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Abstract

Polylactic acid (PLA) has been extensively used for the manufacturing of scaffolds in

bone tissue engineering applications. Due to the low hydrophilicity and the acidic

degradation process of this biomaterial, different strategies have been proposed to

increase the biofunctionality of the support structure. The use of ceramic particles is

a generally preferred option to increase the osteoconductivity of the base material,

while acting as buffers to maintain the pH level of the surroundings tissues. Surface

modification is another approach to overcome the limitations of PLA for tissue engi-

neering applications. In this work, the degradation profile of 3D-printed PLA scaffolds

containing beta-tricalcium phosphate (β-TCP) and calcium carbonate (CaCO3) parti-

cles has been studied under hydrolytic conditions. Composite samples treated with

plasma and coated with Aloe vera extracts were also studied to evaluate the effect of

this surface modification method. The characterization of the 3D structures included

its morphological, calorimetric and mechanical evaluation. According to the results

obtained, the proposed composite scaffolds allowed an adequate maintenance of the

pH level of the surrounding medium, with no effects observed on the morphology

and mechanical properties of these structures. Hence, these samples showed poten-

tial to be further investigated as candidates for bone tissue regeneration.
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1 | INTRODUCTION

As a bioresorbable and biodegradable polymer, polylactic acid (PLA) is

one of the most promising and extensively investigated biomaterials for

scaffold manufacturing in the bone tissue engineering (BTE) field, mainly

due to its biocompatibility, suitable mechanical properties for load-

bearing applications, good processability by additive manufacturing

(AM) techniques and adjustable degradation rate.1–3 However, some of

the limitations imposed by PLA include2,4: (a) its brittleness; (b) low

hydrophilicity, which results in low cell-material interaction; (c) slow deg-

radation rate; (d) lack of reactive side-chain groups; and (e) inflammatory

reactions in vivo due to the release acidic degradation byproducts.

The methyl group in the backbone of the polymer has an effect

on both the hydrophobicity of the material and the resistance of the
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structure to hydrolytic degradation.1,5 The degradation rate of PLA-

based scaffolds depends on their crystallinity, molecular weight and

its distribution, morphology, the water diffusion rate into the polymer

and the stereoisomeric content.6 By tuning these properties, the deg-

radation rate of PLA-based scaffold can be adjusted to match that of

bone tissue regeneration, while providing sufficient mechanical sup-

port and without causing any adverse response on the surrounding

tissues7 before being excreted through metabolic pathways. Despite

these modifications, PLA would still lack on surface epitopes that

could promote osteoconductivity and cell affinity.3

To overcome these drawbacks, different strategies have been

proposed in the literature to enhance surface biofunctionalization.

The most common one is the addition into the PLA matrix of bioactive

ceramic particles that can act as buffers to counteract the acidic deg-

radation byproducts, modulate the degradation rate, increase the

osteoconductivity and mechanical properties, and promote cell adhe-

sion and proliferation.1 Because of their suitable properties (similar

composition with natural bone, osteoinductivity, osteoconductivity,

biodegradability, and high mechanical strength), hydroxyapatite

(HAp)8–10 and beta-tricalcium phosphate (β-TCP)11–13 are the pre-

ferred options among the different bioceramic additives studied for

BTE applications.

Other strategies to modify the base material properties aiming for

bone regeneration applications include plasma treatment,14 protein

adsorption,15 immobilization of hydrophilic molecules16 and surface

functionalization with bioactive epitopes.17 However, few studies can

be found in the literature regarding the evaluation of composite PLA-

based scaffolds coated with biological substances for tissue engineer-

ing applications.18–22 The combination of the latter strategies would

allow obtaining a functionalized 3D structure both on its surface and

at the bulk. Hence, in this work the use of additives and the applica-

tion of surface modifications were simultaneously used to improve

the properties of 3D-printed PLA-based scaffolds. Specifically, calcium

carbonate (CaCO3) and β-TCP were introduced as additives into the

polymeric matrix. As demonstrated in our previous study,13 the com-

bination of these additives enhances the hydrophilicity and surface

roughness of the scaffolds, leading to a significant improvement of

the metabolic activity of osteoblastic cells after 7 days of culture. In

the present study, PLA and composite scaffolds manufactured by AM

were later treated with oxygen plasma and coated with Aloe vera

extracts, aiming to attach bioactive compounds that could favor cell

adhesion and proliferation. A preliminary biological evaluation of this

surface modification method was carried out in a previous work.23

The in vitro cell culture of osteoblastic cells on PLA scaffolds revealed

an improvement of cell metabolic activity for Aloe vera coated

samples.

The biomedical applications of Aloe vera have been gaining atten-

tion recently, since acetylated polysaccharides, the major constituents

of Aloe vera inner gels, have been reported to possess antitumor and

immunomodulatory activities.24–26 Acemannan, a mannose-containing

polysaccharide and the main bioactive component of Aloe vera, has

also proven to induce bone formation and regeneration.27,28 While

there are several examples in the literature related to the

incorporation of Aloe vera in the formulation of scaffolds intended for

skin regeneration,29–31 the number of studies comprising the applica-

tion of Aloe vera coatings in the BTE field remains limited.32–34 Note-

worthy, to the best of our knowledge, our previous study23 is the only

work in which an Aloe vera coating was applied to bone scaffolds

obtained by AM.

Despite of the extensive literature on strategies to improve the

properties of PLA-based scaffolds for BTE applications, little attention

has been paid to the effect of such modifications on the degradation

profile of the structures. Aiming to evaluate the developed PLA-based

scaffolds in a situation close to the clinical scenario, an in vitro degrada-

tion study under hydrolytic conditions was carried out. The results

obtained from this test constitute a useful approach to assess the degra-

dation rate of the 3D structures proposed for bone regeneration, as well

as a first step in the design of in vivo studies.35 Based on the guidelines

of ISO standards 10993-9:2019 and 10993-13:2010, a 9-month test

was designed using a phosphate buffer saline (PBS) solution as degrada-

tion medium. The experiment was conducted in static conditions but

replacing the medium monthly to ensure its renewal, mimicking the

evacuation of degradation byproducts by fluid flow on in vivo condi-

tions.35,36 The pH and conductivity of the degradation medium were

measured during the test and the scaffolds were characterized in terms

of morphological, calorimetric and mechanical properties.

2 | MATERIALS AND METHODS

2.1 | Materials

PLA L105 was purchased in powder form from Corbion Purac

(Diemen, The Netherlands). Calcium carbonate (CaCO3) with a maxi-

mum particle size of 30 μm was purchased from VWR (0179-500G).

The 3B's Research Group of Universidade do Minho kindly provided

β-tricalcium phosphate (β-TCP) particles with a mean size of 45 μm.

Aloe vera juice was purchased from Aloe vera Costa Canaria (Costa

Canaria Aloe Vera, S.L., Las Palmas, Spain) and hydrochloric (HCl) acid

from Panreac (131020, Panreac AppliChem, Darmstadt, Germany).

2.2 | Manufacturing of scaffolds

PLA powder was mixed with the ceramic additives in a ratio of PLA:

CaCO3:β-TCP 95:2.5:2.5 (wt:wt). This mixture was fed into a lab pro-

totype extruder to obtain continuous filaments with a mean diameter

of around 1.75 mm, using the working parameters presented in our

previous work.23 PLA filaments without incorporation of additives

were also produced by this method. Then, PLA and composite scaf-

folds were manufactured by using a BQ Hephestos 2 3D printer

(Madrid, Spain), which is based on a material extrusion process

(ISO/ASTM 52900:2015), commonly known as fused deposition

modeling (FDM). PLA and composite samples without later surface

modification are referred in the text as PLA and COMPOSITE groups,

respectively.
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The scaffolds were manufactured with a 9.8 mm diameter and

7 mm height, with rectangular 0/90� pattern, square-shaped pores

and a 50% theoretical porosity. Other printing parameter used include

a nozzle diameter of 0.40 mm, a layer height of 0.30 mm, an extrusion

width of 0.48 mm, a speed of extrusion of 40 mm/s and a liquefier

temperature of 210�C.

2.3 | Application of plasma surface treatment and
Aloe vera bioactive coating

Before applying the Aloe vera coating, PLA and composite scaffolds

were plasma-treated in a low-pressure device (Zepto Diener elec-

tronic GmbH, Ebhause, Germany) using oxygen as a carrier gas

(Carburos Metálicos SA, Madrid, Spain). The oxygen pressure inside

the chamber was fixed at 1.8 mbar and the plasma treatment was

applied at 30 W for 1 min.

Then, in order to coat the plasma-treated samples, the water-

soluble fraction of the centrifuged Aloe vera juice was used. The cen-

trifugation process was carried out at 3000 rpm for 15 min in a

Mixtasel-BL centrifuge (JP Selecta S.A., Barcelona, Spain). The separa-

tion of the cellulose-rich solid fraction allowed us to obtain a superna-

tant that contains acetylated polysaccharides, phenolic compounds,

soluble carbohydrates, proteins and minerals.26,37 Taking into account

the results obtained in our previous work,23 the pH of the obtained

solution (measured with a sensIONTM+PH1 pHmeter, ±0.01, HACH)

was adjusted to different values to assess the effect of this parameter

on the coating process: pH 3 and pH 4 (adjusted with an HCl solu-

tion). The acidity of the raw Aloe Vera extract (pH 4.50 ± 0.01) can be

explained by the presence of acetic, lactic, succinic, and pyruvic

acids.37

The Aloe vera bioactive coating was applied immediately after

the plasma treatment. Thus, PLA scaffolds were coated with Aloe vera

extracts at pH 3 (PLA AV3), while COMPOSITE scaffolds were coated

at pH 3 (COMPOSITE AV3) and 4 (COMPOSITE AV4). To do so, the

3D structures were placed individually in centrifuge tubes

(CFT011150, Jet Biofil), immersed in 3 ml of Aloe vera extract solution

and stirred at 250 rpm for 3 h. Then, the samples were rinsed with

70% ethanol. The amount of Aloe vera coated on the PLA and com-

posite scaffolds was assessed by measuring the weight of the samples

before and after the coating process by using an analytical balance

(±0.1 mg, A&D Scales Gemini Series, GR-200, Germany).

2.4 | Hydrolytic degradation study

A static degradation test was carried out under hydrolytic conditions

using scaffolds of the five groups proposed: PLA, PLA AV3, COMPOS-

ITE, COMPOSITE AV3, and COMPOSITE AV4. As stated before, all

samples were manufactured to have a diameter of 9.8 mm and a

height of 7 mm. Twenty-four replicas per group were placed in non-

treated 24-well plates (144530, Thermo Scientific™ Nunc™, Waltham,

MA, United States) and exposed to UV light for 30 min (15 min per

side of the scaffold) for sterilization purposes. Then, 2 ml of degrada-

tion medium were added to each well, comprising a phosphate buffer

saline (PBS; 59321C Dulbecco's Phosphate Buffered Saline, pH 7.4,

Merck, Darmstadt, Germany) solution with a 0.2 mg/ml concentration

of sodium azide (ReagentPlus®, ≥99.5%, Merck, Darmstadt, Germany)

to minimize the risk of bacterial contamination.38 Wells without sam-

ples but containing degradation medium were used as control.

The well plates were kept in an incubator at 37�C and 5% CO2

for times up to 1, 3, 6, and 9 months. The buffer solution was replaced

monthly, measuring the pH (sensIONTM+PH1, ±0.01, HACH) and

conductivity (COND7+, ±0.01, Labbox) of the degradation medium of

each group to follow up the evolution of these parameters during the

test. At each time point, 6 scaffolds per group were withdrawn for

morphological, calorimetric and mechanical characterization. Prior to

any of these tests, the samples were dried in a desiccator until com-

plete moisture removal.

2.5 | Morphological characterization

The initial and final weights of the structures were measured using

the GR-200 analytical balance to obtain the mean weigh loss after

degradation of the scaffolds at each time point. Degraded samples

were allowed to dry in a desiccator for at least a week before measur-

ing their final weight. The morphological characterization of these

samples included its microscopic observation by scanning electron

microscopy (SEM; Hitachi TM 3030, Hitachi Ltd., Tokyo, Japan) at an

acceleration voltage of 15 kV. Prior to SEM observation, the samples

were sputtered with Pd/Au for 2 min at 18 mA in a SC7620 sputter

coater (Polaron, United Kingdom). In addition, the assessment of the

pore size (determined as the distance between struts) was carried out

by using an Olympus BX51 optical microscope (Olympus Co., Ltd.,

Tokyo, Japan). Finally, for the evaluation of the porosity of the struc-

tures, the following equation was used39:

%porosity¼100 � 1� ρap
ρbulk

� �
ð1Þ

where ρap is the apparent density of the structure and ρbulk is the

density of the bulk material.

2.6 | Calorimetric analysis

Samples extracted from degraded and non-degraded scaffolds were

subjected to differential scanning calorimetry (DSC) analysis in DSC

4000 (Perkin Elmer, Waltham, MA, United States). The samples

(n = 4) were placed in aluminum crucibles and subjected to a heating/

cooling/heating cycle from 30 to 230�C. Heating and cooling rates of

10�C/min and a nitrogen flow of 20 ml/min were used. The calorimet-

ric data obtained include the glass transition temperature (Tg), the

onset temperature (Tonset; at which the melting process starts), the

peak melting temperature (Tpeak), and the melting enthalpy (ΔHf).

DONATE ET AL. 3



From the latter value, the crystallinity of each group of samples was

estimated according to the following equation:

%XC ¼100 � ΔHf= ΔHo
f �WPLA

� �� � ð2Þ

where Xc is the degree of crystallinity, ΔHf is the melting enthalpy of

the sample, ΔHf
o the melting enthalpy of 100% crystalline PLA and

WPLA is the net weight fraction of the PLA in the sample tested. The

value used for ΔHf
o was 93.7 J/g.40

2.7 | Mechanical characterization

All groups of scaffolds were mechanically characterized in dry state

under compression test using a LIYI testing machine (LI-1065, Dong-

guan Liyi Environmental Technology Co., Ltd., China) in displacement

control mode and at a crosshead speed of 1 mm/min. A compression

load cell capacity of 500 kg was used. The compressive modulus and

offset compressive yield strength were calculated according to ASTM

D695-15. In addition, the compression strength, strain at maximum

strength and strain at fracture were determined when complete rup-

ture of the specimen occurred during the mechanical test. Non-

degraded scaffolds of the PLA and COMPOSITE groups were used as

control.

2.8 | Statistical analysis

The statistical analysis was carried out using MATLAB software

(MATLAB and Statistics Toolbox Release 2021a, The MathWorks,

Inc., Natick, United States). The data obtained during this study were

analyzed by the Kruskal–Wallis test, except when only two groups

were compared. In the latter case, the Wilcoxon two-sided rank sum

test was used. The significance level was set to *p < .05, **p < .01,

and ***p < .001, for statistically significant, highly statistically

significant, and very highly statistically significant differences, respec-

tively. All figures and tables show the mean values obtained for each

group tested. SDs are represented with error bars in the case of

figures.

3 | RESULTS AND DISCUSSION

3.1 | Manufacturing of scaffolds and application of
surface coatings

All groups of scaffolds were manufactured by FDM using the same

printing procedure, as stated in the previous section. The 3D struc-

tures obtained were 9.71 ± 10 mm in diameter and 6.82 ± 10 mm in

height, having a mean weight of 0.291 ± 0.042 g. After applying the

Aloe vera bioactive coating to the PLA and COMPOSITE scaffolds, an

average 0.16 ± 0.02% of weight increase was obtained, as a result of

the incorporation of biological substances to the polymeric

surface.32,33

3.2 | Conductivity and pH variation during the test

The pH and conductivity variation of the degradation medium during

the test for each group of scaffolds are shown in Figures 1 and 2,

respectively. The SE of the measurements was around ±0.01 for both

parameters. According to the results, for PLA and composite scaffolds

(with or without the Aloe vera coating) the pH of the medium was

maintained at a value of around 7.0 during the first 4 months of the

experiment. As observed for most of the groups tested, the pH of the

degradation medium decreased to a minimum value after 6 months of

hydrolytic degradation.

The degradation profile followed by the PLA-based

scaffolds evaluated responds to the bulk-erosion autocatalytic

mechanism that is characteristic of this biomaterial in hydrolytic

F IGURE 1 Variation of the pH of the
medium during the hydrolytic degradation
study of the 3D-printed scaffolds
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conditions.36,38,41,42 In a first step, the absorption of water leads to

the hydrolytic cleavage of the polymer chains by breaking the ester

bonds. As the first degradation products formed have a relatively

high molecular weight, they do not dissolve into the degradation

medium and there are a reduced number of chain end groups.

Consequently, at this stage, which can be related to the results

obtained during the first 4 months of the test, there is no signifi-

cant change in the weight of the samples. As the hydrolytic pro-

cess progresses, the molecular weight of the oligomers is reduced

to a point at which they can diffuse from the bulk of the material

to the surface and then to the aqueous solution. The increased

number of chain end groups leads to a significant break of ester

bonds, enhancing the degradation rate, the decrease of the pH of

the surrounding media and the weight of the structures.35,36,42,43

These effects are more significant as the molecular weight

decreased, but at the same time the water absorption capacity of

the PLA-based structure is also enhanced. The combination of

these factors could result in a reduction of the difference on pH

values between the inner and outer parts of the scaffolds.43

The second stage described is related to the results obtained

from months 4 to 6 (Figure 1). From this point to the end of the

experiment the pH of the medium was maintained in the case of

PLA samples at a level of around 6.5, whereas composite scaffolds

showed an increase in the pH up to 6.88 ± 0.01 for the COMPOS-

ITE group. This result could be explained by the release and dilu-

tion of CaCO3 particles into the PBS solution, which are not only

able to compensate acidity, but also acts as a buffer within the

physiological pH-range.44

The latter conclusions are supported by the conductivity mea-

surements carried out for each group of samples during the test

(Figure 2). As for the pH values, non-significant differences were

obtained regarding the conductivity of the degradation medium when

comparing scaffolds with and without Aloe vera coating. An increased

conductivity from month 5 until the end of the test was observed for

every group tested. This profile is in accordance with the assumption

of an increased diffusion and dissolution of low-molecular weight

fragments and acidic byproducts (mainly lactic acid); especially rele-

vant between months 5 and 6 (Figure 1).

F IGURE 2 Variation of the
conductivity (mS) of the medium during
the hydrolytic degradation study of the
3D-printed scaffolds

TABLE 1 Porosity change of the scaffolds during the hydrolytic
degradation test

Group of samples Time (months) Porosity (%)

PLA 0 46.6 ± 1.8

1 47.1 ± 1.8

3 47.2 ± 2.0

6 46.5 ± 1.1

9 51.8 ± 3.0

PLA AV3 0 46.9 ± 1.9

1 47.5 ± 2.0

3 47.0 ± 1.9

6 47.9 ± 1.2

9 50.8 ± 2.1

COMPOSITE 0 57.4 ± 2.5

1 57.5 ± 2.8

3 57.6 ± 2.6

6 57.5 ± 2.1

9 57.4 ± 3.0

COMPOSITE AV3 0 57.3 ± 2.2

1 57.0 ± 2.8

3 57.9 ± 2.7

6 57.6 ± 1.7

9 58.1 ± 2.7

COMPOSITE AV4 0 56.8 ± 2.4

1 56.9 ± 3.6

3 57.2 ± 2.9

6 57.3 ± 2.3

9 57.8 ± 2.6

Abbreviation: PLA, polylactic acid.
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3.3 | Morphological changes after hydrolytic
degradation

In terms of weight loss, non-statistically significant differences were

obtained for all groups tested after 9 months of hydrolytic degrada-

tion. The mean weight loss of the scaffolds at the end of the experi-

ment was equal to 0.30 ± 0.11%. On the other hand, results regarding

the porosity of the 3D structures (calculated according to Equation (1),

presented in Section 2.5) are summarized in Table 1. From the mea-

surement of the mass and dimensions of short filaments of material

(n = 8), values of ρbulk were estimated to be 1.22 ± 0.03 g/cm3, and

1.25 ± 0.02 g/cm3 for PLA and COMPOSITE samples, respectively.

The apparent density was calculated following a similar procedure for

the 3D-printed scaffolds.

As shown in our previous studies,13,45 the surface roughness and

microporosity of 3D-printed COMPOSITE filaments are significantly

higher compared to PLA scaffolds, leading to an enhanced overall

porosity of the manufactured structures (Table 1). A similar statement

was presented by Esposito Corcione et al.,46 who concluded that the

introduction of a ceramic phase (HAp) into a PLA matrix led to a

higher porosity of their PLA/HAp 3D-printed scaffolds (compared to

the pure PLA-ones) caused by a superior surface roughness and intrin-

sic porosity of the composite struts.

According to Table 1 and despite being not statistically significant,

the PLA and PLA AV3 groups showed a porosity increase from

months 6 to 9. These results seem to contradict the ones presented in

Figure 3, related to the pore size of the scaffolds during the degrada-

tion test. However, the significant pore size reduction observed for

the PLA and PLA AV3 groups are attributed to the statistically

significant increase of the scaffold's dimensions obtained for these

structures: as the degradation of the base material progresses, more

hydrophilic chain ends are generated, enhancing the water uptake and

causing the biomaterial to swell.43 Overall, the increase in the micro-

porosity of the PLA struts during degradation had a more important

effect than the reduction in pore size due to swelling, leading to an

increase in the porosity of the scaffolds at the end of the test. From

Figure 3, it is also worth noticing that the composite scaffolds possess

an initially higher pore size than the PLA scaffold groups (not statisti-

cally significant difference), which implies a smaller diameter of the

composite printed struts. This is another reason for the superior

porosity of the composite scaffold groups (Table 1).45

SEM observations (Figure 4) confirmed the modifications gener-

ated by the degradation process on the polymeric surface of the PLA

samples. Numerous fractures were observed for PLA scaffolds after

9 months of degradation (Figure 4C), which some authors have

related to the orientation gradient of the polymeric chains imposed by

the manufacturing technique; as the degradation rate of polyhydroxy

acids decreased with increasing chain orientation (the less-oriented

center of the piece degrades before the outer oriented region).36 In

addition, the limited diffusion of the acidic byproducts throughout the

3D structure contributes to inhomogeneous degradation of the part.5

In the case of composite groups of scaffolds, no fractures were

observed on the degraded surface (Figure 4F). During degradation,

the presence of ceramic particles seems to prevent the propagation of

cracks in the polymeric matrix, as stated by Senatov et al.46,47 Further-

more, and in contrast to PLA scaffolds, composite groups showed

non-statistically significant variation through the degradation test in

terms of porosity, pore size nor dimensions, thus maintaining the

F IGURE 3 Pore size values of the 3D-printed scaffolds degraded under hydrolytic conditions (**p < .01)

6 DONATE ET AL.



initial properties for a time up to 9 months. The latter is true for both

non-treated (COMPOSITE group) and surface-treated composite scaf-

folds (COMPOSITE AV3 and COMPOSITE AV4 groups), suggesting

that the Aloe vera coating method applied had no effect on the mor-

phology of the 3D-printed structures. In the same way, non-significant

differences were observed when comparing the morphological char-

acteristics of the PLA and PLA AV3 groups of samples.

3.4 | Calorimetric properties and crystallinity
assessment

All groups of scaffolds tested showed a continuous reduction of their

calorimetric properties during the degradation test (Table 2). The

decrease in the glass, onset and peak melting temperatures was more

pronounced for PLA and PLA AV3 samples than for the COMPOSITE,

COMPOSITE AV3 and COMPOSITE AV4 groups. For example, the

melting temperature of PLA scaffolds was reduced from 175.9

± 0.3�C to 163.1 ± 1.7�C after 9 months, while COMPOSITE scaffolds

showed a mean melting temperature of 168.5 ± 3.9�C at the end of

the experiment. In addition, non-significant differences were obtained

between the non-treated and coated samples. Therefore, the Aloe

vera bioactive coating applied to the 3D structures showed no effect

on the calorimetric properties of the base material.

The degree of crystallinity, calculated from the mean value of

melting enthalpy of each group, is enhanced by the introduction of

the ceramic additives into the PLA matrix due to nucleation

effect.40,48,49 According to the results presented in Table 2, this

parameter was increased from a value of 51.5 ± 2.6% for non-

degraded PLA scaffolds to 54.5 ± 1.9% for the COMPOSITE group

at t = 0.

Regarding the variation of the degree of crystallinity, this value

was continuously increasing during the 9-month test for PLA and PLA

AV3 groups, while no clear tendency was observed for composite

scaffolds. The increase of the crystallinity was an expected result, as

have been shown for semi-crystalline polymers, such as PLA, during

the early stages of a hydrolytic degradation process.36,38,50 The latter

effect could be attributed to35,36,51: (a) the plasticization effect, since

the absorption of water molecules favors the movement of the poly-

meric chains located in the amorphous region, leading to their rearran-

gement to a crystalline structure; (b) during the early stages,

degradation occurs preferentially in the amorphous regions, which are

more accessible to water molecules; and (c) the generation of crystal-

line monomers and oligomers during the degradation process. In the

F IGURE 4 Scanning electron microscopy
(SEM) images of the 3D-printed polylactic acid
(PLA)-based scaffolds analyzed are shown for:
(A) non-degraded PLA; (B) non-degraded PLA
at higher magnification; (C) PLA at
t = 9 months; (D) non-degraded COMPOSITE;
(E) non-degraded COMPOSITE at higher
magnification; and (F) COMPOSITE at
t = 6 months
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last stages, chain cleavage in the crystalline region occurs, producing a

decrease in the crystallinity of the base material.35,36

3.5 | Mechanical properties under compression

Results regarding the compression test of the degraded scaffolds are

shown in Table 3. The addition of the ceramic additives led to a signif-

icant reduction of the elastic modulus: from 122.23 ± 6.44 MPa to

77.72 ± 16.09 MPa for PLA and COMPOSITE groups, respectively.

The same conclusion is drawn from the compressive yield strength

results, as this parameter decreased nearly by half for COMPOSITE

scaffolds (7.41 ± 1.77 MPa) in comparison to neat PLA scaffolds

(14.28 ± 2.65 MPa). While references in the literature can be found

where use of ceramic additives strengthens the polymeric matrix,46,52

other authors have also encounter a reduction in the mechanical prop-

erties of composite PLA scaffolds45 in comparison to their pure PLA

control. Such result can be explained taking into account the morpho-

logical findings presented in Section 3.3: composite scaffolds showed

higher overall porosity due to their smaller, more porous and rougher

printed struts. The decrease in mechanical properties with increasing

scaffold porosity is in good correlation with the literature.53,54 Despite

not been able to reinforce the polymeric matrix, the ceramic additives

used are increasing the available surface area of the PLA structure,45

which is a feature of great interest for their application in the BTE

field. In addition, both elastic modulus and compressive yield strength

of COMPOSITE scaffolds are still in the range of values reported for

cancellous bone.3,55

On the other hand, the Aloe vera bioactive coatings applied to

the structures showed no effect on the mechanical properties. Hence,

the procedure proposed to modify the polymeric surface allows to

improve the biological properties of the sample, as we have demon-

strated in our previous study,23 without diminishing the mechanical

support provided by the 3D structure.

Degraded PLA and PLA AV3 scaffolds showed a slight reduction

in terms of elastic modulus and compressive yield strength during the

first 6 month of hydrolytic degradation. Then, a highly statistically sig-

nificant decrease (p < .01) was obtained for both parameters. Since

the first steps of bulk degradation of PLA takes place in the amor-

phous regions,36,38,50 a reduction in molecular weight is expected

TABLE 2 Calorimetric properties determined by DSC analysis of the degraded PLA-based scaffolds

Group of samples Time (months) Tg (�C) Tonset (�C) Tpeak (�C) ΔHf (J/g) %Xc

PLA 0 63.6 ± 0.9 167.8 ± 2.7 175.9 ± 0.3 48.3 ± 2.5 51.5 ± 2.6

1 64.5 ± 0.6 164.1 ± 2.0 175.4 ± 1.4 49.9 ± 3.8 53.2 ± 4.1

3 64.3 ± 0.6 163.2 ± 2.0 174.0 ± 1.4 48.7 ± 3.8 52.0 ± 4.1

6 61.3 ± 0.6 161.4 ± 0.4 172.2 ± 2.2 50.4 ± 3.9 53.8 ± 4.2

9 52.0 ± 0.3 154.2 ± 2.7 163.1 ± 1.7 51.4 ± 5.1 54.9 ± 5.4

PLA AV3 0 63.7 ± 0.0 167.0 ± 3.1 176.2 ± 0.7 44.7 ± 7.0 47.7 ± 7.5

1 63.4 ± 0.6 169.1 ± 3.3 175.2 ± 1.9 50.2 ± 3.8 53.5 ± 4.0

3 63.7 ± 0.6 163.2 ± 3.3 173.8 ± 1.9 50.8 ± 3.8 54.2 ± 4.0

6 59.8 ± 0.9 161.1 ± 0.6 172.1 ± 2.0 51.2 ± 1.8 54.6 ± 1.9

9 52.5 ± 0.9 159.3 ± 6.3 165.4 ± 3.1 52.4 ± 2.5 55.9 ± 2.7

COMPOSITE 0 63.6 ± 0.3 167.7 ± 3.4 175.8 ± 0.6 48.5 ± 1.7 54.5 ± 1.9

1 63.7 ± 1.4 168.5 ± 1.4 175.1 ± 1.6 46.1 ± 2.6 51.8 ± 2.9

3 63.0 ± 1.4 169.0 ± 1.4 174.9 ± 1.6 45.7 ± 2.6 51.3 ± 2.3

6 60.7 ± 0.1 162.7 ± 0.2 173.0 ± 0.2 45.9 ± 2.0 51.5 ± 4.5

9 58.2 ± 3.9 162.2 ± 0.5 168.5 ± 3.9 49.1 ± 4.0 55.2 ± 3.0

COMPOSITE AV3 0 63.8 ± 1.9 169.9 ± 0.5 176.1 ± 0.6 46.6 ± 2.7 52.3 ± 3.0

1 61.9 ± 1.9 169.0 ± 0.5 175.3 ± 0.6 44.1 ± 2.7 49.5 ± 3.0

3 60.6 ± 1.9 168.7 ± 0.5 174.7 ± 0.6 51.1 ± 2.7 57.4 ± 3.0

6 60.8 ± 0.6 162.8 ± 0.3 173.6 ± 0.6 44.0 ± 2.9 49.5 ± 3.2

9 61.2 ± 3.2 161.7 ± 0.6 166.1 ± 0.5 50.0 ± 2.4 56.2 ± 2.7

COMPOSITE AV4 0 61.3 ± 0.4 170.0 ± 0.4 176.0 ± 0.6 44.0 ± 3.1 49.4 ± 3.5

1 63.6 ± 0.4 168.9 ± 0.4 176.1 ± 0.6 46.2 ± 3.1 51.9 ± 3.5

3 60.8 ± 0.4 167.0 ± 0.4 173.9 ± 0.6 49.9 ± 3.1 56.0 ± 3.5

6 61.3 ± 0.4 162.7 ± 0.3 173.1 ± 0.5 48.9 ± 1.3 55.0 ± 1.5

9 60.5 ± 0.5 161.9 ± 0.5 166.0 ± 0.6 46.1 ± 4.9 51.8 ± 5.5

Abbreviations: DSC, differential scanning calorimetry; PLA, polylactic acid.
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without a loss of mechanical properties; which are more related to the

crystalline phase.2 In contrast, the advanced stages of degradation are

characterized by a marked decrease in molecular weight, weight of

the structure and crystallinity of the base material, and consequently

in the mechanical properties of the 3D-structure.2,35 PLA and PLA

AV3 scaffolds tested showed no such reductions in terms of weight

or crystallinity (Table 2) after 9 months of degradation. Thus, the

decrease in mechanical properties observed could be related to the

degradation of amorphous regions located between crystalline

zones56,57: the increasing density of terminal groups during the degra-

dation of PLA leads to a reduction of polymeric chain's packing and

the increase of the water absorption (Figure 3), enhancing the hydro-

lytic process in the amorphous regions located between crystalline

zones; which produces the loss of the mechanical properties even

before the crystalline regions start to degrade.

Conversely, COMPOSITE scaffolds and Aloe vera coated compos-

ite groups maintained their mechanical properties until the end of the

test. An example of the difference observed between PLA and COM-

POSITE groups is presented in Figure 5. Noteworthy, the break point

of the PLA and PLA AV3 scaffolds was reached at the 3-month com-

pression test (displacement equal to 2 mm as stop condition), while

composite scaffolds did not collapse until the mechanical test carried

out in month 6 (Table 3). Even after 9 months of hydrolytic degrada-

tion, the compression strength of non-treated and Aloe vera coated

composite scaffolds had a value around 8 MPa, therefore in the range

of cancellous bone.3,55 We hypothesize that the nucleation effect pro-

vided by the ceramic additives41,48,49 could have produced a partial

crystallization (Table 2) in amorphous areas located between crystal-

line regions, thus favoring the maintenance of the mechanical support

until the degradation process reaches its final stages.

TABLE 3 Calorimetric properties determined by DSC analysis of the degraded PLA-based scaffolds

Group of samples

Time

(months) Elastic modulus (MPa)

Compressive yield

strength (MPa)

Compression

strength (MPa)

Strain at maximum

strength Strain at fracture

PLA 0 122.23 ± 6.44 14.28 ± 2.65 - - -

1 127.44 ± 5.18 15.75 ± 2.21 - - -

3 121.09 ± 0.52 14.37 ± 1.23 15.03 ± 0.90 0.188 ± 0.017 0.197 ± 0.025

6 114.30 ± 4.47 11.65 ± 1.16 12.40 ± 1.58 0.159 ± 0.013 0.164 ± 0.014

9 32.12 ± 12.06a 2.35 ± 0.95a 2.42 ± 0.97b 0.104 ± 0.013b 0.110 ± 0.012b

PLA AV3 0 122.23 ± 6.44 14.28 ± 2.65 - - -

1 125.81 ± 3.78 14.77 ± 0.63 - - -

3 116.32 ± 11.65 13.52 ± 4.34 13.96 ± 4.46 0.190 ± 0.054 0.201 ± 0.058

6 103.14 ± 15.22 10.39 ± 2.75 11.18 ± 2.42 0.172 ± 0.012 0.178 ± 0.011

9 36.46 ± 7.68c 2.45 ± 0.83d 2.73 ± 0.64e 0.110 ± 0.008e 0.115 ± 0.008e

COMPOSITE 0 77.72 ± 16.09 7.41 ± 1.77 - - -

1 82.36 ± 7.13 7.89 ± 1.36 - - -

3 85.76 ± 9.46 7.91 ± 0.98 - - -

6 82.63 ± 2.97 7.90 ± 0.34 10.57 ± 1.63 0.278 ± 0.109 0.303 ± 0.119

9 85.23 ± 8.24 7.85 ± 1.61 8.47 ± 1.69 0.161 ± 0.019f 0.165 ± 0.020f

COMPOSITE AV3 0 77.72 ± 16.09 7.41 ± 1.77 - - -

1 88.75 ± 12.78 8.12 ± 1.50 - - -

3 76.87 ± 3.24 7.13 ± 0.21 - - -

6 85.26 ± 4.43 7.89 ± 0.83 9.36 ± 0.82 0.184 ± 0.034 0.203 ± 0.049

9 82.33 ± 5.59 8.08 ± 1.46 8.59 ± 1.53 0.159 ± 0.027 0.166 ± 0.032

COMPOSITE AV4 0 77.72 ± 16.09 7.41 ± 1.77 - - -

1 87.31 ± 13.70 8.62 ± 1.87 - - -

3 81.12 ± 5.11 6.99 ± 0.19 - - -

6 82.98 ± 6.24 8.25 ± 1.46 10.10 ± 2.40 0.231 ± 0.074 0.250 ± 0.089

9 84.35 ± 6.37 7.84 ± 1.43 8.27 ± 1.43 0.151 ± 0.023 0.155 ± 0.024

Abbreviations: DSC, differential scanning calorimetry; PLA, polylactic acid.
a**p < .01 compared with samples at t = 1 month.
b**p < .01 compared with samples at t = 3 months.
c*p < .05 compared with samples at t = 0 months and **p < .01 compared samples at t = 1 month.
d*p < .05 compared with samples at t = 1 month.
e*p < .05 compared with samples at t = 3 months.
f*p < .05 compared with samples at t = 6 months.
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4 | CONCLUSIONS

According to the results obtained after the degradation test, compos-

ite scaffolds showed non-significant differences in terms of pore size,

porosity or mechanical properties. While initially lower than for PLA

scaffolds, the mechanical characteristics of the composite 3D struc-

tures evaluated can match the ones required for cancellous bone

regeneration,55 even after 9 months of hydrolytic degradation. In

addition, the release of ceramic particles allowed maintaining a slightly

higher pH of the degradation medium in comparison to neat PLA scaf-

folds. As in vivo degradation of PLA samples takes place following a

hydrolytic degradation mechanism,2,36 the test carried out provides

essential information for understanding the behavior of the scaffolds

in a close-to-clinic situation. The maintenance of the pH level of the

surrounding medium is of utmost importance in the case of PLA-

based implants, as the abrupt release of acidic byproducts or its ineffi-

cient removal could generate a strong inflammatory response, thus

hindering cell viability, growth and proliferation.7,42

On the other hand, the Aloe vera coating methods evaluated had

no effect on the bulk properties of the 3D-structure. The latter, how-

ever, have shown to improve the biofunctionality of PLA-based scaf-

folds, as presented in one of our previous studies,23 leading to an

enhanced cell proliferation of osteoblastic cells cultured in vitro. Thus,

while it is not expected to have a major effect in the long term, the

bioactive coating applied seems to favor early steps of bone regenera-

tion, when cell-material interactions are primarily dictated by surface

properties.58 Further research is needed to understand for how long

the coating remains and which is the mechanism of detachment. Nev-

ertheless, with the results obtained so far, it could be concluded that

the synergetic effect of both Aloe vera bioactive coating and ceramic

additives would allow obtaining a 3D structure with improved biologi-

cal efficacy right after implantation (thanks to the coating) as well as

adequate maintenance of mechanical support and controlled degrada-

tion after a long period (due to the presence of the additives). Hence,

this work shows the potential of composite PLA-based scaffolds, man-

ufactured by AM and surface-modified to attach bioactive com-

pounds, to be further evaluated for BTE applications.
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