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Abstract. The development of offshore wind energy is expected to contribute signifi-
cantly to the decarbonization of the electrical energy production sector, and the number
of offshore wind farms is growing fast due to the maturity of the technology, the reduc-
tion in costs, and the increase in size and power of the turbines. Floating offshore wind
is developing fast, but offshore wind turbines (OWTs) founded to the sea floor are still
the dominant technology, with different types of support structures (monopiles, jackets,
tripods) depending on the sea depth and the conditions of the location. The dynamic prop-
erties of these support structures are a key factor in the design of the system from a civil
engineering point of view, and the distinctive features of OWTs (including the nature of
the loads and the variable geometry of the system due to the rotation of the blades and
the continuous actions of the control system) suggest that specific tools, able to adequately
model the different subsystems, should be used in structural and seismic analyses. For
this reason, input ground motion and dynamic soil-structure interaction capabilities have
been implemented in OpenFAST, an open-source nonlinear aero–hydro–servo–elastic code
for the simulation of wind turbines, in which the environmental loads and the response of
all the main elements are taken into account through specific models and modules. This
paper presents the equations of motion and the specific procedure followed to implement
input ground motion and soil-structure interaction into the SubDyn module, and presents
validation results to illustrate the applicability of the approach.
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1 INTRODUCTION

Geopolitical instabilites and military tensions with Russia, added to the current Climate
Emergency situation, show once again that Europe needs to move fast towards energy
independence based on renewable energies with the lowest possible environmental impact.
Among the renewable energy sources of these characteristics available in Europe, and in
which Europe can be independent to a large extent, we can mention offshore wind energy,
whose potential is much greater than of onshore energy. Most of the offshore wind turbines
installed in Europe are located in places where the depth of the sea allows founding them
directely to the seabed. Floating wind turbines is growing in the last years, however, in
Europe monopiles remain the preferred choice of developers, 80.5% new installation in
2020 and 19% on jackets [1].
With the expansion in the number of wind farms comes the need of placing new off-
shore wind turbines in locations with worse geotechnical properties, greater depths and
increasing seismic risk. Therefore, there exists the need for numerical tools to study the
seismic response of offshore wind turbines, regardless of their structural typology, and
including the phenomena of soil-structure interaction and kinematic interaction between
foundations and incident seismic waves. There are many models with different levels of
simplification to do this for offshore wind turbines, but it is ideal to have an advanced
tool that can take into account the different subsystems that composed a wind turbine.
In this regard, an interesting option is OpenFAST [2], which is a multi-physics, multi-
fidelity tool for simulating the coupled dynamic response of wind turbines. It is open-
source, is programmed in Fortran 95, and it might be considered not as a single program,
but as a framework that couples computational modules for aerodynamics, hydrodynam-
ics for offshore structures, control and electrical system (servo) dynamics, and structural
dynamics to enable coupled nonlinear aero-hydro-servo-elastic simulation in the time do-
main. The main modules regarding the dynamic response of the system are: BeamDyn
for modelling the dynamic behaviour of the blades; ServoDyn for modelling the generator
and the control system; ElastoDyn for modelling the dynamic response of the tower in
the fore-aft and side-to-side directions, and based on a modal approach that takes into ac-
count only the first two vibration modes in each direction; and SubDyn for modelling the
dynamic response of the substructure, from the Transition Piece (TP) at the base of the
structure to the base. In this work, the proposed modifications will be implemented in this
last module, SubDyn. The different modules interact in a loosely coupled time-integration
scheme, where a glue-code transfers data among modules at each time step. This glue
code is the FAST driver, that gathers all the information and drives the time–domain
solution forward step–by– step using a predictor–corrector scheme. Each module inputs
and outputs relevant information. For more information, OpenFAST documentation [2].
Thus, this paper presents the implementation of seismic input motions and dynamic soil–
structure interaction into OpenFAST. The first item includes not only horizontal ground
input motions, but translational, vertical and rotational foundation input motions, while
the second aspect is introduced through a simplified lumped parameter model that is
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previously fitted to represent the dynamic response of the foundation. The use of lumped
parameter models is considered here as a tool to introduce dynamic soil-structure in-
teraction into the model because, contrary to a static stiffness matrix, this approach
allows to take into account, not only the static stiffness of the foundation, but an ap-
proximation to its impedance, i.e., the dynamic stiffness and damping functions. This
damping, arising not only from material damping but most importantly from radiation
damping, can be relevant in the dynamic response of the structure. These capabilities
have been implemented in OpenFAST, version 2.2.0, and the code can be downloaded
here: https://github.com/CarlosRomeroSanchez/openfast 2.2.0 seismic .
This paper presents, firstly, a general overview of the original formulation implemented
in the SubDyn module. Then, the proposed formulation is presented and verified by
comparison against a different simplified model for some specific verification cases. Finally,
results of a specific illustration example are presented.

2 GENERAL OVERVIEW OF THE FINITE ELEMENTS METHOD FOR-
MULATION IMPLEMENTED IN SUBDYN.

This section presents a general overview of SubDyn [3]. The module integrates its equa-
tions through its own solver. The main steps are: discretization of the substructuring
following the strategies of classical linear beam Finite Elements motion equations, ap-
plication of Craig-Bampton modal reduction and rearrangement of the equations into
State-Space type formulation for time-domain resolution and coupling with the rest of
modules.

2.1 Dynamic System of Equations

The structure is discretized with the following simplifying assumptions: Two-noded Euler-
Bernoulli or Timoshenko three-dimensional beams with 12 degrees of freedom, linear
response and rigid joints, leading to a classical equation of motion of the type:

Mü(t) +Cu̇(t) +Ku(t) = F (t) (1)

[
MRR MRL

MLR MLL

](
üR

üL

)
+

[
CRR CRL

CLR CLL

](
u̇R

u̇L

)
+

[
KRR KRL

KLR KLL

](
uR

uL

)
=

(
FR

FL

)

(2)
where M, C and K are the global mass, damping and stiffness matrices, u and F are the
displacements and external forces along all of the DOFs of the assembled system. The
subindex R identifies the boundary nodes (at the base and at the Transition Piece) and
L identifies the rest of nodes (interior nodes).

2.2 Craig-Bampton modal reduction

The Craig–Bampton method reduces the number of the internal generalized degrees of
freedom of the substructure, using a subset qm (m ≤ L). Equation (3) relates physical
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DOFs and generalized DOFs (qL):{
UR

UL

}
=

[
I 0
ΦR ΦL

]{
UR

qL

}
(3)

where I is the identity matrix; ΦR (matrix) represents the physical displacements of the
interior nodes for static, rigid body motion at the boundary and ΦL (matrix) represents
the internal eigenmodes. The Craig-Bampton transformation is therefore represented by:

{
UR

UL

}
=

[
I 0
ΦR Φm

]{
UR

qm

}
(4)

where Φm is the matrix that represents the truncated set of ΦL. Premultiplying both
sides by equation (2) yields:

[
MBB MBm

MmB I

](
üR

q̈m

)
+

[
CBB CBm

CmB 2ζΩm

](
u̇R

q̇m

)

+

[
KBB 0
0 Ω2

m

](
uR

qm

)
=

(
FB

Fm

)
(5)

where:

MBB = MRR +MRLΦR + ΦT
RMLR + ΦT

RMLLΦR (6)

CBB = CRR + CRLΦR + ΦT
RCLR + ΦT

RCLLΦR (7)

KBB = KRR +KRLΦR (8)

MmB = ΦT
mMLR + ΦT

mMLLΦR (9)

CmB = ΦT
mCLR + ΦT

mCLLΦR (10)

MBm = MT
mB, CBm = CT

mB (11)

FB = FR + ΦT
RFL (12)

FM = ΦT
MFL (13)

After modal decomposition, this superposition is made not with all modes, but with only
a few (m modes), as usual in this kind of strategies, leading to a significant decrease in
the number of degrees of freedom of the system. Introducing this idea into the FEM
equations, and concentrating the motions at the boundary in the Transition Piece of the
OWT (joint between tower and substructure) the equations are written as:

[
M̃BB M̃Bm

M̃mB I

](
ütp

q̈m

)
+

[
C̃BB C̃Bm

C̃mB 2ζΩm

](
u̇tp

q̇m

)

+

[
K̃BB 0
0 Ω2

m

](
utp

qm

)
=

(
F̃tp

F̃m

)
(14)

where the overhead bar here and below denotes matrices/vectors after the fixed-bottom
boundary conditions are applied. utp is the 6 DOFs of the rigid transition piece.
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2.3 State-space formulation

To arrange variables in sets of inputs and outputs that can communicate with the rest of
modules, the equations are cast in state-space formulation, defining x = x(t) = (qm q̇m)

T

as the states; u = (UTP U̇TP ÜTP FL,e FR,e)
T as the inputs from other modules;

Y1 = Y1(t) = −FTP as outputs to tower (ElastoDyn); Y2 = Y2(t) as outputs to HydroDyn
(motion of the substructure).
Then, equation 14 can be cast into state equation form as:

ẋ = Ax+ Bu+ Fx (15)

−Y1 = C1x+D1u+ Fy1 (16)

Y2 = C2x+D2u+ Fy2 (17)

where A,B, Fx, C1, C2, D1, D2, Fy1 and Fy1 are arrays and matrices of constant coefficients
that are computed only, at initialization.

3 IMPLEMENTATION OF UNIFORMBASE INPUTMOTION AND SOIL-
STRUCTURE INTERACTION MODEL INTO SUBDYN MODULE

3.1 Generic equation of motion

Equation (1) assumes fixed-base, taking into account prescribed displacement in the base,
the main equations of motion describing the dynamic response of the substructure can be
written as:

Müt(t) +Cu̇(t) +Ku(t) = F (t) (18)

where now u and ut represent relative and total displacements. If kinematic input motion
at time t, taking into account the presence of the foundation and its interaction with the
incident seismic field, is denoted by vector ub(t) (ub = U, V, θ), the relationship between
displacements can be written as:

u(t) = ut(t)− Λub(t) (19)

where Λ is a matrix composed by ΛU , ΛV and Λθ, which the influence vectors (Chopra
[4]) representing the displacement of the different degrees of freedom as a consequence
of the static application of unitary lateral, vertical or rotational ground displacements,
respectively. Writing the equation of motion in absolute terms yield:

Müt(t) +Cu̇t(t) +Kut(t) = F (t) +CΛu̇b(t) +KΛub(t) (20)

After the assembly, the system of equation can be written as:

[
MRR MRL

MLR MLL

](
üR

üL

)t

+

[
CRR CRL

CLR CLL

](
u̇R

u̇L

)t

+

[
KRR KRL

KLR KLL

](
uR

uL

)t

=

(
FR

FL

)
+

[
CRR CRL

CLR CLL

](
ΛR

ΛL

)
u̇b +

[
KRR KRL

KLR KLL

](
ΛR

ΛL

)
ub

(21)
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where FR = FR,e+FR,g, with FR,e being external loads from other modules, the hydrody-
namic forces over the boundary nodes and the forces transfered to and from ElastoDyn
through the Transition Piece; and g stands for the gravity loads.
The interior degrees of freedom are hence transformed from physical DOFs to modal
DOFs, and pre-multiplying by Craig-Bampton transformation (equation 4) both sides of
equation of motion, can be rewritten as:

[
MBB MBm

MmB I

](
üR

q̈m

)t

+

[
CBBf

CBmf

CmBf
Cmmf

+ 2ζΩm

](
u̇R

˙qm

)t

+

[
KBB 0
0 Ω2

m

](
uR

qm

)t

=

(
FR + ΦT

RFL

ΦT
mFL

)
+

[
CBBf

CBmf

CmBf
Cmmf

+ 2ζΩm

](
ΛR

Λm

)
u̇b +

[
KBB 0
0 Ω2

m

](
ΛR

Λm

)
ub

(22)

where the damping matrix is composed of the structural damping (2ζΩm) and damping
terms related to the LPM foundation model (Cf ). On the other hand, Λm is obtained as
the truncation of ΛL as:

ΛL = ΦRΛR + ΦmΛM (23)

Λm = Λ̄L (24)

3.2 Equation of motion with lateral, vertical and rotational foundation input
motion

The vector of displacements at the boundary nodes contains the displacement at the
interface node with the tower (uI) and the displacements at base nodes, which would
move following the ground motion according to the relevant portion Λ of the influence
vector:

uR =

(
ΛUUb + Λθθb + ΛV Vb

uI

)
(25)

where Ub is the lateral kinematic input motion, Vb is the vertical kinematic input motion
and θb is the rotational kinematic input motion. Accordingly, the matrices of related to
the boundary nodes can be decompose as:

MBB =

[
Mbb MbI

MIb M̄BB

]
; MBm =

[
Mbm

M̄Bm

]
; MmB =

[
Mmb

M̄mB

]
(26)

where b is base nodes and I is interface nodes. The overhead bar here and below denotes
matrices/vectors after the fixed-bottom boundary condition are applied.
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[
M̄BB M̄Bm

M̄mB I

](
ütp

q̈m

)t

+

[
C̄BBf

C̄Bmf

C̄mBf
Cmmf

+ 2ζΩm

](
u̇tp

˙qm

)t

+

[
K̄BB 0
0 Ω2

m

](
utp

qm

)t

=

(
F̄R + ΦT

RFL

ΦT
mFL

)
+

[
C̄BBf

C̄Bmf

C̄mBf
CMM + 2ζΩm

](
ΛI

Λm

)
u̇b+

[
K̄BB 0
0 Ω2

m

](
ΛI

Λm

)
ub −

[
MIb

Mmb

]
Λbüb (27)

The interfaces nodes and the Transition Piece (that is assumed as a rigid body) are
considered as rigidly connected, so that the following relationships hold:

uI = TIutp (28)

Ftp = T T
I FR (29)

where TI is a simple transformation matrix depending on the differences between the
locations between both points. Taking these two relations into account, eq. (27) can be
written as:

[
M̃BB M̃Bm

M̃mB I

](
ütp

q̈m

)t

+

[
C̃BBf

C̃Bmf

C̃mB Cmm + 2ζΩm

](
u̇tp

˙qm

)t

+

[
K̃BB 0
0 Ω2

m

](
utp

qm

)t

=

(
F̃tp

F̃m

)
+

[
FIsisK−U

FMsisK−U

]
Ub(t) +

[
FIsisC−U

FMsisC−U

]
U̇b(t)−

[
FIsisM−U

FMsisM−U

]
Üb(t)

+

[
FIsisK−V

FMsisK−V

]
Vb(t) +

[
FIsisC−V

FMsisC−V

]
V̇b(t)−

[
FIsisM−V

FMsisM−V

]
V̈b(t)

+

[
FIsisK−θ

FMsisK−θ

]
θb(t) +

[
FIsisC−θ

FMsisC−θ

]
θ̇b(t)−

[
FIsisM−θ

FMsisM−θ

]
θ̈b(t)

(30)

where:

M̃BB = T T
I M̄BBTI (31)

C̃BBf
= T T

I C̄BBf
TI (32)

K̃BB = T T
I K̄BBTI (33)

M̃Bm = T T
I M̄Bm (34)

C̃Bmf
= T T

I C̄Bmf
(35)

F̃tp = Ftp + T T
I F̄R,e + T T

I F̄R,g + T T
I Φ̄

T
R(FL,e + FL,g) (36)

F̃m = ΦT
m(FL,e + FL,g) (37)
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FIsisK−U = T T
I (K̄BBΛUI

) (38)

FMsisK−U = Ω2
mΛUm (39)

FIsisC−U = T T
I (C̄BBf

ΛUI
+ C̄Bmf

ΛUm) (40)

FMsisC−U = C̄mBf
ΛUI

+ (Cmmf
+ 2ζΩm)ΛUm (41)

FIsisM−U = T T
I M̄IbΛUb

(42)

FMsisM−U = MMbΛUb
(43)

FIsisK−θ = T T
I (K̄BBΛθI ) (44)

FMsisK−θ = Ω2
mΛθm (45)

FIsisC−θ = T T
I (C̄BBf

ΛθI + C̄Bmf
Λθm (46)

FMsisC−θ = C̄mBf
ΛθI + (Cmmf

+ 2ζΩm)Λθm (47)

FIsisM−θ = T T
I M̄IbΛθb (48)

FMsisM−θ = MMbΛθb (49)

FIsisK−V = T T
I (K̄BBΛVI

) (50)

FMsisK−V = Ω2
mΛVm (51)

FIsisC−V = T T
I (C̄BBf

ΛVI
+ C̄Bmf

ΛVm (52)

FMsisC−V = C̄mBf
ΛVI

+ (Cmmf
+ 2ζΩm)ΛVm (53)

FIsisM−V = T T
I M̄IbΛVb

(54)

FMsisM−V = MMbΛVb
(55)

3.3 Simplified Lumped Model Parameter Model into SubDyn

The introduction of an LPM can be simply understood as adding one (or several) ad-
ditional elements at the base of the substructure. At this point, the simplified Lumped
Parameter Model proposed by Carbonari et al. [5], depicted in figure 1, is adopted for
the lateral vibrations, while the spring-damper model depicted in figure 2 is adopted for
vertical and torsional vibrations (assuming that their influence on the response of the sys-
tem is, in any case, smaller). These assumptions lead to the following stiffness, damping
and mass matrices:

K =

[
Kii Kij

(sym) Kjj

]
; C =

[
Cii Cij

(sym) Cjj

]
; M =

[
0 0

(sym) Mjj

]
(56)

where node i is the ground, node j is the base of the substructure, and the submatrices
are defined as follows:

uT
b =

[
uxb uyb uzb θxb θyb θzb

]
(57)
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Figure 1. Scheme of the simplified LPM, adopted for lateral vibrations [6]

CvKv

mv

CtorKtor

mtor

Figure 2. Scheme of the mass-spring-damper model, adopted for vertical and torsional vibrations [6]

Kjj =




kh + kt 0 0 0 −kth1 0
kh + kt 0 kth1 0 0

kz 0 0 0
kr + kth

2
1 0 0

kr + kth
2
1 0

ktor




(58)

Kji = KT
ij =




−(kh + kt) 0 0 0 kth1 0
0 −(kh + kt) 0 −kth1 0 0
0 0 −kz 0 0 0
0 kth1 0 −(kr + kth

2
1) 0 0

−kth1 0 0 0 −(kr + kth
2
1) 0

0 0 0 0 0 −ktor




(59)
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Cjj =




ch + ct 0 0 0 −cth2 0
ch + ct 0 cth2 0 0

cz 0 0 0
cr + cth

2
2 0 0

cr + cth
2
2 0

ctor




(60)

Cji = CT
ij =




−(ch + ct) 0 0 0 cth2 0
0 −(ch + ct) 0 −cth2 0 0
0 0 −cz 0 0 0
0 cth2 0 −(cr + cth

2
2) 0 0

−cth2 0 0 0 −(cr + cth
2
2) 0

0 0 0 0 0 −ctor




(61)

Mjj =




mh +mt 0 0 0 −mth3 0
mh +mt 0 mth3 0 0

mz 0 0 0
Ir +mth

2
3 0 0

Ir +mth
2
3 0

Itor




(62)

where the SLPM coefficients are calculated using least squares to be optimaly adapted to
the impedance functions defining the dynamic response of the wind turbine foundation.

3.4 State-space formulation

These equations must be cast in a form useful for implementation into the general frame-
work of OpenFAST and SubDyn, taking into account which are the input variables to
SubDyn and the output variables from SubDyn to other modules. The equations are
written in state-space form. The states are defined as:

x =
(
qtm q̇tm

)T
(63)

and the input vector are defined as:

u =
(
U t
tp U̇ t

tp Ü t
tp FL,e FR,e

)T
(64)

3.4.1 State equation

Equation (30) is cast into standard linear system state equation of the form:

ẋ = X = Ax+Bu+ Fx (65)
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To do, the second row of equation (30) needs to be written down and solved for ÜL. After
doing so, the matrices of the state equation can be found to be:

A =

[
0 I

−Ω2
m −Cmmf

− 2ζΩm

]
(66)

B =

[
0 0 0 0 0

0 −C̃mBf
−M̃mB ΦT

m 0

]
(67)

Fx =

[
0

ΦT
mFLg +

∑
i FMsisK−iub +

∑
i FMsisC−iu̇b −

∑
i FMsisM−iüb

]
(68)

where I is the identity matrix and i = U, V, θ

3.4.2 Output equation to ElastoDyn

The first output equation computes the interaction forces between tower and substructure
at the Transition Piece.

y1 = Y1 = −Ftp (69)

Writting the first row of (30) and solving for Ftp, the output equation can be written as:

−Y1 = C1x+D1ū+ Fy1 (70)

where
C1 =

[
−M̃BmΩ

2
m −M̃Bm(Cmmf

+ 2ζΩm) + C̃Bmf

]
(71)

D1 =
[
K̃BB −C̃mBf

M̃Bm + C̃BBf
−M̃mBM̃Bm + M̃BB M̃BmΦ

T
m − T T

I Φ
T
R −T T

I

]
(72)

Fy1 = −T T
I (F̄Ig + Φ̄T

RFLg)−
∑
i

FIsisK−iub −
∑
i

FIsisC−iu̇b +
∑
i

FIsisM−iüb+

M̃Bm

[∑
i

FMsisK−iub +
∑
i

FMsisC−iu̇b −
∑
i

FMsisM−iüb + ΦT
mFLg

]
; i = U, V, θ (73)

3.4.3 Output equation to HydroDyn

The second output equation gathers all the motions needed by the module HydroDyn to
compute hydrodynamic loads on the substructure.

y2 = Y2 = { ut
I ut

L u̇t
I u̇t

L üt
I üt

L }T (74)
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Y2 = C2x+D2u+ Fy2 (75)

where

C2 =




0 0
Φm 0
0 0
0 Φm

0 0
−ΦmΩ

2
m −Φm(Cmmf

+ 2ζΩm)




(76)

D2 =




TI 0 0 0 0
Φ̄RTI 0 0 0 0
0 TI 0 0 0
0 Φ̄RTI 0 0 0
0 0 TI 0 0

0 −ΦmC̃mBf
Φ̃RTI − ΦmM̃mB ΦmΦ

T
m 0




(77)

Fy2 =




0
0
0
0
0

ΦmΦ
T
mFLg + Φm(

∑
i FMsisK−iub +

∑
i FMsisC−iu̇b −

∑
i FMsisM−iüb)




(78)

where i = U, θ, V .

4 VERIFICATION RESULTS

The correct implementation into OpenFAST of the input ground motion and the simplified
Lumped Parameter Model at the base of the substructure has been initially verified by
comparison against results obtained from a simplified model written in matlab for this
purpose. Firstly, this model is first briefly described. Afterwards, the cases designed for
verification are presented and the results of the comparison are shown.

4.1 Reference simple model for comparison

The model used for comparison is depicted in figure 3. It can be understood as an inverted
pendulum on a beam comprised of two different parts: the inferior part corresponding to
the substructure with constant properties along height; and the upper part corresponding
to the tower, with varying properties along height. On top, the rotor-nacelle-assembly
(RNA) is modeled as a punctual rigid concentrated inertia. The model can be run as
fixed based or as compliant base.
Again, the equation of motion can be written as:

M üt(t) +C u̇(t) +Ku(t) = 0 (79)
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where M, C and K are the mass, damping and stiffness matrices. The beam elements
implemented are identical to those already implemented in SubDyn. Vectors u and ut

represent relative and total (or absolute) displacements at the different DOFs in the
structure. If the input ground displacement at time t is denoted by ub(t), and eq. (19) is
taken into account, the equation of motion in relative terms, yields:

M ü(t) +C u̇(t) +Ku(t) = −MΛ üb(t) (80)

Assuming steady–state harmonic response, motions can be written as:

u(t) = U(ω)eiωt (81)

where ω is the circular frecuency of the excitation. Thus, the time-harmonic equation of
motion employed can be written as:

(
K+ iωC− ω2M

)
U(ω) = −MΛ Üb(ω) = ω2MΛUb(ω) (82)

As usual, time domain response will be therefore obtained through Frecuency Domain
Analysis [4] making use of the Fast Fourier Transform. This reference simplified model
was implemented in an independent matlab code.

4.2 Reference Configuration

The reference configuration adopted for this study is the widely used 5MW NREL ref-
erence turbine. More precisely, the base configuration is the one defined for the OC3
(Offshore Code Comparison Collaboration) for the offshore 5MW NREL reference tur-
bine on a monopile. Specific data can be found in Jonkman and Musial [7]. The main
data for tower and substructure can be found in tables 1 and 2.

4.3 Verification cases

Table 3 lists the main characteristics of the input motions used for the four simplified ver-
ification cases presented herein together with the base configuration (fixed or compliant)
in each case. ξt denotes the structural tower damping ratio. On the other hand, table 4
presents the parameters obtained for the SLPM from fitting the impedance functions cor-
responding to the foundation of this turbine [7]. The impedance functions were obtained
from detailed boundary elements model [8].

4.4 Verification results

This section presents the validation results described in the previous section. Figure
4 present the comparisons between the results obtained using the modified version of
OpenFAST and those of the reference inverted pendulum matlab code. Motions at the
top of the tower, and at the platform are represented. It is shown that the agreement
is very good in terms of displacements. It is worth highlighting, however, the major
difference between both codes, being the OpenFAST model much more elaborated than
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Parameter Value
Tower-top height above mean sea level (MSL) 87.6 m
Tower base height above mean sea level 10.0 m
Water depth (from mean sea level) 20.0 m
Tower lenght 77.6 m
Water depth (from mean sea level) 20.0 m
Diameter at the base of the tower 6.0 m
Diameter at the top of the tower 3.87 m
Thickness at the base of the tower 0.027
Thickness at the top of the tower 0.019
RNA mass 349389.842 kg
RNA center of mass above tower top 1.96699 m
Second moment of inertia around RNA’s center of mass Ixx = 4.37 · 107 kg · m

Iyy = 2.35 · 107 kg · m
Izz = 2.54 · 107 kg · m

Table 1. Tower and turbine main properties, 5MW.

Figure 3. Depiction of the reference simple model used for comparison

Parameter Value
Height 30.0 m
Diameter 6.0 m
Thickness 0.60 m

Table 2. Monopile main propeties
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N Motion Base configuration ξt Input base motion
1 Lateral Fixed base 5% Quarter of sine (f = 0.1 Hz, A = 0.1 m)
2 Rotational Fixed base 2% Quarter of sine (f = 0.1 Hz, A = 0.05 m)
3 Lateral Fixed base 2% Chi-Chi earthquake
4 Lateral Compliant base 2% Chi-Chi earthquake

Table 3. Verification cases

KSLPM Value CSLPM Value MSLPM Value
kh 5.478e+4 ch 1.212e+7 mh 55.92
kr 1.078e+11 cr 3.633e+8 Ir 1.0
kt 2.274e+9 ct 4.966e+7 mt 5.047e+05
kz 4.787e+9 cz 2.117e+8 mz 1.0
ktor 7.13e+10 ctor 4.414e+8 Itor 8.60e+6
h1 -4.794 h2 -4.417 h3 0.08194

Table 4. SLPM parameters

the reference model, and being the first one solved in time domain and the second one
in frequency domain. As expected, response on a softer foundation (previously verified
against the matlab reference model) provides a longer period. It also allows to see that the
great influence that the properties of the foundation exert on the system global response.
Table 5 shows the fundamental frequencies as a function of the assumed base condition.

Base condition Fundamental frequency
Fixed base, fore-aft: 0.2797 Hz (T=3.58 s)
Compliant base, fore-aft: 0.2597 Hz (T=3.85 s)

Table 5. Fundamental frequencies obtained for Fixed Base and Compliant base conditions

5 ILUSTRATION EXAMPLE

After having verified the implementation of the kinematic input motions for a simplified
inverted pendulum configuration, this section illustrates the use of the code for the anal-
ysis of the seismic response of the offshore wind turbine while the turbine is operating
and is subjected to wind, waves and currents. The NREL 5 MW reference OWT de-
scribed above is considered here too. The simplified Lumped Parameter Model is used
to represent the flexibility of the soil-foundation system (see Figure 5), as stated above.
At the same time, the system is assumed to be subjected to vertically-incident shear
waves. The Chi-Chi earthquake is considered as free-field ground-surface seismic action.
The simulation is allowed to run for 220 seconds before the earthquake shaking arrive,
in order to allow the dissipation of the transient response generated at the beginning of
the simulation. No emergency shutdown is considered. The time-harmonic kinematic
interaction factors corresponding to the monopile foundation were computed through the
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Figure 4. Results corresponding to verification cases
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same boundary element model employed to compute the impedance functions [8]. These
kinematic interaction factors allow to compute the translational and rotational kinematic
input motions (see Figure 6) that are then defined at the base of the SLPM.
Figure 7 presents the computed seismic response in terms of tower top displacements,
tower top accelerations and mudline shear forces and bending moments in the monopile.
Each plot presents the response of the OWT computed under four different loading sit-
uations: a) only environmental loads (wind, waves and currents); b) taking into account
both translational and rotational foundation input motions; c) taking into account only
translational foundation input motion (with zero rotational input motion); and d) consid-
ering the original seismic input motion as translational input motion, i.e., without taking
into account the filtering produced by the pipe pile foundation.

Figure 5. Ilustration example model

As expected, the seismic action increases the response of the structure in terms of dis-
placements and accelerations at the tower top. Accelerations, in particular, increase by
a factor of 3 due to the arrival of the earthquake. Bending moments and shear forces at
mudline, on the contrary, are less affected by the earthquake, being the environmental
loads the ones that contribute more importantly to the resulting internal efforts. The ro-
tational component of the FIM produces an increase in the seismic response, as observed
from the comparison of the responses computed taking or not into account the rotational
input motion (red and green curves). However, this increase is not very significant when
compared to the oscillations of the response of the system under the rest of loads. Finally,
the difference between considering the original earthquake signal or the filtered earthquake
signal is negligible.
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Figure 6. Lateral FIM (a) and Rotational FIM (b). Obtained from KIF of monopile foundation and
Chi-Chi Earthquake

6 CONCLUSIONS

The paper develops the formulation needed for the implementation of seismic input mo-
tions and new dynamic soil-structure interaction capabilities into the open-source software
OpenFAST, with the aim of facilitating the use of this tool for the seismic analysis of wind
turbines.
Not only horizontal, but also vertical and rotational foundation input motions are con-
sidered. In the ilustration example, horizontal and rotational foundation input motions
are computed taking the monopile kinematic interaction factors into account, and the
relevance of this filtering is also discussed.
On the other hand, the use of lumped parameter models is considered here as a tool to
introduce soil-structure interaction into the model because this approach allows to take
into account, not only the static stiffness of the foundation, but an approximation to its
impedance, i.e., the dynamic stiffness and damping functions.
These capabilities have been implemented in OpenFAST, version 2.2.0, and the code can
be downloaded here: https://github.com/CarlosRomeroSanchez/openfast 2.2.0 seismic .
The authors are now working on the generalization of the formulation to non-uniform
input motions, and its implementation in the latest version of OpenFAST.
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Figure 7. Results corresponding to ilustration example
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