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RESUMEN 
 

El estudio del patrimonio histórico de un pueblo es un trabajo arduo, 

complicado y delicado. Durante mucho tiempo el análisis de elementos 

arqueológicos encontrados en yacimientos cómo cerámicas, piedras, pieles y 

demás elementos ha requerido de su destrucción parcial o deterioro apreciable. 

Es por ello por lo que desde el Museo Canario se requiere el estudio sobre 

técnicas no invasivas para el análisis y la clasificación de las muestras encontradas 

en distintos yacimientos. Sus actuales métodos de clasificación requieren el envío 

de sus muestras a laboratorio y la destrucción de pequeñas partes de la muestra. 

En este documento se presenta una solución basada en imágenes 

hiperespectrales, que ha demostrado en otros campos su viabilidad y fiabilidad 

a la hora de realizar este tipo de clasificaciones. 

Para poder generar un modelo supervisado de clasificación se dispone de 

una clasificación de muestras ya estudiadas con ICP-OES, ICP-MS y FRX que se 

distribuyen en 5 grupos elaborados por su pertenencia a la misma colada de lava. 

De estos grupos uno pertenece a la isla de Tenerife y el resto a la isla de Gran 

Canaria. 

Las imágenes hiperespectrales (HSI) se tomaron en grupos de muestras 

localizados en una plantilla. Utilizando métodos de segmentación de imágenes 

se obtuvieron las máscaras de las muestras con las que se obtiene finalmente la 

firma espectral de cada muestra. Utilizando la firma espectral de cada muestra y 

sus etiquetas se generan distintos modelos SVM que han demostrado en otros 

campos su fiabilidad y su extensivo uso en HSI. Después de una etapa de 

optimización se obtiene el modelo final con el que poder clasificar 

posteriormente y evaluar sus métricas. Los resultados muestran una alta precisión 

(100%) para la clasificación en muestras de distintas islas, pero con algunas dudas 
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para estudiar en futuros trabajos con respecto a los grupos de coladas de lava de 

la misma isla. 

Palabras clave: imagen hiperespectral; obsidiana; colada de lava; SVM; 

Islas Canarias; patrimonio arqueológico.  
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ABSTRACT 
 

The study of historical heritage is an arduous, complicated, and delicate 

task. For a long time, the analysis of archaeological artefacts found in 

archaeological sites such as ceramics, stones, skins, and other artefacts requires 

their partial destruction or deterioration. For this reason, El Museo Canario has 

required the study of non-invasive techniques for the analysis and classification of 

the samples found at its various deposits. Its current classification methods 

require sending samples to the laboratory and the destruction of small parts of 

the sample. This bachelor thesis presents a solution based on hyperspectral 

imaging, which has been tested in other fields to be feasible and reliable for 

classification. 

To generate a supervised classification model, a classification of samples 

already studied with ICP-OES, ICP-MS and XRF is available, which are distributed 

in 5 groups elaborated by their belonging to the same lava flow. One of these 

groups belongs to the island of Tenerife and the rest to the island of Gran Canaria. 

Hyperspectral image captures were performed on groups of samples 

located in a template. Using image segmentation methods, the masks of the 

samples were obtained from which the spectral signature of each sample was 

finally obtained. Using the spectral signature of each sample and its labels, 

different SVM models have been generated, which have been tested in other 

fields to be reliable and widely used in HSI. After an optimisation phase, the final 

model has been obtained with which to further classify and evaluate its metrics. 

The results show a high accuracy (100%) for the classification of samples from 

different islands, but with some doubts to be studied in future works concerning 

groups of lava flows from the same island. 

KEYWORDS: hyperspectral image; obsidian; lava flows; SVM; Canary 

Islands; archaeological heritage.  
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1. INTRODUCTION 
 

This bachelor thesis aims to validate the classification of obsidians found in 

different archaeological deposits in the Canary Islands using a non-destructive 

technique, namely hyperspectral imaging (HSI). Currently, El Museo Canario, an 

entity in charge of researching the heritage of the islands, performs chemical 

studies of various elements found in these deposits to determine their origin. For 

this identification, the deterioration or partial destruction of the sample is 

inevitable. Therefore, it is vital to study and validate a non-destructive 

classification method, such as the HSI technology. 

 

Currently, the use of HSI is wide and varied, from agriculture to medicine, 

for purposes such as classifying the quality of fruit or vegetables, or the 

delimitation of a brain tumour. Such wide use is no coincidence, HSI technology 

has several advantages over others. It allows the analysis of the chemical 

composition of the materials in the sample to be contact-less, non-ionising and 

non-destructive. The reason it allows the analysis of the chemical composition is 

due to it can capture a large number of wavelengths, obtaining information that 

the human eye is not capable of capturing. 

 

1.1. Motivations 

 

The motivation for this bachelor thesis is the need of museums and 

archaeological institutions for a non-destructive technique, without the need for 

laboratory intervention and accurate results of sample classification. 

This concern on the part of El Museo Canario was transferred to the 

supervisors who, with experience in the field of hyperspectral imaging applied to 

fields such as medicine, decided to explore the application of HSI in this field. 



 15 

As a result of all this, the classification based on islands, municipalities and 

sites was studied in a previous work [1]. This study was evaluated by the Canarian 

Museum, which requested the study based on lava flows instead of deposits, 

which leads us to this recent bachelor thesis. 

 

1.2. Objectives and Methodology 

 

The main objective of this bachelor thesis is to obtain a valid classification 

system of the archaeological heritage of the Canary Islands present in El Museo 

Canario. The elements to be classified are obsidians originating from deposits 

located in Tenerife and Gran Canaria. This classification will be based on lava 

flows instead of municipalities per museum request. 

To achieve this objective, it is required to develop the following sub-

objectives: 

1. Knowledge of the technology to be used and the algorithms to be 

developed. 

2. Automatically Segment the samples on the support. This 

segmentation allows obtaining the HS signature of each sample 

from a template with several ones in an automated process. 

3. Development of the classification algorithms. 

4. Design of the developed system. The design of the whole workflow 

to obtain the sample HS signature, prepare all the classes, the 

creation of the model classifier and its evaluation. 

 

1.3. Memory Structure 

 

This document is organized as follows: 
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Chapter 1:  Introduction.  This chapter explains the motivations for the 

development of this work and the main objectives. Finally, a brief explanation of 

the memory structure is provided. 

 

Chapter 2: State-of-the-Art. This chapter covers the state-of-the-art of 

spectrometry and some methods currently used by El Museo Canario. Finally, 

hyperspectral imaging and its applications are described.  

 

Chapter 3: Methodology The third chapter talks about the methodology 

of this project. Firstly, the available database and the new distribution suggested 

by the museum. Next the acquisition system and available images. Finally, the 

evaluation metrics used to measure the classifier. 

 

Chapter 4: System Design The fourth chapter explains the system design. 

From the first phase, the template selection, to the last one, the parameter 

optimization. 

 

Chapter 5: Results The fifth chapter presents all the results of this work. 

Presenting the results in groups of two, three and all the classes together. Also, 

some statistical metrics results and undefined sample predictions are presented 

in this chapter. 

 

Chapter 6: Conclusion and future lines The last chapter deals with 

conclusions considering the results and proposes future work that can improve 

these results.  
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2. STATE-OF-THE-ART 
 

In this section the necessary concepts for a complete understanding of this 

project are presented. It is focused on the classification of obsidian using 

hyperspectral technology. First, the reader will start learning about spectroscopy. 

Then, the different techniques used to analyse the stones or ceramics found in 

archaeological sites. After this, the concepts of hyperspectral imaging (HSI) and 

its different use in several applications will be introduced. Additionally, the 

relationship between archaeology and HSI which give origin to this final project. 

This section finish with the image segmentation and classification concepts. 

 

2.1. Spectrometry 

Spectrometry is a technique employed to measure the concentration of 

certain elements using the study of the interaction between matter and radiation. 

It indicates the components present in the sample and their concentration. The 

instrument to measure the concentration or amount of a specific element is a 

spectrometer or spectrograph. There are different spectrometry methods (mass, 

scattering, atomic emission, ultraviolet and visible light, etc), but only the most 

common techniques used in the identification of the composition of materials will 

be explained. In particular, Mass Spectrometry (MS) is the laboratory analytical 

technique for separating material components by their mass and electrical charge 

and, is the most common and most important spectrometry used in a laboratory, 

there are several types [2] i.e., electronic, chemical, or electrospray ionization, 

atmospheric pressure chemical ionization or photoionization etc. 
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2.1.1. Inductively Coupled Plasma Optical Emission Spectrometry (ICP-

OES) 

Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) is a 

well-known chemical analysis technique, this method detects elements in the 

sample by using plasma and spectrometer [3]. When the sample receives the 

plasma energy, the elements are excited, and the atoms move to a higher energy 

position. As soon as the atoms return to the low-energy position, emission rays 

are released and those corresponding to the photon wavelength are determined 

by the spectrometer. The element type is measured depending on the position 

of the photon rays and the component of each element is determined based on 

the intensity of the rays. This technique can determinate qualitatively and 

quantitatively more than 60 different elements between them [4]. 

This technique is employed as the most powerful technique in many fields 

such as environmental safety, health [5], [6], bioremediation, food quality testing 

[7]–[9] and pharmaceutical analysis due to its accuracy and sensitivity, 

simultaneous analysis of multi-element, high throughput, and low costs [10]. But 

it is also being considered in petrochemical, metallurgical, geological, and nano-

technological studies. 

 

 
Figure 1: Schematic view of an ICP-OES [11] 
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2.1.2. Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) 

Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) is an analytical 

technique to quantitatively and semi-qualitatively determine almost all elements 

of the periodic table which have an ionization potential lower than Argon (Ar) at 

low concentrations. The sample, in liquid form, is transported to the nebulizer 

system where it is transformed into an aerosol by the action of Argon gas. This 

aerosol is conducted to the ionization zone that consists of the plasma generated 

by Argon gas on magnetic field action induced by a high-frequency current. The 

plasma dissociates the molecules and removes an electron from the component 

forming ions which are directed into a mass filtering -mass spectrometer- [12]. 

Only one mass to charge radiation is allowed to pass through the mass 

spectrometer from entrance to exit. Each of the masses reaches the detector 

where its abundance in the sample is evaluated, due to the impact of the ions 

releases a cascade of electrons which creates an electromagnetic pulse. This 

pulse is compared with the standardized ones, also called isotopic fingerprint, to 

determine the concentration of the element. Figure 2 shows the standardized 

isotropic fingerprint for each element in the periodic table. 

ICP-MS is widely used in many different areas like health [6], food quality 

control [7]–[9], [13]–[15], environmental, biology, agriculture [16], [17], industrial, 

etc. According to Joint ALSSA-JAIMA-Eurom II Global Laboratory Analytical 

Instruments Booking Report, over 15% of all new instruments purchased for trace 

metal analysis are ICP-MS instruments [12]. 
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Figure 2: Elements analysed by ICP-MS (elements in colour) [12] 

 

2.1.3. X-Ray Fluorescence (XRF) 

X-ray fluorescence spectrometry (XRF) is a method used to perform 

relatively non-destructive chemical analyses of materials, such as minerals, 

sediments, rocks, etc. This method relies on fundamental principles that are 

common to several other instruments involving the interaction between electron 

beans and X-Ray with samples. When this sample is excited with X-rays, they can 

ionize it. If this energy is enough to remove an internal electron, the atom 

becomes unstable, and an external electron will replace it. At this point, energy is 

radiated, known as fluorescent radiation, which is characteristic of the transition 

between specific electronic orbitals of a particular element. The resulting X-rays 

are used to determine the presence of elements in the sample. 

Nuclear beans and lasers are becoming increasingly important as 

analytical tools in art and archaeology for dating and characterization studies [18] 

due to the portability, quickness, and relatively non-destructive analysis to obtain 

the first information about the samples. There are plenty of portable or desktop 

XRF devices with compact design, low weight and even battery-powered. 
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Figure 3: Spectrace 9000 TN PXRF measuring mural paintings of modern artist Spyros Papalou- kas 

from the Amfissa Cathedral, near Delphi, Greece 
 

2.2. Hyperspectral imaging 

 

2.2.1. Electromagnetic spectrum 

The electromagnetic spectrum [19] is the distribution of all ranges of 

electromagnetic radiation, i.e., the distribution of this energy emitted in form of 

waves based on their wavelength. The types of electromagnetic radiation range 

from radio waves (longest wavelength) to gamma-ray (shortest wavelength). The 

shorter the wavelength, the higher energy it emits. 

The electromagnetic spectrum is important in this study due to the 

interaction of the electromagnetic radiation with materials is different along the 

spectrum, which allows the hyperspectral signature of materials to be 

determined. 
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2.2.2. HSI fundamentals 

HSI is a technology that has evolved from spectroscopy, combining 

spectroscopy with digital imaging. The result of both technologies, spatial and 

spectral information provides a huge amount of data in the form of an HSI cube, 

as can be observed in Figure 4. Each pixel provides spectral information, which is 

the radiance of the materials within the area that is covered by the pixel. The fact 

is that all the materials reflect, absorb, or emit electromagnetic energy in different 

wavelengths. For this reason, hyperspectral (HS) cameras use different sensors to 

measure them in hundreds of spectral wavelength bands and these values 

normally behave like a continuous spectrum. This continuous spectrum is the so-

called spectral signature, and it is the equivalent of a fingerprint. This means that 

each material has a unique spectral signature, as shown in Figure 4. 

 

 
Figure 4: HSI cube 

 

HSI is a growing technology originally developed for remote sensing, but 

nowadays it is used in many research fields, such as medicine [20]–[26], food 

quality [27]–[30], defence [31], [32], drug identification [33]–[35], art [36]–[39], and 

archaeology [1], [37], [40], [41].  
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2.2.2.1. Remote Sensing 

Remote sensing refers to the collection of information about an object 

without being in physical contact with it [42], typically using satellites, aeroplanes 

or drones equipped with multispectral or HS cameras. HS data processing is 

widely used for the detection and identification of surface, topographic and 

geological features on The Earth [18] [19]. 

 The National Aeronautics and Space Administration (NASA) has employed 

remote sensing for the detection of ice, water, and snow on The Earth processing 

HS data with images captured from NASA’s Earth Observing-1 satellite in 2012 

[44].  

 Remote sensing is also used in agriculture, e.g., to measure the content of 

leaf water on agricultural productions [45], [46] or to estimate some performance 

keys on cereal lands [47]. 

 

2.2.2.2. Medical 

Researchers have found many applications of the HSI in the medical field 

due to the interaction between electromagnetic radiation and tissues, which 

provides useful information for diagnostic and non-invasive techniques. From 

atrial ablation lesions [48], [49] or cervical neoplasia [50], [51] to cancer detection 

[20]–[24], [52]. 

Several studies are related to the identification of brain cancer during 

surgical resection [20], [23], [24], [52]. This procedure is critical and challenging 

for neurosurgeons as there is no perfect tool to delineate the tumour to be 

resected. The accuracy with which it is delimited will be the key to the treatment 

success, due to less malignant tissue resected will make the patient relapse and 

good tissue resected could limit vital functions. 
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2.2.2.3. Cultural Heritage Conservation 

The conservation of cultural heritage, such as paintings, objects, buildings, 

etc., is highly important for human beings and requires high technology and hard 

work to carry out. This field has used many different techniques for identification, 

conservation, and preservation throughout its history. HSI has come into this field 

[41], [53], [54] to replace other invasive techniques as mentioned above. 

Polychronis Kolokoussis et al. [41] studied the degradation of materials of 

four buildings about 2,400 years old that have been affected by climate change 

in recent decades using HSI technology. It aims to determine whether the 

combination of detailed 3D texture models and HSI can provide a tool for the 

creation of degradation maps as shown in Figure 5. 

 

   
Figure 5: Material loss estimation using the valley depth algorithm (hillshade has been added as 

background for easier interpretation of the results) [41] 
 

In [53], a panel painting from the collection of the Ethnographic Museum 

of Slovenia was employed to evaluate the potential of HSI for the evaluation of 

heritage objects. Four different HS cameras were used to scan the document and 

obtain the HS data and merge it with other reference methods databases to allow 

the identification of the materials used by the artist on the panel. This allows the 

identification and characterization of the colourants, binders, and coatings 
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originally used or later additions, i.e. In Figure 6 it is possible to identify hidden 

underdrawings detected by HSI. 

 

 
Figure 6: The hidden underdrawings in the inner layer of the studied beehive panel painting were 

detected using the FX17 and SWIR hyperspectral cameras (NIR wavelength: 1500 nm) [53] 
 

2.3. Image segmentation 

 

2.3.1. Morphological segmentation 

Image segmentation is a process to divide a digital image into regions or 

parts based on some particular feature such as discontinuities in pixels values, 

shape or colour differences [55]. Morphological segmentation is an image 

segmentation based on the shapes of interest to split the sample. 

Morphological toolboxes can be used in many fields, but one of the most 

incredible uses is in medical procedures. Image segmentation is used for 

distinguishing between tissue types during a neurosurgical operation [56]. 

During the procedure, pathologists stain body tissue with haematoxylin and eosin 

and take a digital image of the brain, then using deep learning they segment the 

image into tumour and background. This segmentation helps the surgeon to 

resect the tumour effectively. 

 

2.3.2. Threshold segmentation 

This is the simplest method for image segmentation. In this method, pixels 

are separated according to grayscale intensity value. A threshold value is 
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employed at which the grayscale image is converted into a binary image, with a 

value of 1 for those equal to or above the threshold and 0 for those below. In 

threshold segmentation, methods can be used that adapt the threshold value at 

each pixel based on image characteristics, this is called automatic thresholding. 

There are many automatic thresholding methods based on different 

algorithms and they can be classified as histogram shape, clustering, entropy, 

object attribute and spatial methods. The most famous method is Otsu [57], that 

it determines the threshold by minimizing intra-classes intensity variance.  

 The reason behind the automatic thresholding could be explain with a 

landscape photo. Using the same threshold (manual thresholding) for the land 

and the sky would provide a low-quality segmentation, in the other hand if the 

threshold used in the sky is different from the one used in the land it will provide 

better segmentation. 

 

2.4. Image classification 

 

For imaging classification there are different methods based on Machine 

Learning (ML). There are three ML methods for classification, supervised, 

unsupervised and semi-supervised. The main difference between supervised and 

unsupervised methods is mostly in the use of labelled data: supervised 

algorithms use labelled inputs to generate the models, while unsupervised 

algorithms try to find some patterns in the input data (unlabelled data). The latest 

one, semi-supervised uses a mix of both approaches, patterns, and labelled data. 

In this work, one of the most used supervised method, Support Vector 

Machine will be used due to the number of researches done with HS images 

classification. 
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2.4.1. Support Vector Machine (SVM) Classification  

Support Vector Machine (SVM) Classification is a supervised learning 

technique that allows the separation of the different groups that make up the data 

by means of hyperplanes, see Figure 7. The main goal of SVM is to find a 

maximum marginal hyperplane which best divides the dataset into different 

classes. This means that the hyperplane will be the best division that can be made 

with the different classes using such values. 

 

 
Figure 7: Representation of two classes of SVM classification with lineal hyperplane [58] 

 

In Figure 7 is possible to see the support vectors, those data points closest 

to the hyperplane and the margin that could be defined as the gap between the 

support vectors of each class.  

The calculation of data point division depends on a kernel. Exists different 

kinds of kernel functions: Linear, Polynomial, Gaussian, and Radial Basis Function 

(RBF). This means that the determination of the hyperplane is based on the kernel 

function. Table 1 shows the different kernel functions for support vector machines 

and their different formulas. 
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Table 1: Kernel functions formulas 
Kernel Function Name Formula 

Linear 𝐺"𝑥! , 𝑥"% = 𝑥!#𝑥" 

Polynomial 𝐺"𝑥! , 𝑥"% = "1 + 𝑥!#𝑥"%
$ 

Gaussian or RBF 𝐺"𝑥! , 𝑥"% = exp",𝑥! − 𝑥",% 

 

Support vector machine classification is one of the most used models in all 

kind of fields [59]–[62]. 

 

2.5. Summary 

 

In this section all the theorical concepts necessary for the development of 

this project are presented. Spectrometry and the methods used in El Museo 

Canario to analyse its samples (ICP-MS, ICP-OES, FRX) are explained. Then, the 

concepts related to Hyperspectral Image and its usages are covered. Finally, 

Image Segmentation and Classification with their different methods used in this 

work are explained like threshold segmentation and SVM classification. 

  



 29 

3.  METHODOLOGY 
 

This section covers the new definition of classes given by El Museo Canario 

based on lava flows instead of municipalities that prompted this work. The HS 

acquisition system and the available HS images are explained too. Evaluation 

metrics used to measure the classifier are defined at the end of the section. 

 

3.1. Samples database and description 

 

3.1.1. Distribution from a previous master’s final work 

In the previous work [1] 69 obsidians provided by El Museo Canario and 

the Department of Historical Sciences of the University of Las Palmas de Gran 

Canaria were studied. These samples were divided based on deposit (orange), 

municipality (green) and island (blue), as shown in Figure 8.  

 
Figure 8: Previous work organisation scheme of the obsidian sample database [1] 
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Table 2 displays the labelling created to facilitate the processing of the 

images based on the three levels (island, municipality, and deposit) to match the 

distribution provided by the archaeologist. The class identifications are 

represented by 3 digits, the first represents the island, the second the 

municipality and the last the deposit where the sample was found, for example, 

122 is from Hogarzales in Aldea de San Nicolás (Gran Canaria). This table also 

indicates the number of samples found in each deposit, in total 57 samples for 

Gran Canaria and 12 for Tenerife. 

 

Table 2: Obsidians labelled by deposit, municipality, and island on previous work [1] 
Class ID 

Class Name 

Number of Obsidians 

LEVEL 

1 

LEVEL 

2 

LEVEL 

3 

LEVEL 

1 

LEVEL 

2 

LEVEL 

3 

100 

110 111 

Gran 

Canaria 

Telde La Restinga 

57 

16 16 

120 
121 Aldea de San 

Nicolas 

Cedro 
7 

3 

122 Hogarzales 4 

130 131 Firgas San Antón 3 3 

140 141 Agüimes Las Vacas 4 4 

150 
151 

Santa María de Guía 
El Cenobio 

12 
8 

152 No label 4 

160 161 
San Bartolomé de 

Tirajana 

Dunas de 

Maspalomas 
15 15 

200 
210 211 

Tenerife 
Guía de Isora Chasobo 

12 
9 9 

220 221 La Guancha La Tabona 3 3 

 

Not all the samples were captured in previous work and one of the 

objectives of the current work was to capture most of the rest. But due to the 

access difficulty to the obsidians and the acquisition system, since this was used 

by other projects in the medical field made it impossible.  

 



 31 

3.1.2. New distribution  

El Museo Canario has suggested a new distribution based on the analysis 

of samples by ICP-OES, ICP-MS and FRX techniques. The reason for the change 

is that several tanks can share lava flows and thus be very similar chemically, which 

would result in similar spectral signatures. This may be the reason why the results 

of the previous work were not very encouraging.  

This new distribution consists of five groups: TAB, N1, N2, N3, HOG and 

the rest of the samples are undefined, ANNEX  shows the samples that belong to 

each class. The first one, TAB is mainly composed of the samples found in 

Tenerife, and the remaining four are those corresponding to the samples found 

in Gran Canaria. One with the samples found in Hogarzales, Vacas and Cedro and 

three new groups for future study. The undefined samples are cases to be 

studied, some of them could be analytical issues or samples not discarded 

previously by experts (deteriorated surfaces, presence of titanium white in the 

acronym, etc). 

Table 3, Table 4, Table 5, Table 6 and Table 7 contain the list of samples 

that are captured for each defined group. 

 

Table 3: TAB samples captured 
TAB 

CHA-27 CHA-28 CHA-30 

CHA-31 CHA-33 CHA-35* 

CHA-36 CHA-39 TAB-1 

TAB-2 TAB-3  
* Two captured samples are called CHA-35. 
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Table 4: HOG samples captured 
HOG 

ANT-158 CED-18-114 CED-C-155 

CED-T-113 CNB-147-A CNB-147-B 

CNB-149-A CNB-151 CNB-152 

CNB-153 CNB-155 DUM-78 

DUM-80 DUM-82 DUM-83 

DUM-85 DUM-88-1 DUM-90 

DUM-91 HOG-38-1368-73 HOG-38-816-65 

HOG-38-818-65 RES-10-180 RES-10-181 

RES-10-183 RES-10-184 RES-10-185 

RES-10-187 RES-10-190-I RES-10-192 

RES-10-193 RES-7-174 RES-7-175 

VAC-1-119 VAC-2-120-A VAC-2-120-B 

VAC-2-120-C   

 

Table 5: N1 samples captured 
N1 

DUM-77 DUM-89 RES-7-173 

RES-7-178   

 
Table 6: N3 samples captured 

N3 

CNB-149-B DUM-81 DUM-92 

 
Table 7: Undefined samples captured 

Undefined 

ANT-157 DUM-88-2 DUM-93 

RES-7-179 RES-10-194  
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3.2. Acquisition system 

 

The acquisition system consists of two cameras, one SWIR and one VNIR 

camera, both were placed on a scanning platform with a light system to illuminate 

the stones. Figure 9 illustrates the acquisition system, which is composed of the 

illumination source (1), the SWIR camera (2), the VNIR camera (3), and one linear 

displacement (4). Table 8 contains the specifications of the HS cameras. 

 

 
Figure 9: Acquisition system [1] 

 

 

Table 8: Specifications of the HS cameras 

Characteristic Headwall Hyperspec® SWIR 
Headwall Hyperspec® VNIR 

E-Series 

Spectral range (nm) 900-2500 380-1000 

Spectral resolution (nm) 12 3 

Spectral bands 267 923 

Spatial bands 384 1600 

Dispersion/Pixel (nm/pixel) 6 0.65 

Capture type Push broom Push broom 

Pixel Pitch (µm) 24 6.5 
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These cameras are push-broom type, as we have explained before they 

take the HS cube moving from one side to the other to catch the whole one. This 

movement is controlled by the camera using a linear actuator driven by a stepper 

motor, and it is synchronous with the shooter. 

The illumination system is composed of halogen light and a power supply. 

The intensity of the light is controlled by a regulator to allow the user to adjust the 

parameters dependent on the light. 

 

3.3. Available images 

 

The database is composed by 19 HSI from 5 compositions with a template 

where the sample is situated inside a square, these compositions are called 

‘Toma’ from 1 to 5. Each composition has different sample positions, formal is the 

initial one, the reverse side of the sample and the reverse and rotate is with the 

sample in reverse position and rotated. Some compositions have two shots, for 

example, Reverse Composition 1.  

One example of this template is shown in Figure 10. In this case, it is for 

Composition 5, squares have different sizes as the samples captured are higher 

than the regular square for all the templates, so it was customized.  

 

 
Figure 10: Example of template 
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Table 9: Different compositions captured in previous work 

 Formal Reverse 
Reverse & 

Rotation 
Total 

Composition 1 1 2 2 5 

Composition 2 1 1 1 3 

Composition 3 1 2 1 4 

Composition 4 1 1 1 3 

Composition 5 1 2 1 4 

 

3.4. Evaluation metrics 

 

The following is an explanation of the accuracy, precision, sensitivity, 

specificity and f1 score metrics, which have been used in this study.  In general, 

these metrics evaluate the performance of the generated model.  

 

3.4.1. Accuracy 

The accuracy of a classifier refers to how close an estimation comes to the 

known value. It can be defined as the number of correct estimations divided by 

the total of estimations. Using TF as True Positive, TN as True Negative, FP as False 

Positive and FN as False Negative, accuracy for binary classification is: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 	
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 

 

3.4.2. Precision 

Precision is the true positive rate to predicted positives, in binary 

classification is how truly the positive cases are. It is defined by the equation 

below. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 
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3.4.3. Sensitivity 

Also called recall, sensitivity is the true positive rate to total, in binary 

classification is how well the classifier detects the positive cases. It is defined by 

the equation below. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 

 

3.4.4. Specificity 

Specificity is the true negative rate, in binary classification is how well the 

classifier detects the negative cases. It is defined by the equation below. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 	
𝑇𝑁

𝑇𝑁 + 𝐹𝑃 

 

3.4.5. F1 Score 

F1 Score is the harmonic mean of Precision and Sensitivity, in binary 

classification is one of the most common measures [63] to rate how well a 

classifier is when there are unbalanced classes. It is defined by the equation 

below. 

𝐹1	𝑆𝑐𝑜𝑟𝑒 = 	
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦  

 

3.4.6. Jeffries-Matusita Distance 

Jeffries-Matusita [64]–[67] distance calculates the separability of a pair of 

probability distributions. Provides a reliable criterion of classes separability 

because it behaves like the probability of a correct classification. Its values range 

from 0 to 2, where 0 means that the classes are not separable and 2 that they are 

completely separable. It is defined by the equation below where B is the 

Bhattacharyya distance. 

𝐽𝑀%! =	G2(1 − 𝑒&') 
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𝐵 = 	
1
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1
2 𝑙𝑛

⎝

⎛
S𝐶% + 𝐶!S

2

T|𝐶%|S𝐶!S⎠
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Where i,j are the compared classes, Ci is the covariance matrix of class i, μi 

is the average vector of the same class and |Ci| is determinant of the covariance 

matrix. 

 

3.4.7. Rand Index for clustering 

The rand index is a measure of the similarity between two data clustering, 

like accuracy in supervised classification, the rand index measures the percentage 

of correct decisions. Using TF as True Positive, TN as True Negative, FP as False 

Positive and FN as False Negative is: 

 

𝑅𝑎𝑛𝑑	𝐼𝑛𝑑𝑒𝑥 = 	
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 

 

 

3.5. Summary 

 

This section presents all the methodology elements. First, the sample 

database, with the differences between the new classification provided by El 

Museo Canario and the classification of the municipality. Then, the acquisition 

system and the available HS images are explained. Finally, the evaluation metrics 

used to measure the classifier are defined. 

  



 38 

4.  SYSTEM DESIGN 
 

In this section all the different phases of the system are explained, starting 

with the template selection to the creation of the SVM model with parameter 

optimization. 

The system is designed around the available database, using the captures 

already obtained a few steps are needed before classification to create a dataset 

ready for it. Figure 11 shows the complete system workflow, from the template 

section to the classifier model creation. In this workflow there are steps in light 

orange that represent those steps done only with the binary image and the blue 

steps that represent those done with the entire HS cube. Finally, the green step, 

evaluation metrics, is done only with the best features, not the entire cube. This is 

done to improve the system performance since working with the whole cube is 

quite demanding. 

 

 
Figure 11: System workflow diagram 

 

In the first phase, each template box containing the sample is automatically 

separated from the others. Then, in the second phase, once the box is separated 

from the template, the sample inside the box is obtained. For this, a binary mask 

is created to know which pixels represent the sample, and the spectral signatures 

of each pixel which compose the sample are obtained. This process is carried out 

for different samples, using prior knowledge of which obsidian corresponds to 

each class. In the third phase, two subclasses are generated, one for training and 

one for testing. The fourth phase is the generation of the model with the training 

classes and using the test ones for hyperparameter optimization. In the last phase, 

Template 
selection Segmentation Pre-

processing SVM model Evaluation 
Metrics
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the generated models are evaluated. MATLAB software is employed throughout 

each of the phases. 

 

4.1. Template selection phase 

 

The first phase of this system is the selection of the template, i.e., the 

cropping of the squares in the template. This process is fully automated in 

different scripts. The first function of the process is employed to detect the square 

shapes in one binary image created from a snapshot cube.  

Morphological analysis is performed to find the rectangular shapes 

presented in the image. This morphological analysis needs some preparation, 

e.g., it is necessary to fill in all possible gaps found in the image. The reasons for 

this filling are due to irregular samples, reflections in the samples and the names 

of the samples.  

After finding all the possible rectangular shapes, the following steps are 

necessary: first, the removal of those pixels which are on the edges, as they may 

come from the page, from shadows, or from anomalies in the template. This 

deletion is performed using the position of the vertices. If any of the vertices are 

on the margin of the template, they are removed. Based on the templates used, 

the deletion of 5 pixels is enough to remove the undesired rectangles. However, 

this parameter is not fixed, and the code is prepared to easily change this value if 

it is necessary to employ other types of templates. 

After removing the anomalous shapes on the image margin, the next step 

is that the system increases the size of each shape to include the surrounding 

pixels for each shape, taking care of some anomalies in some snapshots like 

Compositions 2, 3 and 5. Increasing the size of the largest frame too much will 

overlap it with the surrounding frames, so this needs to be customised for some 

snapshots. This scaling is necessary to blend all the shapes that are in each box 
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since the sample could be one shape, the surrounding box another one, or some 

anomalous like each letter of the sample name could be more shapes. 

After scaling all the shapes, the third step is to overlap and merge the 

detected shapes since they are different parts of the same portion of the 

template. That is, the sample could be one shape, the box around it another and 

the text for the name of the sample could be many of the shapes, so they all need 

to be blended into one. Using MATLAB function for shape overlaps, a matrix with 

all overlaps is retrieved. The size of the matrix is NxN where N is the number of 

shapes, and the content of the matrix is 1 when the corresponding pairs of 

elements of the polyform objects overlap, 0 otherwise. Using these overlaps, the 

final shape containing them is created for next steps. 

Finally, the detected shapes are employed to cut the image and work in 

the following steps only with this part of the template. 

 

4.2. Segmentation phase 

 

The segmentation procedure is first performed by creating a binary mask 

of the image cropped in the previous phase, which allows detection of the 

sample. Again, MATLAB morphological analysis is used to detect the 

components connected by the 8-pixel connectivity. This means that the pixels are 

connected in all directions, so they cannot be lines or dots. In addition, the sample 

should be solid and with some circularity due to the stones are not perfect 

squares. Finally, with all the above restrictions, the sample will be within the 

largest component found in the analysis. 

Based on these assumptions, the hyperspectral cube is cropped with the 

coordinates of the coincident shape.  
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The result of this phase is an object with all the smallest cubes that can 

contain the samples. So, all the harder processing will be done only with smaller 

cubes improving the performance of the whole system. 

 

4.3. Pre-processing 

 

4.3.1. Binary Mask phase 

After segmentation, it is necessary to select only the pixels that represent 

the sample. Using a binary mask of the cube, only the pixels representing the 

samples are obtained in a vector. This binary mask is created with the mean of the 

Z coordinate of the cube to avoid small differences in the HS signature of each 

pixel, removing anomalous pixels. Figure 12 shows all the binary masks from 

Composition 1 with the indexes used to select the samples for the creation of the 

data vector. 

 

 
Figure 12: Binary masks from Composition 1 

 

This binary mask allows the system not only to obtain the pixels 

corresponding to the sample. Also, it allows for eliminating light reflections on 

the obsidian surface that would have an anomalous HS signature and could 

prejudice the generation of the model. In samples 4, 5, 7, 9, 10 and 14 in Figure 
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12 there are holes or indentations in the sample masks that represent these types 

of anomalous pixels.  

For this removal, a threshold of 0.4 has been based on different tests on 

several compositions. Some of them have customized thresholds in order to clean 

up with the highest accuracy. Figure 13 illustrates the differences between binary 

images with the 0.6 and 0.4 threshold values. Samples with imperfections such as 

4, 5, 7, 10 and 14 have different shapes in their imperfections due to this 

threshold, and the classification accuracy can be affected by these edge pixels. 

 

 
Figure 13: Binary image comparison between threshold 0,6 (left) and 0,4 (right) 

 

4.3.2. Class generation phase 

All the previous steps correspond to a single sample. However, it is 

necessary to create sets of samples of each type defined by the archaeologists. 

Each set of samples would correspond to a class, and once the classes are 

defined, the model for the classification of future samples could be generated. 

For classification purposes, training and testing subclasses are needed.  

So, for each class, one for creating the classification model, and the other for 

estimating metrics such as accuracy, sensitivity, and specificity of its model. An 

important constraint for the creation of the model is that any sample employed in 

the training subclass cannot be used for testing due to it could distort the results. 

So, in this work, there are two different approaches: the first is to do the splitting 
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automatically by providing a script with an array of cells and the second one is 

manually done. In both approaches, each cell will correspond to a sample, and 

the automated script will split the samples into approximately 80% for the training 

purpose and the rest of the samples for testing. 

For the automatic approach, a dataset has been generated with the four 

classes available for HS captures TAB, HOG, N1 and N3. Each class is defined by 

a set of cells containing a matrix of pixels of each sample obtained by applying 

the binary mask as a selection of the pixels of the cube. These sets of cells are 

obtained from the selection of the samples in each of the compositions using the 

information provided by the archaeologists from the chemical analysis and saving 

them in the matrix of cells. To improve the results, the three versions of each 

composition, original, inverted and inverted and rotated, are used, obtaining 

three times more samples and therefore more spectral signatures for the 

generation of the model. 

In the manual approach, the dataset has been created based on the 

classification shown in Table 10 (all the corresponding samples for each class are 

in Table 44, Table 45, Table 46, Table 47 and Table 48 at ANNEX I). For each 

class, the dataset has two different subclasses, training, and test, both generated 

by all the samples in the three compositions, original, inverted and inverted and 

rotated. As can be seen, the classes are very unbalanced, with the HOG class with 

24 samples for training and 11 samples for testing, while N3 has only two samples 

for training and only one sample for testing. 
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Table 10: Number of samples in the new distribution per composition, deposit, and type 
Class Type Deposit Composition Samples 

HOG 

TRAIN 

RES TOMA1 7 

CED TOMA2 2 

HOG TOMA2 2 

ANT TOMA2 1 

VAC 
TOMA2 1 

TOMA3 1 

CNB TOMA3 5 

DUM TOMA4 5 

TEST 

RES TOMA1 3 

CED TOMA2 1 

HOG TOMA2 1 

VAC 
TOMA2 1 

TOMA3 1 

CNB TOMA3 2 

DUM TOMA4 2 

TAB 

TRAIN 
CHA TOMA5 6 

TAB TOMA5 2 

TEST 
CHA TOMA5 2 

TAB TOMA5 1 

N1 
TRAIN 

RES TOMA1 1 

DUM TOMA4 2 

TEST RES TOMA1 1 

N3 
TRAIN 

CNB TOMA3 1 

DUM TOMA4 1 

TEST DUM TOMA4 1 
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In this work, the process of obtaining the HS signature of each sample for 

the creation of the class is created in a way that eliminates the need for the user 

to select the region in which the obsidian is located as described in previous 

steps, this is done with a script that works as an assistant. In the first step, it reads 

the different Compositions that exist in the folder dedicated to it and displays a 

window with the list (as it can be seen in Figure 14) to select the composition that 

will be used to obtain the corresponding samples to the class that the user wants 

to generate. Once the capture is analysed to perform the steps described above 

(template and sample segmentation), the template is displayed to the user 

(Figure 15) with the automatically detected obsidians highlighted in different 

colours, and also in another window, the binary mask of all the samples with a 

numerical index in each one of them. In addition to the two windows, a dialogue 

box appears, shown in Figure 16, where it requests which indexes the user wants 

to include in the class, identifying the index in the binary mask with the 

corresponding one in the template, the user can select the ones that belong to 

the class to be obtained. Once the array with the indexes has been provided, an 

array with all the pixels of each of the chosen samples will be returned. 

 

 
Figure 14: Composition selection 
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Figure 15: Composition with samples automatically highlighted 

 

 
Figure 16: Dialog box asking for samples indexes 

 

For the whole class, a few executions are needed. First, it is needed one for 

each composition version and some of the classes are in different captures, so the 

wizard needs to be executed a few times for each. This wizard differs from the 

manual to automatic approach, as the automatic workflow needs to keep the 

samples separated to be able to select automatically the stones used for testing 

and training, and in the manual one, the subclasses are already defined and need 

to be generated to selecting the samples for testing and training in different 

executions. 

The dataset created in manual workflow contains each subclass for each 

kind of shot, for example for the HOG class the data set is composed of each shot, 

formal, reverse and reserve and rotate, with subclasses for test and train 
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separately at Composition 1, 2, 3 and 4. This makes four compositions times three 

shots times two subclasses (test and train) so 24 different sub-subclasses in HOG 

group. This is done to avoid composition or shot issues, as test and train contain 

samples for each composition and each shot. In N1 and N3 group cannot be done 

due to low number of samples in each composition, only one. 

There is a special situation in shot 2 inverted there are two subclasses, this 

is because the binary threshold had to be adjusted for different samples as the 

obsidian catalogued as VAC-2-120-B cannot be obtained with the same threshold 

as the rest of the samples in the template due to the poor quality of the shot. 

Finally, an array of HS signatures is created for each subclass, testing, and 

training, with all the shots mixed, original, inverted and inverted and rotated for 

being used in the next step. Table 11 contains all the number of samples and 

pixels for each class used for the creation of the models in this work and its 

corresponding results. 

 

Table 11: Characteristics of the used classes 
Class Subclass Number of Samples Number of Pixels 

HOG TRAIN 24 12540 

HOG TEST 11 5585 

TAB TRAIN 8 8818 

TAB TEST 4 2288 

N1 TRAIN 3 874 

N1 TEST 1 264 

N3 TRAIN 2 567 

N3 TEST 1 216 
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4.4. Model generation phase 

 

The classification method employed is the SVM algorithm. For this, it is 

necessary to install the MATLAB Statistics and Machine Learning Toolbox, which 

contains well-known and fully implemented functions for SVM. Because there are 

several classes, all possible combinations are evaluated, first biclasses evaluation 

(HOG vs TAB, HOG vs N1, etc) then multiclass in combinations of three (HOG vs 

TAB vs N1, HOG vs N1 vs N3, etc) and finally the four classes, so for the model 

generation, this work provides an automatic selection of SVM classifier functions 

providing the kind of kernel (linear, Gaussian or RBF) and the number of classes.  

For the execution of the classifier, this work provides a dialog box, shown 

in Figure 17, where the user can select which classes want to use to create the 

classifier, the SVM kernel and if the user wants to balance the classes, as there are 

two classes (N1 and N3) with a big difference with the other two (HOG and TAB) 

and this could affect to the results. This dialog box is prepared for two and three 

classes to help in future works to create new models with new classes or the same 

used in this work but with more samples in the dataset. 

 

 
Figure 17: Classifier menu for two classes 

 

When selecting the classes, the script will load the test and training classes 

for each class from their files and will execute the classifier. If the user has selected 

to balance the classes, the classes will be limited to the number of pixels of the 
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smallest class. Before balancing, to avoid the model being generated with only a 

few samples from the bigger classes the pixels are randomly reordered. In this 

way, the model will be created with pixels corresponding to all samples. As the 

test classes are also quite unbalanced, when activating the option, test classes are 

also balanced, so the metrics are more accurate.  

Before creating the SVM template, a random cross-validation partition with 

five folds is created to execute the model creation in five iterations for feature 

selection. This means that the script is creating a random partition of the dataset, 

then developed an SVM model for each partition and evaluates them to check 

the best hyperparameter. 

 

4.5. Parameter optimization phase 

 

After the feature selection, the final SVM model is created only with the 

selected features in the previous steps. This step is called parameter optimization 

as the new classes to be predicted are only predicted by the selected features 

instead of the whole HS signature which is faster. 

Finally, with this latest model, the metrics are created for the test dataset, 

the model is used to predict all this testing data and they are compared with the 

real data label to measure accuracy, sensitivity, and specificity. 

   

4.6. Summary 

 

This section explains each of the phases of the system, starting with the 

template selection, then sample segmentation, pre-processing chain, the model 

creation and finally parameter optimization. 
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5. RESULTS 
 

This chapter present the results obtained after analysing the different 

classifications based on lava flows after mixing the different shots taken from the 

same sample. 

All classes are evaluated by performing all possible combinations. First, the 

classes are evaluated by groups of two i.e., N1 vs N3, HOG vs TAB, etc. Then, by 

groups of three i.e., N1 vs N3 vs HOG, etc; and finally, all four classes at the same 

time. 

However, before performing the classifications, a previous study is 

performed to identify the kernel with the best performance. In this case, all the 

classification results are performed with the Gaussian kernel due to the fact that 

this, on average, provides a slightly higher accuracy than the lineal and RBF 

kernels. See Table 12 for this comparison, the N1 and N3 classes are employed 

because the use of TAB or HOG classes could distort the results and make it 

difficult to compare the kernels.  

 

Table 12: Comparison between kernels with N1 and N3 classes 
Kernel Accuracy Class Precision Sensitivity Specificity F1 Score 

Gaussian 41.87% 
N1 

N3 

0.4744 

0.2116 

0.5265 

0.2870 

0.2870 

0.5265 

0.6435 

0.4980 

Gaussian 

balanced 
53.01% 

N1 

N3 

0.4082 

0.5265 

0.4630 

0.5972 

0.5972 

0.4630 

0.6969 

0.6898 

Linear 55% 
N1 

N3 

0.55 

0 

1 

0 

0 

1 

0.7097 

NaN 

Linear 

balanced 
46.53% 

N1 

N3 

0.3797 

0.4684 

0.4167 

0.5139 

0.5139 

0.4167 

0.6316 

0.6379 

RBF 45.62% 
N1 

N3 

0.5052 

0.2526 

0.5530 

0.3380 

0.3380 

0.5530 

0.6713 

0.5530 
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RBF 

balanced 
48.61% 

N1 

N3 

0.2148 

0.4899 

0.2963 

0.6759 

0.6759 

0.2963 

0.6465 

0.6577 

 

Table 13 shows the confusion matrix for the predicted classes with 

unbalanced N1 and N3 using the Gaussian kernel, confusion matrix for balanced 

classes can be seen in Table 14. As it can be seen, with unbalanced classes N1 

has more true positives than N3 due to it has more pixels to create the model than 

N3, but when the classes are balanced, N3 has larger number of true positives 

than N1. Table 15 and Table 16, with unbalanced classes, the prediction for N3 is 

zero which means that Linear kernel is not appropriate for the unbalanced 

classification. Table 17 and Table 18 show the confusion matrix for RBF kernel, 

with poorest results than Gaussian but not anomalous results such as Linear. 

 

Table 13: Confusion Matrix from Gaussian Kernel with N1 and N3 classes 
CLASS Predicted N1 Predicted N3 

N1 139 125 

N3 154 62 

 

Table 14: Confusion Matrix from Gaussian Kernel with N1 and N3 balanced classes 
CLASS Predicted N1 Predicted N3 

N1 100 116 

N3 87 129 

 

Table 15: Confusion Matrix from Linear Kernel with N1 and N3 
CLASS Predicted N1 Predicted N3 

N1 264 0 

N3 216 0 
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Table 16: Confusion Matrix from Lineal Kernel with N1 and N3 balanced classes 
CLASS Predicted N1 Predicted N3 

N1 90 126 

N3 105 111 

 

Table 17: Confusion Matrix from RBF Kernel with N1 and N3 
CLASS Predicted N1 Predicted N3 

N1 146 118 

N3 143 73 

 

Table 18: Confusion Matrix from RBF Kernel with N1 and N3 balanced classes 
CLASS Predicted N1 Predicted N3 

N1 64 152 

N3 70 146 

 

5.1. Two classes 

 

 Table 19 shows the classification results of all possible pairwise 

combinations (biclasses), both with unbalanced and balanced samples.  As it can 

be seen, the TAB group provides the highest accuracy to the classifier since the 

samples come from another island. But with HOG, N1 and N3 groups may be 

inaccurate due to the lack of samples in the last two to generate the model. As 

can be seen in Table 11, these two classes have only two and three samples for 

model creation. Furthermore, these samples are small, providing only 874 or 576 

pixels for model generation compared to HOG and TAB classes with 12540 or 

8818 pixels respectively. 
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Table 19: Results in groups of two classes 
Group Accuracy Class Precision Sensitivity Specificity F1 Score 

HOG-

TAB 
100% 

HOG 

TAB 

1 

1 

1 

1 

1 

1 

1 

1 

HOG-

TAB 

balanced 

100% 
HOG 

TAB 

1 

1 

1 

1 

1 

1 

1 

1 

HOG-N1 95.49% 
HOG 

N1 

0.9549 

0 

1 

0 

0 

1 

0.9769 

NaN 

HOG-N1 

balanced 
52.27% 

HOG 

N1 

0.5146 

0.1585 

0.7992 

0.2462 

0.2462 

0.7992 

0.6795 

0.7104 

HOG-N3 96.28% 
HOG 

N3 

0.9628 

0 

1 

0 

0 

1 

0.9810 

NaN 

HOG-N3 

balanced 
72.92% 

HOG 

N3 

0.6645 

0.3821 

0.9259 

0.5324 

0.5324 

0.9259 

0.7984 

0.9350 

TAB-N1 100% 
TAB 

N1 

1 

1 

1 

1 

1 

1 

1 

1 

TAB-N1 

balanced 
100% 

TAB 

N1 

1 

1 

1 

1 

1 

1 

1 

1 

TAB-N3 100% 
TAB 

N3 

1 

1 

1 

1 

1 

1 

1 

1 

TAB-N3 

balanced 
100% 

TAB 

N3 

1 

1 

1 

1 

1 

1 

1 

1 

N1-N3 41.87% 
N1 

N3 

0.4744 

0.2116 

0.5265 

0.2870 

0.2870 

0.5265 

0.6435 

0.4980 

N1-N3 

balanced 
53.01% 

N1 

N3 

0.4082 

0.5265 

0.4630 

0.5972 

0.5972 

0.4630 

0.6969 

0.6898 

 

Table 20, Table 21, Table 22 and Table 23 show the confusion matrixes of 

HOG-N1 and HOG-N3 groups unbalanced and balanced respectively. Confusion 

matrixes for N1-N3 groups are in the previous section and the HOG-TAB, TAB-N1 

and TAB-N3 confusion matrixes are shown in ANNEX I in Table 49 ,Table 50, 
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Table 51, Table 52, Table 53 and Table 54. Where it can be observed that each 

class is correctly identified. 

 

Table 20: Confusion Matrix with HOG and N1 
CLASS Predicted HOG Predicted N1 

HOG 5585 0 

N1 264 0 

 

Table 21: Confusion Matrix with HOG and N1 balanced classes 
CLASS Predicted HOG Predicted N1 

HOG 211 53 

N1 199 65 

 

Table 22: Confusion Matrix with HOG and N3 
CLASS Predicted HOG Predicted N3 

HOG 5585 0 

N3 216 0 

 

Table 23: Confusion Matrix with HOG and N3 balanced classes 
CLASS Predicted HOG Predicted N3 

HOG 200 16 

N3 101 115 

 

5.2. Three classes 

 

The set of trios that can be generated with the four available classes can be 

seen in Table 24 with the corresponding metrics. There are groups of three 

unbalanced and balanced classes. Like in the previous section, there are a lot of 

differences when classifying inter or intra island and the number of samples 

available for the creation of the model. 
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Table 24: Results in groups of three classes 
Group Class Accuracy Precision Sensitivity Specificity F1 Score 

HOG-TAB-N1 

HOG 

TAB 

N1 

97.81% 

0.9676 

0.3912 

0 

1 

1 

0 

0.8966 

1 

1 

0.9769 

1 

NaN 

HOG-TAB-N1 

balanced 

HOG 

TAB 

N1 

86.88% 

0.7032 

1 

0.0214 

0.7032 

1 

0.1856 

0.9158 

1 

0.8516 

0.9374 

1 

0.1261 

HOG-TAB-N3 

HOG 

TAB 

N3 

98.20% 

0.9628 

0.3944 

0 

1 

1 

0 

0.9137 

1 

1 

0.9865 

1 

NaN 

HOG-TAB-N3 

balanced 

HOG 

TAB 

N3 

86.41% 

0.6922 

1 

0.0172 

0.6862 

0.9913 

0.1806 

0.9276 

1 

0.8393 

0.9458 

1 

0.0959 

HOG-N1-N3 

HOG 

N1 

N3 

94.58% 

0.9209 

0 

0 

1 

0 

0 

0 

1 

1 

0.9588 

NaN 

NaN 

HOG-N1-N3 

balanced 

HOG 

N1 

N3 

30.43% 

0.2258 

0.0393 

0.0537 

0.4659 

0.0720 

0.1204 

0.1108 

0.6963 

0.4863 

0.4053 

0.3689 

0.2574 

TAB-N1-N3 

TAB 

N1 

N3 

94.07% 

0.9996 

0.0826 

0.0227 

1 

0.7159 

0.2407 

0.9959 

0.9349 

0.9706 

0.9998 

0.6987 

0.5810 

TAB-N1-N3 

balanced 

TAB 

N1 

N3 

74.77% 

0.7021 

0.1569 

0.4548 

1 

0.2235 

0.7917 

1 

0.9062 

0.6117 

1 

0.7239 

0.6252 

 

Table 25, Table 26, Table 27 and Table 28 show the confusion matrixes of 

unbalanced classes for all groups since they are the ones that show the most 

anomalous results, the classes N1 and N3 are completely misclassified due to the 

difference of amount of labelled data per class. Confusion matrixes for the 
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balanced groups can be seen at ANNEX I (Table 55, Table 56, Table 57 and Table 

58). 

 

Table 25: Confusion Matrix with HOG, TAB and N1 
CLASS Predicted HOG Predicted TAB Predicted N1 

HOG 5585 0 0 

TAB 0 2288 0 

N1 264 0 0 

 

Table 26: Confusion Matrix with HOG, TAB and N3 
CLASS Predicted HOG Predicted TAB Predicted N3 

HOG 5585 0 0 

TAB 0 2288 0 

N3 216 0 0 

 

Table 27: Confusion Matrix with HOG, N1 and N3 
CLASS Predicted HOG Predicted N1 Predicted N3 

HOG 5585 0 0 

N1 264 0 0 

N3 216 0 0 

 

Table 28: Confusion Matrix with TAB, N1 and N3 
CLASS Predicted TAB Predicted N1 Predicted N3 

TAB 2288 0 0 

N1 0 189 75 

N3 1 163 52 

 

5.3. Four classes 

 

The results of the classifier for the four classes (HOG, TAB, N1 and N3) are 

shown in Table 29, as it can be seen the results are quite different from balanced 

to unbalanced classes, since the classifier works perfectly with islands 
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classification when there are a enough samples for the creation of the model, but 

when the classes are balanced, the accurate decreases. Also, in classes with not 

enough samples for the generation of the sample, if these are unbalanced, the 

models for them are not accurate and all the pixels are labelled as the closest 

major class, this situation is shown at Table 30. 

 

Table 29: Result of the four-class classifier 
Balanced Accuracy Class Precision Sensitivity Specificity F1 Score 

No 97,04% 

HOG 

TAB 

N1 

N3 

0.9207 

0.3770 

0 

0 

1 

0.9996 

0 

0 

0.8262 

1 

1 

1 

0.9587 

1 

NaN 

NaN 

Yes 66,67% 

HOG 

TAB 

N1 

N3 

0.3176 

0.5082 

0.0871 

0.1035 

0.6250 

1 

0.1713 

0.2037 

0.5060 

1 

0.9144 

0.7870 

0.4821 

1 

0.6667 

0.4560 

 

Table 30: Confusion Matrix of the four-class classifier with unbalanced classes 
CLASS Predicted HOG Predicted TAB Predicted N1 Predicted N3 

HOG 5585 0 0 0 

TAB 1 2287 0 0 

N1 264 0 0 0 

N3 216 0 0 0 

 

5.4. Jeffries-Matusita Distance 

 

The results with the JM distance do not give off any clear idea, being the 

separable classes but not agreeing with previous results, that the separability 

between islands using the SVM was maximal. Table 31 shows the results of each 

pair of classes. 
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Table 31: Jeffries-Matusita distance of each pair of classes 
Class 1 Class 2 Score 

HOG TAB 1.0023 

HOG N1 1.0035 

HOG N3 1.0041 

TAB N1 1.0106 

TAB N3 1.0116 

N1 N3 1.0006 

 

5.5. K-means 

 

In the case of unsupervised K-means clustering, poor success results are 

obtained with respect to the creation of clusters based on pairs of classes. Table 

32 shows the results of the rand index of the clustering of each pair of classes. 

 

Table 32: Accuracy of K-means clustering of each pair of classes 
Class 1 Class 2 Rand Index 

HOG TAB 28.46% 

HOG N1 3.56% 

HOG N3 2.41% 

TAB N1 5.53% 

TAB N3 3.79% 

N1 N3 26.25% 

 

5.6. Undefined samples prediction 

 

For the prediction of undefined samples, the balanced four-class model is 

used, since using the unbalanced model could cause samples belonging to N1 
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or N3 to be considered as HOG. Table 33 shows the prediction of each sample, 

as it can be seen, there are samples with high percentage of prediction in HOG 

group such as ANT-156, DUM-79, RES-10-191, HOG-38-1575-69 and NE-820-1. 

 

Table 33: Prediction of undefined samples with four classes model 
Sample HOG TAB N1 N3 

ANT-156 82.38% 0% 9.06% 8.56% 

ANT-157 21.61% 0% 33.24% 45.15% 

DUM-93 22.42% 0% 33.41% 44.17% 

DUM-88-2 10.60% 0% 47.35% 42.05% 

DUM-79 83.94% 0% 6.06% 10.00% 

RES-7-179 9.16% 0% 43.63% 47.21% 

RES-10-190 56.55% 0% 17.27% 26.18% 

RES-10-191 86.02% 0% 4.03% 9.95% 

RES-10-194 27.62% 0% 22.10% 50.28% 

HOG-38-1575-69 74.90% 0% 9.27% 15.83% 

NE-820-1 76.99% 0.44% 7.52% 15.04% 

NE-820-1-2 49.46% 0% 9.68% 40.86% 

NE-811-2 74.75% 0% 6.57% 18.69% 

NE-811-4 45.40% 0% 23.93% 30.67% 

  
To avoid the HOG confusion due to the number of samples used, a three-

class model has been used with TAB, N1 and N3 classes. Table 34 shows the 

results of the prediction with this three-class model. In this case, some similarity 

between N3 and HOG is appreciable, as the samples predicted as HOG using the 

four-class model are predicted almost N3 with three-class model. 
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Table 34: Prediction of undefined samples with TAB-N1-N3 balanced classes model 
Sample TAB N1 N3 

ANT-156 0% 20.13% 79.87% 

ANT-157 0% 39.61% 60.39% 

DUM-93 0% 43.05% 56.95% 

DUM-88-2 0% 53.71% 46.29% 

DUM-79 0% 25.15% 74.85% 

RES-7-179 0% 65.14% 34.86% 

RES-10-190 0% 32.87% 67.13% 

RES-10-191 0% 24.19% 75.81% 

RES-10-194 0% 57.18% 42.82% 

HOG-38-1575-69 0% 19.50% 80.50% 

NE-820-1 0% 28.32% 71.67% 

NE-820-1-2 0% 30.11% 69.89% 

NE-811-2 0% 54.60% 45.40% 

NE-811-4 1.01% 30.30% 68.69% 
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6.  CONCLUSION AND FUTURE LINES 
 

The objective of this bachelor thesis was to design a supervised 

classification system with hyperspectral images using the classification by lava 

flows proposed by the Canarian Museum using chemical analysis systems. For 

this purpose, the provided database was employed, an automatic segmentation 

of the template was performed to facilitate the extraction of the spectral signature 

of the obsidian and finally the SVM classifier. 

 

6.1. Conclusions 

 

After the results obtained in chapter 5, it is shown that good results are 

obtained when identifying the different samples using an SVM classifier. In Table 

12 the comparison of different kernels is performed, where the Gaussian kernel 

obtains better results, especially in specificity, also using balanced classes has 

better results in all metrics than other kernels. This points the way to which kernel 

should be employed for obsidian classification by HSI. 

Regarding the classification in pairs of classes there is a clear conclusion, 

the chemical differences that present the obsidians with origin from different 

islands makes their classification much easier. As can be seen in Table 19, all the 

groups with the TAB class, coming from Tenerife, present maximum values of 

detection, so an error-free classification of obsidian by islands could be 

guaranteed, even with few samples as can be seen in the balanced groups TAB-

N1 and TAB-N3 groups. 

However, with respect to the classification within the same island, the HOG, 

N1 and N3 classes present a difficulty when it comes to be accurately classified, 

and only the balanced HOG-N3 pair presents positive results, achieving 72 % of 
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accuracy, which may suggest that they are pairs with more chemical differences 

than between HOG and N1. 

With respect to classifications in groups of three, the conclusions are 

similar, the differences presented in samples of different islands give very positive 

results, as can be seen in Table 24. The balanced HOG-TAB-N1, HOG-TAB-N3 

and TAB-N1-N3 groups present results higher than 74 %, even though they are 

classified with a low number of pixels. 

Finally, the classification results with the four available classes yield 

relatively poor results, although the metrics of the unbalanced classifier seem very 

positive, what happens is that the samples of the N1 and N3 groups are classified 

as HOG but as these are very few and with few pixels. This situation can be seen 

in Table 18, the confusion matrix shows that the pixels of the N1 and N3 classes 

were predicted as HOG. Also, the model created with balanced classes provides 

only 66% of accuracy, with precision less than 50%. This situation gives the idea 

that the model generated is not accurate due to there were less samples than 

needed from N1 and N3 classes what is limiting the classification. 

 

6.2. Future lines 

 

This bachelor thesis demonstrates that further work can be done in this 

area. First, it is validating the use of SVM classifier for HSI as a non-destructive 

classification method to replace destructive methods such as those currently 

employed by El Museo Canario. 

Then, it is necessary to increase the database of all samples available from 

El Museo Canario in order to generate new models more accurate. This recent 

work provides scripts to easily obtain new classes from the HSI using the same 

template that the recent database. 
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Finally, SVM presents good result, but another future line could be use 

Artificial Neural Networks (ANNs) as they present relevant results in other fields. 

ANNs can be compare with the recent results to decide future classifications.  



 64 

7.  BADGET 
This chapter estimates the project budget based on the recommendations 

and guidelines established by the Colegio Oficial de Ingenieros Técnicos de 

Telecomunicación (COITT) established in 2008. In turn, this budget is divided into 

the following sections: 

 

7.1. Materials resources 

The material resources used for this final work includes hardware and 

software resources, which in turn may have costs associated with the requirement 

of licenses for their use. To estimate the amortization cost, a period of 4 years is 

stipulated, assuming a linear amortization system, in which fixed assets are 

disregarded constantly during the evaluation period. The following equation is 

used for this calculation: 

 

𝐴𝑚𝑜𝑟𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛	𝐶𝑜𝑠𝑡 = 	
𝐴𝑑𝑞𝑢𝑖𝑠𝑖𝑡𝑖𝑜𝑛	𝑉𝑎𝑙𝑢𝑒 − 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙	𝑉𝑎𝑙𝑢𝑒

𝑈𝑠𝑒𝑓𝑢𝑙	𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒	𝑖𝑛	𝑦𝑒𝑎𝑟𝑠  

 

As the present project has a duration of 300 hours distributed 

approximately in 12 weeks, less than 4 years stipulated, this cost will be the one 

derived from the 12 weeks in which the project is developed. 

 

7.1.1. Hardware resources: 

Table 35: Hardware resources total cost 

Resource 
Acquisition 

Value 
Residual Value 

Amortization 

Cost 
Amount 

MacBook Air €1,129 0 €282.25 €70.56 

   Total: €70.56 
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7.1.2. Software resources: 

 

Table 36: Software resources total cost 

Resource 
Acquisition 

Value 

Residual 

Value 

Amortization 

Cost 
Amount 

MATLAB 2022a 

Education 
€250 0 €250 €62.50 

Microsoft Office 365 

Personal 
€69 0 €69 €17.25 

   Total: €79.75 

 

7.2. Human Resources 

Human resource of this work is the engineer involved in the development 

of the project, and the costs are based on the hours of work that have been used 

in its execution. The amount of these working hours is calculated according to the 

recommendations of the Colegio Oficial de Ingenieros Técnicos de 

Telecomunicación (COITT) using the following equation. 

 

𝐹𝑒𝑒𝑠 = 𝐻* ∗ 14.48 +	𝐻+ ∗ 20.27 

 

Where Hn are the hours in working day and He are extra hours out of 

working hours. 

For this work 300 hours were needed, done in working days and no extra 

hours needed, so the final cost is: 

 

𝐹𝑒𝑒𝑠 = 300 ∗ 14.48 + 	0 ∗ 20.27 = €4,344.00 

 

The total fees for time spent, tax free, is four thousand three hundred and 

forty-four euros. 
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7.3. Drafting of the document 

In accordance with the COITT's guidelines, the amount for the writing of 

this final work is calculated using the following equation: 

 

𝑅 = 0.005 ∗ 𝑃 ∗ 𝐶* 

 

Where P is the budget value as the sum of all resources and C𝑛 is the 

weighting coefficient as a budget cost function. On the other hand, for this project 

the weighting coefficient C𝑛 has a value of unity because the total cost of the TFG 

does not exceed €30,050.00. Therefore: 

 

𝑅 = 0.005 ∗ (70.56	 + 79.75 + 4344.00) ∗ 1 = €224.72 

 

The total cost for drafting the document is two hundred and twenty-four 

euros and seventy-two cents. 

 

7.4. COITT visa fees 

For general projects, the COITT visa fees (year 2021) are charged using the 

following expression: 

 

𝑅 = 0.006 ∗ 𝑃) ∗ 𝐶) + 0.003 ∗ 𝑃, ∗ 𝐶, 

 

Where P1 is the general budget of the project, P2 is the material execution 

budget corresponding to the civil works, C1 is the reduction coefficient 

corresponding to P1 and C2 is the reduction coefficient corresponding to P2. 

There is a minimum of €40. Therefore: 

 

𝑅 = 0.006 ∗ 4719.03 ∗ 1 = €28.31	 → €40 
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The total cost of drafting the document is forty euros. 

 

7.5. Processing and shipping costs 

For general documents endorsed by telematic means, the cost is six euros 

and one cent (€6.01). 

 

7.6. Final budget 

The final budget with all the items listed in Table 37 amounts to four 

thousand seven hundred sixty-five euros and four cents (€4,765.04). To this 

amount is added the Canary Islands General Indirect Tax (IGIC, equivalent to 7%), 

obtaining the total cost of the work presented. 

Table 37: Final Budget 
Final Budget 

Items Amounts 

Material resources  

- Hardware €70.56 

- Software €79.75 

Human resources €4,344 

Subtotal €4,494.31 

Document Drafting €224.72 

COITT visa fees €40 

Processing and shipping cost €6.01 

Total €4,765.04 

IGIC €333.55 

TOTAL + TAX: €5,098.59 

 

Finally, the budget of this work is five thousand ninety-eight euros and fifty-

nine cents (€5,098.59).  
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8. ANNEX I 
Table 38: TAB group defined by El Museo Canario 

TAB 

CHA-1 CHA-13-b CHA-27 CHA-39 
CHA-2 CHA-14 CHA-28 CHA-40 
CHA-3 CHA-16 CHA-29 CHA-41 
CHA-4 CHA-18 CHA-30 CHA-42 
CHA-5 CHA-19 CHA-31 CPG-12-146 
CHA-6 CHA-20 CHA-32 TAB-1 
CHA-7 CHA-21 CHA-33 TAB-2 
CHA-8 CHA-22 CHA-34 TAB-3 
CHA-9 CHA-23 CHA-35* TAB-OBS059 

CHA-10 CHA-24 CHA-36 TAB-OBS060 
CHA-12-a CHA-25 CHA-37 TAB-OBS067 
CHA-13 CHA-26 CHA-38  

* Two captured samples are called CHA-35. 

 

Table 39: N1 group defined by El Museo Canario 
N1 

MEL-33 CPG-0-151 DUM-89 RES-7-177 
MEL-47-B CPG-25-134 RES-7-173 RES-7-178 
MEL-48 DUM-77 RES-7-176  
 

Table 40: N2 group defined by El Museo Canario 
N2 

CPG-43-213 LLA-26 PAJ-57 PAJ-62-A 
CPG-43-216 LLA-27 PAJ-59-G PAJ-63 

LLA-19 LLA-31 PAJ-60-C TJR-109 

 
Table 41: N3 group defined by El Museo Canario 

N3 

BAR-11 LLA-21 PAJ-58-D PAJ-62-B 
BAR-6 LLA-22 PAJ-58-E PAJ-62-C 
BAR-9 LLA-23 PAJ-59-B RES-10-186 
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CNB-149-B LLA-25-A PAJ-59-C RES-10-190-II 
CPG-43-208 LLA-25-B PAJ-59-F-IV TJR-104 
CPG-43-210 LLA-28 PAJ-59-H TJR-112 

DUM-81 LLA-32 PAJ-60-A TJR-99 

DUM-92 MEL-50 PAJ-60-B  
LLA-20 PAJ-58-B PAJ-61  
 

Table 42: HOG group defined by El Museo Canario 
HOG 

ANT-158 CPG-0-147 CPG-43-221 MEL-56 
BAR-1 CPG-0-148 CPG-43-222 RES-10-180 

BAR-10 CPG-0-149 CPG-43-223 RES-10-181 
BAR-13 CPG-0-150 DUM-78 RES-10-183 
BAR-2-A CPG-12-140 DUM-80 RES-10-184 
BAR-2-B CPG-12-141 DUM-82 RES-10-185 
BAR-4 CPG-12-142 DUM-83 RES-10-187 
BAR-5 CPG-12-143 DUM-85 RES-10-189 
BAR-7 CPG-12-144 DUM-88-1 RES-10-190-I 

BOG-15 CPG-12-145 DUM-90 RES-10-192 
BOG-16 CPG-25-133 DUM-91 RES-10-193 
BOJ-17 CPG-25-135 HOG-38-1368-73 RES-7-174 

CED-18-114 CPG-25-136 HOG-38-816-65 RES-7-175 
CED-5-118-I CPG-43-205 HOG-38-818-65 TJR-100 
CED-5-118-II CPG-43-206 HOG-OBS001 TJR-102 
CED-5-118-III CPG-43-207 HOG-OBS009 TJR-105 
CED-C-155 CPG-43-209 HOG-OBS013 TJR-107-II 
CED-T-113 CPG-43-211 LLA-24 TJR-111 
CNB-147-A CPG-43-212 MEL-36 TJR-94 
CNB-147-B CPG-43-214 MEL-37 TJR-97 
CNB-149-A CPG-43-215 MEL-38 TJR-98 

CNB-151 CPG-43-217 MEL-40 VAC-1-119 
CNB-152 CPG-43-218 MEL-42 VAC-2-120-A 
CNB-153 CPG-43-219 MEL-47-A VAC-2-120-B 
CNB-155 CPG-43-220 MEL-53 VAC-2-120-C 
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Table 43: Undefined samples by El Museo Canario 
Undefined 

ANT-157 DUM-88-2 PAJ-58-A RCH-OBS024 
BAR-8 DUM-93 PAJ-58-C RES-7-179 

CHA-17 FOR-OBS029 PAJ-58-F RES-10-194 
CPG-12-138 FOR-OBS031 PAJ-58-G TJR-96 
CPG-12-139 LLA-30 PAJ-59-A TJR-106 

DUM-79 MEL-51 PAJ-59-F-II  
 

Table 44: Samples selected for train and test subclasses of HOG set 
HOG 

TRAIN 

RES10-180 (TOMA1) RES10-181 (TOMA1) RES10-183 (TOMA1) 

RES10-184 (TOMA1) RES10-187 (TOMA1) RES7-174 (TOMA1) 

RES7-175 (TOMA1) CED-18-114 (TOMA2) CED-C-115 (TOMA2) 

HOG-38-818-65 

(TOMA2) 

HOG-38-816-65 

(TOMA2) 

ANT-158 (TOMA2) 

VAC-2-120-B (TOMA2) VAC-1-119 (TOMA3) CNB-151(TOMA3) 

CNB-149-A (TOMA3) CNB-147-A (TOMA3) CNB-147-B (TOMA3) 

CNB-152 (TOMA3) DUM-78 (TOMA4) DUM-80 (TOMA4) 

DUM-82 (TOMA4) DUM-83 (TOMA4) DUM-85 (TOMA4) 

TEST 

RES10-185 (TOMA1) RES10-192 (TOMA1) RES10-193 (TOMA1) 

CED-T-113 (TOMA2) HOG-38-1368-73 

(TOMA2) 

VAC-2-120-C (TOMA2) 

VAC-2-120-A (TOMA3) CNB-153 (TOMA3) CNB-155 (TOMA3) 

DUM-90 (TOMA4) DUM-91 (TOMA4)  
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Table 45: Samples selected for train and test subclasses of TAB set 
TAB 

TRAIN 

CHA-33 (TOMA5) CHA-28 (TOMA5) CHA-36 (TOMA5) 

CHA-39 (TOMA5) CHA-31 (TOMA5) CHA-27 (TOMA5) 

TAB-1(1) (TOMA5) TAB-1(3) (TOMA5)  

TEST 

CHA-30 (TOMA5) CHA-35 (TOMA5) * 2 TAB-1(2) (TOMA5) 

 

Table 46: Samples selected for train and test subclasses of N1 set 
N1 

TRAIN 

RES7-178 (TOMA1) DUM-77 (TOMA4) DUM-89 (TOMA4) 

TEST 

RES7-173 (TOMA1)   

 

Table 47: Samples selected for train and test subclasses of N3 set 
N3 

TRAIN 

CNB-149-B (TOMA3) DUM-81 (TOMA4)  

TEST 

DUM-92 (TOMA4)   

 

Table 48: Rest of the captured samples 
Undefined 

RES10-194 (TOMA1) RES10-190* (TOMA1) RES10-191* (TOMA1) 

RES-7-179 (TOMA2) ANT-156** (TOMA2) ANT-157 (TOMA2) 

HOG-38-1575-69** 

(TOMA2) 

NO ETIQ (820-1) (TOMA 

3) 

NO ETIQ (820-1) (TOMA 

3) 
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NO ETIQ (811-4) (TOMA 

3) 

NO ETIQ (811-2) (TOMA 

3) 

DUM-79 (TOMA4) 

DUM-88-2 (TOMA4) DUM-93 (TOMA4)  

* Samples that need to be confirmed as HOG or N3 

** Samples that are not in the list 

 
Table 49: Confusion Matrix with HOG and TAB 

CLASS Predicted HOG Predicted TAB 

HOG 5585 0 

TAB 0 2288 

 
Table 50: Confusion Matrix with HOG and TAB balanced classes 

CLASS Predicted HOG Predicted TAB 

HOG 2288 0 

TAB 0 2288 

 
Table 51: Confusion Matrix with TAB and N1 

CLASS Predicted TAB Predicted N1 

TAB 2288 0 

N1 0 264 

 
Table 52: Confusion Matrix with TAB and N1 balanced classes 

CLASS Predicted TAB Predicted N1 

TAB 264 0 

N1 0 264 

 
Table 53: Confusion Matrix with TAB and N3 

CLASS Predicted TAB Predicted N3 

TAB 2288 0 

N3 0 216 

 
Table 54: Confusion Matrix with TAB and N3 balanced classes 

CLASS Predicted TAB Predicted N3 

TAB 216 0 

N3 0 216 
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Table 55: Confusion Matrix with HOG, TAB and N1 balanced classes 
CLASS Predicted HOG Predicted TAB Predicted N1 

HOG 1609 0 679 

TAB 0 2288 0 

N1 215 0 49 

 

Table 56: Confusion Matrix with HOG, TAB and N3 balanced classes 
CLASS Predicted HOG Predicted TAB Predicted N3 

HOG 1570 0 718 

TAB 3 2268 17 

N3 177 0 39 

 

Table 57: Confusion Matrix with HOG, N1 and N3 balanced classes 
CLASS Predicted HOG Predicted N1 Predicted N3 

HOG 123 40 101 

N1 196 19 49 

N3 165 25 26 

 

Table 58: Confusion Matrix with TAB, N1 and N3 balanced classes 
CLASS Predicted TAB Predicted N1 Predicted N3 

TAB 264 0 0 

N1 0 59 205 

N3 0 45 171 
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9. ANNEX II 
The source codes related to this final work are available through the 

supervisors. 
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