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A B S T R A C T

This paper presents a 3D boundary element time–harmonic model for the analysis of the dynamic behavior,
under low-level vibrations, of the Soria arch dam (Gran Canaria, Spain). The model takes into account dynamic
Soil–Structure Interaction (DSSI), Fluid–Structure Interaction (FSI) and the actual geometry of dam wall and
reservoir. The rock and the dam wall are considered as viscoelastic regions, and the water in the reservoir
is modeled as an inviscid fluid. The influence of DSSI, FSI, height of the water in the reservoir, accuracy of
the geometric modeling of the canyon, and type of transmitting boundary conditions at the truncated end of
the reservoir, are evaluated. DSSI and FSI have a significant influence on the dynamic response of the dam,
and the accurate representation of the geometry of the canyon is relevant for the correct estimation of the
modal shapes. Ambient vibrations tests were also performed, from which the first and third modes could be
clearly identified. The comparison between the experimental and numerical natural frequencies and mode
shapes suggests that the proposed complete numerical model is able to capture the dynamic response and can
be used for the structural health monitoring of the wall of this dam.
1. Introduction

The Soria arch dam is a double curvature concrete arch dam located
in Gran Canaria (Spain) with a height above the foundation of 120m,
a gross capacity of the reservoir of 32 Hm3, a quasi-symmetrical
geometry and a total crest length of approximately 150m. Built between
1962 and 1972, it is now planned to be part of the Chira–Soria
pumped-storage hydroelectric power station project, that plans to take
advantage of the already existing reservoirs of Chira and Soria to create
a system with an energy storage capacity of 3.2 GWh, with the aim of
increasing the integration of renewable energies in the island by 2026
and improving the stability of its isolated electricity system.

Structural Health Monitoring (SHM) of dams is already common
practice as support for managing, maintenance and assessment of the
level of security of these critical infrastructures [1]. Numerical models
are key parts of these SHM systems. The Boundary Element Method
(BEM) and the Finite Element Method (FEM) have both been used to
study the dynamic response of arch dams through modal, frequency-
domain and time-domain numerical analyses. These methodologies
also allow to take into account the flexibility of the foundation, and
study the relevance of the dam–reservoir–foundation interaction in
the response of the system. For instance, the steady-state harmonic
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response of the Morrow Point arch dam was studied using the FEM by
Fok and Chopra [2,3] for a wide range of parameters characterizing
the properties of the dam, the full or empty reservoir, the mathe-
matical representation of the truncated reservoir boundary (rigid or
absorptive) and the consideration of the foundation rock as rigid or
flexible. Later, Tan and Chopra [4] improved the model, included
the inertia and damping of the foundation rock, and performed a
wider parametric analysis. The same case of study was addressed by
Domínguez and Maeso [5,6] using a multi-region three-dimensional
coupled BEM technique for the steady-state harmonic analysis of the
linear seismic response of arch dams including the compliant foun-
dation, the presence of water and reservoir geometry, and complex
phenomena such as the traveling-waves effects. Later, Maeso et al. [7]
continued the development of the model and studied the effects of the
ground motion spatial variation and of the canyon geometry on the
response of the Morrow Point arch dam under seismic waves impinging
the site from different directions and considering several canyon and
reservoir geometries. Afterwards, Maeso et al. [8] and Aznárez et al. [9]
enhanced the model to include the presence of bottom sediments
using the Biot’s poroelastic formulation, and analyzed the influence
of sediments on the dynamic and seismic response of the system,
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and García et al. [10,11] used the model to study how the reservoir
level, the thickness of the sediments, or the angles of incidence of the
seismic waves affect the computed seismic response of the dam. Other
computational schemes have also been proposed. For instance, Seghir
et al. [12] presented a FEM–symmetric BEM 2D model for the study of
the dam–reservoir interaction problem in gravity dams considering the
reservoir domain as unbounded. Later, Aftabi and Lotfi [13] presented
a Finite Element-(Finite Element-Hyper Element)-Boundary Element
method for the dynamic analysis of arch dams, including a modal
approach and fluid finite elements to discretize the near-field region
of the reservoir, and three-dimensional fluid hyperelement to model
the prismatic channel that extends to infinity. Recently, Li et al. [14]
proposed a new 3D scaled boundary finite element method (SFBEM) to
study the dam–rock foundation interaction of arch dams taking into ac-
count the inclined layered half-space. The Soria arch dam, in particular,
was recently studied, from the static point of view, by Concepción–
Guodemar et al. [15], who developed a detailed three-dimensional
finite-differences model to study the distribution of stresses in the dam
under static conditions. For a deeper literature review on the models
employed to study the dynamic response of concrete arch dams, the
reader is referred to Rezaiee–Pajand et al. [16].

The influence of the reservoir topology, and the study of the math-
ematical representation of the truncated boundary of the reservoir, are
other aspects that are relevant to this problem and to the numerical
models that are used. Specific boundary conditions to represent the
truncated boundary of the reservoir have been developed and applied
to this problem by numerous authors, such as Humar and Roufaiel [17],
Medina and Domínguez [18,19], Fok and Chopra [2,3], Domínguez
and Meise [20], Szczesiak and Weber [21], Maeso et al. [7,8], Aznárez
et al. [9], Aftabi and Lotfi [13], or Jafari and Lotfi [22]. The influence
of how the geometry of the reservoir is modeled is another aspect
of interest. For instance, García et al. [10] studied the influence of
considering an open or a closed reservoir. Mircevska et al. [23] focused
on the influence of the distance of the truncated boundary from the dam
wall, and Mircevska et al. [24] looked into how the geometry of the
reservoir (with a regular or a complex surface) affects the distribution
of the hydrodynamic forces over the dam wall due to the seismic
actions.

The modal analysis of these arch dams is another approach that
contributes to a deeper understanding of the dynamics of the system.
Two dedicated studies on this matter are, for instance, those of Farzad
and Lotfi [25], and Hariri-Ardebili et al. [26]. From the experimental
point of view, ambient vibration techniques allow to study different
aspects of the dynamic behavior of dams, and make possible to iden-
tify natural frequencies and mode shapes. In fact, ambient vibration
techniques have been applied with success to the experimental study
of several arch dams in the last two decades. For instance, the arch
dams of Mauvoisin, Ounta Gennarta, La Tajera, Baixo Sabor or Saint–
Guérin were identified and studied by Darbre et al. [27,28], Calcina
et al. [29], García-Palacios et al. [30], Pereira et al. [31] and Guo
et al. [32], respectively. The state of the art of this issue has been
recently summarized by Pereira et al. [33].

As said above, numerical models can be used in SHM applications
to inform in the design of the monitoring system and to analyze the
measured data but, at the same time, such models are always subject
to a certain level of uncertainty due to the assumptions and simplifi-
cations made during its development regarding, for instance, material
properties, geometries, boundary conditions and governing laws of the
different regions involved. In this line, the objective of this study is
threefold: on the one hand, it aims at building a three-dimensional
boundary element numerical model of the Soria arch dam for the anal-
ysis of its dynamic response under low-level vibrations; on the other
hand, it aims at evaluating the influence of three different aspects that
can be subject to different levels of simplification during the process
of development of the model. These three aspects are: (a) the relative
flexibility of the foundation rock, which is related to how relevant are
the dynamic soil–structure interaction effects on the response of the
dam wall; (b) the accuracy of the geometrical representation of the
surrounding topography, which is related to whether the computed
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results are influenced by a geometrical simplification of the canyon
of the reservoir; and (c) the way in which a truncated reservoir is
considered in the model, which is related to the influence of the type
of boundary condition used to represent the continuation of the body
of water, and the propagation of waves away from the wall. The final
objective, after having studied the items listed above, is to validate and
update the numerical model by comparing the main modal parameters
against those determined by ambient vibrations tests.

2. Problem definition

2.1. The soria arch dam

The Soria dam is located in the south of the Island of Gran Ca-
naria (one of the Canary Islands, Spain). It is the highest dam in
the archipelago (120m high) and forms the largest reservoir, with a
capacity of 32Hm3, although it has never exceeded 40% of its capac-
ity. The dam wall, built between 1962 and 1972 [34], is a concrete
double-curvature arch dam (see Fig. 1) with a variable radius, quasi-
symmetrical geometry and a total crest length of approximately 150m.
The spillway is situated on the left side (looking from upstream). The
thickness of the wall decreases from 17.30 m at the base to 3m at the
crest.

2.2. Geometrical models for the analysis of the dam

The geometry of the dam wall was generated from the topological
information provided in a specific study of the dam developed nearly
twenty years after its completion [35]. On the other hand, the geo-
metrical representation of the actual topography and surroundings was
constructed from lidar topographic information [36]. In order to study
not only the dynamic properties of the dam wall, but also the influence
of DSSI, water level and accuracy of the geometrical representation of
the canyon, four different geometrical models of the system have been
built: a model including only the dam wall for studies assuming a fixed-
base boundary condition at the abutments and foundation (see Fig. 1b)
and three compliant-base models (see Fig. 2) that include a model with
a simplified straight trapezoidal canyon and an amount of free-surface
around the dam wall equivalent to twice the height 𝐻 of the dam wall
(Fig. 2a), a model with a more realistic topographical representation
of the canyon (built from lidar data) and also with an amount of
free-surface around the dam wall equivalent to twice the height 𝐻 of
the dam wall (Fig. 2b), and another simplified model with a straight
trapezoidal canyon but an amount of free-surface around the dam wall
equivalent to three times the height 𝐻 of the dam wall (Fig. 2c) used to
check the influence of this parameter on the numerical results. The BE
meshes consist of nine-node quadratic quadrilateral elements and six-
node quadratic triangular elements. The boundary element mesh of the
dam wall was validated by comparison of the natural frequencies and
mode shapes of the fixed-base dam wall against those obtained from
a modal analysis of a finite element model. Table 1 summarizes the
number of nodes and elements of the validated meshes finally used in
this analyses presented below.

Both the dam wall and the rock in the foundation and the reservoir
are assumed as viscoelastic solid materials, while the response of water
media is modeled as acoustic media, described by the Helmholtz’s

Table 1
Number of BEM nodes and elements in the different models.

BEM models Number
of nodes

Number of
elements

Fixed base (dam wall only) 3228 733
Compliant base, trapezoidal canyon (𝑅 = 2𝐻) 8168 2023
Compliant base, topographic canyon (𝑅 = 2𝐻) 10 397 2739
Compliant base, trapezoidal canyon (𝑅 = 3𝐻) 10 408 2631
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Fig. 1. Soria dam. (a) Soria reservoir general view (b) Dam wall representation (c) Dam wall cross section. Points 1, 2 and 3 are located approximately at 1/4, 1/2 and 3/4 of
the dam crest, respectively, measured from left to right abutment.
Fig. 2. Geometrical models and meshes of the reservoir. (a) straight trapezoidal canyon with 𝑅 = 2𝐻 , (b) topographic canyon with 𝑅 = 2𝐻 , and (c) straight trapezoidal canyon
with 𝑅 = 3𝐻 .
Table 2
Initial mechanical properties assumed for the concrete in the dam wall and for the
surrounding rock.

Material property Concrete Rock Water

Shear modulus, 𝐺 (GPa) 8.16 12.1 –
Density, 𝜌 (kg/m3) 2300 2143 1000
Poisson’s ratio, 𝜈 0.2 0.2 –
Damping ratio, 𝜉 0.01 0.01 –
Pressure wave velocity (m/s) 1438

equation. Table 2 presents the material properties initially considered
for each one of the regions. The mechanical properties of the concrete
in the dam wall are initially extracted from the specific study on the
Soria dam [35]. The mechanical properties of the rock, on the other
hand, correspond to generic properties of the ignimbrite rocks found
in the location. Frequency-independent hysteretic material damping in
the solid regions is considered through the definition of complex elastic
properties of the type 𝐺 = Re[𝐺](1+2i𝜉), being 𝜉 the hysteretic damping
ratio. Five different possibilities were considered with respect to the
water level in the reservoir: empty reservoir and water levels of 30,
50, 76 and 112m (see Fig. 1c).

3. Governing equations

This section describes in detail the main aspects of the mathemat-
ical models used in this study. It presents the models employed to
represent the steady–state dynamic behavior of the different regions
of the problem, the types of boundary conditions defined to represent
the truncated boundaries of the reservoir, the representation of the
input seismic excitation and also the way in which all these different
equations are coupled to solve the problem.
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3.1. Dam wall and foundation rock

The dam wall and the foundation rock are modeled as viscoelastic
isotropic regions whose behavior can be represented by the Navier’s
equations that, in the frequency domain, can be written as

𝐺
[

∇2𝐮 + 1
1 − 2𝜈

∇(∇𝐮)
]

+ 𝜌𝜔2𝐮 = 𝟎 (1)

where 𝐮(𝑥, 𝑦, 𝑧, 𝜔) is the field of displacements, 𝐺, 𝜈 and 𝜌 are the
shear modulus, Poisson’s ratio and density of each medium, and 𝜔 is
the circular frequency. The dynamic response of such region can be
represented through the Boundary Integral Equation (BIE) for the dis-
placements 𝐮(𝑥, 𝑦, 𝑧, 𝜔) and tractions 𝐭(𝑥, 𝑦, 𝑧, 𝜔), along the boundaries
𝛤 , written for a collocation point 𝐱𝑘:

𝐜𝑘𝐮𝑘 + ∫𝛤
𝐭∗𝐮 d𝛤 − ∫𝛤

𝐮∗𝐭 d𝛤 = 𝟎 (2)

where 𝐮∗ and 𝐭∗ are the elastodynamic fundamental solution tensors for
a time harmonic Dirac Delta function at point 𝐱𝑘, and 𝐜𝑘 is the local free
term matrix at the same point. After the discretization of the domains
using appropriate boundary elements, Eq. (2) can be applied on every
node for the three directions of space, which allows building a system
of equations of the type

𝐇𝐮 −𝐆𝐭 = 𝟎 (3)

where 𝐇 and 𝐆 are the coefficient matrices obtained by integration over
the boundary elements of the fundamental solution 𝐭∗ and 𝐮∗, respec-
tively, times the corresponding shaped functions for the element type
used, and 𝐮 and 𝐭 are the displacement and traction boundary nodal
value vectors, respectively. This approach is especially advantageous
in the numerical analysis of the foundation rock because the radiation
conditions are intrinsically taken into account for unbounded domains
such as this one, and only a limited extension of the free surface of the
terrain around the structure needs to be discretized in order to obtain
accurate results. More details can be found in Domínguez [37].
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Fig. 3. (a) Idealized representation of the dam–foundation–reservoir system. (b) Detail of individual boundaries.
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3.2. Reservoir near-field

As usual in this type of models, the water domain is represented as
an inviscid fluid under small amplitude motions through the Helmholtz
equation

∇2𝑝 +
(𝜔
𝑐

)2
𝑝 = 0 (4)

where 𝑝(𝑥, 𝑦, 𝑧, 𝜔) is the scalar field of hydrodynamic pressures and 𝑐 is
the wave propagation velocity. The geometry of the reservoir closest to
the dam wall can be relevant for the dynamic analysis of the system. For
this reason, the numerical model needs to be able to take such geometry
into account. In this case, the boundary integral equation for the fluid
domain can be written as

𝑐𝑘𝑝𝑘 + ∫𝛤𝑤

𝜕𝑝∗

𝜕𝐧
𝑝 d𝛤𝑤 − ∫𝛤𝑤

𝑝∗
𝜕𝑝
𝜕𝐧

d𝛤𝑤 = 0 (5)

where 𝛤𝑤 represents the boundary of the reservoir; 𝑝∗ is the half-
pace fundamental solution for the hydrodynamic pressures in the fluid
omain for a harmonic punctual source pressure at collocation point
𝑘 [37], with 𝑝 = 0 at the surface of the water; 𝑐𝑘 is the local free term
t the same point; and 𝐧 is the unit normal vector along 𝛤𝑤. After the
iscretization of the reservoir contour (with the exception of the surface
f the water), Eq. (5) can be written for all nodes in 𝛤𝑤, which allows
o express the relationship between the hydrodynamic pressures nodal
alues 𝐩 and its derivatives 𝐪 as

𝑤𝐩 −𝐆𝑤𝐪 = 𝟎 (6)

here 𝐆𝑤 and 𝐇𝑤 are the coefficient matrices obtained by integration
ver the boundary elements of the scalar fundamental solution, and
ts flux, times the corresponding shaped functions for the element type
sed.

.3. Excitation model

The dam–foundation–reservoir system will be assumed to be sub-
ected to a seismic excitation defined by vertically-incident time–
armonic planar shear waves. Under this situation, the fields of dis-
lacements and tractions in the region where the seismic action orig-
nates can be expressed as the superposition of the incident field and
he diffracted field, and Eq. (3) must be understood to be written in
he diffracted field. Thus, the equation for the foundation rock can be
ritten as

𝐹 𝐮𝐹 −𝐆𝐹 𝐭𝐹 = 𝐇𝐹 𝐮𝑓𝑓 −𝐆𝐹 𝐭𝑓𝑓 (7)

here 𝐮𝐹 and 𝐭𝐹 are the nodal values of the total displacements and
raction fields in the foundation rock region, and 𝐮𝑓𝑓 and 𝐭𝑓𝑓 are the
ell-known closed-form displacement and traction components of the
70

ncident field in a half-space [38,39]. d
.4. Coupled system synthesis. Boundary conditions, compatibility and
quilibrium equations

The final linear system of equations to be solved is built by applying
quilibrium and compatibility conditions between the different regions
nvolved. In order to present such system of equations, let us denote
he three domains and six boundaries and interfaces as illustrated in
ig. 3. Thus, Eqs. (3), (6) and (7), for dam (D), rock foundation (F) and
ater (W) regions, respectively, can be partitioned as

𝐇𝐷
1 𝐮

𝐷
1 +𝐇𝐷

2 𝐮
𝐷
2 +𝐇𝐷

3 𝐮
𝐷
3 −𝐆𝐷

1 𝐭
𝐷
1 −𝐆𝐷

2 𝐭
𝐷
2 −𝐆𝐷

3 𝐭
𝐷
3 = 𝟎 (8a)

𝐇𝐹
2 𝐮

𝐹
2 +𝐇𝐹

4 𝐮
𝐹
4 +𝐇𝐹

5 𝐮
𝐹
5 −𝐆𝐹

2 𝐭
𝐹
2 −𝐆𝐹

4 𝐭
𝐹
4 −𝐆𝐹

5 𝐭
𝐹
5 = 𝐇𝐹 𝐮𝐹𝑓𝑓 −𝐆𝐹 𝐭𝐹𝑓𝑓

(8b)
𝑊
3 𝐩3 +𝐇𝑊

5 𝐩5 +𝐇𝑊
6 𝐩6 −𝐆𝑊

3 𝐪3 −𝐆𝑊
5 𝐪5 −𝐆𝑊

6 𝐪6 = 𝟎 (8c)

On the other hand, the boundary conditions, and the equilibrium
nd compatibility equations that relate dynamic and kinematic vari-
bles along the interfaces shared by two different regions are

𝐭𝐷1 = 𝟎 ; 𝐭𝐹4 = 𝟎 (9a)

𝐭𝐷2 + 𝐭𝐹2 = 𝟎 ; 𝐮𝐷2 = 𝐮𝐹2 (9b)
𝐷
3 + 𝐩3𝐧𝐷 = 𝟎 ; 𝐪3 + 𝜌𝑤𝜔

2𝐮𝐷3 𝐧
𝐷 = 𝟎 (9c)

𝐭𝐹5 + 𝐩5𝐧𝐹 = 𝟎 ; 𝐪5 + 𝜌𝑤𝜔
2𝐮𝐹5 𝐧

𝐹 = 𝟎 (9d)

𝐪6 +𝐌𝐩6 = 𝟎 (9e)

here Eq. (9a) represents the free-surface boundary conditions,
qs. (9b) to (9d) represent equilibrium and compatibility equations
t the dam-abutment (𝛤2), dam-upstream face (𝛤3) and reservoir–
ock (𝛤5) interfaces, and Eq. (9e) represents the transmitting boundary
ondition at the truncated boundary of the reservoir (𝛤6), as described
elow in Section 3.5, where matrix 𝐌 is also defined. Here, 𝐧𝐹 and
𝐷 are the unit normal vectors to boundaries of the rock–foundation
nd dam, respectively. The application of these conditions to the BEM
qs. (8) yields a linear system of equations of the type 𝐀𝐱 = 𝐛 where
atrix 𝐀 is defined in Eq. (10) (see Box I),

=
(

𝐮𝐷1 𝐮𝐹2 𝐮𝐷3 𝐭𝐹2 𝐮𝐹4 𝐮𝐹5 𝐩3 𝐩5 𝐩6
)

(11)

nd

=
⎛

⎜

⎜

⎝

𝟎
𝐇𝐹 𝐮𝐹𝑓𝑓 −𝐆𝐹 𝐭𝐹𝑓𝑓

𝟎

⎞

⎟

⎟

⎠

(12)

This system allows to compute the unknown displacements, trac-
ions and pressures along all nodes defined at all boundaries and
nterfaces of the problem, for each frequency 𝜔. The implementation of
his synthesis process can be a complex task in which many particular
ituations that depend on the problem must be taken into account.
he application of techniques where the unknowns are duplicated

n common nodes between interfaces and where the collocation is

one as many times as different boundaries are present, facilitates and
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𝐀 =
⎡

⎢

⎢

⎣

𝐇𝐷
1 𝐇𝐷

2 𝐇𝐷
3 𝐆𝐷

2 𝟎 𝟎 𝐆𝐷
3 𝐧

𝐷 𝟎 𝟎
𝟎 𝐇𝐹

2 𝟎 −𝐆𝐹
2 𝐇𝐹

4 𝐇𝐹
5 𝟎 𝐆𝐹

5 𝐧
𝐹 𝟎

𝟎 𝟎 𝜌𝑤𝜔2𝐆𝑊
3 𝐧𝐷 𝟎 𝟎 𝜌𝑤𝜔2𝐆𝑊

5 𝐧𝐹 𝐇𝑊
3 𝐇𝑊

5 𝐇𝑊
6 +𝐆𝑊

6 𝐌

⎤

⎥

⎥

⎦

(10)

Box I.
Fig. 4. Near-field model and transmitting boundary representing an infinite open channel with constant geometry.
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eneralizes this procedure with a very small relative increase in the
ize of the system of equations. In addition, these techniques, combined
ith non-nodal collocation strategies, allows the effective treatment of
oints where flow or tension may be undefined (corner problem). For
ore details see [40,41].

.5. Reservoir far-field. Definition of the transmitting boundary

Section 3.2 addressed the treatment of the portion of the reservoir
hat is closest to the dam wall, which is modeled in detail. A detailed
odel of the portions of the reservoir that are more distant from the
am wall is less relevant. For this reason, the far-field reservoir is
sually simplified by specific boundary conditions set at a truncated
oundary placed far enough from the points of interest in the study.
here exist different alternatives to define such boundary conditions,
hich in any case must be able to represent the radiation of energy
way from the reservoir through that channel.

In order to define an adequate transmitting boundary condition at
he truncated end of the reservoir for the problem at hand, this section
ill first define a set of alternatives, and will then evaluate and compare

hem. A rigorous semi-analytical solution for the problem of an infinite
pen channel with a generic geometry of the channel cross-section
ill be presented first, and will be used later as a reference solution.
he two less complex radiation conditions by Sommerfeld and Humar
nd Roufaiel will be presented later. A benchmark problem will be
hen briefly studied in order to evaluate the more adequate boundary
ondition to be used for the analysis of the reservoir at hand.

.5.1. Rigorous semi-analytical solution for an infinite open channel with
eneric geometry cross-section

Thus, assuming an infinite open channel with constant geometry be-
ond the truncated boundary is a common technique (see, for instance,
all and Chopra [42] or Domínguez and Maeso [5]). This assumption
llows to set a semi-analytical solution for the propagation of the
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ydrodynamic waves along the channel, and the formulation, therefore, t
of the equations of a transmitting boundary that models rigorously this
situation.

Let us then consider an infinite channel whose bottom and walls
are perfectly reflectant. The solution for the field of hydrodynamic
pressures in this channel must verify the Helmholtz equation (4) con-
sidering 𝑝 = 0 on 𝜕𝛤 𝑝

𝑐 and 𝜕𝑝∕𝜕𝐧 = 0 on 𝜕𝛤 𝑢
𝑐 (see Fig. 4). Considering a

olution of the type

= 𝛷(𝑥, 𝑧)e−𝐾𝑦 (13)

here 𝐾 is the wave number, the solution of Eq. (4) by separation of
ariables yields the following eigenvalue problem in 𝛤𝑐

2𝛷 + 𝜆2𝛷 = 0 (14)

here 𝛷 are the resulting eigenvectors, and 𝜆 the eigenvalues, whose
olution is of the type 𝜆2 = 𝐾2+(𝜔∕𝑐)2. The resolution of Eq. (14) yields
𝑚 and 𝛷𝑚 for each mode 𝑚, being the wave number 𝐾𝑚 for each node
epresented by

𝑚 =
√

𝜆2𝑚 −
(𝜔
𝑐

)2
(15)

A general complete solution can now be written as the superposition
of all modes as

𝑝 =
∞
∑

𝑚=1
𝐴𝑚𝛷𝑚e−𝐾𝑚𝑦 (16)

where 𝐴𝑚 are the participation factors of each mode, initially unknown,
and dependent of the specific configuration. As in other problems of
this kind, the properties of the propagation modes in the channel
depend on the sign of the radicand in Eq. (15). Thus, if the radicand is
positive, then 𝐾𝑚 ∈ R+, and the exponential term decays with distance,
which means that such modes damp away fast and are not relevant far
from the origin of the perturbation. On the contrary, if the radicand
is negative, then 𝐾𝑚 ∈ I+, resulting in modes that propagate along

he channel without decaying which imply that they need to be taken
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Fig. 5. Frequency response functions of a planar dam wall in a rectangular cross-section infinite canyon, subject to vertically-incident shear waves, with different types of
transmitting boundary conditions at the truncated end of the reservoir.
considered in order to properly simulate the radiation of this energy
out of the model.

Eq. (16), and its derivative, can be taken as the starting point to
derive a rigorous radiating boundary condition in the nodes of a planar
closing boundary of the reservoir at coordinate 𝑦 = 0. There are explicit
solutions (exacts or approximate) for some specific geometries of the
channel cross-section (see, for instance, [21,43,44]) but, for a generic
geometry, the solution will be semi-analytical, as the eigenvalue prob-
lem stated in Eq. (14) shall be solved numerically. In any case, once
the eigenvalues and eigenmodes are known, the finite expansion of the
hydrodynamic pressures and their derivatives can be computed for each
node 𝑖 from Eq. (16). Given that 𝑦 = 0 in the chosen reference system,
the vectors 𝐩 and 𝐪 that gather the pressures and their derivatives at
every node of the closing boundary can be written in matrix form as

𝐩 = Φ𝐀 (17)

𝐪 = −Φ𝐊𝐀 (18)

where Φ is the matrix that gathers all eigenvectors, 𝐀 is the vector of
participation factors and 𝐊 is a diagonal matrix with all wave numbers.
Thus, taking into account that Φ is an orthogonal matrix, the expression
for the radiation condition at the nodes can be obtained from Eqs. (17)
and (18) as

𝐪 +𝐌𝐩 = 𝟎 (19)

where 𝐌 = Φ𝐊Φ−1.

3.5.2. Truncated radiation condition for the first mode of the channel
In most real situations, only a very small number of eigenvalues are

located within the frequency range of interest due to the dimensions of
usual problems and the large spacing between modes. Consequently,
the expansion (16) will consist of only a few meaningful terms. In fact,
in many cases, including only the first natural frequency can be enough,
as proposed by Humar and Roufaiel [17], which allows to simplify
Eq. (19) for each node 𝑖 to
(

𝜕𝑝
𝜕𝑦

)

𝑖
+
√

𝜆21 −
(𝜔
𝑐

)2
𝑝𝑖 = 0 (20)

which is a Robin condition, uncoupled for each node of the boundary,
and straightforward to incorporate in any numerical code. For rectan-
gular narrow channels, the first mode is related to the water depth 𝐻 ,
being 𝜆 = 𝜋∕2𝐻 .
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1

3.5.3. Sommerfeld radiation condition
For values of 𝜔∕𝑐 ≫ 𝜆1, Eq. (20) collapses into the well-known

Sommerfeld radiation condition for 1D problems (see for instance
Eringen and Suhubi [45]):
(

𝜕𝑝
𝜕𝑦

)

𝑖
+ i

(𝜔
𝑐

)

𝑝𝑖 = 0 (21)

where i =
√

−1 is the imaginary unit. This is a classical Robin con-
dition widely used in elastodynamics due to its simplicity and whose
application to model this effect will also be explored in this work.

3.5.4. Benchmark problem
These alternative formulations for the transmitting boundary con-

dition at the truncated end of the reservoir were implemented in the
multidomain Boundary Element Method (BEM) code in the frequency
domain described in Maeso et al. [7,8]. The results computed using
these formulations will be studied and compared here for a simplified
model of the dam–foundation–reservoir: a planar dam wall with the
same height as Soria arch dam (120m) and average length and width of
80 and 10 m, respectively, completely embedded in a prismatic canyon
with rectangular cross-section, as illustrated in Fig. 5. The properties
for dam wall, rock foundation and water region are those defined
in Table 2. The depth of the water in the reservoir is defined as
𝐻 = 110m. For this case of a rectangular channel, the eigenvalue and
eigenfrequencies for the open channel are explicit (see, for instance,
Domínguez and Maeso [6] or Weber [44]), and can be easily derived.
The fundamental frequency of the channel is 𝑓1 = 3.2 Hz. The system is
subject to vertically-incident shear waves that produce motions along
the axis of the channel.

Fig. 5 presents the response of a point located at the top of the
dam wall for the three different alternative boundary conditions and for
the empty reservoir situation. The significant reduction in the natural
frequencies of the dam wall, due to the presence of the water, is clear.
Under full-reservoir conditions, the response at the dam wall below
the first mode of the wall is insensitive to the boundary condition.
Sommerfeld radiation condition provides an overdamped response in
a wide range of frequencies, especially around the first and second
modes of the wall, and around 𝑓1, which is marked with a clear
peak in the frequency response function computed with both the semi-
analytical and Humar and Roufaiel’s transmitting boundaries. However,
as mentioned in Section 3.5.2, for frequencies 𝑓 ≫ 𝑓1, the solution
obtained considering Sommerfeld’s condition converges with the re-
sponse computed considering the semi-analytical radiation condition as
described in Eq. (19). At the same time, Humar and Roufaiel’s radiation
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Fig. 6. Frequency response functions at the dam crest for fixed and compliant-base dam models and the different representations of the canyon. Responses are shown at point 1
(upper plots), point 2 (middle plots) and point 3 (bottom plots).
condition matches perfectly that rigorous semi-analytical solution for
all the frequency range of interest, as the second frequency of the
channel is above nine Hz. For this reason, given its precision, efficiency
and simplicity, Humar and Roufaiel’s radiation condition will be used
later for the study of the response of Soria arch dam.

4. Results

4.1. Influence of DSSI and canyon geometry modeling on the dynamic
response of the dam in empty reservoir conditions

In order to quantify the influence of the dynamic soil–structure
interaction and of the geometry of the canyon on the dynamic response
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of the dam in empty reservoir conditions, Fig. 6 presents the frequency
response functions at different points along the dam crest for different
situations. The response of the system under upstream (left column)
and cross-stream (right column) incident ground motions is plotted for
points 1, 2 and 3 (as defined in Fig. 1b) in the upper, middle and bottom
rows, respectively. In the case of the fixed-base system, the excitation
is defined as a harmonic uniform unitary displacements field along
the abutments. Each of the plots presents the responses obtained for
fixed and compliant-base configurations, and for the three models of
the canyon.

DSSI influences very clearly the natural frequencies of the system
despite the significant stiffness of the rock and the relatively short
span of the dam wall in comparison with its height. Table 3 presents
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Table 3
Comparison between natural frequencies for fixed-base and the different compliant-base models. The reduction in
the natural frequency with respect to fixed-base conditions is shown in parentheses.

First mode Second mode Third mode Fourth mode

Fixed base 4.01 Hz 5.02 Hz 6.42 Hz 7.80 Hz

Compliant base trapezoidal canyon (𝑅 = 2𝐻) 3.79 Hz
(−5.48%)

4.77 Hz
(−4.98%)

6.16 Hz
(−4.05%)

7.46 Hz
(−4.35%)

Compliant base topographic canyon (𝑅 = 2𝐻) 3.80 Hz
(−5.23%)

4.78 Hz
(−4.78%)

6.17 Hz
(−3.89%)

7.47 Hz
(−4.23%)

Compliant base trapezoidal canyon (𝑅 = 3𝐻) 3.78 Hz
(−5.73%)

4.76 Hz
(−5.18%)

6.16 Hz
(−4.05%)

7.46 Hz
(−4.35%)
Fig. 7. Natural frequencies and mode shapes of the dam wall under fixed-base condition.
the comparison between the natural frequencies corresponding to the
fixed-base and the different compliant-base models, together with the
quantification of the reduction in frequency produced by the soil–
structure interaction. Here, natural frequencies are determined as the
frequencies of the peaks of the imaginary parts of each frequency
response function. This reduction is, in average, of 5.5%. 5.0%, 4.0%
and 4.3% for the first, second, third and forth natural frequencies,
respectively,with insignificant differences among the different models
of canyon. The different peaks in the frequency response functions
have been labeled in order to identify the corresponding specific mode
of vibration for each one of them. Thus, the natural frequencies are
marked in each plot by means of solid and dashed lines for the fixed
and complaint base cases, respectively. Symbols 𝑓1, 𝑓2, 𝑓3 and 𝑓4 are
used to denote the first, second, third and fourth natural frequencies,
respectively. As expected, the fundamental mode (asymmetric) can be
observed clearly under cross-stream excitation (case in which, in turn,
symmetrical modes can hardly be observed), while the second, third
and fourth modes (symmetric) are evident in the frequency response
functions computed from upstream excitation. Fig. 7 presents the first
four mode shapes of vibration, which are also depicted inside Fig. 6 for
reference. This modal shapes agree with the usual shapes for this type
of structures, as shown, for instance, by Hariri-Ardebili et al. [26].

On the other hand, soil–structure interaction tends also to imply, as
expected, a reduction in the response recorded at the dam crest due
to material and radiation damping through the rock. This is always
true when straight trapezoidal canyons are considered but, when the
topographic canyon is employed, some increases are observed in the
responses. More precisely, the amplitude of the response around the
first natural frequency of the dam increases significantly in points
1 and 3 for upstream incident ground motion, and the amplitudes
of the response between 4.1 Hz and 7.9 Hz also increase very im-
portantly in point 2 for cross-stream incident ground motion. It is
also worth noting that considering a simplified straight trapezoidal
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geometry of the canyon instead of its actual topographic geometry has
some influence on the amplitude of the dynamic response at certain
points in some frequency ranges, mostly under cross-stream incident
excitation but also in the upstream direction. However, the influence
on the observed natural frequencies is insignificant, which allows to
employ the trapezoidal canyon models in the next sections for the study
of the evolution of the natural frequencies. In any case, it is worth
highlighting that these conclusions regarding the limited influence of
the reservoir geometry on the dynamic response of the dam apply to the
specific quasi–symmetrical dam studied here, while a larger influence
is expected in more asymmetrical cases.

On the other hand, when assessing the adequacy of the chosen
extension for these straight canyon meshes, it has been shown that
increasing the mesh extension beyond 𝑅 = 2𝐻 does not influence
significantly the results. For these reasons, the mesh with a straight
trapezoidal canyon and 𝑅 = 2𝐻 is used in the following sections.

4.2. Influence of the radiation condition modeling at the truncated end of
the reservoir

Section 3.5 presented alternative formulations for the transmitting
boundary condition at the truncated end of the reservoir, and compared
them in a simplified benchmark problem, reaching the conclusion that
the simplified Humar and Roufaiel’s radiation condition provides an
accurate response. The benchmark problem consisted of a rectangular
channel, differently from the simplified model of Soria’s reservoir,
that features an isosceles prismatic cross-section in the channel, that
represents better the actual geometry of the site.

The fundamental frequency to be used in Eq. (20) is a function of
the geometry of the channel and, mainly, of the water level. In trape-
zoidal narrow canyons, an approximate value of this frequency can be
computed using the solutions proposed by Shul’man [43] but whose
exact value has to be calculated by numerically solving the eigenvalue



Engineering Analysis with Boundary Elements 144 (2022) 67–80J.C. Galván et al.
Fig. 8. Frequency response functions at the dam crest for compliant-base dam model and the different boundary conditions at the truncated boundary of the reservoir. Responses
are shown at point 1 (left plot) and point 2 (right plot). 𝐻 = 76m.
problem represented by Eq. (14). Since the depth of the water reservoir
is the most determining variable in this calculation, it can also be
useful to assess whether the explicit solution of the rectangular channel
(𝜆1 = 𝜋∕2𝐻) can be used as an eigenvalue for this problem. Thus, the
influence of adopting such simplified expression for the fundamental
frequency, or its rigorous value, is briefly investigated in this section for
the problem at hand. Sommerfeld’s radiation condition is also included
in order to show the influence of the different conditions in this more
realistic configuration.

Thus, Fig. 8 presents the frequency response functions for the
displacements at the dam crest with respect to the free-field seis-
mic displacements produced by the vertically-incident upstream shear
waves, for 𝐻 = 76m. The analytical fundamental frequency for a
channel with rectangular cross-section of this depth is 𝑓𝑎𝑟 = 4.73 Hz,
while the numerical fundamental frequency for the channel with the
actual straight trapezoidal cross-section is 𝑓𝑛𝑡 = 5.48 Hz. The response
is shown for two different points along the dam crest. In this more
realistic model of the dam–foundation–reservoir system, the influence
of the transmitting boundary condition is even less important than in
the previous benchmark case. At point 1, the differences between the
three tested models are negligible. At the mid point of the crest (point
2), some differences can be found between 4.5 and 6 Hz, especially
at 𝑓 ≃ 𝑓𝑛𝑡, depending on the value of the fundamental frequency
adopted for the Humar-Roufaiel model (𝑓𝑎𝑟 or 𝑓𝑛𝑡). Therefore, the
results presented in the next section are computed with the most ac-
curate solution among these three, i.e., Humar and Roufaiel’s radiation
condition with numerically computed fundamental frequencies for the
trapezoidal cross-section with the corresponding water depths for each
case.

4.3. Influence of water level and SSI on the dynamic response of the dam

The objective of this section is twofold: on the one hand, it studies
how the variations in the height of the water held by the dam influences
the dynamic response of the dam wall; and in the other hand, it also
addresses the question of how relevant is SSI in this case. To do so, the
dynamic response of the system has been studied under five different
levels of water in the reservoir (0, 30, 50, 76 and 112 m) corresponding
to ratios of 0%, 25%, 42%, 63% and 93% of the total height of the
wall. As stated above, a straight trapezoidal canyon, with 𝑅 = 2𝐻 is
employed, and Humar and Roufaiel’s radiation condition is stated at
the truncated boundaries. The needed eigenvalues corresponding to the
channel are computed numerically, yielding the following fundamental
frequencies: 𝑓1(𝐻 = 30) = 12.87 Hz, 𝑓1(𝐻 = 50) = 7.97 Hz, 𝑓1(𝐻 =
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76) = 5.48 Hz and 𝑓1(𝐻 = 112) = 3.86 Hz. Fig. 9 presents the
displacements in the upstream direction at two different points of the
dam crest, for fixed-base and compliant-base models. In the first model,
the system is subject to harmonic uniform unitary displacements field
along the abutments in the upstream direction, while in the second
model, vertically-incident shear waves produce unitary ground surface
free-field displacements, in the same direction.

The first mode, mostly asymmetric, is only captured at point 3,
which is located in a side, and is not observed in the response at
point 2. On the other hand, the fundamental frequencies of the channel
appear very clearly in the functions, especially at point 3 for the fixed
base case. These frequencies are not so clearly apparent in the results
obtained with the complete model including the rock foundation region
because of its higher damping and capacity to absorb the waves along
the near channel–rock interfaces. When the level of the reservoir is very
low (𝐻 = 30m, 25% of the maximum height), the response of the dam
wall is basically unaltered with respect to the empty-reservoir case, in
all the analyzed frequency range. When the level of the reservoir raises
to 𝐻 = 50m (just below 50% of the height), the response of the dam
wall is only affected for 𝑓 > 6.4 Hz. For reservoir levels above these
values, the response of the system is altered along the whole frequency
range. As expected, the values of the natural frequencies of the different
modes tend to decrease with the depth of the reservoir. For 𝐻 = 76m,
the natural frequencies decrease slightly, while for 𝐻 = 112m, all of
them decrease significantly with respect to the ones obtained with the
other three water depths studied. The response for these high levels of
water do not show a clear peak for a forth mode. The influence of the
dynamic soil–structure interaction is seen very clearly in Fig. 9, where
not only the natural frequencies are moved towards lower frequencies
when the flexibility of the foundation rock is taken into account (as
already seen in Section 4.1), but also the level of damping in the system
is significantly increased, leading to lower amplitudes in the response
of the system.

Fig. 10 presents the evolution of the natural frequencies with the
depth of the water in the reservoir, computed for the complete dam–
reservoir–foundation rock system. The trends mentioned above are
more clearly visualized here, and are in line with the results found
experimentally by other authors such as Pereira et al. [31].

4.4. Experimental results

In order to evaluate the ability of the proposed numerical model to
represent the dynamic response of the system under low-level vibra-
tions, a short experimental campaign was carried out on the dam on
27th June 2022, at a moment when the reservoir was almost empty.

Unfortunately, and due to the lack of rains, it has not been possible to



Engineering Analysis with Boundary Elements 144 (2022) 67–80J.C. Galván et al.
Fig. 9. Dynamic response of the dam wall for different water depths behind the dam, considering fixed and complaint-base conditions.
Fig. 10. Evolution of the first and second natural frequencies with reservoir level.
)

measure the response of the dam with any significant amount of water.
Ambient vibration tests were carried out, being worth highlighting that
the dam is located far from any relevant populations or roads, in a
valley where wind is also usually very weak, so very low levels of
ambient excitations are expected. Two Tromino® Blu velocimeters were
employed to measure the response of the structure at eight points, P1 to
P8 (see Fig. 11), along the dam crest, with a spacing between stations
of approximately 20m. One of the sensors was placed at a fixed position
at P6 and used as reference, while the second unit was used as moving
sensor along the other seven positions, recording the vibrations of the
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dam wall during 10 min at each location, and with synchronization via
GPS. A sampling rate of 512 Hz was employed. The sensors were always
oriented so that one channel was perpendicular to the mid line of the
dam crest.

The multi-dataset pre-scaled Frequency Domain Decomposition (FDD
[46,47] and the Peak–Picking (PP) [48] methods are used, with the
first singular values of the PSD matrix computed through the former
employed for identification of the structural natural frequencies with
the latter. Peaks that were found to be associated to non-structural
origins, such as the fundamental frequency of the lamp posts along
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Fig. 11. (a) Sensor positions along the dam crest, (b) Detail of the sensors measuring at points P5 and P6.
Table 4
Comparison between experimental and numerical frequencies. Original and updated
properties. fAV and 𝜉AV denote natural frequencies and damping ratios estimated
from ambient vibration results, while 𝜀 denotes the error between numerical and
experimental results.

Mode Experimental results Original properties Updated properties

fAV (Hz) 𝜉AV (%) fBEM (Hz) 𝜀 (%) fBEM (Hz) 𝜀 (%)

1 3.65 1.1 3.77 3.28 3.65 0.00
3 5.87 3.5 6.15 4.77 5.95 1.36

the dam crest, and frequencies associated to the pumps and pipes (see
𝑓𝑙 and 𝑓𝑝, respectively, in Fig. 12) were discarded. In addition, the
mode shapes of the remaining candidate structural natural frequencies
were investigated, and those that presented feasible modal shapes were
finally selected.

The analysis of the ambient vibrations experimental results allowed
to identify clearly modes 1 and 3, whose estimated natural frequencies
and modal damping ratios are presented in Table 4 (columns fAV and
𝜉AV, respectively) together with the corresponding natural frequencies
computed from the complete boundary element model described above
for the empty reservoir (column fBEM, with original properties). Here,
natural frequencies are determined as the frequencies of the peaks of
the modulus of each frequency response function in order to allow a
direct comparison with the frequencies estimated from the first singular
values of the PSD matrix. The corresponding identified mode shapes are
shown in Fig. 13, and are discussed below.

Even though generic properties for the foundation rock, and the
available properties for the concrete in the dam wall, were employed
for the numerical analysis, the agreement between numerical and
experimental natural frequencies is high, with the maximum error, of
around 5%, found for the third mode, as shown in the columns of
the table for the results obtained with the original properties. In view
of these results, the dam wall shear modulus was slightly updated to
match the first natural frequency, yielding an updated 𝐺 = 7.7 GPa
(5.6% lower than the original 𝐺 = 8.16 GPa). This updated stiffness
allows to match the first natural frequency, and leads to a significant
reduction of the difference in the values of the third natural frequency,
whose error 𝜀 is now below 1.5%, with the errors computed as 𝜀 =
|𝑓AV − 𝑓BEM| ⋅ 100∕𝑓AV.

Fig. 12 shows a comparison between the normalized first singular
values of the computed PSD matrix, and the Frequency Response Func-
tions computed numerically, with updated properties, for points P2 (red
line, cross-stream ground motion) and P4 (blue line, upstream ground
motion) on the dam crest. As mentioned before, the peaks marked as 𝑓𝑙
and 𝑓𝑝 were proven to be associated to the frequencies of the lamp post
and pumping station, respectively. Even though numerical and experi-
mental plots are of different nature, the comparison allow to highlight
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Table 5
MAC values between experimental and numerical mode shapes. Primatic canyon
mesh.

𝜙𝑒,1 (3.65 Hz) 𝜙𝑒,3 (5.87 Hz)

𝜙𝑛,1 (3.65 Hz) 0.9901 0.0089
𝜙𝑛,3 (5.95 Hz) 0.0229 0.9032

the correspondence of the computed and measured natural frequencies.
The peaks associated to the first and third natural frequencies can
be clearly identified in both cases. The first natural frequency is very
clearly present in the experimental spectra, and its position coincides
with the first peak of the numerical FRF under cross-stream excitation.
The position of the third numerical natural frequency is again very
close to the corresponding peak from the experimental results. On the
contrary, the second mode can be observed in the numerical FRFs, but
is not evident from the experimental results, and the measured response
above the third natural frequency is not correctly represented by the
numerical FRFs.

Fig. 13 presents the comparison of the modal shapes computed
from the numerical model (solid lines) and estimated from the ambient
vibration measurements (hollow circles at the eight measurements lo-
cations). The shown numerical modal shapes correspond to the models
with updated material properties, both considering the simplified trape-
zoidal mesh for the canyon, and the more elaborated topographic mesh.
The agreement between numerical and experimental modal shapes is
very good, especially in the case of the first mode, for which the
numerical mode shape is almost independent of the mesh of the canyon.
In the case of the third mode, it can be seen that the numerical
modal shape computed considering the simplified trapezoidal canyon
is mostly symmetrical, while the experimental modal shape shows a
certain degree of asymmetry that is much better reproduced by the
numerical modal shape obtained from the topographic model, which
suggests that taking into account the asymmetry of the canyon is
relevant for a more accurate representation of the modal shapes of the
dam.

In order to quantify the agreements between numerical and ex-
perimental modal shapes, Tables 5 and 6 present the values of the
Modal Assurance Criterion between the experimental modal shapes
and the numerical modal shapes obtained from the prismatic and the
topographic canyons, respectively. A very good correlation is found
for both modes. In the case of the first mode, a MAC value of around
0.99 is found. In the case of the third mode, the MAC value improves
from 0.903 to 0.925 when the results from the topographic canyon are
considered.
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Fig. 12. Comparison between experimental (first singular values of the PSD from ambient vibrations) and numerical responses (Frequency Response Functions at points P2 (red)
and P4 (blue) for trapezoidal and topographic models with updated properties). 𝑓𝑙 and 𝑓𝑝 denote the frequencies associated to the lamps, the pumps and the pipes.
Fig. 13. Comparison between numerical and experimental modal shapes along the dam crest.
Table 6
MAC values between experimental and numerical mode shapes. Topographic canyon
mesh.

𝜙𝑒,1 (3.65 Hz) 𝜙𝑒,3 (5.87 Hz)

𝜙𝑛,1 (3.65 Hz) 0.9891 0.0090
𝜙𝑛,3 (5.98 Hz) 0.0556 0.9254

5. Conclusions

A BEM-based time–harmonic numerical model for the analysis of
the dynamic characteristics of the Soria arch dam and reservoir under
low-level vibrations, to be used in SHM applications, has been studied
in this paper. The model is able to take into account the presence of
the flexible rock foundation, the actual geometries of dam wall and
reservoir, the different levels of the water held in the reservoir, the
interaction between dam wall, rock and water in the reservoir, the in-
cidence of vertically-incident far-field seismic waves, and the radiation
of energy away of the system through such rock foundation unbounded
domain and through the truncated boundary of the reservoir. The
following conclusions have been drawn from the study:

• Dynamic Soil–Structure Interaction phenomena has a significant
influence over the response of the system, both in empty-reservoir
and full-reservoir conditions.
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• As expected, dynamic Fluid–Structure Interaction also modifies
dynamic response of the dam wall, although low levels (below
50%) of the water in the reservoir does not influence significantly
the natural frequencies or modes.

• The consideration of Humar and Rouafiel’s simplified radiation
boundary condition at the truncated end of the reservoir, instead
of a more rigorous transmitting boundary, has been shown to
be able to produce accurate results for this specific problem. In
fact, even Sommerfeld’s radiation condition works significantly
well. For this reason, Humar and Rouafiel’s radiation boundary
condition is adopted in the final complete proposal for the repre-
sentation of the portion of the body of water that is not directly
included in the model.

• Taking into account a simplified trapezoidal geometry for the
canyon, instead of the actual topographic geometry of the canyon,
does not produce a significant worsening of the results in terms
of the estimation of the natural frequencies of the system.

• The proposed numerical model, in empty reservoir conditions,
is tested by comparison against experimental ambient vibration
tests. The first and third modes were clearly identified, while the
second and fourth mode seems to be very weakly excited or highly
damped. It is shown that the model is able to capture the natural
frequencies identified in this experimental campaign, and only
minor updates over the initially assumed material properties for
the dam wall were needed to match, with a high level of accuracy,
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the first and third natural frequencies. A high agreement is also
reached between the mode shapes estimated from the experimen-
tal campaign and those computed using the proposed numerical
model

• The numerical model built from the actual topographic geometry
of the canyon is able to provide a better estimate of the modal
shapes, at least for the third mode, when comparing with the
experimentally obtained modes.

• The good correlation found between numerical and experimental
natural frequencies and modal shapes for modes 1 and 3 sug-
gests that the proposed model is able to represent the dynamic
behavior of the dam wall under low-level vibrations, although
the remaining modes could not be identified from the ambient
vibration measurements. This was probably due to the low level
of background excitation, but more work needs to be done in
this regard in the future, in order to obtain a more complete
experimental characterization of the structure.

For these reasons, the proposed numerical model is considered to
e adequate for use in future studies of the dynamic behavior of the
am and, especially, in Structural Health Monitoring applications of
he Soria arch dam through, for instance, the development of a Digital
win [49,50] of the physical dam.
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