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Abstract: Thermodynamics, as a scientific tool, advises on the control of variables involved in
processes of different nature and is particularly useful in the design of equipment, or to obtain
previous simulations. However, to generate more accurate models, an exact science is required.
Thus, the thermodynamic–mathematical binomial is able to relate the fundamental variables of a
system using the potential functions directing the process, although these relationships are not always
completely satisfactory, as it is necessary to complete the modelling with a set of parameters, which
depend on the experimentation. To ensure a better description of the behavior of a system, in this
work a multi-objective optimization procedure (MOP) is applied to the NRTL model, comparing
the results with other conventional procedures used to characterize the real properties of the binary
methyl methanoate + pentane. The results obtained with the MOP confirmed a better representation
of the experimental information with NRTL, analyzing its impact on the simulation/design processes.
The set of optimal parametrizations obtained allow several options to be process engineered to select
the most appropriate one depending on the specific problem to be designed.

Keywords: NRTL; multi-objective optimization; phase equilibria; thermo-physical properties; chemi-
cal engineering; binary mixture; process simulation

1. Introduction

The simulation and design of unitary operations raised for the chemical industry
require a prior description of the behavior using its characterization through properties of a
different nature: physical, chemical, or those linked to transport phenomena, among others.
It is essential to check the viability of a certain process in order to know its directionality
and the maximum extension it can reach, as well as the energy exchanges taking place. This
is done with thermodynamic analysis [1] of the process under study. When considering
the balances involved in the separation operations, it is assumed that the process entails a
sequence of equilibrium stages between phases [2] (see Figure 1).

Therefore, a mathematical formalism is required to describe the behavior of the vari-
ables involved in the equilibria between phases. The modelling achieved and its implemen-
tation in the current process simulation tools allow for the evaluation of “design parameters”
such as recovery percentages, products purity, energy requirements, and the size of the
equipment, among others. A mathematical–thermodynamics binomial is constituted as a
tool that facilitates the modelling of the behavior of the material in the proposed process.
Thermodynamic properties are generated by accumulating several effects, some mainly
due to temperature and pressure conditions, and others to the molecular interactions in
the material. In short, it is necessary to generate a model that quantifies a relationship
between the state variables Ξ and those corresponding to the material, F(Ξ) = 0, i.e.,: the
equation of state.
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Figure 1. Distillation, an example of a unitary operation raised as a succession of equilibrium stages. 

Each stage is considered a VLE state, and all make up a distillation column. 

Numerous proposals are made in the literature to achieve an appropriate function, 

which, starting from molecular concepts, is resolved using different theoretical ap-

proaches. However, only some of them present a sufficient level of development to be-

come useful tools in the practical engineering calculations. A simple classification groups 

them as (a) random mixing models [3,4], (b) local composition models [5,6], (c) cubic equa-

tions of state [7–9], (d) quantum chemistry-based models [10–12], and (e) models based on 

perturbation theory [13–15]. However, the different theories fail to accurately represent the 

real behavior of the material in a wide range of conditions, compensating for the defects 

observed in the model by introducing a number of adjustable parameters (represented by 

the vector θ), which constitute the degrees of freedom. Therefore, the homogeneous function 

that relates the state variables of the system is now F(Ξ,θ) = 0, particularly for the case of 

multicomponent solutions F(p,T,x,θ) = 0. The parameters θ are defined in relation to the 

available experimental information, so if the number of parameters in a model increases 

(↑) and its generality decreases (↓), the greater (↑) its predictive capacity. 

In the last 30 years, the models most used in thermodynamic calculations and in 

chemical engineering applications have been those classified in (b), such as NRTL [5] and 

UNIQUAC [6]. The latter was derived later in the UNIFAC method [16], with a correlative/pre-

dictive character, although the same did not occur with the NRTL model (see Appendix 

A). If the model is used for both correlative and predictive applications, the parametriza-

tion requires previous experimental data of the solutions under study. It is also important 

to note that the ability of a model to represent the behavior of a material depends not only 

on its theoretical level, but also on the procedure used to define its parameters or degrees 

of freedom θ. 

This work presents a comprehensive view of the modelling processes of phase equi-

libria and other properties, reviewing and comparing some commonly used parametriza-

tion processes. The approach proposed here is based on the multi-objective optimization 

methodology, noted as MOP [17], to extensively characterize the properties of solutions 

[18–23]. To illustrate this approach, Figure 2 shows a scheme of the different options used 

and compared to a real dataset obtained for the methyl methanoate + pentane system, 

including liquid–liquid equilibrium (LLE) data [24], vapor–liquid equilibrium (VLE), and 

the mixing energetic effects (hE) [25]. The diverse information available is one of the rea-

sons for the choice. In the proposed development, different strategies are used to ade-

quately define the parametrization of the NRTL model when applying it to the mentioned 

Figure 1. Distillation, an example of a unitary operation raised as a succession of equilibrium stages.
Each stage is considered a VLE state, and all make up a distillation column.

Numerous proposals are made in the literature to achieve an appropriate function,
which, starting from molecular concepts, is resolved using different theoretical approaches.
However, only some of them present a sufficient level of development to become useful
tools in the practical engineering calculations. A simple classification groups them as
(a) random mixing models [3,4], (b) local composition models [5,6], (c) cubic equations
of state [7–9], (d) quantum chemistry-based models [10–12], and (e) models based on
perturbation theory [13–15]. However, the different theories fail to accurately represent the
real behavior of the material in a wide range of conditions, compensating for the defects
observed in the model by introducing a number of adjustable parameters (represented by
the vector θ), which constitute the degrees of freedom. Therefore, the homogeneous function
that relates the state variables of the system is now F(Ξ,θ) = 0, particularly for the case of
multicomponent solutions F(p,T,x,θ) = 0. The parameters θ are defined in relation to the
available experimental information, so if the number of parameters in a model increases (↑)
and its generality decreases (↓), the greater (↑) its predictive capacity.

In the last 30 years, the models most used in thermodynamic calculations and in
chemical engineering applications have been those classified in (b), such as NRTL [5]
and UNIQUAC [6]. The latter was derived later in the UNIFAC method [16], with a
correlative/predictive character, although the same did not occur with the NRTL model
(see Appendix A). If the model is used for both correlative and predictive applications, the
parametrization requires previous experimental data of the solutions under study. It is also
important to note that the ability of a model to represent the behavior of a material depends
not only on its theoretical level, but also on the procedure used to define its parameters or
degrees of freedom θ.
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This work presents a comprehensive view of the modelling processes of phase equilib-
ria and other properties, reviewing and comparing some commonly used parametrization
processes. The approach proposed here is based on the multi-objective optimization method-
ology, noted as MOP [17], to extensively characterize the properties of solutions [18–23].
To illustrate this approach, Figure 2 shows a scheme of the different options used and
compared to a real dataset obtained for the methyl methanoate + pentane system, including
liquid–liquid equilibrium (LLE) data [24], vapor–liquid equilibrium (VLE), and the mixing
energetic effects (hE) [25]. The diverse information available is one of the reasons for the
choice. In the proposed development, different strategies are used to adequately define the
parametrization of the NRTL model when applying it to the mentioned system, providing
information on the validity range of the parametrizations in relation to the procedure used
to obtain them.
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Figure 2. Diagram representing different options to optimize the parameterization of a thermody-
namic model.

2. Parametrization of Thermodynamic Models

Parametrization consists of defining the numerical values of a set of parameters θ,
(in the case of the NRTL model: θ = {∆g(k)ij , ∆g(k)ji , α12} (see Appendix A)) so that the
model describes the behavior of the modeled system with the most accuracy. Several
parametrization procedures are shown here, including the multi-objective optimization
approach, which is particularly suitable when the theoretical level of the model limits the
behavior description.

2.1. Conventional Procedure

In practice, if experimental observations are available, a model can be achieved to
represent the behavior of the solutions, although practically. Hence, the parametrization is
proposed as an optimization problem to minimize the differences between the experimental
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values and those calculated by the model. This is evaluated by an appropriate metric whose
generic approach is:

min
θ

δ(θ|Yexp, xexp)

s.t. Aθ ≤ b
g(θ|Yexp, xexp) ≤ 0
h(θ|Yexp, xexp) = 0
θ ∈ P

(1)

where A and b are, respectively, the coefficient matrix and independent terms of the
linear constraints to which the problem is subjected; g(θ|Yexp,xexp) and h(θ|Yexp,xexp)
denote the non-linear constraints; and P defines the domain of the model parameters. The
space generated to check the constraints of the problem is the feasible space Ω. If the
model parameters have a physical significance, the domain can be established considering
that significance. For example, in the NRTL model, the non-randomness parameter was
established in its first applications with values ofα12 ∈ (0.2–0.4) [26], although the minimum
interval could also be close to zero, as verified in this work, and even in many cases α12 > 1.

The way in which the metric δ(θ|Yexp xexp) is defined affects the applicability of the
parametrization obtained and is closely related to the physical characteristics of the studied
system [27]. The usual practice to establish values of θ is to use only data obtained from
the equilibria between phases, for which diverse metrics can be employed, such as the root
mean square error (RMSE) of the property (or properties) considered, which transforms
Equation (1) into a least-squares problem:

sRMSE(θ|Yexp, xexp) =

[
1
N ∑N

k=1 ∑M
m=1 wm

(
yexp

m,k − ycal
m,k(θ)

)2
]1/2

=
[
∑M

m=1 wms2
m(θ)

]1/2
(2)

where Yexp
m,k and Ycal

m,k are, respectively, the k-th values, both experimental and calculated by
the model, for each state variable; wm is a weighting factor whose usefulness is to prioritize
a given state variable over another; M is the number of dependent state variables; and
s2

m(θ) is the variance of the model.
Alternatively, in the parameter optimization process, the maximum likelihood (ML)

principle can be applied [28,29], which estimates the set of parameters that minimizes the
distance between experimental and calculated values, assuming that the measurements
are subject to uncertainty and that the one corresponding to each variable is independent
of the rest. This follows a normal or gaussian law, which allows an analogous expression
to Equation (2) to be deduced, but does not require an arbitrary factor. According to this
procedure, the real value of the variables is unknown and must be found by maximizing the
following Equation (3). That is, the variables of the optimization problem do not include
the elements of θ but rather the Ycal

m,k and the vector of independent variables x.

sML(θ, Ycal, xcal|Yexp, xexp) = ∑N
k=1 ∑

My
m=1

(
yexp

m,k−ycal
m,k(θ)

uym

)2
+

∑N
k=1 ∑Mx

m=1

(
xexp

m,k−xcal
m,k(θ)

uxm

)2 (3)

The variables My and Mx indicate the maximum number of state variables, considered
dependent and independent, respectively, and u is the experimental uncertainty linked to
each physical magnitude.

A Practical Case of Parametrization with the NRTL Model

An application was carried out to parametrize the NRTL model using experimental
information of the methyl methanoate + pentane system [24,25]. Table 1 shows the results
obtained with the APV88-LLE-ASPEN parametrization of AspenPlus®, but only with LLE
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data. Figure 3a–c shows the representations obtained using the ML procedure, Equation (3),
and the algorithm by Britt and Luecke [29].

Table 1. Parameters of NRTL obtained using AspenPlus® for the binary methyl methanoate (1) +
pentane (2).

τ
(0)
ij/ji τ

(1)
ij/ji τ

(2)
ij/ji τ

(3)
ij/ji

α21

−7.261/−6.811 2375.23/1878.42 0/0 0/0 0.2

s(LLE) s(VLE) s(hE/RT)

0.0142 0.2994 0.0179

Thermo 2022, 2, FOR PEER REVIEW  5 
 

 

Considering the variables p and T and the equilibrium relationships, the compositions 

of the binary mixture are calculated according to NRTL for each experimental point, solving 

the following system of equations and taking into account the restriction of phase insta-

bility. 

 

Figure 3. Estimations obtained with the NRTL model using experimental data for the binary methyl 

methanoate (1) + pentane (2). The classical approach (—) APV88 for (a) LLE, I II
1 1,orT vsx x ; (b) 

VLE, T vs x1,or y1; (c) hEvs x1. , experimental data. 

i i

2 E

2

1 1 2,

i i( , , ) ( , , )

0

p T

p T p T

g

x x

RT

x x x

       =


  
+     

x x

 (4) 

Figure 3a shows that the model reproduced the LLE, although the estimations of the 

VLEs and the hEs [25] (Figure 3b,c) were not good; the estimation of the hEs approximated 

a phase change rather than the energetic property resulting from a mixing process. Alt-

hough a parametrization was achieved for NRTL with the experimental information, it is 

interesting to learn the cause of the errors in the mentioned correlation. Figure 4 illustrates 

the domain fraction of the excess Gibbs function gE included in the parametrization pro-

cess. The observable information refers only to the fraction of the domain (T vs x1) where 

the system exhibited partially miscible behavior (red line over the gE surface). 

 

Figure 4. Plot of gE = gE(p,T,x) using the NRTL model and the APV88 parametrization. Projection on 

the T vs x1 plane corresponding to the geometric place of the LLE compositions is included. 

Figure 3. Estimations obtained with the NRTL model using experimental data for the binary methyl
methanoate (1) + pentane (2). The classical approach (—) APV88 for (a) LLE, T vs xI

1, or xII
1 ; (b) VLE,

T vs x1, or y1; (c) hEvs x1. 3, experimental data.

Considering the variables p and T and the equilibrium relationships, the compositions
of the binary mixture are calculated according to NRTL for each experimental point, solving
the following system of equations and taking into account the restriction of phase instability.

xα
i γα

i (p, T, xα) = xβ
i γ

β
i (p, T, xβ)(

∂2gE

∂x2
1

)
p,T

+ RT
x1x2

< 0

 (4)

Figure 3a shows that the model reproduced the LLE, although the estimations of the
VLEs and the hEs [25] (Figure 3b,c) were not good; the estimation of the hEs approximated a
phase change rather than the energetic property resulting from a mixing process. Although
a parametrization was achieved for NRTL with the experimental information, it is inter-
esting to learn the cause of the errors in the mentioned correlation. Figure 4 illustrates the
domain fraction of the excess Gibbs function gE included in the parametrization process.
The observable information refers only to the fraction of the domain (T vs x1) where the
system exhibited partially miscible behavior (red line over the gE surface).

Outside this region there was no gE information. Only if the theoretical basis of the
model is correct would there be a single set of parameters capable of accurately describing
the overall behavior of the system. The theory of the NRTL model incorporates several
simplifications, so a global description of the system using only partial information of
its behavior is not expected to achieve the real behavior of a system. The limitation that
results from using the conventional parametrization procedure suggests the use of another
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approach, such as the multi-property of the thermodynamic–mathematical modelling
problem, which is discussed in the next section.
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2.2. Multi-Property Approach

The multi-property approach to the parametrization problem simultaneously uses
several thermodynamic properties to construct the objective function of the modelling
problem [21,30]. The final idea is to define both the excess Gibbs function in an interval
and its relationships with the canonical set, Ξ = {p,T,x}—that is, to establish the capacity
of the model, so that it is possible to make estimates inside and outside the experimental
interval under conditions different from those of the parametrization process. Multi-
property modelling can be formulated using the conditions defined in Equation (1), since
the objective functions, Equations (2) and (3), can be extended to include as many properties
as necessary.

This section presents a methodology used by us [25,31–33], based on the relationship
established by Equation (2), in which several representative properties of the system under
study, such as VLE, LLE, hE, vE, and even cE

p [34], are included. As in the previous case, the
available data set (VLE, LLE, hE) for the binary methyl methanoate + pentane is used in the
parametrization, but now using a multi-property approach.

The Multi-Property Approach in the NRTL Parametrization

In this procedure, the error of each property is evaluated by the variance parameter
generated by the model sy(θ). The correlation is performed in two steps [35], avoiding
the numerical instabilities that arise when solving the constraints marked by the LLE (see
Equation (4)). As the initial parameters do not reproduce immiscibility, this relationship



Thermo 2022, 2 273

only has the trivial solution xI
i = xII

i . Hence, in a first step, the problem represented by
Equation (1) is solved by applying the following objective function:

sRMSE(θ
∣∣∣Yexp, xexp) = wELVs2

ELV(θ) + whs2
h(θ) + wELLas2

ELLa(θ) (5)

where the corresponding variance parameters of the model are s2
ELV(θ) to describe the VLE,

s2
h(θ) to represent hE, and s2

LLEa(θ) to represent the partial miscibility of the system in the
first step. The expressions for each of the established statistic errors are:

sELV(θ) =

[
∑k

[
∑i xexp

k,i

(
γ

exp
k,i − γcal

k,i (θ)
)2
]

/NELV

]1/2
(6)

sh(θ) =

∑k

(
hE,exp

k
RT

−
hE,cal

k (θ)

RT

)2

/Nh

1/2

(7)

sELLa(θ) =

[
∑k

[
∑i

(
xI,exp

k,i γI,cal
k,i (θ)− xII,exp

k,i γII,cal
k,i (θ)

)2
]

/NELL

]1/2
(8)

Equation (8) is numerically stable for the parametrization θ, and with it, an acceptable
estimation of the set of parameters is obtained, which is refined in a second step of the
method using a statistic referring only to the equilibrium compositions, given by:

sELLb(θ) =

[
∑k ∑i ∑β

(
xβ,exp

k,i (θ)− xβ,cal
k,i (θ)

)2
/NELL

]1/2
(9)

where β indicates the phase (I or II) and xβ,cal
k,i are obtained by solving the system of

Equation (4).
The set of parameters found with the multi-property approach is shown in Table 2 for

the chosen system. The estimations obtained with this same procedure are compared with
those of the conventional approach, APV88, in Figure 5. The new parametrization of NRTL
provides an adequate description, not only of the temperatures and compositions of VLE
(Figure 5b), but also of the hEs (Figure 5c).

Table 2. Parametrization of NRTL using parameters from literature *, obtained using the multi-
property approach for the binary methyl methanoate (1) + pentane (2).

τ
(0)
ij/ji τ

(1)
ij/ji τ

(2)
ij/ji τ

(3)
ij/ji

α21

1.18 × 106/29.28
−2.87 ×

107/105.6
−2.09 ×

105/−5.37
3.93 ×

102/9.40×10−3 0.002

s(LLE) s(VLE) s(hE/RT)

0.098 0.815 0.017
* Parameters from Ref. [25] for the function τij(T) proposed by Ko et al. [36].

However, the LLE estimations (Figure 5a) showed important deviations from ex-
perimental data, especially from the upper critical solubility temperature (UCST), which
exceeded that of the system, TUCST ≈ 259 K, showing an error of ∆TUCST ≈ 24 K. For
T < TUCST, the estimations were also not good, but the differences between the composi-
tions of the two phases formed were less significant. The comparison between the results of
the conventional approach and those from multi-property shows that the latter improved
the goodness of fit of the parametrization process, although this occurred at expense of
reducing the local accuracy of the model.
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Figure 5. Plot of the estimations obtained for (a) T vs xI
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x1, using two parametrizations of the NRTL model for the binary methyl methanoate (1) + pentane (2).
(– –) ref [25]; (—) APV88. 3, experimental data.

The inability of the model to maintain local accuracy in describing the LLE could have
arisen either from the theoretical limitation of NRTL and of the functional form of τij(T)
(see Appendix A), or from the modelling procedure. This leads us to wonder whether there
is a better parametrization than the one presented, and even whether the solution to the
multi-property modelling problem is unique. Therefore, the reformulation of the modelling
procedure was addressed, but now applying the principles of multi-objective optimization.

2.3. Multi-Objective Resolution of the Multi-Property Approach

A priori, the ability of a model to represent a set of experimental data is unknown. It
is therefore not appropriate to establish any weighting factor, regardless of whether this
is fixed arbitrarily, as in Equation (2), or is linked to experimental uncertainty, as stated
in the principle of ML (Equation (3)). In this case, the modelling was developed as a
multi-objective optimization problem (MOP), based on the generic formulation:

min
θ

OF = {sELV(θ|Yexp, xexp), sELL(θ|Yexp, xexp), sh(θ|Yexp, xexp)}
s.t. Aθ ≤ b

g(θ|Yexp, xexp) ≤ 0
h(θ|Yexp, xexp) = 0
θ ∈ P

(10)

where OF is a vector whose elements are the standard deviations of the model relative to the
information available for each property. That is, the MOP is not solved by aggregating any
of the error functions, but by considering each of them independently and simultaneously.
The MOP makes sense when improving the description of one of the properties worsens at
least one of the other properties so that the elements of OF are in conflict.

2.3.1. The Optimum in MOP

The notion of minimum in relation to the MOP (Equation (10)), differs from Equation (1)
for the mono-objective case. Due to the conflict between the elements of the objective-vector,
there is no single solution to the minimization problem. Hence, the ordering of the possible
solutions of the MOP is partial [17], so that:

Definition 0 OF 1 = OF(θ1) = {sm
1}m

M is less than OF2 = OF(θ2) = {sm
2}m

M, (OF1 < OF2) if
and only if: sm

1 ≤ sm
2 for any value of “m.”
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An optimal solution of the MOP, θ*, will not allow the existence of another θ, where the above
condition is verified. This idea of optimality, generalized by Vilfredo Pareto [37], is formalized
as follows:

Definition 1 (dominance relationship). It is said that one parametrization θ1 dominates another
θ2, denoted by θ1 ≤ θ2, if the following expression is verified:

θ1≺θ2 ⇔ s1
m ≤ s2

m∀m ∈ [1, M] ∧ ∃m/s1
m < s2

m (11)

a non-dominated solution is also called an efficient solution [38,39].

Definition 2 (global optimum in the Pareto sense). A global optimum in the sense of Pareto is a
solution for which there is no other solution belonging to the feasible space Ω to dominate it.

θ∗is the Pareto optimum ⇔!∃θ ∈ Ω/θ≺θ∗ (12)

Definition 3 (Pareto or efficient set). The efficient set is composed of the global optima of the MOP.

P∗ = {θ∗ ∈ Ω\!∃θ ∈ Ω : θ≺θ∗} (13)

Definition 4 (Pareto front or efficient front). The expression of the efficient set in the region of
the objective functions of the problem makes up the efficient front.

PF∗ = {FO(θ)/θ ∈ P∗} (14)

In most cases it is not possible, even computationally, to obtain an analytical expression
that defines the PF*. Therefore, methods to solve the MOP attempt to approximate this set
by sampling. This gives an approximation of the efficient front, as illustrated in Figure 6a.
This leads to the dominance relationships shown in Figure 6b.
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2.3.2. Resolution of the MOP

Equation (10) can be solved in different ways, as depicted in Figure 7, organized
in categories from higher to lower specificity, and including procedures taken from the
literature [39–47].

The first level shows the optimization approaches, highlighting the one qualified as
a posteriori that provides a more exhaustive description of the Pareto set of the MOP,
whereas the final chosen solution is carried out in a later step depending on the established
preferences. The most significant steps in this approach are those of decomposition [41]
and ad hoc. The former divides the original MOP into several mono-objective subproblems,
whose resolution is addressed by exact methods (branch-and-bound [42] or BARON [43])
and meta-heuristic methods (simulated annealing) [44]. The ad hoc strategy uses a heuristic
or meta-heuristic approach that simultaneously addresses a set of candidate solutions for
the Pareto set. This requires a population of the heuristic type (evolutionary or multi-
agent) [40,45], as shown in the mentioned diagram.
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2.3.3. Resolution by ε-Constraint Decomposition

In this work, the parametrization of NRTL by MOP was carried out by ε-constraint
decomposition [17,38,39], wherein elements of the OF, except one, are reconverted into
constraints of the problem according to the equation given below.

In this way, the multi-objective approach is transformed into a mono-objective problem
with inequality constraints that are added to those of the MOP. The εm values are upper
limits for each objective converted into a constraint, so that the Pareto set is constructed
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using a grid of εm values over which each particular mono-objective problem generated is
solved (Figure 8).

min
θ

sELL(θ

∣∣∣∣Yexp, xexp)

s.t. Aθ ≤ b
g(θ|Yexp, xexp) ≤ 0
h(θ|Yexp, xexp) = 0
sELV(θ|Yexp, xexp) ≤ εELV
sh(θ|Yexp, xexp) ≤ εh
θ ∈ P

(15)
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2.3.4. Resolution of the Multi-Property Problem as an MOP

The modelling was solved using Equation (10), taking into account Equation (15)
and the statistical parameters shown in Section 2. In the ε-constraint decomposition, the
LLE error was adopted as the objective function, whereas the model errors in the VLE
representation and the hEs were formulated as constraints of the problem. A 2D-grid of
8 steps of ε was then defined for the VLE errors in the interval [0.3–0.03] and of 7 steps for
hE/RT in the interval [0.12–0.018]. That is, 56 mono-objective subproblems arose from the
decomposition, and each step was solved by the augmented lagrangian method to address
problems with constraints. The SLSQP method [46] was selected as a local solver to solve
the augmented problem, using the implementation existing in the NLOPT library [47].

2.3.5. Multi-Objective Modelling Using NRTL

The efficient front (Equation (14)), achieved in the non-dominated parametrizations of
the NRTL model is represented in Figure 9.
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The distribution of solutions shows that the LLE description competed with that of
VLE; there were improvements in the LLE and the description of VLE worsened. On the
other hand, for a constant error in the VLE description, the s(LLE) statistic did not have the
same sensitivity compared to s(hE). Four different parametrizations (P1–P4) were selected
from the front, and their assessments are summarized in Table 3 and the representations
compared in Figure 9.

Table 3. Parametrizations of the NRTL using the MOP to model the methyl methanoate (1) + pentane (2)
system.

τ
(0)
ij/ji τ

(1)
ij/ji τ

(2)
ij/ji τ

(3)
ij/ji

α21

P1 20.000/18.845 2376.45/1879.56 −7.817/−6.099 0.0691/0.0247 0.0308

P2 12.746/24.428 2379.16/1882.88 −8.113/−6.249 0.1145/−0.0038 0.0144

P3 34.675/30.078 2377.47/1880.99 −10.000/−10.000 0.1381/−0.0095 0.0027

P4 30.764/31.139 2377.50/1881.07 −9.999/−9.445 0.1325/−0.0053 0.0041

s(LLE) s(ELV) s(hE/RT)

P1 0.0137 0.2995 0.0203

P2 0.0338 0.0310 0.0175

P3 0.0201 0.1079 0.0860

P4 0.0220 0.1079 0.0180

The graphical/numerical analysis of Figure 9 shows that the parametrization P2
acceptably represents the T vs x, or y curves of the VLE (see Figure 10a), those of γis and
the gE/RT (Figure 10b), and that of the hEs, (Figure 10d). However, quantitatively it did
not represent the LLE well, with an error in the UCST of ∆TUCST ≈ 11 K, lower than that
obtained with the multi-property mono-objective approach.

The theoretical limitations of NRTL can be seen by comparing the estimations made
with the different parametrizations. Thus, P1, P2, and P4 better reflected the functional
gE = φ(T) and, therefore, provided a better description of the hEs; the parametrizations
P1 and P3 acceptably described the LLE and P2 represented the VLE well, including the
azeotropes, both qualitatively and quantitatively.
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2.4. Comments on the Strategies of Analyzed Modelling

The results obtained by solving the MOP (Table 3) are represented in terms of the
gE function in Figure 11. The modelling in Figure 11a is the one that best describes the
LLE (see Figure 10c) since the surface of gE had a morphology similar to that produced
by the conventional parametrization procedure (Section 2.1). The difference between the
two is due to the fact that the inclusion of VLE and hE data controlled the slope around the
immiscibility region, preventing it from evolving to negative gE values (see Figure 4).

The situation that best describes the VLE (P2) is shown in Figure 11b, showing higher
gE values around the vapor–liquid coexistence region, causing increases in the temperature
interval where two liquid phases coexist (unlike the experimental behavior). Figure 11c,d,
illustrates the importance of including the hEs in the model definition. The NRTL equation
tended to generate negative slopes of gE close to the immiscibility region, producing a
minimum on the surface (Figure 4) when the hEs were not considered (Figure 3c). By
contrast, this slope on the surface was not as steep (Figure 11d). In summary, the inclusion
of the hEs is relevant to improving the extrapolation with the model thus obtained.
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3. Influence of Modelling on the Simulation of a Separation Process

The impact of the strategy that has been carried out on the modelling in chemical
engineering calculations was analyzed by applying the results obtained in the previous
section to a simulation process to separate pentane and methyl methanoate from a binary
solution, an azeotropic solution chosen because it cannot be completely separated by
simple rectification. Several methods can be used to carry out this operation [48], such as
extractive distillation or a pressure swing. Moreover, as the chosen binary presents two
immiscible liquid phases at T < 260 K, the separation was proposed by combining the
aforementioned distillation and simple decantation. The simulation experiences discussed
here were performed using Aspen Plus© software using the Radfrac calculator block for
the rectification columns.

3.1. Description of the Separation Process

The flow diagram of the process followed is shown in Figure 12. It was designed
to treat 1000 kmol·h−1 of the binary methyl methanoate (1) + pentane (2) (at ambient
conditions), with an initial molar composition in ester of 30% (<xaz ≈ 0.56).
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Figure 12. Flow diagram of the separation process of the binary methyl methanoate (1) + pentane (2).
R = reflux ratio; D/F = distillate/feed ratio; N = number of stages.

The identification of each stream/operation is indicated:

- Distillation column C-1: recovery of pentane in bottom streams;
- Distillate, stream 3: product under conditions close to azeotrope;
- Distillates of C-1 and C-2 (x1 ≈ xaz) are blended and sent to E-1;
- E-1 exchanger cools to form two immiscible liquid phases;
- Decanter S-1 separates the immiscible liquid phases;
- Stream 5 (x1 < xaz) is recirculated to column C-1;
- Stream 6 (x1 > xaz) feeds column C-2;
- The ester is obtained by the C-2 bottom.

3.2. Results of the Simulation

The behavior of C-1 estimated by the results P2, P3, and P4 of the model was similar,
although the case P1 produced a smaller profile of compositions and higher temperatures
at the head of the column and smaller ones at the bottom (Figure 13a) compared with
the other simulation results. This is because P1 described the VLE the worst (Figure 10a).
However, in C-2 (Figure 13b), only P2 and P4 produced similar results. P3 showed smaller
values than when the modelling was used with the other parametrizations, both in the
compositions and in the temperature of most of the stages. This was not due to differences
in the description of the VLE, since the results of P3 and P4 were very similar in this
diagram, but because P3 estimated a greater amount of pentane in phase-I at T = 253 K
(Figure 10c), generating more methyl methanoate in the feed of C-2 (since the separation in
S-1 is worse), which affected the material and energy balances. In fact, when the process
was simulated with P3, stream 7 had about 2% more ester than when P4 was used. On
the other hand, the result obtained with P1 showed similar discrepancies to those of C-1.
Moreover, P1 produced the greatest discrepancies in terms of molar flow (Figure 13c,d) in
both columns.
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vapor
flow, V. (—) P1, (– – –) P2, (– · –· –) P3, (· · · ·) P4.

The discussion presented shows that different behaviors that are generated depend-
ing on the parametrization used have a significant impact on the simulation/design of
the process.

4. Conclusions

The NRTL model used in this work (Equations (A-10) and (A-12)) has theoretical
limitations that are compensated for using several adjustable parameters established with
experimental data (VLE, LLE, hE) obtained from the real behavior of the solutions. Experi-
mental information of the system methyl methanoate + pentane was processed to define
the set of parameters of NRTL that show the best representation of the different properties
of this mixture. That is, the strategy adopted for the parametrization conditions its validity.

The conventional approach to modelling problems with LLE and/or VLE data only
provides local descriptions of the system behavior, since the Gibbs function (and the
corresponding gE) cannot be characterized over a wide range of conditions from a limited
number of observations (see Figure 4).

Employing a multi-property approach allows the validity of the set of parameters
to be extended without excessively increasing the experimental database. However, this
approach is not sufficient when the level of theory, or the flexibility of the correlations
employed, cannot be described over the entire range observed. In these cases, the applica-
tion of Equations (2) or (3) does not ensure that the set of parameters obtained is optimal.
Hence, in this work the parametrization problem is addressed by means of multi-objective
optimization (MOP), considering that it is more convenient. The methodology used sys-
tematically identifies optimal (non-dominated) parametrizations, each of which provides a
more precise local description of the quantities that configure the overall behavior of the
system (see Figure 10).

Comparison of four parametrizations (P1 to P4) representative of the optimal set
(Table 3) revealed that the profiles of composition, temperature, and molar flow inside
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the rectification columns C-1 and C-2 are conditioned by the parametrization used, which
ultimately affects the results of the process. The MOP approach establishes several optimal
alternatives, and the process engineer should select the one that provides a suitable tech-
nical/economic solution to achieve the proposed objective. The methodology applied in
this work to a specific case, selected by the availability of experimental quantities of several
properties, is very useful, but it cannot be generalized for all types of solutions; on the
contrary, it must be verified for each case. Logically, the application of this methodology
is simplified when the number of properties in the modelling process decreases. On the
other hand, its extension to multicomponent systems is more complex (especially with the
presence of LLE data) and it is the objective of future works.
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Glossary

A linear constraint coefficient matrix
b RHS linear constraint vector
cE

p excess heat capacity, J·mol−1K−1

g nonlinear inequality constraint (Equation (1)) /molar Gibbs function (J·mol−1) (Equation (A1))
gE molar Gibbs excess function (J·mol−1)

∆g(0)ij/ji NRTL binary interaction parameters (Equation (A8))
h molar enthalpy J·mol−1/nonlinear equality constraint (Equation (1))
hE molar excess enthalpy, J·mol−1

M/(Mx, My) number of properties in the multi-property formulation/apply to ML model fitting
(Equation (3))

P domain of model parameters
P* Pareto set (Equation (13))
p system pressure, kPa
PF* Pareto front (Equation (14))
R universal gas constant, 8314 J·mol−1K−1/reflux ratio
sY(·) root mean squared error applied to generic property Y
sML(·) maximum likelihood objective function (Equation (1))
T temperature, K
TE-out, heat exchanger outlet temperature, K
∆TE temperature difference between cold inlet and hot outlet
uY Experimental uncertainty of generic property Y (Equation (3))
v molar volume, m3mol−1

vE molar excess volume, m3mol−1

wm weighing factor of m-th generic property in error function calculation
x, xi, xaz liquid-phase molar fraction vector /i-th element/composition coordinate of the

azeotropic point
Y generic property
y vapor-phase molar fraction vector
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Greek letters
α12/α non-randomness parameter (Equation (A5))/1st liquid phase identifier (I)
β 2nd liquid phase identifier (II)
δ(·) generic error metric
εY ε-constraint boundary for generic property Y (Equation (15))
Γij NRTL pairwise interaction potential (Equation (A6))
γ activity coefficients
Θ model vector of parameters
Ξ thermodynamic canonical set
τij NRTL pairwise interaction energies (Equations (A6) and (A8))
Ω feasible space
Acronyms
APV88 Aspen© NRTL parametrization using MLE
D/F Distillate to feed ratio
FO objective functions vector (Equation (10))
LLE liquid–liquid equilibria
NRTL Non-Random Two Liquids model, Appendix A
MOP Multi-objective problem
P1, P2, P3, P4 NRTL parametrization obtaining after solving MOO, stated by Equation (15)
SLE solid–liquid equilibria
UCST upper critical solubility temperature
VLE vapor–liquid equilibria

Appendix A

Appendix A.1. Non-Random Two Liquids (NRTL) Molecular Model

Renon and Prausnitz [5] developed the NRTL model based on Scott’s theory of two
liquids [49] and the concept of local composition developed by Wilson [50]. The property
of a solution is obtained by superposition, weighted by the global composition, of the
properties of two hypothetical fluids. Hence, each fluid is composed of cells i and j, each
of which is a binary mixture with molecules of type A and B; in turn, the cells are made
up of a central molecule of one of the species and several neighboring molecules of both
components A and B.

Gibbs energy for each of the cells or clusters (A and B) is determined by the contribu-
tion of compounds 1 and 2 in each of them:

g(A) = x(1A)g(1A) + x(2A)g(2A)

g(B) = x(1B)g(1B) + x(2B)g(2B)
(A1)

where g(iA) are the Gibbs energies for the pure i-compound in cluster A, and anal-
ogous identification for cluster B. Gibbs function for the pure species 1 and 2 is given,
respectively, by:

g(A)
i = g(iA)

g(B)i = g(iB)
(A2)

Hence, the corresponding excess function for each of the clusters would be calculated
by the generic expression:

g(C), E = ∑ xi

[
g(C) − g(C)

i

]
, where C ≡ A or B (A3)

The global gE, considering that ∑ x(iC) = 1 and taking into consideration previous
expressions, would give rise to:

gE = g(A),E + g(B),E = x1x(2A)(g(2A) − g(1A)) + x2x(1B)(g(1B) − g(2B)) (A4)
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The authors of the model suggest that the molecules are not randomly distributed in
the solution but adopt preferential arrangements due to the interaction potentials between
pairs of molecules (see Figure A1), distinguishing local compositions in each cell from the
corresponding global compositions in the solution. According to Wilson’s model [35], the
interactions between molecules mainly depend on local compositions, so a relationship
was established considering the Boltzmann’s energy distribution. Hence,
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Introducing Equations (A6) and (A4), a model is obtained for the excess Gibbs func-

tion depending on absolute molar fractions (not of specific ones for each cluster). 

Figure A1. Molecular conceptualization of the NRTL model. On the right are the cells that correspond
to the hypothetical solutions with central molecules A or B.

x(2A)

x(1A)
= x2

x1
exp

[
− α12(g(2A)−g(1A))

RT

]
x(1B)
x(2B)

= x1
x2

exp
[
− α12(g(1B)−g(2B))

RT

]
 (A5)

α12 is the non-random parameter introduced by Renon and Prausnitz and the differences
∆g(iC) = g(iC) − g(jC), correspond to Gibbs interaction energies between molecules “i-j.”
From (Equation (A5)) the local compositions x(2A) and x(1B) can be obtained, given that
x(1A) = 1− x(2A), and x(2B) = 1− x(1B), being:

x(2A) =

x2 exp
[
− α12(g(2A)−g(1A))

RT

]
x1 + x2 exp

[
− α12(g(2A)−g(1A))

RT

] x(1B) =

x1 exp
[
− α12(g(1B)−g(2B))

RT

]
x2 + x1 exp

[
− α12(g(1B)−g(2B))

RT

] (A6)

Introducing Equations (A6) and (A4), a model is obtained for the excess Gibbs function
depending on absolute molar fractions (not of specific ones for each cluster).

gE = g(A),E + g(B),E = x1(g(2A) − g(1A))

 x2 exp
[
−

α12(g(2A)−g(1A))

RT

]
x1+x2 exp

[
−

α12(g(2A)−g(1A))

RT

]
+

+x2(g(1B) − g(2B))

 x1 exp
[
−

α12(g(1B)−g(2B))

RT

]
x2+x1 exp

[
−

α12(g(1B)−g(2B))

RT

]
 (A7)
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Renon and Prausnitz [5] simplified the presentation of model (A7), considering some
parameters that group the interaction energies of the compounds in each cluster, according
to the relationship (A3). These parameters τij y Γij are defined as:

τij =
(g(jC) − g(iC))

RT
; Γij = exp

[
−α12τij

]
(A8)

Hence, Equation (A7), now applied to the dimensionless Gibbs function, becomes:

gE = RT·x1x2

[
Γ21τ21

x1 + x2Γ21
+

Γ12τ12

x1Γ12 + x2

]
(A9)

which is how it is usually presented in the specialized literature.
The known thermodynamic relationships allow other derived quantities used in

chemical engineering calculations to be obtained, such as the activity coefficients and
mixing enthalpies:

ln γ1 =
(

∂GE/RT
∂n1

)
p,T,n2

= x2
2

[
τ21

Γ2
21

(x1+x2Γ21)
2 + τ12

Γ12
(x1Γ12+x2)

2

]
ln γ2 =

(
∂GE/RT

∂n2

)
p,T,n1

= x2
1

[
τ12

Γ2
12

(x1Γ12+x2)
2 + τ21

Γ21
(x1+x2Γ21)

2

]
hE = RT2α12x1x2

[
Γ21

(
∂τ21
∂T

)
p

(
τ21+1

x1+x2Γ21
− Γ21τ21x2

(x1+x2Γ21)
2

)
+

Γ12

(
∂τ12
∂T

)
p

(
τ12+1

x1Γ12+x2
− Γ12τ12x1

(x1Γ12+x2)
2

)]
(A10)

In practice, the classical NRTL formulation (Equation (A9)) describes the properties
well over a wide range of temperature ranges, limiting its applicability. Hence, some
authors [36] use an expression for τij(T), such as the one shown below, which gives more
flexibility to the model.

τij(T) = ∆g(1)ij +
∆g(2)ij

T
+ ∆g(3)ij ln T + ∆g(4)ij T (A11)

Since ∆gij
(k) 6= ∆gji

(k), characterization of a binary solution would require defining
eight parameters in addition to α12. Regarding this parameter, the molecular simulation has
demonstrated that the non-random concept of the NRTL theory is strict [3], so in the usual
practice, all the parameters of the model are correlated with the experimental information.
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