encoding with two-point crossover. This is shown in the Table 5.28.  
 

Encoding Hypervolume Accumulated Value 
Real 2.4068 
Binary 1 Point Crossover 2.4227 
Binary 2 Point Crossover 2.4378 
Binary Uniform Crossover 2.4134 
Gray 1 Point Crossover 2.4130 
Gray 2 Point Crossover 2.4050 
Gray Uniform Crossover 2.4038 
Global 2.4588 

 
 Hypervolume Accumulated Value (enc. experiment). 

 
5.3.3.2. Accuracy Experiment. 
 
In the previous experiment, a thorough comparison of the performances of several 
encodings was conducted when the hour was employed as a time unit. Although 
non-significant differences among such performances were found, the best average 
rank from the Friedman’s test was presented by the standard binary encoding. For 
this reason, the results achieved for the standard binary encoding are used in this 
second experiment in order to compare the performances when the day and the 
week are used as time units. 
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Standard Binary Encoding (Days). 
 
The results of using the standard binary encoding with one-point, two-point and 
uniform crossover when the day is considered as a time unit are shown below. The 
computational time consumed by each one is shown in the Table 5.29. 
 

Encoding Time Unit Average time Sequential Time 
Binary 1PX Hour 2 days, 18 hours and 38 minutes 1 year, 5 months, 7 days, 16 hours and 49 minutes 
Binary 2PX Hour 2 days, 22 hours and 41 minutes 1 year, 5 months, 13 days, 1 hours and 40 minutes 
Binary U Hour 3 days, 1 hour and 5 minutes 1 year, 6 months, 28 days, 2 hours and 34 minutes 
Binary 1PX Day 2 days, 20 hours and 37 minutes 1 year, 5 months, 23 days, 6 hours and 49 minutes 
Binary 2PX Day 2 days, 19 hours and 12 minutes 1 year, 5 months, 12 days, 4 hours and 48 minutes 
Binary U Day 2 days, 19 hours and 12 minutes 1 year, 5 months, 12 days, 3 hours and 2 minutes 
Binary 1PX Week 2 days, 19 hours and 55 minutes 1 year, 5 months, 17 days, 18 hours and 19 minutes 
Binary 2PX Week 2 days, 19 hours and 44 minutes 1 year, 5 months, 16 days, 8 hours and 20 minutes 
Binary U Week 2 days, 18 hours and 27 minutes 1 year, 5 months, 6 days, 7 hours and 14 minutes 
TOTAL 25 days, 16 hours and 7 minutes 13 year, 2 months, 19 days, 23 hours and 4 minutes 

 
 Computational cost (consumed time, enc. experiment). 

 
The relationship between the method configurations and the identifiers is shown in 
the Table 5.30. Moreover, statistical information regarding the Hypervolume value 
at the end of the evolutionary process is shown. For the binary encoding with one-
point crossover and the day as a time unit (B1PX-D), it is possible to conclude that 
the configuration with identifier ID6 (population of 150 individuals and a mutation 
rate of 1 gene per chromosome) presents the highest Hypervolume average value, 
the highest Hypervolume median value and the highest Hypervolume minimum 
value. The configuration with identifier ID1 (population of 50 individuals and a 
mutation rate of 0.5 gene per chromosome) presents the highest Hypervolume 
maximum value. Finally, the configuration with identifier ID3 (population of 150 
individuals and a mutation rate of 0.5 gene per chromosome) presents the lowest 
Hypervolume standard deviation value. 
 
For the binary encoding with two-point crossover and the day as a time unit (B2PX-
D), it is possible to conclude that the configuration with identifier ID7 (population of 
50 individuals and a mutation rate of 1.5 gene per chromosome) presents the 
highest Hypervolume average value, the highest Hypervolume median value and 
the highest Hypervolume minimum value. The configuration with identifier ID9 
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(population of 150 individuals and mutation rate of 1.5 gene per chromosome) 
presents the highest Hypervolume maximum value and the configuration with 
identifier ID3 (population of 150 individuals and mutation rate of 0.5 gene per 
chromosome) presents the lowest Hypervolume standard deviation value. 
 

Encoding Identifier Configuration Average Median Max. Min. St. Deviation Av. Rank 

B1PX-D 

ID1 N = 50 – PrM = 0.5 2.2871 2.2797 2.3486 2.2620 0.0240 5.523 
ID2 N = 100 – PrM = 0.5 2.2894 2.2866 2.3198 2.2652 0.0127 4.714 
ID3 N = 150 – PrM = 0.5 2.2830 2.2846 2.3021 2.2563 0.0122 5.571 
ID4 N = 50 – PrM = 1.0 2.2863 2.2843 2.3127 2.2622 0.0131 4.809 
ID5 N = 100 – PrM = 1.0 2.2902 2.2889 2.3222 2.2621 0.0181 4.571 
ID6 N = 150 – PrM = 1.0 2.2913 2.2924 2.3193 2.2675 0.0143 4.380 
ID7 N = 50 – PrM = 1.5 2.2893 2.2896 2.3299 2.2442 0.0196 4.619 
ID8 N = 100 – PrM = 1.5 2.2818 2.2801 2.3273 2.2530 0.0187 6.142 
ID9 N = 150 – PrM = 1.5 2.2889 2.2844 2.3112 2.2655 0.0140 4.666 

p-Value 0.435 

B2PX-D 

ID1 N = 50 – PrM = 0.5 2.2879 2.2862 2.3202 2.2596 0.0156 4.714 
ID2 N = 100 – PrM = 0.5 2.2819 2.2790 2.3114 2.2609 0.0141 6.285 
ID3 N = 150 – PrM = 0.5 2.2870 2.2874 2.3092 2.2606 0.0115 4.428 
ID4 N = 50 – PrM = 1.0 2.2850 2.2827 2.3173 2.2554 0.0171 5.619 
ID5 N = 100 – PrM = 1.0 2.2869 2.2882 2.3188 2.2627 0.0168 5.333 
ID6 N = 150 – PrM = 1.0 2.2902 2.2923 2.3231 2.2561 0.0169 4.523 
ID7 N = 50 – PrM = 1.5 2.2912 2.2932 2.3249 2.2693 0.0144 4.238 
ID8 N = 100 – PrM = 1.5 2.2891 2.2875 2.3243 2.2658 0.0144 4.619 
ID9 N = 150 – PrM = 1.5 2.2865 2.2847 2.3372 2.2573 0.0180 5.238 

p-Value 0.266 

BUX-D 

ID1 N = 50 – PrM = 0.5 2.2876 2.2891 2.3152 2.2643 0.0144 4.904 
ID2 N = 100 – PrM = 0.5 2.2913 2.2883 2.3356 2.2602 0.0162 4.714 
ID3 N = 150 – PrM = 0.5 2.2876 2.2892 2.3104 2.2522 0.0140 4.857 
ID4 N = 50 – PrM = 1.0 2.2806 2.2782 2.3078 2.2601 0.0130 6.428 
ID5 N = 100 – PrM = 1.0 2.2916 2.2944 2.3178 2.2586 0.0177 4.761 
ID6 N = 150 – PrM = 1.0 2.2914 2.2933 2.3333 2.2666 0.0169 4.666 
ID7 N = 50 – PrM = 1.5 2.2866 2.2866 2.3201 2.2596 0.0149 5.285 
ID8 N = 100 – PrM = 1.5 2.2938 2.2919 2.3279 2.2588 0.0219 4.809 
ID9 N = 150 – PrM = 1.5 2.2935 2.2877 2.3461 2.2565 0.0253 4.571 

p-Value 0.500 
 

 Id’s, config., Hyperv. statistics and statistical test (binary encoding - Days). 

 
For the binary encoding with uniform crossover and the day as a time unit (BUX-D), 
it is possible to conclude that the configuration with identifier ID8 (population of 100 
individuals and mutation rate of 1.5 gene per chromosome) presents the highest 
Hypervolume average value, the configuration with identifier ID5 (population of 100 
individuals and mutation rate of 1 gene per chromosome) presents the highest 
Hypervolume median value, the configuration with identifier ID9 (population of 150 
individuals and mutation rate of 1.5 gene per chromosome) presents the highest 
Hypervolume maximum value, the configuration with identifier ID6 (population of 
150 individuals and mutation rate of 1 gene per chromosome) presents the highest 
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Hypervolume minimum value, and the configuration with identifier ID4 (population 
of 50 individuals and mutation rate of 1 gene per chromosome) presents the lowest 
Hypervolume standard deviation value. 
 
In order to determine the best behaviour amongst the range of configurations, a 
statistical significance hypothesis test was conducted. The average ranks computed 
by using the Friedman’s test and the p-value obtained are shown in the Table 5.30. 
The configuration with identifier ID6 (population of 150 individuals and a mutation 
rate of 1 gene per chromosome) presents the best average rank for the binary 
encoding with one-point crossover and the day as a time unit. Moreover, the p-value 
obtained of 0.435 explains that the null Hypothesis cannot be rejected so, in this 
case, no one configuration performs better than any other one. 
 
Regarding the binary encoding with two-point crossover and the day as a time unit, 
the configuration ID7 (population of 50 individuals and a mutation rate of 1.5 gene 
per chromosome) presents the best average rank. Moreover, the p-value obtained 
of 0.266 explains that the null Hypothesis cannot be rejected so, no one 
configuration performs better than any other one. Finally, it can be seen that the 
configuration with identifier ID9 (population of 150 individuals and a mutation rate of 
1.5 gene per chromosome) presents the best average rank for the binary encoding 
with uniform crossover and the day as a time unit. Furthermore, the p-value obtained 
of 0.500 explains that the null Hypothesis cannot be rejected so, no one 
configuration performs better than any other one. From each case, the best 
configurations were selected for the final comparison study between the accuracy 
level encodings. 
 
The best accumulated non-dominated solutions obtained from the final generation 
for all executions and all configurations were used to compute the accumulated 
Hypervolume whose values were 2.4112, 2.4073 and 2.4319 for the binary encoding 
with one-point, two-point and uniform crossover with the day as a time unit, 
respectively. As expected, the values are higher than 2.3486, 2.3372 and 2.3461, 
the maximum values shown in the Table 5.30, respectively. 
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Standard Binary Encoding (Weeks). 
 
The results of using the standard binary encoding with one-point, two-point and 
uniform crossover and the week as a time unit are shown below. The computational 
time consumed by each one is shown in the Table 5.29. The relationship between 
the method configurations and the identifiers is shown in the Table 5.31. Statistical 
information regarding the Hypervolume value at the end of the process is also 
shown. For the binary encoding with one-point crossover and the week as a time 
unit (B1PX-W), it is possible to conclude that the configuration with identifier ID1 
(population of 50 individuals and a mutation rate of 0.5 gene per chromosome) 
presents the highest Hypervolume average value and the highest Hypervolume 
maximum value. The configuration with identifier ID4 (population of 50 individuals 
and a mutation rate of 1 gene per chromosome) presents the highest Hypervolume 
median value. Finally, the configuration with identifier ID5 (population of 100 
individuals and mutation rate of 1 gene per chromosome) presents both the highest 
Hypervolume minimum value and the lowest Hypervolume standard deviation value. 
 
For the binary encoding with two-point crossover and the week as a time unit (B2PX-
W), it is possible to conclude that the configuration with identifier ID9 (population of 
150 individuals and a mutation rate of 1.5 gene per chromosome) presents both the 
highest Hypervolume average value and the highest Hypervolume minimum value. 
The configuration with identifier ID3 (population of 150 individuals and a mutation 
rate of 0.5 gene per chromosome) presents the highest Hypervolume median value.  
The configuration with identifier ID5 (population of 100 individuals and mutation rate 
of 1 gene per chromosome) presents the highest Hypervolume maximum value. 
Finally, the configuration with identifier ID4 (population of 50 individuals and a 
mutation rate of 1 gene per chromosome) presents the lowest Hypervolume 
standard deviation value. 
 
For the binary encoding with uniform crossover and the week as a time unit (BUX-
W), it is possible to conclude that the configuration with identifier ID8 (population of 
100 individuals and a mutation rate of 1.5 gene per chromosome) presents the 
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highest Hypervolume average value, the highest Hypervolume median value and 
the highest Hypervolume minimum value. The configuration with identifier ID9 
(population of 150 individuals and a mutation rate of 1.5 gene per chromosome) 
presents the highest Hypervolume minimum value and the configuration with 
identifier ID4 (population of 50 individuals and a mutation rate of 1 gene per 
chromosome) presents the lowest Hypervolume standard deviation value. 
 

Encoding Identifier Configuration Average Median Max. Min. St. Deviation Av. Rank 

B1PX-W 

ID1 N = 50 – PrM = 0.5 2.2930 2.2911 2.3430 2.2561 0.0197 4.571 
ID2 N = 100 – PrM = 0.5 2.2896 2.2915 2.3205 2.2636 0.0154 4.857 
ID3 N = 150 – PrM = 0.5 2.2891 2.2869 2.3259 2.2623 0.0186 4.761 
ID4 N = 50 – PrM = 1.0 2.2862 2.2932 2.3117 2.2520 0.0149 5.095 
ID5 N = 100 – PrM = 1.0 2.2906 2.2897 2.3207 2.2690 0.0116 4.619 
ID6 N = 150 – PrM = 1.0 2.2854 2.2839 2.3143 2.2638 0.0131 5.761 
ID7 N = 50 – PrM = 1.5 2.2880 2.2872 2.3110 2.2595 0.0154 5.380 
ID8 N = 100 – PrM = 1.5 2.2873 2.2884 2.3184 2.2559 0.0171 4.952 
ID9 N = 150 – PrM = 1.5 2.2899  2.2887 2.3249 2.2634 0.0155 5.000 

p-Value 0.921 

B2PX-W 

ID1 N = 50 – PrM = 0.5 2.2882 2.2876 2.3225 2.2654 0.0163 4.809 
ID2 N = 100 – PrM = 0.5 2.2868 2.2839 2.3145 2.2501 0.0154 5.238 
ID3 N = 150 – PrM = 0.5 2.2921 2.2972 2.3237 2.2567 0.0203 4.380 
ID4 N = 50 – PrM = 1.0 2.2819 2.2750 2.3103 2.2633 0.0133 5.999 
ID5 N = 100 – PrM = 1.0 2.2877 2.2852 2.3578 2.2632 0.0200 5.095 
ID6 N = 150 – PrM = 1.0 2.2905 2.2839 2.3500 2.2502 0.0211 4.761 
ID7 N = 50 – PrM = 1.5 2.2863 2.2826 2.3465 2.2546 0.0198 5.523 
ID8 N = 100 – PrM = 1.5 2.2877 2.2853 2.3198 2.2546 0.0160 4.666 
ID9 N = 150 – PrM = 1.5 2.2923 2.2861 2.3297 2.2679 0.0164 4.523 

p-Value 0.643 

BUX-W 

ID1 N = 50 – PrM = 0.5 2.2938 2.2931 2.3336 2.2659 0.0176 4.428 
ID2 N = 100 – PrM = 0.5 2.2868 2.2893 2.3144 2.2659 0.0132 5.047 
ID3 N = 150 – PrM = 0.5 2.2912 2.2938 2.3216 2.2647 0.0158 4.333 
ID4 N = 50 – PrM = 1.0 2.2857 2.2863 2.3057 2.2579 0.0119 5.238 
ID5 N = 100 – PrM = 1.0 2.2849 2.2847 2.3144 2.2620 0.0139 6.142 
ID6 N = 150 – PrM = 1.0 2.2888 2.2898 2.3162 2.2645 0.0146 4.904 
ID7 N = 50 – PrM = 1.5 2.2871 2.2873 2.3256 2.2511 0.0179 5.476 
ID8 N = 100 – PrM = 1.5 2.2955 2.2940 2.3316 2.2682 0.0164 4.142 
ID9 N = 150 – PrM = 1.5 2.2885 2.2841 2.3388 2.2632 0.0183 5.285 

p-Value 0.348 
 

 Id’s, config., Hyperv. statistics and statistical test (binary encoding - Weeks). 

 
In order to establish the best behaviour amongst configurations, a statistical 
significance hypothesis test was conducted. The average ranks computed by 
employing the Friedman’s test and the p-values obtained are shown in the Table 
5.31. It can be seen that the configuration with identifier ID1 (population of 50 
individuals and a mutation rate of 0.5 gene per chromosome) presents the best 
average rank for the binary encoding with one-point crossover and the week as a 
time unit. The configuration with identifier ID3 (population of 150 individuals and 
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mutation rate of 0.5 gene per chromosome) presents the best average rank for the 
binary encoding with two-point crossover and the week as a time unit. Finally, the 
configuration with identifier ID8 (population of 100 individuals and mutation rate of 
1.5 gene per chromosome) presents the best average rank for the binary encoding 
with uniform crossover and the week as a time unit. The respective p-values of 
0.921, 0.643 and 0.348 claim that the null Hypothesis cannot be rejected so, no one 
configuration performs better than any other one. These configurations were 
selected for the final comparison study of the accuracy-level configurations. 
 
The best accumulated non-dominated solutions obtained from the final generation, 
all executions and all configurations were used to compute the accumulated 
Hypervolume whose values were 2.4188, 2.4425 and 2.4163 for the binary encoding 
with one point, two point and uniform crossover with the week as a time unit, 
respectively. As expected, the values are higher than 2.3430, 2.3578 and 2.3388, 
the maximum values shown in the Table 5.31, respectively. 
 
Comparing Accuracy-Level Configurations. 
 
The global computational time consumed is shown in the Table 5.29. Previously, 
the configurations with the best average rank according to the Friedman’s test were 
selected in order to be globally compared. These configurations are shown in the 
Table 5.32. 
 

Identifier Description Configuration Average Median Max. Min. St. Deviation Av. Rank 
ID1 Binary 1P (hour) N = 100 – PrM = 1.5 2.2943 2.3003 2.3126 2.2640 0.0153 4.809 
ID2 Binary 2P (hour) N = 100 – PrM = 0.5 2.2975 2.2961 2.3436 2.2714 0.0220 4.571 
ID3 Binary U (hour) N = 100 – PrM = 1.0 2.2972 2.2938 2.3332 2.2660 0.0218 4.904 
ID4 Binary 1P (day) N = 150 – PrM = 1.0 2.2913 2.2924 2.3193 2.2675 0.0143 5.380 
ID5 Binary 2P (day) N = 50 – PrM = 1.5 2.2912 2.2932 2.3249 2.2693 0.0144 5.238 
ID6 Binary U (day) N = 150 – PrM = 1.5 2.2935 2.2877 2.3461 2.2565 0.0253 5.285 
ID7 Binary 1P (week) N = 50 – PrM = 0.5 2.2930 2.2911 2.3430 2.2561 0.0197 4.952 
ID8 Binary 2P (week) N = 150 – PrM = 0.5 2.2921 2.2972 2.3237 2.2567 0.0203 5.047 
ID9 Binary U (week) N = 100 – PrM = 1.5 2.2955 2.2940 2.3316 2.2682 0.0164 4.809 

p-Value 0.991 
 

 Id’s, config., Hyperv. statistics and statistical test (acc. experiment). 

 
The Hypervolume average values evolution versus the evaluations number is shown 
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In the Figure 5.47. The detail for the final evaluations (last million fitness function 
evaluations, from 9 to 10 million) is shown in the Figure 5.48. It can be seen that the 
configuration with identifier ID2 (with Binary encoding, two-point crossover, the hour 
as a time unit, population of 100 individuals and a mutation rate of 0.5 gene per 
chromosome) reaches the highest Hypervolume average value. 
 
Box plots of the Hypervolume values distribution at the end of the process are shown 
in the Figure 5.49. They are ordered from the left to the right in relation to the time 
units of hours (H), days (D) and weeks (W) and crossover types of one-point (1PX), 
two-point (2PX) and uniform crossover (UX). It can be seen that the medians are 
ordered from the biggest one to smallest one when the hour is considered as a time 
unit. In this case, the greater the accuracy the bigger the Hypervolume median 
value. This effect cannot be seen for the rest of time units. 
 

 
 

Figure 5.47:  Hypervolume Average vs. evaluations (acc. experiment). 
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Figure 5.48:  Hypervolume Average vs. evaluations, detail (acc. experiment). 

 

 
 

Figure 5.49:  Box plots of the final Hypervolume (acc. experiment). 
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Statistical information in relation to the Hypervolume value at the end of the 
evolutionary process is shown in the Table 5.32. It can be seen that the configuration 
with identifier ID2 (with binary encoding, two-point crossover and the hour as a time 
unit, population of 100 individuals and a mutation rate of 0.5 gene per chromosome) 
presents both the highest Hypervolume average value and the highest Hypervolume 
minimum value, the configuration with identifier ID8 (with binary encoding, two-point 
crossover and the week as a time unit, population of 100 individuals and a mutation 
rate of 0.5 gene per chromosome) presents the highest Hypervolume median value. 
The configuration with identifier ID6 (with binary encoding, uniform crossover and 
the day as a time unit, population of 150 individuals and a mutation rate of 1.5 gene 
per chromosome) presents the highest Hypervolume minimum value. Finally, the 
configuration with identifier ID4 (with binary encoding, one point crossover and the 
day as a time unit, population of 150 individuals and a mutation rate of 1 gene per 
chromosome) presents the lowest Hypervolume standard deviation. 
 
In order to determine if one of the configurations performs better than any other, a 
statistical significance hypothesis test was conducted. The average ranks computed 
by using the Friedman’s test are shown in the Table 5.32. It can be seen that the 
configuration with identifier ID2 (with Binary encoding, two-point crossover and the 
hour as a time unit, population of 100 individuals and a mutation rate of 0.5 gene 
per chromosome) presents the best average rank. However, the p-value computed 
(0.991) implies that the null hypothesis (𝐻𝐻0) cannot be rejected (p-value > 0.05), so 
it is possible to conclude that, in the studied conditions, there is no configuration that 
performs better than any other. 
 
The best accumulated non-dominated solutions obtained were used to compute the 
accumulated Hypervolume, whose value was 2.4724. As expected, the value is 
higher than 2.3461, the maximum accumulated value obtained after the evolutionary 
process for the standard binary encoding with uniform crossover and the day as a 
time unit. This is shown in the Table 5.33. 
  



 
CONTRIBUTIONS ON RELIABILITY TO RECONDITION THE MAINTENANCE PLAN AND THE DESIGN OF SYSTEMS 

BY USING EVOLUTIONARY ALGORITHMS 

 
 

 
 
 

190 

Encoding Time Unit Hypervolume Accumulated Value 
Binary 1 Point Crossover Hour 2.4227 
Binary 2 Point Crossover Hour 2.4378 
Binary Uniform Crossover Hour 2.4134 
Binary 1 Point Crossover Day 2.4112 
Binary 2 Point Crossover Day 2.4073 
Binary Uniform Crossover Day 2.4319 
Binary 1 Point Crossover Week 2.4188 
Binary 2 Point Crossover Week 2.4425 
Binary Uniform Crossover Week 2.4163 
Global 2.4724 

 
 Hypervolume Accumulated Value (acc. experiment). 

 
5.3.3.3. Accumulated Non-Dominated Set of Designs. 
 
The non-dominated solutions to the problem provided at the end of the evolutionary 
process for all executions, all configurations, all encodings and time units are shown 
in the Figure 5.50. All optimum solutions belonging to the achieved non-dominated 
front are shown in the Table 5.34. Unavailability (Q) is shown as a fraction, Cost is 
shown in economic units and the rest of the variables represent, for the respective 
devices, the optimum time to start a preventive maintenance activity with the hour, 
day or week as a time unit. 
 

 
 

Figure 5.50:  Non-dominated front. 
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Id Q Cost [e.u.] Time Unit V1 [h] P2 [h] P3 [h] V4 [h] V5 [h] V6 [h] V7 [h] 
1 0.002720 823.38 Hours 25408 0 8633 0 34179 34903 31386 
2 0.002713 835.75 Hours 29225 0 8633 0 27070 33454 33690 
3 0.002673 839.12 Weeks 206 0 50 0 200 140 151 
4 0.002506 976.12 Weeks 200 0 51 160 165 182 168 
5 0.002500 986.12 Hours 22388 0 6022 23776 17397 26730 22354 
6 0.002295 992.75 Days 1435 0 350 830 1088 1459 1454 
7 0.001334 1363.75 Days 1394 360 315 0 1125 1301 1026 
8 0.001294 1385.50 Hours 30287 6093 8344 0 34503 15445 31903 
9 0.001276 1424.25 Weeks 204 50 37 0 174 173 188 
10 0.001260 1431.12 Hours 27536 8658 7984 0 32322 25055 32113 
11 0.001189 1431.75 Hours 31040 8617 8103 0 34787 31445 29929 
12 0.001174 1449.00 Weeks 178 51 50 0 182 171 195 
13 0.001173 1464.38 Hours 27019 5942 5844 0 26998 24364 27915 
14 0.001164 1471.62 Hours 29879 8537 8599 0 32718 33261 30100 
15 0.001149 1477.12 Days 1364 353 363 0 1198 1435 1458 
16 0.001026 1488.75 Hours 32511 7945 8594 9234 31316 30834 31234 
17 0.000977 1498.50 Hours 32045 8752 8415 13235 20781 31501 29254 
18 0.000973 1507.50 Hours 34928 7929 7908 11683 24182 34593 26275 
19 0.000940 1523.38 Hours 30443 8130 8462 29999 34282 34286 34317 
20 0.000939 1528.88 Hours 29939 7028 7904 21690 25711 34814 34791 
21 0.000913 1530.38 Weeks 194 47 49 103 137 145 179 
22 0.000898 1538.62 Weeks 131 42 49 186 156 200 152 
23 0.000835 1567.75 Days 1028 363 340 1280 1430 986 1326 
24 0.000813 1611.38 Hours 22516 5955 6298 17237 29568 27075 22757 
25 0.000808 1675.38 Weeks 200 41 50 144 149 167 173 
26 0.000781 1680.38 Hours 28624 8245 8698 27171 21444 29197 21351 
27 0.000749  1698.62 Hours 28281 8338 7367 19399 17608 32848 31220 
28 0.000748 1767.50 Weeks 207 44 47 107 83 201 161 
29 0.000725 1770.12 Hours 30813 7371 8453 29958 16345 30776 25358 

 
  Non-dominated solutions. 

 
The solution with the lowest Cost (ID1) (823.38 economic units) represents the 
biggest Unavailability (0.002720). These values are followed by periodic optimum 
times (using the hour as a time unit in this case) measured from the moment in 
which the system’s mission time starts (time to perform a preventive maintenance 
task is not included). For the solution ID1, it can be seen that periodic optimum times 
to start a preventive maintenance task (𝑇𝑇𝑀𝑀) for the devices P2 and V4 are not 
supplied. This is because the design alternative does not include such devices. The 
opposite case shows the biggest Cost (ID26) (1770.12 economic units) and the 
lowest Unavailability (0.000725). For the solution ID29, periodic optimum times to 
start a preventive maintenance task (𝑇𝑇𝑀𝑀 ) are supplied for all devices. This is 
because the design alternative includes the devices P2 and V4. Other optimum 
solutions were found in these two solutions and can be seen in the Table 5.34. The 
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decision makers should decide which is the preferable design for them, considering 
their individual requirements. 
 
Moreover, the solutions were clustered in the Figure 5.51 according to their final 
design. Such solutions are shown from left to right and in ascending order in relation 
to the Cost from ID1 to ID29. The solutions contained in the Cluster 1 (the solutions 
1 to 3, see also the Table 5.34) are the solutions in which non-redundant devices 
were included in the design. In this case, the system contains exclusively devices 
placed in series. These solutions present the lowest Cost and the biggest 
Unavailability. The solutions contained in the Cluster 2 (the solutions 4 to 6, see also 
the Table 5.35) are the solutions in which a redundant valve was included in the 
design as a parallel device. These solutions present a bigger Cost and a lower 
Unavailability than the solutions contained in the Cluster 1. The solutions contained 
in the Cluster 3 (the solutions 7 to 15, see also the Table 5.34) are the solutions in 
which a redundant pump was included in the design as a parallel device. These 
solutions present a higher Cost and a lower Unavailability than the solutions 
contained in both the Clusters 1 and 2. Finally, the solutions contained in the Cluster 
4 (the solutions 16 to 29, see also the Table 5.34) are the solutions in which both a 
redundant valve and a redundant pump were included in the design as parallel 
devices. These solutions present the biggest Cost and the lowest Unavailability. 
 
The best accumulated non-dominated solutions obtained were used to compute the 
accumulated Hypervolume, whose value was 2.4738. As it is expected, the value is 
higher than the rest of the maximum accumulated values obtained after the 
evolutionary process for the encoding experiment and the accuracy experiment. 
This is shown in the Table 5.35. 
 

Experiment Hypervolume Accumulated Value 
Encoding 2.4588 
Accuracy 2.4724 
Total 2.4738 

 
 Hypervolume Accumulated Value. 
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Figure 5.51:  Design alternatives. 

 
5.4. Testing Multi-objectivisation. 
 
5.4.1. Background. 
 
Once the methodology was explored by attending to several Multi-objective 
Evolutionary Algorithms, encodings and accuracy levels in relation to the employed 
time unit, the effect of applying “multi-objectivisation” is evaluated for the case study 
previously presented and studied. In this case, Multi-objective Evolutionary 
Algorithms and Discrete Simulation are coupled while indicator-based and 
dominance-based state-of-the-art multi-objective optimisers are used. Such multi-
objective optimisers achieved the first orders from the Friedman’s test point of view 
when they were explored on the first study. Moreover, both real and binary encoding 
(with two-point crossover due to the results achieved from the second study) are 
tested. Two optimisation approaches are developed, explored and thoroughly 
compared by using the analysed case study along the present research; a two-
objective approach, and a three-objective approach, which attends to the multi-
objectivisation concept.  
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5.4.2. Case study. 
 
The case study was presented in the Section 5.1. However, in this case, the 
conflicting objectives are Availability, Operational Cost and Acquisition Cost. 
Therefore, the Equations 4.2 and 4.4 from the Chapter 4 are used in order to 
compute such objectives. As it was exposed above, two optimisation approaches 
are tested. When the three-objective approach is employed, the Operational Cost 
and the Acquisition Cost are decomposed from the Equation 4.4 presented in the 
Chapter 4. The parameters used to configure the methods for the evolutionary 
process are shown in the Table 5.36. 
 

Description Setting 
Methods NSGAII & SMS-EMOA 
Encoding Real & Binary 
Population 150 
Mutation rate 0.5 - 1.0 - 1.5 
Mutation distribution index 20 
Crossover probability 1.0 
Crossover distribution index 20 
Number of evaluations 10.000.050 
Number of executions 21 

 
 Parameters configuration (multi-objectivisation experiment). 

 
The population size of 150 individuals is employed. Six different configurations for 
both methods are simulated and 21 executions per configuration are conducted for 
statistical purposes. As a stopping criterion, a number of 10,000,000 evaluations of 
the objective functions is employed. To normalise the value of the objective 
functions, scale factors were needed. Such values were achieved by computing the 
objective functions at the beginning of the optimisation process. Again, this 
approach is based on considering that such values will enhance along the 
evolutionary process. When the two-objective problem is considered, the scale 
factors are: 

• When the Cost is computed, the employed scale factor is 4,500 economic 
units, 

• when the Unavailability of the system is computed, the considered scale 
factor is 0.03. 
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When the three-objective problem is considered: 
• The scale factor of 4,500 economic units is employed when the Operational 

Cost is computed,  
• the employed scale factor of 1,875 economic units is used when the 

Acquisition Cost is computed,  
• the scale factor of 0.03 is considered when the Unavailability of the system 

is computed. 
 
Finally, depending on the number of objectives to consider, a two- or three-
dimensional reference point must be chosen to compute the Hypervolume indicator. 
Such points must cover the points limited by the scale factors, which normalise the 
values of the objective functions until a maximum value of a unit. The reference 
points were set to (2,2) and (2,2,2) respectively. Again, the open-source Software 
Platform PlatEMO was used to optimise the case study. 
 

5.4.3. Results and discussion. 
 
5.4.3.1. Two-objective approach. 
 
The computational time consumed, when the High-Performance Computer was 
used, is shown in the Table 5.37. The relationship between the methods, the 
configurations and the identifiers can be seen in the Table 5.38 (columns 1 to 4). 
 

Method Encoding Average time Sequential Time 
NSGAII Real 2 days, 20 hours and 55 minutes 5 months, 28 days, 20 hours and 26 minutes 
NSGA-II Binary 2-point crossover 2 days, 21 hours and 55 minutes 6 months, 1 day, 1 hour and 4 minutes 
SMS-EMOA Real 5 days, 23 hours and 37 minutes 1 year, 12 days and 34 minutes 
SMS-EMOA Binary 2-point crossover 6 days, 3 hours and 47 minutes 1 year, 6 days, 3 hours and 47 minutes 
TOTAL   3 years, 1 month, 4 days and 1 hour 

 
 Computational cost (consumed time, 2-obj. app.). 
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Identifier Method Encoding Mutation Average Median Max. Min. St. Deviation Av. Rank 

ID1 NSGA-II Real 0.5 2.4628 2.4617 2.5009 2.4382 0.0156 5.666 
ID2 NSGA-II Real 1.0 2.4611 2.4643 2.4793 2.4399 0.0113 5.952 
ID3 NSGA-II Real 1.5 2.4606  2.4601 2.4851 2.4411 0.0118 6.285 
ID4 NSGA-II Binary 0.5 2.4590  2.4582 2.4841 2.4386 0.0106 7.095 
ID5 NSGA-II Binary 1.0 2.4576 2.4564 2.4781 2.4401 0.0096 6.714 
ID6 NSGA-II Binary 1.5 2.4573 2.4568 2.4789 2.4428 0.0106 6.904 
ID7 SMS-EMOA Real 0.5 2.4592 2.4587 2.4859 2.4423 0.0102 6.380 
ID8 SMS-EMOA Real 1.0 2.4581 2.4578 2.4871 2.4418 0.0116 6.476 
ID9 SMS-EMOA Real 1.5 2.4582 2.4576 2.4840 2.4419 0.0112 6.714 
ID10 SMS-EMOA Binary 0.5 2.4587 2.4575 2.4806 2.4408 0.0097 6.523 
ID11 SMS-EMOA Binary 1.0 2.4628 2.4615 2.5066 2.4347 0.0165 5.619 
ID12 SMS-EMOA Binary 1.5 2.4555 2.4542 2.4717 2.4393 0.0112 7.666 

p-Value 0.8636 
 

 Id’s, config., Hyperv. statistics and statistical test (2-obj. app.). 

 
The Figure 5.52 shows the Hypervolume average values evolution regarding the 
number of evaluations. The evolution from 9 to 10 million evaluations (the end of the 
process) is shown in the Figure 5.53.  
 

 
 

Figure 5.52:  Hypervolume average vs. evaluations (2-obj. app.). 
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Figure 5.53:  Hypervolume average vs. evaluations, detail (2-obj. app.). 
 

Both the configuration with identifier ID1 (NSGA-II, real encoding and 0.5 gene per 
chromosome as a mutation rate) and the configuration with identifier ID11 (SMS-
EMOA, binary encoding and 1.0 gene per chromosome as a mutation rate) present 
the best Hypervolume average value. 
 
In the Figure 5.54, box plots of the Hypervolume values distribution are shown. Such 
box plots summarise the statistical information supplied by the Table 5.38 (columns 
5 to 9). The configuration ID1 (NSGA-II, real encoding and 0.5 gene per 
chromosome as a mutation rate) achieves the best Hypervolume average, median 
and minimum values. The configuration ID11 (SMS-EMOA, binary encoding and 1 
gene per chromosome as a mutation rate) achieves the same Hypervolume average 
value and the best Hypervolume minimum value. Finally, the configuration ID5 
(NSGA-II, binary encoding and 1 gene per chromosome as a mutation rate) 
achieves the lowest standard deviation value. 
 
In order to conclude if any configuration reaches a better performance, a statistical 
hypothesis test was conducted. The Friedman’s test was employed to compute the 
average ranks, which are shown in the Table 5.38 (column 10). The configuration 
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ID11 (SMS-EMOA, binary encoding and 1 gene per chromosome as a mutation 
rate) reaches the best average rank. However, the p-value computed (0.8636) does 
not allow rejecting 𝐻𝐻0 (p-value < 0.05). Therefore, it is not possible to establish that 
any configuration performs better than any other. 
 

 
 

Figure 5.54:  Hypervolume box plots, identifiers as in the table 5.38 (2-obj. app.). 

 
The Figure 5.55 shows the set of non-dominated solutions achieved regarding all 
executions, configurations and methods. The detail of such solutions is shown in the 
Table 5.39, where they are ordered from the left to the right side of the figure 
(solutions with worse Unavailability are firstly ordered). The Unavailability (Q), the 
Cost and the optimum times to start a scheduled preventive maintenance task for 
each device are displayed in such a table. It can be seen that the solutions without 
redundant devices (marked as O in the Figure 5.55 and with identifiers Id1 to Id2 in 
the Table 5.39) are the more economic and less reliable solutions. Conversely, the 
solutions with both a pump and a valve as redundant devices (marked as □ in the 

Figure 5.55 and with identifiers Id16 to Id24 in the Table 5.39) are the more 
expensive and reliable solutions, as it is expected. The solutions with at least one 
redundant device are located between the described ones. 
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Figure 5.55:  Accumulated non-dominated front (2-obj. app.). 

 
Id Q Cost [e.u.] V1 [h] P2 [h] P3 [h] V4 [h] V5 [h] V6 [h] V7 [h] 
1 0.002794 2118.75 32081 0 8268 0 32608 29911 22838 
2 0.002757 2128.75 32867 0 8738 0 33767 28717 33847 
3 0.002419 2454.12 34178 0 8471 22544 22477 34758 29997 
4 0.002417 2514.50 31168 0 8640 24997 26369 21853 18347 
5 0.002404 2585.25 27157 0 8759 25247 29928 32602 33711 
6 0.002400 2591.38 33394 0 7624 27291 33090 33453 34139 
7 0.001420 3020.62 30166 8752 8592 0 19308 30349 27921 
8 0.001358 3070.75 27879 7766 8516 0 30022 34692 31346 
9 0.001348 3075.25 32005 8218 6237 0 32457 28160 31568 

10 0.001316 3076.25 30348 7793 8637 0 33060 20156 30396 
11 0.001271 3103.88 29309 7856 8585 0 31712 29781 25606 
12 0.001200 3121.50 27780 7589 7849 0 33659 35040 31753 
13 0.001179 3150.37 33444 7785 7487 0 26641 33341 29593 
14 0.001122 3177.88 33180 7576 8374 0 28795 32242 32651 
15 0.001104 3268.62 28318 6858 8569 0 29571 32477 28891 
16 0.001097 3424.00 34961 6689 8677 25265 21118 34641 29384 
17 0.000979 3429.88 27512 8167 8198 32671 32290 34720 32839 
18 0.000926 3438.38 24535 8396 8192 10411 32448 34686 33434 
19 0.000850 3469.50 32166 8202 8686 31625 28822 29127 34733 
20 0.000816 3507.00 30163 8443 7902 19796 34310 30607 18931 
21 0.000812 3635.00 29820 7951 8679 13862 33215 29994 27626 
22 0.000791 3667.62 27172 8697 8756 10660 19336 34773 32893 
23 0.000773 3686.38 32641 8488 8687 10351 26703 31875 34949 
24 0.000748 3765.50 27132 7088 7915 10849 14859 33567 34813 

 
  Non-dominated solutions (2-obj. app.). 

Design without redundant devices 
Design with a valve as a redundant device  
Design with a pump as a redundant device 
Design with a pump and a valve as redundant devices 
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Finally, the accumulated Hypervolume value (computed as it was described by 
Fonseca et al. [211]) reaches the value 2.5425. As it is expected, such a value is 
higher than 2.5066, the maximum value that is displayed in the Table 5.38. 
 
5.4.3.2. Three-objective approach. 
 
The computational time consumed is shown in the Table 5.40.  
 

Method Encoding Average time Sequential Time 
NSGAII Real 3 days, 19 hours and 39 minutes 7 months, 27 days, 16 hours and 27 minutes 
NSGA-II Binary 2-point crossover 3 days, 20 hours and 58 minutes 8 months, 17 hour and 25 minutes 
SMS-EMOA Real 6 days, 22 hours and 50 minutes 1 year, 2 months, 12 days, 3 hours and 34 minutes 
SMS-EMOA Binary 2-point crossover 7 days, 3 hours and 3 minutes 1 year, 2 moths, 25 days, 6 hours and 21 minutes 
TOTAL   3 years, 9 months, 2 days and 21 hours 

 
 Computational cost (consumed time, 3-obj. app.). 

 
The relationship between the methods, the configurations and the identifiers can be 
seen in the Table 5.41 (columns 1 to 4). 
 

Identifier Method Encoding Mutation Average Median Max. Min. St. Deviation Av. Rank 
ID1 NSGA-II Real 0.5 3.7326  3.7304 3.7649 3.7059 0.0151 6.190 
ID2 NSGA-II Real 1.0 3.7314  3.7262 3.7709 3.6988 0.0194 7.333 
ID3 NSGA-II Real 1.5 3.7437 3.7426 3.8338 3.7153 0.0251 4.571 
ID4 NSGA-II Binary 0.5 3.7276 3.7264 3.7617 3.6989 0.0176 7.571 
ID5 NSGA-II Binary 1.0 3.7277 3.7275 3.7539 3.6979 0.0147 7.476 
ID6 NSGA-II Binary 1.5 3.7281 3.7269 3.7601 3.6977 0.0138 7.571 
ID7 SMS-EMOA Real 0.5 3.7367 3.7322 3.7770 3.7046 0.0215 6.428 
ID8 SMS-EMOA Real 1.0 3.7382 3.7324 3.7860 3.7142 0.0171 5.619 
ID9 SMS-EMOA Real 1.5 3.7349 3.7327 3.7665 3.7049 0.0147 5.904 
ID10 SMS-EMOA Binary 0.5 3.7307 3.7331 3.7772 3.7005 0.0199 6.619 
ID11 SMS-EMOA Binary 1.0 3.7324 3.7247 3.7715 3.7128 0.0186 7.095 
ID12 SMS-EMOA Binary 1.5 3.7367 3.7372 3.7608 3.7101 0.0126 5.619 

p-Value 0.1332 
 

 Id’s, config., Hyperv. statistics and statistical test (3-obj. app.). 

 
The Figure 5.56 shows the Hypervolume average values evolution regarding the 
number of evaluations. The evolution from 9 to 10 million evaluations (the end of the 
process) is shown in the Figure 5.57. The configuration with identifier ID3 (NSGA-
II, real encoding and 1.5 gene per chromosome as a mutation rate) presents the 
best Hypervolume average value.  
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Figure 5.56:  Hypervolume average vs. evaluations (3-obj. app.). 

 

 
 

Figure 5.57:  Hypervolume average vs. evaluations, detail (3-obj. app.). 

 
In the Figure 5.58, box plots of the Hypervolume values distribution are shown. Such 
box plots summarise the statistical information supplied by the Table 5.41 (columns 
5 to 9). It can be seen that the configuration ID3 (NSGA-II, real encoding and 1.5 
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gene per chromosome as a mutation rate) reaches the best Hypervolume average, 
median, maximum and minimum values. The configuration ID12 (SMS-EMOA, 
binary encoding and 1.5 gene per chromosome as a mutation rate) reaches the 
lowest standard deviation value. 
 
A statistical hypothesis test was carried out in order to conclude if any configuration 
reaches a better performance. The Friedman’s test was employed to compute the 
average ranks, which are shown in the Table 5.41 (column 10). The configuration 
ID3 (NSGA-II, real encoding and 1.5 gene per chromosome as a mutation rate) 
reaches the best average rank. However, the p-value computed (0.1332) does not 
allow rejecting 𝐻𝐻0 (p-value<0.05). Therefore, it is not possible to establish that any 
configuration performs better than any other. 
 

 
 

Figure 5.58:  Hypervolume box plots, identifiers as in table 5.41 (3-obj. app.). 

 
The Figure 5.59 shows the set of the non-dominated solutions achieved regarding 
all executions, configurations and methods. Moreover, the projections of such 
solutions by considering two objectives are shown in the Figures 5.60 (where the 
considered objectives are Unavailability and Operational Cost), 5.61 (where the 
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considered objectives are Unavailability and Acquisition Cost) and 5.62 (where the 
considered objectives are Acquisition and Operational Costs). The detail of such 
solutions is shown in the Table 5.42, where they are ordered from the left to the right 
side of the Figure 5.59 (solutions with worse Unavailability are firstly ordered). The 
Unavailability (Q), the Operational Cost, the Acquisition Cost and the optimum times 
to start a scheduled preventive maintenance task for each device are displayed in 
such a table. It can be seen that the solution without redundant devices (marked as 
O in the Figure 5.59 and with identifier Id1 in the Table 5.42) are the more economic 
and less reliable solution. Conversely, some solutions with both a pump and a valve 
as redundant devices (marked as □ in the Figure 5.59 and with the identifiers Id17 

to Id29 in the Table 5.42) are the more expensive and reliable solutions, as it is 
expected. The solutions with at least one redundant device are located between the 
described ones.  
 

Id Q Oper. C. [e.u.] Acq. C. [e.u.] V1 [h] P2 [h] P3 [h] V4 [h] V5 [h] V6 [h] V7 [h] 
1 0.002814 850.00 1260.00 29239 0 8751 0 22265 31652 34055 
2 0.002449 1001.75 1475.00 32279 0 8705 28939 27345 33325 32669 
3 0.002439 1026.62 1475.00 33969 0 8451 15234 34630 32356 35040 
4 0.002429 1049.75 1475.00 29169 0 8748 27307 27056 26913 25804 
5 0.002412 1055.88 1475.00 26692 0 8587 28326 21950 32178 20455 
6 0.001597 1384.88 1660.00 27433 8455 8180 0 22551 28131 25988 
7 0.001453 1392.50 1660.00 28991 8322 8724 0 33158 28853 30811 
8 0.001357 1398.38 1660.00 21919 8441 8709 0 31591 34723 34165 
9 0.001260 1437.25 1660.00 24188 7341 8219 0 33715 32883 34964 
10 0.001230 1440.88 1660.00 31821 7346 8618 0 25431 30824 28469 
11 0.001186 1465.12 1660.00 29598 6453 8465 0 27403 34669 32318 
12 0.001182 1494.25 1660.00 33774 8355 8679 0 33429 34617 34507 
13 0.001153 1532.00 1660.00 35012 7955 8081 0 34661 30243 34901 
14 0.001149 1515.38 1875.00 32693 7970 8760 27430 32350 34495 32112 
15 0.001123 1531.00 1875.00 33699 8703 8650 17417 27526 33609 33323 
16 0.001123 1599.25 1660.00 32817 7726 8697 0 28190 33078 32850 
17 0.001092 1545.75 1875.00 33234 8221 8304 24359 17538 34918 33209 
18 0.001019 1550.62 1875.00 29642 7713 8721 27292 13695 32551 34690 
19 0.001012 1571.88 1875.00 33985 7684 8745 23603 27644 33321 31591 
20 0.000977 1582.50 1875.00 31923 8341 8475 30895 34049 35040 33957 
21 0.000933 1589.38 1875.00 31112 7754 8275 16171 32390 24051 30468 
22 0.000900 1594.75 1875.00 26810 8442 8482 28415 29632 26639 32205 
23 0.000859 1619.00 1875.00 22693 8752 8627 27723 34551 30350 28168 
24 0.000839 1667.50 1875.00 27417 7311 8369 33214 33596 28876 21099 
25 0.000792 1682.62 1875.00 27161 6209 8711 30234 23623 34641 29979 
26 0.000769 1747.38 1875.00 33835 8681 8365 34534 23459 27707 26617 
27 0.000763 1782.50 1875.00 25861 8286 8420 24386 24559 34795 34787 
28 0.000756 1932.38 1875.00 30523 8706 8034 22339 14998 30052 29927 
29 0.000721 2079.12 1875.00 32221 8738 8637 24434 27246 25775 33442 

 
  Non-dominated solutions (3-obj. app.). 
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Moreover, it can be seen that the solutions id14 and id15 have both redundant 
devices in the design, however, they are less reliable than the solution id16, which 
has a redundant valve.  

 
 

Figure 5.59: Accumulated non-dominated front (3-obj. app.). 

 

 
 

Figure 5.60: Accumulated non-dominated front (3-obj. app. Unav. - Op. Cost). 

 

Design without redundant devices 
Design with a valve as a redundant device  
Design with a pump as a redundant device 
Design with a pump and a valve as redundant devices 
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Figure 5.61: Accumulated non-dominated front (3-obj. app. Unav. - Ac. Cost). 

 

 
 

Figure 5.62: Accumulated non-dominated front (3-obj. app. Ac. - Op. Cost). 
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Finally, the accumulated Hypervolume value (computed as it was described by 
Fonseca et al. [211]) reaches a value of 3.8704. As it is expected, such a value is 
higher than 3.7437, the maximum value that is displayed in the Table 5.42. 
 
5.4.3.3. Discussion. 
 
The sections 5.4.3.1 and 5.4.3.2 show the results of solving the case study when 
two (Unavailability and Cost, which includes both Acquisition and Operational Costs) 
and three objectives (Unavailability, Acquisition Cost and Operational Cost) were 
considered. Under the two-objective approach, the configuration ID11 (SMS-EMOA, 
binary encoding and 1 gene per chromosome as a mutation rate) reaches the best 
average rank when the Friedman’s test is applied. Under the three-objectives 
approach, the configuration ID3 (NSGA-II, real encoding and 1.5 gene per 
chromosome as a mutation rate) reaches the best average rank. It can be seen that 
both methods and encoding are competitive.  
 
In order to compare the performance between both approaches, the best two 
configurations are taken and compared. These are the configurations ID11 (SMS-
EMOA, binary encoding and 1.0 gene per chromosome as a mutation rate) and ID1 
(NSGA-II, real encoding and 0.5 gene per chromosome as a mutation rate) when 
two objectives are considered, and the configurations ID3 (NSGA-II, real encoding 
and 1.5 gene per chromosome as a mutation rate) and ID12 (SMS-EMOA, binary 
encoding and 1.5 gene per chromosome as a mutation rate) when three objectives 
are considered. However, in order to compare directly the configurations regarding 
the two-objective approach and the configurations in relation to the three-objective 
approach, these ones must be transformed. Such a transformation consists of 
adding the Operational Cost and the Acquisition Cost before computing the 
Hypervolume. In the Table 5.43 (columns 1 to 5), the relationship between the 
methods and the configuration identifiers is shown. The Figure 5.63 shows the 
Hypervolume average values evolution versus the number of evaluations. The 
configuration with identifier ID3 (NSGA-II, real encoding and 1.5 gene per 
chromosome as a mutation rate) reaches the best Hypervolume average value. 



 
CONTRIBUTIONS ON RELIABILITY TO RECONDITION THE MAINTENANCE PLAN AND THE DESIGN OF SYSTEMS 

BY USING EVOLUTIONARY ALGORITHMS 

 
 

 
 
 

207 

 
Identifier Objectives Method Encoding Mutation Average Median Max. Min. St. D. Av. 

Rank 
ID1 2 SMSEMOA Binary 1.0 2.4628  2.4615 2.5066 2.4347 0.0165 3.476 
ID2 2 NSGA-II Real 0.5 2.4628  2.4617 2.5009 2.4382 0.0156 3.523 
ID3 3 NSGA-II Real 1.5 2.7537 2.7505 2.8176 2.7324 0.0183 1.476 
ID4 3 SMSEMOA Binary 1.5 2.7507  2.7494 2.7733 2.7362 0.0105 1.523 

p-Value 1.009·10-11 
 

 Id’s, config., Hyperv. statistics and statistical test (2- and 3- obj. app.). 

 
In the Figure 5.64, box plots of the Hypervolume values distribution are shown. Such 
box plots summarise the statistical information supplied by the Table 5.43 (columns 
6 to 10). The configuration ID3 (NSGA-II under the 3-objective approach, real 
encoding and 1.5 gene per chromosome as a mutation rate) shows the highest 
Hypervolume average, median and maximum values, whereas the configuration ID4 
(SMS-EMOA under the 3-objective approach, binary encoding and 1.5 gene per 
chromosome as a mutation rate) reaches the highest Hypervolume minimum value 
and the lowest Hypervolume standard deviation value. 
 
 

 
 

Figure 5.63:  Hypervolume average vs. evaluations (2- and 3- obj. app.). 
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Figure 5.64:  Hypervolume box plots, id’s as in table 5.43 (2- and 3- obj. app.). 
 

A statistical hypothesis test was carried out in order to conclude if any configuration 
reaches a better performance. The Friedman’s test was employed to compute the 
average ranks, which are shown in the Table 5.43 (column 11). The configuration 
ID3 (NSGA-II under the 3-objective approach, real encoding and 1.5 gene per 
chromosome as a mutation rate) reaches the best average rank. However, the p-
value computed (1.009·10-11) allows rejecting 𝐻𝐻0 (p-value < 0.05). Therefore, it is 
possible to establish that any configuration performs better than any other. In order 
to find the concrete pairwise comparisons that produce such differences, a post-hoc 
test was conducted. The Shaffer’s test was used to compare the configuration ID3, 
which produced the lowest Average Rank in relation to the Friedman’s test, with the 
rest of configurations. The adjusted p-values obtained inform the rejection or 
acceptance of the null hypothesis. The null hypothesis states that there are no 
significant differences among the behaviour of the configurations. The result related 
to the comparisons is shown in the Table 5.44. It is possible to conclude that the 
configuration with identifier ID3 performs better than the configurations with 
identifiers ID1 (SMS-EMOA, binary encoding and 1.0 gene per chromosome as a 
mutation rate) and ID2 (NSGA-II, real encoding and 0.5 gene per chromosome as 
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a mutation rate) when two objectives are considered but is not possible to establish 
that the configuration with identifier ID3 performs better than the configuration ID4. 
This advantage of the three-objective approach is a demonstration of how the multi-
objectivisation strategy (transforming the original two-objective problem into a three-
objective problem by decomposing the cost objective) has been shown successful 
in this reliability study 
 

Comparison p-value Conclusion 
ID2 - ID3 1.652·10−6 < 0.05 The null hypothesis is rejected 
ID1 - ID3 1.652·10−6 < 0.05 The null hypothesis is rejected 
ID3 - ID4 1.809 > 0.05 The null hypothesis is not rejected 

 

 P-values from the hypothesis tests (2- and 3- obj. app.). 
 

The non-dominated solutions achieved at the end of the evolutionary process for all 
configurations and methods from both the two- and the three-objective approaches 
are shown in the Figure 5.65. It can be seen both solutions from the two-objective 
problem (marked as O) and solutions from the three-objective problem (marked as 
×). These solutions are shown in the Table 5.45. The decision makers should decide 
the preferable design by taking into account their Unavailability-Cost requirements. 
The front of solutions presents an accumulated Hypervolume value of 2.8318, which 
was computed by using the procedure supplied by Fonseca et al. [211]. 

 
 

Figure 5.65:  Accumulated non-dominated front (2- and 3- obj. app.). 



 
CONTRIBUTIONS ON RELIABILITY TO RECONDITION THE MAINTENANCE PLAN AND THE DESIGN OF SYSTEMS 

BY USING EVOLUTIONARY ALGORITHMS 

 
 

 
 
 

210 

 
Id Q Cost [e.u.] V1 [h] P2 [h] P3 [h] V4 [h] V5 [h] V6 [h] V7 [h] 
1 0.002814 2110.00 29239 0 8751 0 22265 31652 34055 
2 0.002794 2118.75 32081 0 8268 0 32608 29911 22838 
3 0.002757 2128.75 32867 0 8738 0 33767 28717 33847 
4 0.002419 2454.12 34178 0 8471 22544 22477 34758 29997 
5 0.002417 2514.50 31168 0 8640 24997 26369 21853 18347 
6 0.002412 2530.88 26692 0 8587 28326 21950 32178 20455 
7 0.002404 2585.25 27157 0 8759 25247 29928 32602 33711 
8 0.002400 2591.38 33394 0 7624 27291 33090 33453 34139 
9 0.001420 3020.62 30166 8752 8592 0 19308 30349 27921 

10 0.001357 3058.38 21919 8441 8709 0 31591 34723 34165 
11 0.001348 3075.25 32005 8218 6237 0 32457 28160 31568 
12 0.001316 3076.25 30348 7793 8637 0 33060 20156 30396 
13 0.001260 3097.25 24188 7341 8219 0 33715 32883 34964 
14 0.001230 3100.88 31821 7346 8618 0 25431 30824 28469 
15 0.001200 3121.50 27780 7589 7849 0 33659 35040 31753 
16 0.001186 3125.12 29598 6453 8465 0 27403 34669 32318 
17 0.001179 3150.37 33444 7785 7487 0 26641 33341 29593 
18 0.001122 3177.88 33180 7576 8374 0 28795 32242 32651 
19 0.001104 3268.62 28318 6858 8569 0 29571 32477 28891 
20 0.001092 3420.75 33234 8221 8304 24359 17538 34918 33209 
21 0.001019 3425.62 29642 7713 8721 27292 13695 32551 34690 
22 0.000979 3429.88 27512 8167 8198 32671 32290 34720 32839 
23 0.000926 3438.38 24535 8396 8192 10411 32448 34686 33434 
24 0.000850 3469.50 32166 8202 8686 31625 28822 29127 34733 
25 0.000816 3507.00 30163 8443 7902 19796 34310 30607 18931 
26 0.000792 3557.62 27161 6209 8711 30234 23623 34641 29979 
27 0.000769 3622.38 33835 8681 8365 34534 23459 27707 26617 
28 0.000763 3657.50 25861 8286 8420 24386 24559 34795 34787 
29 0.000748 3765.50 27132 7088 7915 10849 14859 33567 34813 
30 0.000721 3954.12 32221 8738 8637 24434 27246 25775 33442 

 
  Non-dominated solutions (2- and 3- obj. app.). 

 
5.5. Extending the methodology to other fields of reliability engineering. 
 
The bases of this study were stablished during the development of a research stay 
in the Departamento de Engenharia Electrónica e de Computadores, Área Científica 
de Energia, Instituto Superior Técnico of Universidade de Lisboa, Portugal. In this 
study, the methodology and techniques previously explored are applied to a different 
engineering field. Reliable smart grids are required by digitised societies to 
guarantee communication for critical systems. The protection, control and 
monitoring of Substation Automation Systems (SAS) are enabled when the IEC 
61850 standard for Substation Communication Networks (SCN) is employed. Such 
a standard allows integrating substation devices in order to enable their 
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communication. Although the IEC 61850 standard suggests ethernet-based SCN 
architectures, depending on the application, the architectural design must be 
proposed by the system designer. Therefore, when critical systems must be 
considered, having tools to make smart decisions is vital.  
 
In this study, the joint optimisation of the design and maintenance for a SCN 
architecture that follows the IEC 61850 standard is explored. The aim consists of 
supplying a set of optimum Availability-Cost solutions. Multi-objective Evolutionary 
Algorithms and Discrete Simulation are coupled while indicator-based and 
dominance-based state-of-the-art multi-objective optimisers are employed. Two 
optimisation approaches are considered, analysed and thoroughly compared in a 
case study; a two-objective approach, and a three-objective approach, which 
attends to the multi-objectivisation concept.  
 
5.5.1. Background. 
 
The improvement of technology benefits to modern societies. Such an improvement 
has increased the demand of energy over the past decades. Therefore, the power 
systems must face several challenges to cover such a demand. The IEC 61850 
standard for Substation Communication Networks (SCN) enables the protection, 
control and monitoring of Substation Automation Systems (SAS). The architectural 
design is in the hands of the designers of the system so a methodology to support 
such decisions is useful for them. In this study, the methodology applied all along 
the present research is explored as follows: 

• The study covers the joint optimisation of a SCN architecture design based 
on the IEC 61850 standard (this consists of considering the automatic 
selection of devices in order to be included in the design) and their preventive 
maintenance strategy (this consists of determining the optimum preventive 
maintenance times regarding the devices included in the design). This allows 
scheduling the preventive maintenance tasks. As objectives for the multi-
objective problem, Unavailability and Cost are considered. 
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• Multi-objective Evolutionary Algorithms and Discrete Event Simulation are 
coupled. The objective function regarding the Cost objective considers both 
Operational and Acquisition Cost. 

• Once the two-objective problem is solved, a multi-objectivisation approach is 
proposed where the decomposition of the Cost objective is handled: the Cost 
objective is decomposed between Acquisition and Operational Cost. 
Therefore, the problem to be solved has three objectives: Unavailability, 
Acquisition Cost and Operational Cost. The results when this approach is 
considered and a comparison with the two-objective approach are provided. 

 
5.5.2. Case study. 
 
The methodology is applied to a specific section of a subsystem that follows the IEC 
61850 standard. The Figure 5.66 shows the T1-1 substation design under the IEC 
61850 [214], which is a single bus, small transmission substation to transform 
energy from 220 kV. to 132 kV. Such a substation presents 5 bays (3 bay lines, 1 
for bus and 1 for transformer). The methodology is employed to optimise one line 
bay. A star topology [215] is assumed for the line bay equipment connection; this 
implies that the Merging Unit (MU), the Control Intelligent Electronic Device (Cnt. 
IED) and the Protection Intelligent Electronic Device (Prt. IED) are attached to the 
Ethernet Switch (ESW) by using individual communication cables. In addition, a 
Time Synchronisation source (TS) is connected directly to the MU [214].    
 
The Reliability Blocks Diagram is shown in the Figure 5.67. As it is shown, 
depending on the evolutionary process, a second Prt. IED may be considered as a 
redundant device. Typical preventive maintenance tasks regarding such devices 
can include, for instance, testing and calibrations of protective relays, verifying 
system telecommunications equipment and channels required for correct operation 
and functional testing [216]. To apply the methodology, detailed information 
regarding the considered devices is needed, which is like the information detailed 
for the previous studies. Such information is shown in the Table 5.46.  
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Figure 5.66:  T1-1 substation layout. 

 

 
 

Figure 5.67:  Reliability Blocks Diagram for line bay. 
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Parameter Value Source 
Life cycle or mission time 525,600 hours - 
Corrective Maintenance Cost 110 €/hour  SIANI-IST 
Preventive Maintenance Cost 100 €/hour SIANI-IST 
TS Acquisition cost 7,000 € IST [217] 
TS 𝑇𝑇𝐹𝐹𝑚𝑚𝑖𝑖𝑛𝑛 1 hour - 
TS 𝑇𝑇𝐹𝐹𝑚𝑚𝑚𝑚𝑥𝑥 525,600 hours Mission time 
TS 𝑇𝑇𝐹𝐹 𝜆𝜆 0,1x10-6 failures/hour CISCO [219] 
TS 𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛 1 hour - 
TS 𝑇𝑇𝑀𝑀𝑚𝑚𝑚𝑚𝑥𝑥 7 hours 𝑇𝑇𝑀𝑀𝜇𝜇 + 3 · 𝑇𝑇𝑀𝑀𝜎𝜎 
TS 𝑇𝑇𝑀𝑀𝜇𝜇 4 hours CISCO [219] 
TS 𝑇𝑇𝑀𝑀𝜎𝜎 1 hours (𝑇𝑇𝑀𝑀𝜇𝜇 − 𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛)/3 
TS 𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛 2,190 hours 𝑇𝑇𝑀𝑀𝑚𝑚𝑚𝑚𝑥𝑥/2 
TS 𝑇𝑇𝑀𝑀𝑚𝑚𝑚𝑚𝑥𝑥 4,380 hours NERC 2007 [220] 
TS 𝑇𝑇𝐶𝐶𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛 1 hours Round (𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛/2) 
TS 𝑇𝑇𝐶𝐶𝑀𝑀𝑚𝑚𝑚𝑚𝑥𝑥 4 hours Round (𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛/2) 
MU Acquisition cost 3,500 € IST [217] 
MU 𝑇𝑇𝐹𝐹𝑚𝑚𝑖𝑖𝑛𝑛 1 hour - 
MU 𝑇𝑇𝐹𝐹𝑚𝑚𝑚𝑚𝑥𝑥 525,600 hours Mission time 
MU 𝑇𝑇𝐹𝐹 𝜆𝜆 6,0047x10-6 failures/hour Scheer and Dolezilek [218] 
MU 𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛 2 hours - 
MU 𝑇𝑇𝑀𝑀𝑚𝑚𝑚𝑚𝑥𝑥 14 hours 𝑇𝑇𝑀𝑀𝜇𝜇 + 3 · 𝑇𝑇𝑀𝑀𝜎𝜎 
MU 𝑇𝑇𝑀𝑀𝜇𝜇 8 hours Scheer and Dolezilek [218] 
MU 𝑇𝑇𝑀𝑀𝜎𝜎 2 hours (𝑇𝑇𝑀𝑀𝜇𝜇 − 𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛)/3 
MU 𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛 2,190 hours 𝑇𝑇𝑀𝑀𝑚𝑚𝑚𝑚𝑥𝑥/2 
MU 𝑇𝑇𝑀𝑀𝑚𝑚𝑚𝑚𝑥𝑥 4,380 hours NERC 2007 [220] 
MU 𝑇𝑇𝐶𝐶𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛 1 hours Round (𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛/2) 
MU 𝑇𝑇𝐶𝐶𝑀𝑀𝑚𝑚𝑚𝑚𝑥𝑥 7 hours Round (𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛/2) 
Cnt.IED Acquisition cost 3,537.50 € IST [217] 
Cnt.IED 𝑇𝑇𝐹𝐹𝑚𝑚𝑖𝑖𝑛𝑛 1 hour - 
Cnt.IED 𝑇𝑇𝐹𝐹𝑚𝑚𝑚𝑚𝑥𝑥 525,600 hours Mission time 
Cnt.IED 𝑇𝑇𝐹𝐹 𝜆𝜆 6,0047x10-6 failures/hour Scheer and Dolezilek [218] 
Cnt.IED 𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛 2 hours - 
Cnt.IED 𝑇𝑇𝑀𝑀𝑚𝑚𝑚𝑚𝑥𝑥 14 hours 𝑇𝑇𝑀𝑀𝜇𝜇 + 3 · 𝑇𝑇𝑀𝑀𝜎𝜎 
Cnt.IED 𝑇𝑇𝑀𝑀𝜇𝜇 8 hours Scheer and Dolezilek [218] 
Cnt.IED 𝑇𝑇𝑀𝑀𝜎𝜎 2 hours (𝑇𝑇𝑀𝑀𝜇𝜇 − 𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛)/3 
Cnt.IED 𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛 2,190 hours 𝑇𝑇𝑀𝑀𝑚𝑚𝑚𝑚𝑥𝑥/2 
Cnt.IED 𝑇𝑇𝑀𝑀𝑚𝑚𝑚𝑚𝑥𝑥 4,380 hours NERC 2007 [220] 
Cnt.IED 𝑇𝑇𝐶𝐶𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛 1 hours Round (𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛/2) 
Cnt.IED 𝑇𝑇𝐶𝐶𝑀𝑀𝑚𝑚𝑚𝑚𝑥𝑥 7 hours Round (𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛/2) 
ESW Acquisition cost 2,600 € IST [217] 
ESW 𝑇𝑇𝐹𝐹𝑚𝑚𝑖𝑖𝑛𝑛 1 hour - 
ESW 𝑇𝑇𝐹𝐹𝑚𝑚𝑚𝑚𝑥𝑥 525,600 hours Mission time 
ESW 𝑇𝑇𝐹𝐹 𝜆𝜆 9,9265x10-6 failures/hour Scheer and Dolezilek [218] 
ESW 𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛 2 hours - 
ESW 𝑇𝑇𝑀𝑀𝑚𝑚𝑚𝑚𝑥𝑥 14 hours 𝑇𝑇𝑀𝑀𝜇𝜇 + 3 · 𝑇𝑇𝑀𝑀𝜎𝜎 
ESW 𝑇𝑇𝑀𝑀𝜇𝜇 8 hours Scheer and Dolezilek [218] 
ESW 𝑇𝑇𝑀𝑀𝜎𝜎 2 hours (𝑇𝑇𝑀𝑀𝜇𝜇 − 𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛)/3 
ESW 𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛 2,190 hours 𝑇𝑇𝑀𝑀𝑚𝑚𝑚𝑚𝑥𝑥/2 
ESW 𝑇𝑇𝑀𝑀𝑚𝑚𝑚𝑚𝑥𝑥 4,380 hours NERC 2007 [220] 
ESW 𝑇𝑇𝐶𝐶𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛 1 hours Round (𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛/2) 
ESW 𝑇𝑇𝐶𝐶𝑀𝑀𝑚𝑚𝑚𝑚𝑥𝑥 7 hours Round (𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛/2) 
Crt.IED Acquisition cost 3,537.50 € IST [217] 
Crt.IED 𝑇𝑇𝐹𝐹𝑚𝑚𝑖𝑖𝑛𝑛 1 hour - 
Crt.IED 𝑇𝑇𝐹𝐹𝑚𝑚𝑚𝑚𝑥𝑥 525,600 hours Mission time 
Crt.IED 𝑇𝑇𝐹𝐹 𝜆𝜆 6,0047x10-6 failures/hour Scheer and Dolezilek [218] 
Crt.IED 𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛 2 hours - 
Crt.IED 𝑇𝑇𝑀𝑀𝑚𝑚𝑚𝑚𝑥𝑥 14 hours 𝑇𝑇𝑀𝑀𝜇𝜇 + 3 · 𝑇𝑇𝑀𝑀𝜎𝜎 
Crt.IED 𝑇𝑇𝑀𝑀𝜇𝜇 8 hours Scheer and Dolezilek [218] 
Crt.IED 𝑇𝑇𝑀𝑀𝜎𝜎 2 hours (𝑇𝑇𝑀𝑀𝜇𝜇 − 𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛)/3 
Crt.IED 𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛 2,190 hours 𝑇𝑇𝑀𝑀𝑚𝑚𝑚𝑚𝑥𝑥/2 
Crt.IED 𝑇𝑇𝑀𝑀𝑚𝑚𝑚𝑚𝑥𝑥 4,380 hours NERC 2007 [220] 
Crt.IED 𝑇𝑇𝐶𝐶𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛 1 hours Round (𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛/2) 
Crt.IED 𝑇𝑇𝐶𝐶𝑀𝑀𝑚𝑚𝑚𝑚𝑥𝑥 7 hours Round (𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛/2) 

 
 Reliability and cost data. 
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The life cycle or mission time considered was 525,600 hours. The Costs were 
supplied by Instituto Superior Técnico (IST) [217] and Instituto Universitario de 
Sistemas Inteligentes y Aplicaciones Numéricas en Ingeniería (SIANI), from 
Universidade de Lisboa and Universidad de Las Palmas de Gran Canaria, 
respectively. The failure rates were achieved from studies performed by Scheer and 
Dolezilek [218] and CISCO [219]. The mean for the time to repair (𝑇𝑇𝑀𝑀𝜇𝜇) were defined 
from CISCO [219] and Kanabar and Sidhu [214]. 𝑇𝑇𝐹𝐹𝑚𝑚𝑖𝑖𝑛𝑛 was taken as 1 hour and 
𝑇𝑇𝐹𝐹𝑚𝑚𝑚𝑚𝑥𝑥 was taken as the life cycle or mission time, however, due to the methodology, 
𝑇𝑇𝑀𝑀𝑚𝑚𝑚𝑚𝑥𝑥 limits 𝑇𝑇𝐹𝐹𝑚𝑚𝑚𝑚𝑥𝑥 because the operational time taken into account is the smaller 
one. 𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛 was set at 1 hour for the TS and 2 hours for the rest of devices, attending 
to data sources. It is considered that the time to repair follows a normal distribution 
with 𝜇𝜇 as mean, so 𝑇𝑇𝑀𝑀𝜎𝜎 was set by using a mathematical relationship. As 99.7% of 
values from a normal distribution fall within the interval 𝜇𝜇 ±  3𝜎𝜎, so this consideration 
was considered to define both 𝑇𝑇𝑀𝑀𝜎𝜎 and 𝑇𝑇𝑀𝑀𝑚𝑚𝑚𝑚𝑥𝑥. 𝑇𝑇𝑀𝑀𝑚𝑚𝑚𝑚𝑥𝑥 was set to 6 months as it is 
claimed by NERC 2007 [220] for the minimal interval and the middle of such a 
quantity was set to 𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛. Finally, 𝑇𝑇𝐶𝐶𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛 and 𝑇𝑇𝐶𝐶𝑀𝑀𝑚𝑚𝑚𝑚𝑥𝑥 were set to the middle of 
𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛 and 𝑇𝑇𝑀𝑀𝑚𝑚𝑚𝑚𝑥𝑥, respectively. In this case: 

• The optimum period to start a preventive maintenance task for each device 
must be established, and 

• Including a Prt. IED as a redundant component must be decided. To do that, 
design alternatives must be evaluated. Considering the integration of a 
redundant device will enhance the system Availability. However, it will get 
worse both the Operational and the Acquisition Cost. 

 
Both real and binary encoding are explored so two codifications for the 
chromosomes are considered: 

• Real encoding: Each individual of the population is built by employing a real 
numbers string with values between 0 and 1. Such a string is codified as [𝑃𝑃1 
𝑀𝑀1 𝑀𝑀2 𝑀𝑀3 𝑀𝑀4 𝑀𝑀5 𝑀𝑀6], where the presence of a redundant Prt. IED is denoted 
by the design decision variable 𝑃𝑃1 and the optimum time to start a preventive 
maintenance task for each device is denoted by the maintenance decision 
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variables 𝑀𝑀1 to 𝑀𝑀6. Nevertheless, in order to compute the objective functions, 
they must be converted: 

o The decision variable 𝑃𝑃1  is rounded at the nearest integer, so the 
value 1 implies that the device is included in the design and the value 
0 implies the opposite. 

o The decision variables 𝑀𝑀1 to 𝑀𝑀6 are scaled by using the Equation 5.9, 
which was presented as the Equation 4.5 in the Chapter IV, where 
𝑇𝑇𝑀𝑀𝑖𝑖  is the true value of the time to start a scheduled preventive 
maintenance task for the 𝑖𝑖-th line bay device, 𝑀𝑀𝑖𝑖  is the value of the 
corresponding decision variable regarding the 𝑖𝑖-th system device and 
finally, 𝑇𝑇𝑀𝑀𝑚𝑚𝑚𝑚𝑥𝑥𝑖𝑖 and 𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛𝑖𝑖 are the limit values for the parameter 𝑇𝑇𝑀𝑀 

for the 𝑖𝑖-th line bay device, when 1 ≤  𝑖𝑖 ≤  6. 
 

𝑇𝑇𝑀𝑀𝑖𝑖 = 𝑟𝑟𝑜𝑜𝑢𝑢𝑛𝑛𝑑𝑑 (𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛𝑖𝑖 + 𝑀𝑀𝑖𝑖 · �𝑇𝑇𝑀𝑀𝑚𝑚𝑚𝑚𝑥𝑥𝑖𝑖 − 𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛𝑖𝑖�) (5.9) 

 
• Binary encoding: Each individual of the population is built by employing a 

binary numbers string with value among 0 and 1. The bits number of such a 
string is 73 and they are as follows: 

o The decision variable 𝑃𝑃1 denotes the presence of a redundant Prt. 
IED. The value 1 implies that the device is included in the design and 
the value 0 implies the opposite. 

o The decision variables 𝑀𝑀1 to 𝑀𝑀12 denote the optimum time to start a 
scheduled preventive maintenance task regarding the device TS. A 
binary scale to represent numbers from its 𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛  to its 𝑇𝑇𝑀𝑀𝑚𝑚𝑚𝑚𝑥𝑥  is 
needed in order to achieve the value for its 𝑇𝑇𝑀𝑀. 𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛𝑇𝑇𝑇𝑇 and 𝑇𝑇𝑀𝑀𝑚𝑚𝑚𝑚𝑥𝑥𝑇𝑇𝑇𝑇 

have values of 2,190 hours and 4,380 hours respectively. Therefore, 
4,380 - 2,190 = 2,190 steps are needed where the step zero 
represents 2,190 hours and the step 2,189 represents 4,380 hours. 
To cover 2,190 steps, the binary scale must satisfy that 2𝑛𝑛 > 2,190, 
where 𝑛𝑛 is the number of bits. Thus, 12 bits are needed in this case. 
Since 2,190 steps are needed and 212 = 4,096 steps are available, an 
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equivalent relationship must be used. Each step regarding the scale 
of 4,096 steps considers 2,190 / 4,096 = 0.53466796875 steps in 
relation to the scale of 2,190 steps. Therefore, in order to achieve the 
true time to start a scheduled preventive maintenance task, employing 
the transformation that is shown by the Equation 5.10 is needed. 

 
𝑇𝑇𝑀𝑀𝑖𝑖 = 𝑟𝑟𝑜𝑜𝑢𝑢𝑛𝑛𝑑𝑑 (𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛𝑖𝑖 + 𝑀𝑀𝑖𝑖 · (0.53466796875)) (5.10) 

  
o The decision variables 𝑀𝑀13 to 𝑀𝑀24, 𝑀𝑀25 to 𝑀𝑀36, 𝑀𝑀37 to 𝑀𝑀48, 𝑀𝑀49 to 𝑀𝑀60 

and 𝑀𝑀61  to 𝑀𝑀72  denote the optimum times to start a scheduled 
preventive maintenance task regarding the devices MU, Cnt. IED, 
ESW and both Prt. IEDs, respectively. The procedure described 
above for the TS must be followed to achieve the true value for the 
time to start a scheduled preventive maintenance task regarding such 
devices. However, the respective 𝑇𝑇𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛  and 𝑇𝑇𝑀𝑀𝑚𝑚𝑚𝑚𝑥𝑥  in relation to 
such devices must be used to achieve their 𝑇𝑇𝑀𝑀. 

 
The set of parameters and the used Multi-objective Algorithms are shown in the 
Table 5.47. They were previously defined in the present Chapter of the research. 
 

Method Encoding PrM disM PrC disC 

SMS-EMOA Real 
0.5 

20 1 20 1.0 
1.5 

SMS-EMOA Binary 
0.5 

- 1 - 1.0 
1.5 

NSGA-II Real 
0.5 

20 1 20 1.0 
1.5 

NSGA-II Binary 
0.5 

- 1 - 1.0 
1.5 

 
 Parameters to configure the experiments. 

 
The population size of 150 individuals was used. Six different configurations of the 
two methods were simulated and 21 executions per configuration were conducted 
for statistical purposes. A total of 10,000,000 evaluations of the objective functions 
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was employed as a stopping criterion. In order to normalise the value of the objective 
functions, scale factors were employed. When the two-objective problem was 
considered: 

• The Cost was computed by considering a scale factor of 740,000 €. 
• The Unavailability of the system was computed by considering a scale factor 

of 0.01. 
 
When the three-objective problem was considered: 

• The Acquisition Cost was computed by using a scale factor of 24,000 €. 
• The Operational Cost was computed by considering a scale factor of 740,000 

€. 
• The Unavailability of the system was computed by employing a scale factor 

of 0.01. 
 
Finally, depending on the number of objectives to consider, a two- or three-
dimensional reference point must be chosen in order to compute the Hypervolume 
indicator. Such points must cover the points limited by the scale factors, which 
normalise the values of the objectives up to a maximum value of a unit. The 
reference points were set to (2,2) and (2,2,2) respectively. The open-source 
Software Platform PlatEMO (programmed in MATLAB) was used again to optimise 
the case study. 
 
5.5.3. Results and discussion. 
 
For the optimisation process, a High-Performance Computer was employed. In this 
case, six calculation nodes and one front-end node were employed. Each node has 
two processors Intel Xeon E5645 Westmere-EP with twelve cores each and 48 GB 
of RAM. After achieving the results, useful information is provided: 

• Data regarding the computational process is given in order to show the 
hardness of the problem and the computational cost. Such information 
consists of the time taken for 21 executions of the 3 configurations related to 
each method and encoding. 
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• Regarding each configuration, the Hypervolume indicator average value 
evolution (in twenty-one executions) is displayed. 

• Box plots are shown for the Hypervolume values distribution at the end of the 
process. 

• The values of several measures achieved at the end of the process are 
displayed. Such measures are the average, median, minimum, maximum 
and standard deviation values for the Hypervolume indicator. 

• A meticulous hypothesis test is conducted in order to find out significant 
differences between the performance of the employed methods and their 
configurations. The Friedman’s test is used to detect differences between the 
achieved results and rejecting the null hypothesis (𝐻𝐻0) in such a case. Once 
the differences have been detected, in order to find the concrete pairwise 
comparisons that produce such differences, a post-hoc test is conducted. 
The p-value denotes the lowest significant value that can conduct to reject 
𝐻𝐻0. The p-value supplies information regarding the significance of a statistical 
hypothesis test, and regarding how much significant it is: The evidence to 
reject 𝐻𝐻0 appears when the p-value is smaller than 0.05. The procedure to 
conduct the pairwise comparisons followed in this paper was described by 
Benavoli et al. [210]. 

• Finally, for the accumulated best non-dominated solutions, the Hypervolume 
is computed [211]. Such solutions are the best-balanced solutions between 
the objectives. 

 
5.5.3.1. Two-objective problem results. 
 
The average time consumed by each execution of the method was 4,336 minutes 
(3 days and 16 minutes). The whole optimisation process (21 executions of 12 
configurations) implies a sequential time of 1,092,743 minutes (2 years, 28 days and 
20 hours, approximately). Such a computational cost brings into the light how 
important the use of the High-Performance Computer is, which allows parallel 
processes. In the Table 5.48 (columns 1 to 4), the relationship between the methods 
and the configuration identifiers is shown. 
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Identifier Method Encoding Mutation Average Median Max. Min. St. Deviation Av. Rank 
ID1 NSGA-II Real 0.5 3.4404 3.4340 3.5192 3.4044 0.0258 7.5714 
ID2 NSGA-II Real 1.0 3.4495 3.4456 3.4898 3.4141 0.0192 4.7619 
ID3 NSGA-II Real 1.5 3.4439 3.4356 3.4786 3.4160 0.0189 6.0952 
ID4 NSGA-II Binary 0.5 3.4393 3.4428 3.4645 3.4107 0.0126 6.1428 
ID5 NSGA-II Binary 1.0 3.4397 3.4370 3.4746 3.4119 0.0149 6.8095 
ID6 NSGA-II Binary 1.5 3.4332 3.4340 3.4674 3.4064 0.0149 7.8571 
ID7 SMS-EMOA Real 0.5 3.4471 3.4474 3.4800 3.4166 0.0150 5.3333 
ID8 SMS-EMOA Real 1.0 3.4391 3.4364 3.4812 3.4125 0.0163 6.7142 
ID9 SMS-EMOA Real 1.5 3.4389 3.4421 3.4635 3.4111 0.0144 6.6666 
ID10 SMS-EMOA Binary 0.5 3.4414 3.4368 3.4916 3.4075 0.0213 7.0952 
ID11 SMS-EMOA Binary 1.0 3.4413 3.4391 3.4824 3.4095 0.0193 6.4761 
ID12 SMS-EMOA Binary 1.5 3.4401 3.4373 3.4747 3.4215 0.0145 6.4761 

p-Value 0.2787 
 

 Id’s, config., Hyperv. statistics and statistical test (2-obj. app.). 
 

The Figure 5.68 shows the Hypervolume average values evolution regarding the 
number of evaluations. The configuration with identifier ID2 (NSGA-II, real encoding 
and 1.0 gene per chromosome as a mutation rate) presents the best Hypervolume 
average value.  
 
 

 
 

Figure 5.68:  Hypervolume average vs. evaluations (2-obj. app.). 
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In the Figure 5.69, box plots of the Hypervolume values distribution are shown. Such 
box plots summarise the statistical information supplied by the Table 5.48 (columns 
5 to 9). 
 

 
 

Figure 5.69:  Hypervolume box plots, identifiers as in Table 5.48 (2-obj. app.). 

 
It can be seen that the configuration ID2 (NSGA-II, real encoding and 1 gene per 
chromosome as a mutation rate) achieves the best Hypervolume average value, the 
configuration ID7 (SMS-EMOA, real encoding and 0.5 gene per chromosome as a 
mutation rate) achieves the best Hypervolume median value, the configuration ID1 
(NSGA-II, real encoding and 0.5 gene per chromosome as a mutation rate) achieves 
the best Hypervolume maximum value, the configuration ID9 (SMS-EMOA, real 
encoding and 1.5 gene per chromosome as a mutation rate) achieves the best 
Hypervolume minimum value and the configuration ID4 (NSGA-II, binary encoding 
and 0.5 gene per chromosome as a mutation rate) achieves the lowest standard 
deviation value. 
 
A statistical hypothesis test was conducted in order to conclude if any configuration 
reaches a better performance. The Friedman’s test was employed to computed the 
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average ranks, which are shown in the Table 5.48 (column 10). The configuration 
ID2 (NSGA-II, real encoding and 1.0 gene per chromosome as a mutation rate) 
reaches the best average rank (the average rank must be as low as possible when 
the problem consists of maximising the Hypervolume). However, the p-value 
computed (0.2787) does not allow rejecting 𝐻𝐻0 (p-value > 0.05). Therefore, it is not 
possible to conclude that any configuration performs better than any other. 
 
The Figure 5.70 shows the set of non-dominated solutions achieved regarding all 
executions, configurations and methods. The detail of such solutions is shown in the 
Table 5.49, where they are ordered from the left to the right side of the figure 
(solutions with worse Unavailability are firstly ordered). The Unavailability (Q), the 
Cost and the optimum times to start a scheduled preventive maintenance task 
regarding each device are displayed in such a table. The solutions without a 
redundant Prt. IED (marked as O in the Figure 5.70 and with identifiers Id1 and Id2 
in the Table 5.70) are the more economic and less reliable solutions. Conversely, 
the solutions with a redundant Prt. IED (marked as × in the Figure 5.70 and with 
identifiers Id3 to Id8 in the Table 5.49) are the more expensive and reliable solutions, 
as it is expected. It can be seen that the solutions Id1 and Id2 do not present values 
regarding the redundant Prt. IED due to the fact that such a device is not considered 
for the design. As it was said above, these solutions are more economic and less 
reliable than the rest because they do not contain a redundant device. On the other 
hand, speaking in general, the times to start a preventive maintenance task present 
the trend of being set close to the maximum value for such a variable, which is 4,380 
hours (see 𝑇𝑇𝑀𝑀𝑚𝑚𝑚𝑚𝑥𝑥  values from the Table 5.46). This is due to the fact that the 
optimisers work in order to maximise the time between preventive maintenance 
tasks as much as possible. However, some times to start a preventive maintenance 
task are further from such a value (for instance, in the Table 5.49, it can be seen 
that the solution 8 presents a value of 2,805 for the main Prt. IED), which implies 
more preventive maintenance tasks. In this case, the more maintenance, the more 
expensive and available the solution, as it is expected. Finally, the front of solutions 
presents an accumulated Hypervolume value (computed as it was described by 
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Fonseca et al [211]) of 3.5239. As it is expected, such a value is higher than 3.5192, 
the maximum value that is displayed in the Table 5.48. 
 

 
 

Figure 5.70:  Accumulated non-dominated front (2-obj. app.). 

 
Id Q Cost [€] TS [h] MU [h] Cnt. IED [h] ESW [h] Prt. IED [h] Prt. IED [h] 
1 0.001197 112750.00 4369 4350 4298 4342 4322 0 
2 0.001189 152022.50 4353 4380 4173 4377 4380 0 
3 0.001022 156712.50 4372 4282 4352 4239 4235 3752 
4 0.000982 156762.50 4380 4333 4369 4321 4317 3306 
5 0.000980 166782.50 4349 4360 4337 4285 4022 3250 
6 0.000892 186565.00 4380 4380  4082 4195 4271 3761 
7 0.000877 195675.00 4376 4245 4309 4376 4183 4129 
8 0.000759 232682.50 4349 4377  4380 4380 2805 3279 

 
  Non-dominated solutions (2-obj. app.). 

 
5.5.3.2. Three-objective problem results. 
 
The average time consumed by each execution of the method was 5,945 minutes 
(4 days, 3 hours and 5 minutes). The whole optimisation process (21 executions of 
12 configurations) implies a sequential time of 1,498,190 minutes (2 years, 10 
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months and 6 days, approximately). In the Table 5.50 (columns 1 to 4), the 
relationship between the methods and the configuration identifiers is shown. 
 

Identifier Method Encoding Mutation Average Median Max. Min. St. Deviation Av. Rank 
ID1 NSGA-II Real 0.5 4.0442 4.0420 4.0862 3.9998 0.0229 6.2857 
ID2 NSGA-II Real 1.0 4.0422 4.0394 4.0856 4.0144 0.0167 6.4761 
ID3 NSGA-II Real 1.5 4.0377 4.0372 4.0613 4.0066 0.0158 7.6190 
ID4 NSGA-II Binary 0.5 4.0473 4.0445 4.0716 4.0184 0.0151 5.4285 
ID5 NSGA-II Binary 1.0 4.0453 4.0413 4.0948 4.0053 0.0228 5.9523 
ID6 NSGA-II Binary 1.5 4.0436 4.0430 4.1269 4.0002 0.0265 6.4761 
ID7 SMS-EMOA Real 0.5 4.0527 4.0480 4.1046 4.0160 0.0259 5.3809 
ID8 SMS-EMOA Real 1.0 4.0531 4.0512 4.1035 4.0255 0.0191 4.9523 
ID9 SMS-EMOA Real 1.5 4.0487 4.0472 4.0892 4.0177 0.0192 5.8095 
ID10 SMS-EMOA Binary 0.5 4.0382 4.0383 4.1104 4.0056 0.0261 7.5714 
ID11 SMS-EMOA Binary 1.0 4.0373 4.0352 4.0704 4.0168 0.0147 7.3809 
ID12 SMS-EMOA Binary 1.5 4.0301 4.0308 4.0603 4.0069 0.0148 8.6666 

p-Value 0.0260 
 

 Id’s, config., Hyperv. statistics and statistical test (3-obj. app.). 

 
The Figure 5.71 shows the Hypervolume average values evolution regarding the 
number of evaluations. The configuration with identifier ID8 (SMS-EMOA, real 
encoding and 1.0 gene per chromosome as a mutation rate) reaches the best 
Hypervolume average value.  
 

 
 

Figure 5.71:  Hypervolume average vs. evaluations (3-obj. app.). 
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In the Figure 5.72, box plots of the Hypervolume values distribution are shown. Such 
box plots summarise the statistical information included by the Table 5.50 (columns 
5 to 9). It can be seen that the configuration ID8 (SMS-EMOA, real encoding and 
1.0 gene per chromosome as a mutation rate) achieves the best Hypervolume 
Average, Median and Minimum values, the configuration ID6 (NSGA-II, binary 
encoding and 1.5 gene per chromosome as a mutation rate) achieves the best 
Hypervolume Maximum value and the configuration ID11 (SMS-EMOA, binary 
encoding and 1.0 gene per chromosome as a mutation rate) achieves the lowest 
Standard Deviation value. 
 

 
 

Figure 5.72:  Hypervolume box plots, id’s as in the Table 5.50 (3-obj. app.). 

 
A statistical hypothesis test was conducted to conclude if any configuration reaches 
a better performance. The Friedman’s test was employed to compute the average 
ranks, which are shown in the Table 5.50 (column 10). The configuration ID8 (SMS-
EMOA, real encoding and 1.0 gene per chromosome as a mutation rate) reaches 
the best average rank. However, the p-value computed (0.0260) allows rejecting 𝐻𝐻0 
(p-value < 0.05). Therefore, it is possible to conclude that any configuration performs 
better than any other. The Wilcoxon signed-rank test is used in order to curry out 
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the pairwise comparisons. In the Table 5.51, the results of the Wilcoxon signed-rank 
test are shown, where the configuration ID8 was compared with the rest of 
configurations. Such a configuration performs better than the configurations ID3 
(NSGA-II, real encoding and 1.5 gene per chromosome as a mutation rate), ID11 
(SMS-EMOA, binary encoding and 1.0 gene per chromosome as a mutation rate) 
and ID12 (SMS-EMOA, binary encoding and 1.5 gene per chromosome as a 
mutation rate). 
 

Comparison p-value Conclusion 
ID8 - ID12 0.0017 < 0.05 The null hypothesis is rejected 
ID8 - ID11 0.0057 < 0.05 The null hypothesis is rejected 
ID3 - ID8 0.0117 < 0.05 The null hypothesis is rejected 
ID10 - ID8 0.0582 > 0.05 The null hypothesis is not rejected 
ID2 - ID8 0.0680 > 0.05 The null hypothesis is not rejected 
ID1 - ID8 0.2305 > 0.05 The null hypothesis is not rejected 
ID8 - ID9 0.2586 > 0.05 The null hypothesis is not rejected 
ID6 - ID8 0.2736 > 0.05 The null hypothesis is not rejected 
ID5 - ID8 0.3392 > 0.05 The null hypothesis is not rejected 
ID4 - ID8 0.4342 > 0.05 The null hypothesis is not rejected 
ID7 - ID8 0.7677 > 0.05 The null hypothesis is not rejected 

 
 P-values from Wilcoxon signed rank test (3-obj. app.). 

 
The Figure 5.73 shows the set of achieved non-dominated solutions regarding all 
executions, configurations and methods. The detail of such solutions is shown in the 
Table 5.52, where they are ordered from the left to the right side of the figure 
(solutions with worse Unavailability are firstly ordered). The Unavailability (Q), the 
Cost and the optimum times to start a scheduled preventive maintenance task 
regarding each device are displayed in such a table. The solutions without a 
redundant Prt. IED (marked as O in the Figure 5.73 and with identifiers Id1 to Id3 in 
the Table 5.52) are the more economic and less reliable solutions. Conversely, the 
solutions with a redundant Prt. IED (marked as × in the Figure 5.73 and with 
identifiers Id4 to Id11 in the Table 5.52) are the more expensive and reliable 
solutions, as it is expected. It can be seen that the solutions Id1 to Id3 do not present 
values regarding the redundant Prt. IED because such a device is not included for 
the design. On the other hand, speaking in general, the times to start a preventive 
maintenance task present the trend of being set close to the maximum value for 
such a variable, which is 4,380 hours (see 𝑇𝑇𝑀𝑀𝑚𝑚𝑚𝑚𝑥𝑥 values from the Table 5.46). This 
is because the optimisers try to adjust the value as much as possible.  
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Figure 5.73:  Accumulated non-dominated front (3-obj. app.). 

 
Id Q O. Cost [€] A. Cost [€] TS [h] MU [h] Cnt. IED [h] ESW [h] Prt. IED [h] Prt. IED [h] 
1 0.001256 92645.00 20175.00 4295 3937 4270 4140 4174 0 
2 0.001242 98637.50 20175.00 4302 4303 4360 4355 4050 0 
3 0.001145 124582.50 20175.00 4364 4225 4088 4364 4378 0 
4 0.001035 130177.50 23712.50 4282 4238 4294 3974 4263 3989 
5 0.000997 139962.50 23712.50 4316 4358 4351 4328 3953 4337 
6 0.000995 153815.00 23712.50 4380 4378 4279 4227 4214 4344 
7 0.000951 157527.50 23712.50 4355 4369 4234 4369 4374 3726 
8 0.000938 158160.00 23712.50 4275 4275 4364 4260 4364 4178 
9 0.000780 167982.50 23712.50 3758 4221 4221 4365 4336 4317 
10 0.000763 206047.50 23712.50 4380 4380 4380 4357 4122 3537 
11 0.000744 274085.00 23712.50 4380 4380 4380 4380 3946 3889 

 
  Non-dominated solutions (3-obj. app.). 

 
Finally, the front of solutions presents an accumulated Hypervolume value 
(computed as it was described by Fonseca et. all [211]) of 4.1702. As it is expected, 
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such a value is higher than 4.1269, the maximum value that is displayed in the Table 
5.50. 
 
5.5.3.3. Discussion regarding the results from both approaches. 
 
The Sections 5.5.3.1 and 5.5.3.2 show the results of solving the case study when 
two (Unavailability and Cost, which includes both Acquisition and Operational Costs) 
and three objectives (Unavailability, Acquisition Cost and Operational Cost) were 
considered. The robustness of considering the two-objective approach is brought 
into the light since non-significant statistical differences were found among the 
configurations. Nevertheless, significant statistical differences were found when the 
three-objective approach was employed. Such a situation claims that the problem 
to be solved is harder. In this case, the order supplied by the Friedman’s test claims 
that the SMS-EMOA method with real encoding reaches a better position than the 
NSGA-II method with real encoding. Furthermore, the SMS-EMOA method with real 
encoding and 0.5 and 1 gene per chromosome as mutation probabilities achieved 
better positions than the NSGA-II method with binary encoding. Finally, the SMS-
EMOA method with real encoding achieves a better position than such a method 
with binary encoding. Therefore, the SMS-EMOA with real encoding and 0.5 or 1 
gene per chromosome as mutation rates could be recommended to solve this 
problem. 
 
The Table 5.48 shows the configurations that present the best average ranks from 
the Friedman’s test point of view, which are ID2 (NSGA-II, real encoding and 1.0 
gene per chromosome as a mutation rate) and ID7 (SMS-EMOA, real encoding and 
0.5 gene per chromosome as a mutation rate) when two objectives were considered. 
Furthermore, the Table 5.50 shows the configurations that present the best average 
ranks from the Friedman’s test point of view, which are ID8 (SMS-EMOA, real 
encoding and 1.0 gene per chromosome as a mutation rate) and ID7 (SMS-EMOA, 
real encoding and 0.5 gene per chromosome as a mutation rate) when three 
objectives were considered. All of them are considered to compare the performance 
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between the two-objective problem and the multi-objectivised three-objective 
problem. 
 
5.5.3.4. Comparing the achieved solutions. 
 
In order to compare the solutions regarding the two-objective problem and the 
solutions in relation to the three-objective problem, this one must be transformed. 
Such a transformation consists of adding the Operational Cost and the Acquisition 
Cost before computing the Hypervolume. In the Table 5.53 (columns 1 to 5), the 
relationship between methods and configuration identifiers is shown. 
 

Id Objectives Method Encoding Mutation Av. Med. Max. Min. St. D. Rank 
ID1 2 NSGA-II Real 1.0 3.4495 3.4456 3.4898 3.4141 0.0192 2.5238 
ID2 2 SMSEMOA Real 0.5 3.4471 3.4474 3.4800 3.4166 0.0150 2.7142 
ID3 3 SMSEMOA Real 1.0 3.4517 3.4513 3.4965 3.4274 0.0166 2.3809 
ID4 3 SMSEMOA Real 0.5 3.4513 3.4470 3.4965 3.4191 0.0225 2.3810 
p-Value 0.8150 

 
 Id’s, conf. and Hypervolume statistics (2- and 3- obj. app.). 

 
On the other side, in the Figure 5.74, the Hypervolume average values evolution 
versus the number of evaluations is displayed. The configuration with identifier ID3 
(SMS-EMOA, real encoding and 1 gene per chromosome as a mutation rate) 
reaches the best Hypervolume average value. 
 
In the Figure 5.75, box plots of the Hypervolume values distribution are shown. Such 
box plots summarise the statistical information included in the Table 5.53 (columns 
6 to 10). It can be seen that the configuration ID3 (SMS-EMOA, real encoding and 
1.0 gene per chromosome as a mutation rate) achieves the best Hypervolume 
average (Av.), median (Med.), maximum (Max.) and minimum (Min.) values. 
However, the configuration ID2 (SMS-EMOA, real encoding and 0.5 gene per 
chromosome as a mutation rate) reaches the smallest standard deviation (St. D.) 
value. 
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Figure 5.74:  Hypervolume Average vs. evaluations (2- and 3- obj. app.). 

 

 
 

Figure 5.75:  Hyperv. box plots, id’s as in the Table 5.53 (2- and 3- obj. app.). 

 
A statistical hypothesis test was carried out to conclude if any configuration reaches 
a better performance. The Friedman’s test was employed to compute the average 
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ranks, which are shown in the Table 5.53 (column 11). The configuration ID3 (SMS-
EMOA, real encoding and 1 gene per chromosome as a mutation rate) reaches the 
best average rank. However, the p-value computed (0.8150) does not allow 
rejecting 𝐻𝐻0  (p-value > 0.05). Therefore, it is not possible to conclude that any 
configuration performs better than any other. Nevertheless, the three-objective 
problem was better ordered regarding the Friedman’s test. Thus, using the three-
objective approach and the SMS-EMOA method with real encoding could be 
recommend in order to solve the considered problem. 
 
The non-dominated solutions achieved at the end of the process for all 
configurations and methods and from both two and three-objective approaches are 
shown in the Figure 5.76. It can be seen both solutions from the two-objective 
approach (marked as O) and solutions from the three-objective approach (marked 
as ×). The decision makers should decide the preferable design by considering their 
Unavailability-Cost requirements. The front of solutions presents an accumulated 
Hypervolume value of 3.5539. As it is expected, the value is higher than 3.4965, the 
highest value that is displayed in the Table 5.53. 
 

 
 

Figure 5.76:  Hyperv. box plots, id’s as in the Table 5.53 (2- and 3- obj. app.). 
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6. CONCLUSIONS AND FUTURE RESEARCH. 
 
6.1. Conclusions. 
 
In this research, coupling Multi-objective Evolutionary Algorithms and Discrete 
Event Simulation has been employed and explored in order to tackle simultaneously 
both the optimisation of systems’ design (based on a process of including automatic 
structure of components and redundant devices) and also their maintenance 
strategy (based on the implementation of periodic preventive maintenance tasks), 
whilst addressing the conflict between Availability and Cost. Coupling these 
techniques had been previously used to explore the problems separately but not 
simultaneously, at least when both the corrective and the preventive maintenance - 
consisting in achieving the optimum period of time to conduct a preventive 
maintenance task - are taken into account. The Multi-objective Evolutionary 
Algorithm gave rise to a population of individuals, each encoding one design 
alternative and one preventive maintenance strategy.  
 
Each individual represents a possible solution to the problem, where decision 
variables regarding the structural design and decision variables regarding the 
maintenance strategy coexist. Such an idea implies that decision variables with a 
different nature must be simultaneously considered by the evolutionary process so 
several transformations must be applied. On the one hand, real encoding was used 
when decision variables both with binary and integer nature for the design and 
decision variables with integer nature for the maintenance strategy coexisted. On 
the other hand, binary encoding was used when decision variables with binary 
nature for the design and decision variables with integer nature for the maintenance 
strategy coexisted. In all cases the above-mentioned transformations worked 
satisfactorily.   
 
Once the Multi-objective Evolutionary Algorithm supplies a population of individuals, 
they are employed to modify and evaluate the system’s Functionability Profile by 
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employing Discrete Event Simulation. The individuals are evolved generation after 
generation till reaching the stopping criterion.  
 
The explained process was firstly applied to a technical system in a case study in 
which the performance of five state-of-the-art Multi-objective Evolutionary 
Algorithms (SMS-EMOA, MOEA/D, MOEA/D-DE, NSGA-II and GDE3) was 
compared and a set of optimum non-dominated solutions were obtained. It can be 
concluded that using Multi-objective Evolutionary Algorithms and Discrete Event 
Simulation to address the joint optimisation of systems’ design and their 
maintenance strategy provides Availability-Cost balanced solutions to real world 
problems where data based on field experience were used. Moreover, in the solved 
case study, regarding the Multi-objective Evolutionary Algorithms, the best 
performance was found when methods based on both the Hypervolume Indicator 
(SMS-EMOA) and Pareto dominance relation (NSGA-II and GDE3) were used, 
rather than when methods based on Decomposition (MOEA/D and MOEA/DDE) 
were used. However, the operator used to create new individuals does not appear 
to have a relevant effect since methods that use Simulated Binary Crossover (SMS-
EMOA and NSGA-II) presented similar performance than methods that use 
Differential Evolution (GDE3); also, in the case of MOEA/D versus MOEA/D-DE.  
 
Once the case study was solved, the configurations with best performance were 
identified and a discussion was opened. On the one hand, the effect of sampling 
size and its minimal extreme direction was analysed, whose results enhance the 
benefits of the proposed methodology by showing the positive synergy among 
Discrete Event Simulation and Multi-objective Evolutionary Algorithms, where only 
a single simulation per individual is enough in the fitness function evaluation to attain 
very competitive results. These results are confirmed with an analysis based on the 
average values of both objective functions for each non-dominated solution of each 
compared configuration. The proposed methodology is a computationally efficient 
and robust approach (non-parameter dependent regarding the number of samples 
or the minimal search direction) versus the use of Monte Carlo simulation-based 
approaches when facing the multi-objective optimization reliability problem handled. 
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On the other hand, the economic benefits of using the methodology to determine 
the optimum structural design of the system and its maintenance strategy were 
quantified in the case study being in the estimated interval of 4-10%. 
 
Next, the proposed methodology scalability and generalisation was demonstrated 
when it was applied to two more complex applications. Both problems were 
satisfactorily solved, and insights about a proper chromosome codification regarding 
the design components were obtained from the executed experiments.  
 
Once the methodology was defined, developed, implemented, and tested both in a 
case study and in more complex systems, a deeper study was conducted. Such a 
study consisted of: Firstly, an encoding experiment to compare the performance of 
seven encoding types (real, standard binary with one-point, two-point and uniform 
crossover, and Gray code with one-point, two-point and uniform crossover), and 
secondly, an accuracy level encoding which consisted of comparing the 
performance of using standard binary encoding with accuracy levels across a range 
of time units (hours, days and weeks) with impact in the form of the length of the 
chromosome (the smaller the time unit, the bigger the chromosome). The Multi-
objective Evolutionary Algorithm used in this case was the NSGA-II method due to 
such a method previously resulted very competitive. Using the case study previously 
defined to conduct such experiments, a set of optimum non-dominated solutions 
were obtained for all cases. 
 
Regarding the encoding experiment, the two-point crossover standard binary 
encoding resulted the best ordered method from the Friedman’s test point of view 
(based on the final Hypervolume indicator distributions), although no statistically 
significant differences were observed. Regarding the accuracy experiment, the two-
point crossover standard binary encoding with the hour as a time unit resulted the 
best ordered method from the Friedman’s test point of view, although no statistically 
significant differences were observed. An important conclusion arises from this last 
experiment, which relates to flexibility regarding the time unit to schedule the 
preventive maintenance tasks. Using the hour, the day or the week as a time unit 
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does not significantly affect the performance of the configurations so, in the studied 
conditions, the preventive maintenance tasks can be planned by using weeks as a 
time unit. This allows a better range of time for planning than if the day or the hour 
are used as a time unit. 
 
Once several Multi-objective Evolutionary Algorithms, encodings and accuracy 
levels were studied, the previously presented case study is explored again but, in 
this occasion, two multi-objective approaches were considered. On the one hand, a 
two-objective approach where Availability and Cost are the evaluated objectives. On 
the other hand, a three-objective approach where Availability and Cost are the 
evaluated objectives again. However, in this case such a Cost is decomposed 
between Acquisition and Operational Cost under a multi-objectivisation approach. 
In order to find the more suitable approach, a thorough hypothesis test is conducted. 
The performance of two state-of-the-art Multi-objective Evolutionary Algorithms 
(SMS-EMOA and NSGA-II) is compared when several configurations of such 
methods are considered. Real and binary encoding are tested too. On the one hand, 
non-significant statistical differences were found when the two-objective approach 
was employed. However, the best ordered configuration was achieved when the 
SMS-EMOA method is used with binary encoding and 1 gene per chromosome as 
a mutation rate. On the other hand, no significant statistical differences were found 
when the three-objective approach was employed. However, the best ordered 
configuration was achieved when the NSGA-II method is used with real encoding 
and 1.5 gene per chromosome as a mutation rate. 
 
Next, the best configurations from both experiments were compared and significant 
statistical differences were found. Therefore, it is possible to conclude that the 
applied methodology works better when multi-objectivisation is employed. 
Furthermore, the NSGA-II method with real encoding and 1.5 gene per chromosome 
as a mutation rate resulted best ordered from the Friedman’s test point of view, and 
with the highest hypervolume indicator average, median and maximum values. 
Therefore, such a configuration and approach could be recommended in order to 
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solve the problem of achieving the optimum design alternatives and maintenance 
strategies, which supplied the best Availability-Cost balance. 
 
Finally, the use of the methodology was extended to a different engineering field in 
order to supply reliable architectural designs of Substation Communication 
Networks. A specific case study is explored by applying the methodology and the 
conclusions previously reached. Again, two multi-objective approaches were 
considered. On the one hand, a two-objective approach where Availability and Cost 
are the evaluated objectives. On the other hand, a three-objective approach where 
Availability and Cost are the evaluated objectives (in this case such a Cost is 
decomposed in Acquisition and Operational Cost under the multi-objectivisation 
approach). Applying the methodology provided Availability-Cost balanced solutions. 
In order to find the more suitable approach, a thorough hypothesis test was 
conducted. This process is applied to a section of a subsystem that follows the IEC 
61850 standard, which is a bay line of a single bus, small transmission substation 
to transform energy from 220 kV. to 132 kV. The performance of two state-of-the-
art Multi-objective Evolutionary Algorithms (SMS-EMOA and NSGA-II) was 
compared when several configurations of such methods were considered.  
 
In this case, on the one hand, non-significant statistical differences were found when 
the two-objective approach was employed. However, the best ordered configuration 
was achieved when the NSGA-II method was used with real encoding and 1 gene 
per chromosome as a mutation rate. On the other hand, significant differences were 
found when the three-objective approach was employed. The best performance was 
obtained when the SMS-EMOA method is employed with real encoding and 1 gene 
per chromosome as a mutation rate. Finally, the best configurations from both 
experiments were compared and non-significant statistical differences were found. 
However, the best order regarding the Friedman’s test point of view was achieved 
when the three-objective approach was considered. Therefore, it can be concluded 
that the methodology applied is robust due to the fact that non-significant statistical 
differences were found among using two or three objectives. However, the multi-
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objectivisation approach presented a best order regarding the Friedman’s test so a 
slight positive effect was seen.  
 
Furthermore, the SMS-EMOA method with real encoding and 1 gene per 
chromosome as a mutation rate resulted best ordered from the Friedman’s test point 
of view, and with the highest hypervolume indicator average, median, maximum and 
minimum values. Therefore, such a configuration and approach could be 
recommended in order to achieve the optimum design alternatives and maintenance 
strategies, which supplied the best Availability-Cost balance. As it can be seen, the 
methodology has been successfully extended to solve problems from a different 
field on the engineering, which is promising. 
 
6.2. Future research. 
 
Regarding the future of this research, several lines are opened: 

• The casuistry regarding the system’s Reliability that has been dealt along the 
present research was clearly defined and delimited. This considers basically 
the following aspects, which could be extended as it is commented: 

o Two states are considered for the system’s devices. A device can be 
either in operating or in recovery state. Multi-state systems could be 
considered by attending deterioration states. 

o After repairs or corrective maintenance activities, all devices recover 
the operating state as-good-as-new. Imperfect repairs could be 
considered. 

o Active redundancies are considered so the system fulfil the required 
function while opportune redundancies work. Other types of 
redundancies could be considered such as cold, warm, or hot standby 
redundancies. 

o Each device is considered like a single unit from the maintenance 
point of view. A single-unit device is a device which cannot be 
decomposed in lower maintainable levels. Multi-unit devices could be 
considered and/or several failure modes too. 
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o The preventive maintenance activities are scheduled by attending to 
the time. Such activities might be planned by attending to the age, use 
or condition. 

o The preventive maintenance tasks start immediately once a device 
does not satisfy the required function so the continuous monitorization 
of the system is considered. This circumstance could be not 
considered so testing the device’s state could be attended in order to 
initiate preventive maintenance tasks. 

o Non-dependencies among devices are considered so each device 
works isolated. Dependencies among devices could be considered. 

• Regarding the Multi-objective Evolutionary Algorithms, several state-of-the-
art methods were tested along the present research. They are considered as 
standards methods. More modern methods could be employed in order to 
compare their performances. Moreover, when the multi-objectivisation 
approach was explored, the more complex the systems, the more statistical 
difference regarding the performance was observed. It could be deeper 
explored by applying the methodology to more complex architectures. 
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