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Parallel Computation of Multidimensional Polynomials in State
Equation of Seawater

J. Mendez
Institute of Intelligent Systems(SIANI), Univ. Las Palmas de Gran Canaria
35017 Las Palmas, Canary Islands, Spain, Email: jmendez@iusiani.ulpgc.es

Abstract— The computation of the standard formulation of
the International Association for the Properties of Water and
Steam for seawater requires the evaluation of some mul-
tidimensional polynomials to obtain the thermodynamical
properties useful in industrial processes as desalination and
in the massive simulation of the oceans. These polynomials
are related to the Gibbs free energy function and its first and
second derivatives. A computational model to parallelize the
evaluation of those polynomials is proposed by using both
vector and multicore parallelization. In the implementations
carried out, the combined performance of both paradigms
generates significant speed-up. The interest of this paper for
the general scientific community lies in the fact that future
simulations that achieve the exact model of that standard
for seawater will require efficient programming of these
equations.

Keywords: Gibbs Free Energy; Seawater Properties; Polynomial
Evaluation; Parallel Computation; SIMD; Multicore Systems

1. Introduction
The International Association for the Properties of Wa-

ter and Steam (IAPWS) has recently formulated its state
equation for the seawater based on the formulation of the
Gibbs free energy as a multidimensional polynomial[1]. The
properties of seawater are interesting in industrial applica-
tions, such as in desalination processes, but the massive
computation of seawater properties is mainly required in
oceanographic simulations. Seawater is the main matter in
oceanography and oceans are the main piece of the EarthŠs
climate. Therefore the computation of the thermodynamical
properties of seawater is of potential interest for research of
the oceans and climate.

Prior to the standard formulation for the seawater, the
IAPWS had been involved in the definition of the standard
formulation for the ordinary water for general scientific
applications[2], which we will call the Release 95, and
the simplified version for water and steam formulation
in industrial applications IF97[3]. The later is commonly
used in Thermodynamical packages and in applications in
Chemical and Energetic Engineering. The Release 95 is
more complex to implement, while the IF97 is simpler to
implement in the double precision supported by the hardware
of most computers. The precision of the IF97 is lower than

that of Release 95 but sufficient for industrial and practical
applications involving water and steam.

One of the advantages of the IAPWS formulations is
that they are based on the formulation of the Gibbs free
energy, in that all the required thermodynamical data, e.g.
enthalpy, entropy or specific head, are computed by means
of polynomials in constrained areas of the state space. These
polynomials are two dimensional mainly depending on the
state variables: pressure, p, and temperature, T . For example,
in the Region 1 of the ordinary water, which corresponds to
the liquid state, the Gibb free energy g(p, T ) is computed
as:

g(p, T )
RT

=
34∑

i=1

ni(7.1− π)Ii(τ − 1.222)Ji (1)

where π = p/p∗ and τ = T ∗/T , and p∗ and T ∗ are
constants. The coefficient ni and the exponents Ii and Ji are
provided by the IAWPS formulation[3]. The computation of
the thermodynamical properties is performed by computing
the first and second derivatives of this polynomial on p and
T . There are many packages and high quality implemen-
tations to compute the properties of ordinary water based
on the IAPWS Release 95 and IF97 formulations[4]. For
the seawater, which we will addressed later, the formulation
includes an additional variable, salinity S, therefore the
computation of seawater properties requires the computation
of a three dimensional polynomial.

The common trends in practical computer applications are
tending to adopt standards and normalization as a way to
validate the results. The definition of a standard formulation
to compute the properties of seawater will move much
software related to oceans and climate simulation toward
the implementation of such standard as a way of validation.
The proposal of faster and more efficient algorithms like
those proposed in this paper, should be of general interest
to the scientific community in those research areas. A case
of the interest of the ocean in supercomputing activities
is the project Global to Regional Oceanographic Modeling
(GROM) [5] of the Distributed European Infrastructure for
Supercomputing Applications (DEISA). Its main objective
is to build and to validate new ocean model configurations
from a global to a regional scale able to simulate the
main features of the thermodynamic processes in the ocean.



Climate research attaches great importance to the simulation
of Polar Oceans, where the water is mainly in the states of
seawater and ice [6],the ocean circulation in those oceans is
driven by atmosphere-ice-ocean interaction and the modeling
of that system requires procedures that capture both the
thermodynamic and the dynamic processes[7].

The computation of the Gibbs function is the first part
needed to compute many of the properties used in thermo-
dynamical and general dynamic equations. For example, one
parameter obtained from the Gibbs function is the sound
wave speed in seawater. The sound is used by scientific in-
struments to measure the properties of the sea floor, the depth
of the ocean, the temperature and currents. Sound speed
depends on the temperature, salinity and pressure [8], the
changes and gradients in temperature and salinity generate
changes and refractions in the sound waves, which modifies
how the sound is propagated and scattered in the marine
media.

If physical phenomena in oceans are related to the surface
layer of currents and circulation, called the thermocline
one [9], they are different form those related to the deep wa-
ter below. In the ocean’s surface layer, the currents are driven
by wind and tides while, in the deep ocean the main force is
the density gradient related to the changes in temperature and
salinity. The term thermohaline currents or circulation[10],
[11] refers to the large-scale ocean circulation that is driven
by global density gradients created by the differences in
temperature and salt concentration. Although the density
of seawater in oceans water is globally homogeneous, it
can change significantly and discretely due to local changes
in both temperature and salinity. Some of this changes
propagate anomalies throughout the ocean[12]; in these
anomalies bounds there are steep gradients of temperature
and salinity. The density of seawater can be computed by
means of some derivatives of the Gibbs function, thus, in the
simulation of the thermohaline currents[13] the computation
of the Gibbs function for seawater and its derivatives can be
relevant issues. Ocean simulation are carried out by using
massive Finite Element Methods (FEM) by using spatial
mesh at some defined grid size[14]. In those applications the
computation of the seawater of each discrete element implies
the computation of many single calls for each simulation.

This paper focusses on the computation of the saline part
of the Gibbs function of seawater by means of parallelizing
the computation of a three dimensional polynomial, which
generalizes the use of two dimensional polynomial involved
in the IF97 and partially in the Release 95 of ordinary water.
Both the computation of polynomial and the simulation of
ocean are areas closely related to parallel computation. The
most widely used approach to compute one dimensional
polynomial is the Horner’s rule. It is used to evaluate the
general expression: y = a0 + a1x + · · · + anxn by using
recursive formulation as: y0 = an, yk = yk−1x+an−k, that
avoids the exponent computation. Horner’s rule to evaluate

one dimensional polynomials have been studied for the last
few decades[15] using special hardware, such as FPGA[16],
systolic processors[17], pipeline-based computation[18] or
Graphics Processors Unit(GPU)[19]. However, in this paper
we address the problem for computing multidimensional
polynomials from a different approach without using the
Horner’s rule.

Modern parallel computation is related to different levels,
grain sizes and paradigms: grid, cluster, multicore, Simple
Instruction Multiple Data(SIMD) and GPU. The suitable
level of parallelism for the computation of seawater proper-
ties depends on the levels that are occupied by the general
FEM and also on the grain size of the computation of
the Gibbs function. A massive FEM should exhaust the
level of grid, cluster and multicore, therefore the levels
where we would place it are the GPU, SIMD and partially
in the multicore ones. Although is not the most common
approach, the solution of FEM can be obtained much faster
by using GPUs than on CPUs, but the GPUs do not support
double precision computation. Some approaches have been
proposed to accelerate the computation while maintaining
the precison[20], [21]. This problem of the tradeoff between
precision and computational speed is also addressed in the
paper.

A very important issue is to decide the strategy to compute
the seawater properties; the options are single call or bulk
computation of all the calls associated to the different finite
elements in the same computer. To include the IAPWS
standard in existent codes for ocean simulation, the simplest
approach is to include a single call in the code procedure
where the properties of an element are computed. This
approach excluded that of bulk computation. In this case,
the level that should be partially unused by the FEM is
the vector processing oriented level or SIMD. To include
the IAPWS standard in future codes, the bulk computation
option must be evaluated. The levels of SIMD, GPU and
multicore would be evaluated. The computation of the saline
part of Gibbs function is a fine-grain task whose computa-
tion time is in the order of a few microseconds. Climate
research uses massive FEM to solve the physical models in
computer clusters. However, inside the cluster nodes, multi-
core and SIMD processing can be exploited to compute the
required properties of seawater of individual elements in
oceanographic simulations. This paper addresses a practical
application of parallelism at the levels of multi-core systems
and SIMD.

The interest of this paper for the general scientific com-
munity lies in the fact that future simulations that achieve the
exact model of the IAPWS for seawater will require efficient
programming of these equations. The remaind of this paper
is organized in sections. The first presents the standard
formulation of the saline part of the Gibbs function that is
computed by means of a multidimensional polynomial. The
second contains the model to parallelize the computation



of the Gibbs function and its first and second derivatives.
The results section presents an implementation in multicore
computers. A significant speed-up is achieved by using both
SIMD and multicore paradigms.

2. Polynomial Model of the State Equa-
tions

According to proposal of the IAPWS[1], the Gibbs func-
tion for the seawater is computed from two additive parts:

g(S, T, p) = gW (T, p) + gS(S, T, p) (2)

where the first part gW (T, p) is the water one depend-
ing on the temperature, T , and the pressure, p. This part
can be computed from the IAPWS water general scientific
formulation[2]. The second part gS(S, T, p) is the saline
part depending on the temperature, pressure and the salt
concentration S. This part, which is the concern of this
paper, is defined as:

gS(S, T, p) =
5∑

k=0

6∑

j=0

(
g1jkξ2 ln ξ +

7∑

i=2

gijkξi

)
τ jπk

(3)
where τ = (T − T0)/T ∗, π = (p − p0)/p∗ and ξ =√
S/S∗. The parameters T0, T ∗, p0, p∗, and S∗ are defined

in the IAPWS report. The no null g1jk elements are g100

and g110, therefore the saline part can be computed as:

gS(S, T, p) = f(τ, ξ) +
5∑

k=0

6∑

j=0

7∑

i=0

hijkξiτ jπk (4)

The computation of f(τ, ξ) is trivial and this paper focuses
in the computation of the polynomial second right term. The
number of non null elements gijk is 64, the number of no
null g1jk is only 2, so the number of non null elements
in hijk is 62. To fit better in vector computation tasks,
which run best for 2n dimension, we use hijk = gijk

with the exception of h100 = h110 = 0. The first and
second derivatives of the Gibbs function are needed to
compute many physical and thermodynamical properties of
seawater. For example, the seawater density is computed as:
ρ(S, T, p) = [∂pg]−1, and the sound speed, w(S, T, p), is
computed from the first and second derivatives as:

w(S, T, p) = ∂pg
√

∂TT g/([∂Tpg]2 − ∂TT g ∂ppg) (5)

These derivatives are of the whole Gibbs function, which
can be computed additively from the general formulation
of ordinary water and the saline part. To carry out the
parallelization process we introduce a generalization of the
polynomial problem by abstracting that X , Y and Z are
functions of the salinity, temperature and pressure, and

our problem concerns the computation of the following
polynomial and its first and second derivatives:

P (X,Y, Z) =
nx∑

i=0

ny∑

j=0

nz∑

k=0

aijkXiY jZk (6)

We use the following model based on the sparse represen-
tation of the non null values of aijk contained in the vector
A[l]; l = 0, . . . , N − 1.

P (X, Y, Z) =
N−1∑

l=0

A[l]XI[l]Y J[l]ZK[l] (7)

In this case N = 64 and the vectors I[l], J [l] and K[l]
are the exponents of the variables X , Y and Z respectively
for each non null value of aijk. We have changed the tensor-
like representation, aijk , to the programming-like one A[l].
These vector are represented as the floating-point: A, and
three integer vectors: I, J and K. The computation of the
first and second derivatives of P (X, Y, Z) are also needed.
Some of these are the following, which can also be expressed
as polynomials:

∂XP =
N−1∑

l=0

A[l]I[l]XI[l]−1Y J[l]ZK[l] (8)

∂XY P =
N−1∑

l=0

A[l]I[l]J [l]XI[l]−1Y J[l]−1ZK[l] (9)

∂XXP=
N−1∑

l=0

A[l]I[l](I[l]− 1)XI[l]−2Y J[l]ZK[l] (10)

In effect, we must compute M polynomials, in our case
M = 1 + 3 + 3 + 3 = 10, the polynomial itself, the first
three derivative, the second three derivatives and the second
three cross derivatives. Neither ∂ST g nor ∂SSg are used to
obtain thermodynamical properties in the IAPWS report, so
we can reduce the effective number to M = 8. Although
a context computation can be achieved to compute only
the polynomials needed in a particular case, we address the
general problem of computing the 10 polynomials together.

3. Computational Model
The first issue to be addressed is the related to the suitable

precision for the implementations. We have performed a test
related to the precision, it corresponds to the variable values:
S = 0.03516504 kg kg−1, T = 273.15K and p = 108Pa.
The quantities computed are the specific values for the
saline part of the Gibbs function g, its first and second
derivatives, the enthalpy h, the Helmholtz energy f , the
internal energy u, the entropy s, the specific isobaric heat
cp and the chemical potential µW . The correct results are
displayed in the Table 8(c) of the IAPWS report[1]. Table
1 shows the results of the computation by using double



Table 1: Comparative results and error between double and simple precision

Saline Part Double Simple |εr| Unit
g −2.60093051× 103 −2.60093024× 103 1.0× 10−7 J kg−1

∂g/∂S −5.45861581× 103 −5.45862625× 103 1.9× 10−6 J kg−1

∂g/∂T 7.54045685× 100 7.54045678× 100 9.3× 10−9 J kg−1 K−1

∂g/∂p −2.29123842× 10−5 −2.29123828× 10−5 6.1× 10−8 m3 kg−1

∂2g/∂S∂p −6.40757619× 10−4 −6.40757576× 10−4 6.7× 10−8 m3 kg−1

∂2g/∂T 2 4.88076974× 10−1 4.88077126× 10−1 3.1× 10−7 J kg−1 K−2

∂2g/∂T∂p 4.66284412× 10−8 4.66284218× 10−8 4.1× 10−7 m3 kg−1 K−1

∂2g/∂p2 3.57345736× 10−14 3.57345703× 10−14 9.2× 10−8 m3 kg−1Pa−1

h −4.66060630× 103 −4.66060601× 103 6.2× 10−8 J kg−1

f −3.09692089× 102 −3.09691957× 102 4.3× 10−7 J kg−1

u −2.36936788× 103 −2.36936773× 103 6.3× 10−8 J kg−1

s −7.54045685× 100 −7.54045678× 100 9.3× 10−9 J kg−1K−1

cp −1.33318225× 102 −1.33318267× 102 3.1× 10−7 J kg−1K−1

µW −2.40897806× 103 −2.40897743× 103 2.6× 10−7 J kg−1

precision, simple precision and the relative error between
them εr. The results for double precision corresponds exactly
with the official values, while those for simple precision have
some error. The combined values permit the conclusion that
the error is approximately two parts per million. The tradeoff
between precision and computational time must be chosen
depending on the application, but if the two parts in million
is a permisible error level for an application, the simple
precision should be a well balanced option.

To compute the M polynomials, we use the following
representation for a, b, c = 0, 1, 2 constrained to the values:
a + b + c ≤ 2:

Pabc(X, Y, Z) =
N−1∑

l=0

Aabc[l]XIa[l]Y Jb[l]ZKc[l] (11)

where the polynomials correspond to the following mean-
ing: P000 is the value of the original polynomial, P100 the
first derivative on X , P200 the second derivative on X , P011

the second cross derivative on Y and Z and so on.
The proposed algorithm for sparse multidimensional poly-

nomial is equivalent to the computation of one dimensional
polynomial by using the basic and well founded compu-
tational primitives such as the vector prefix and the dot
product. The one dimensional problem can be computed
from the coefficient vector A = [a0, a1, a2, . . . , an] and the
vector F = [1, x, x2, . . . , xn] which can be computed by
using the product-prefix computation on the vector: B =
[1, x, x, . . . , x]. The polynomial solution is the dot product
y = A · F . The problem of plus-scan or sum-prefix and
its related product-prefix, is a classical problem of parallel
computation widely studied [22][23], and more recently, has
been implemented in GPU [19]. The proposed algorithm
comprises composed of three phases: initialization, indexing,

which includes the product-prefix, and a generalization of the
dot product.

3.1 Algorithm Initialization
Some data must be computed at the initialization step. We

used C++ code, therefore those initializations are performed
in the code corresponding to the class constructor. From the
original vectors A, I,J,K provided by the IAPWS, we must
construct the following vectors: Ia, Ja and Ka for a =
0, 1, 2, where:

Ia = (I− a) Ja = (J− a) Ka = (K− a) (12)

Also, the following vector must be computed: A000 =
A, that related to the first derivative: A100,A010,A001, the
second cross derivative: A011,A101,A110 and the second
derivative: A200,A020,A002. They are computed as:

A100[l] = A[l]I0[l] A110[l] = A100[l]J0[l] (13)
A200[l] = A100[l]I1[l] A101[l] = A100[l]K0[l] (14)
A010[l] = A[l]J0[l] A011[l] = A010[l]K0[l] (15)
A020[l] = A010[l]J1[l] A001[l] = A[l]K0[l] (16)
A002[l] = A001[l]K1[l] (17)

3.2 Indexing
For the values X,Y, Z corresponding to a requested

computation, we must construct the following vector:

Fx = [1, X, X2, . . . , Xnx ] (18)

where nx is the maximum values of the exponent of the
variable X in the polynomials. For the Y and Z variables,
we must compute the matrices: Fy = [1, Y, Y 2, . . . , Y ny ]



Table 2: 4-dot product
A000 A100 A200 A011 A010 A020 A101 A001 A002 A110

X0 X1 X2 X0 X0 X0 X1 X0 X0 X1

Y0 Y0 Y0 Y1 Y1 Y2 Y0 Y0 Y0 Y1

Z0 Z0 Z0 Z1 Z0 Z0 Z1 Z1 Z2 Z0

P000 P100 P200 P011 P010 P020 P101 P001 P002 P110

Table 3: Vector product + 3-dot product
X0 X0 Y0 X1 X1 Y1

Y0 Z0 Z0 Y1 Z1 Z1

U1 U2 U3 U4 U5 U6

A000 A100 A200 A011 A010 A020 A101 A001 A002 A110

U1 U3 U3 U6 U2 U3 U5 U1 U1 U4

Z0 X1 X2 X0 Y1 Y2 Y0 Z1 Z2 Z0

P000 P100 P200 P011 P010 P020 P101 P001 P002 P110

Table 4: Vector product + 2-dot product
X0 X0 Y0 X1 X1 Y1

Y0 Z0 Z0 Y1 Z1 Z1

U1 U2 U3 U4 U5 U6

U1 U3 U3 U6 U2 U3 U5 U1 U1 U4

Z0 X1 X2 X0 Y1 Y2 Y0 Z1 Z2 Z0

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

A000 A100 A200 A011 A010 A020 A101 A001 A002 A110

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

P000 P100 P200 P011 P010 P020 P101 P001 P002 P110

and Fz = [1, Z, Z2, . . . , Znz ] respectively. The indexing
procedure requires the computation of the following vectors,
for a = 1, 2, 3:

Xa = Fx[Ia] Ya = Fy[Ja] Za = Fz[Ka] (19)

Those equations imply an indirection as: Xa[l] =
Fx[Ia[l]]. The main drawback of this procedure is that it
is uncoalescent, which means that it is hardly implemented
in SIMD or GPU[24] processors.

3.3 Vector product and n-dot product
The last step in computing the polynomials is the compu-

tation of the sum of products. Table 2 shows the arrangement
of products to compute the polynomials. Every column is
related with the computation of one polynomial, we must
compute the products of the vector in all the rows and at
the end compute the scalar, Pabc, in the bottom row. The
following computational primitive is used to carry out this
process, we call it the quad product or a 4-dot product,
because it resembles the widely used concept of dot product
of two vectors.

q =
N−1∑

l=0

A[l]B[l]C[l]D[l] (20)

By analyzing this Table, we can see that some products are
repeated, e.g. those involving the product of X0 and Y0. To

avoid those redundant operations, the arrangement in Table
3 can be used, which uses two phases and six vector buffers
Ua; a = 1, . . . , 6. In this case the basic computational
primitives are vector product element-at-element, A[l] =
B[l]C[l], to compute the buffer values and one 3-dot product:

t =
N−1∑

l=0

A[l]B[l]C[l] (21)

The computational arrangement shown in Table 4 uses
three phases and two sets of vector buffers, the six vectors
Ua; a = 1, . . . , 6 and the ten vectors: Va; a = 1, . . . , 10.
The last phase uses the dot product that can be imple-
mented in high performance software by using the BLAS
libreries[25]:

d =
N−1∑

l=0

A[l]B[l] (22)

We can evaluate the theoretical computational cost of the
three approaches by taking account of the products and the
load/store memory operations. Each vertical block in the
previous Tables is 64 elements wide, so we avoid having
to multiply the cost by that factor because it is common
to all the arrangements. We label the operations as L(load),
S(store), L/S(laod/store) and P(product). That labeled L/S
is the sum of the L and S operations. The arrangement
in Table 2 needs: 10(4L+3P)= 40L+30P operations. The
arrangement in Table 3 needs : 6(2L+1P+1S)= 18L/S+6P
in the first step, and needs: 10(3L+2P)=30L+20P in the
second step. In total it needs: 48L/S+26P. We can conclude
that the second arrangement uses fewer product operations
but requires more load/store memory operations. The third
approach needs : 6(2L+1P+1S)= 18L/S+6P in the first step,
it needs: 10(2L+1P+1S)= 30L/S+10P in the second step and
needs: 10(2L+1P)= 20L/S+10P in the last step. In total it
requires: 68L/S + 26P. Clearly, that last approach entails
greater computation cost than the second approach even
though it uses the simplest computational primitive of a dot
product.

From the viewpoint of theoretical complexity the second
approach is the best, because in this theory the cost is the
number of arithmetical and logical operations used to carry
out a computational task. However, in practical programming
in modern computers, the memory operations are more
time consuming that that the arithmetic ones. In modern
computers, the amount of, and way to access, main memory
is more critical than the number-crunching. We can achieve
more performance by reducing the data traffic between CPU
and main memory and increasing the in-register arithmetical
operations. In that practical viewpoint the first approach will
be better because it uses less memory access although it
repeats some products.



Fig. 1: In register implementation of SIMD quad product in
simple precision

4. Results
We have implemented the computation of the saline part

of the Gibbs function and its first and second derivative
as a C++ class. The indexing step in the algorithm is
implemented in C++ source code, while the quad product
is implemented both in C++, with a simple unrolled loop,
and in embedded assembler by using the SIMD instructions
for AMD and Intel CPUs[26]. Figure 1 shows the in-register
quad product in simple precision; it uses the advantageous
performance of memory referenced product to perform one
load and product in the same instruction. In this implementa-
tion of the quad product, there are four partial accumulators
contained in the xmm0 register; the final value requires the
sum of these four values. This is an advantage because
the rounding errors are lower than when using one single
accumulator. To take advantage of the multicore hardware
OpenMP has been used to implement a bulk computation of
a million calls.

The code has been compiled and run in two different com-
putational environments. The first implementation(CPU1)is
in an Intel Mobile Core2 Duo P8600, 2.40GHz, 3Mb L2
cache and 4Gb RAM. The second implementation(CPU2)is
in an Intel Core2 Quad Q6600, 2.40Ghz, 2x4Mb L2 cache
and 8Gb RAM. Table 5 shows the results for the CPU1
case in µs/call for a bulk computation of a million of calls
for a different thread number. It includes the labels for
C++ code, SIMD, double(D) and simple(S) precision. The
first part of the table compares the cost of indexing vs.
quad product. In this case the CPU has two cores and no
additional gain is obtained after n = 2. Figure 2 shows
the obtained speed-up relative to the C++ Double Precision
implementation. The combined performance of SIMD and
multicore generates a peak speed-up of 3.77 for the SIMD
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Fig. 2: Speed-up related to C++ double precision implemen-
tation. The combined performance of using both SIMD and
multicore generate a speed-up of 3.77 for a two core CPU

Table 5: Results for CPU1 µs/call vs threads
C(D) C(S) SIMD(D) SIMD(S)

Indexing 0.54 0.52 0.53 0.52
1 Quad 1.77 4.26 0.90 0.56

Total 2.53 5.06 1.53 1.29

2 1.32 2.64 0.81 0.67
3 1.36 2.67 0.84 0.72
4 1.39 2.66 0.86 0.71

Simple Precision case at n = 2 threads. The latter has
more advantage over the use of SIMD, but in pure C++
performs worse that the Double Precision implementation.
In the CPU2 case, Table 6 contains the results for different
number of threads. Figure 3 shows the speed-up relative
to the C++ Double Precision implementation. As in the
case of CPU1, the Simple Precision using SIMD has the
best performance, in this case 7.44 at n = 4 threads.
The combined performance of the parallelization paradigms
of SIMD and multicore[27][28] is that permit this lever
of speed-up. The ration of increasing of the speed-up vs
number of threads is greater than 1.0 in these case since the
increasing of the use of L1 cache according the number of
cores involved in the computation increases.

Times are measured in the main thread by using one Per-
formance Counter that is thread safe in multicore systems.
The Performance Counter has a time quantum for CPU2
of 0.4177 nsec. while for CPU1 is 0.279 µsecs. To avoid
the problems related to the time granularity of single calls,
which in CPU1 is close to the time quantum [29], we have
compute the time for one millions of calls and reported the
time corresponding to a single call.



Table 6: Results for CPU2 µs/call vs threads
C(D) C(S) SIMD(D) SIMD(S)

1 2.68 2.94 1.65 1.37
2 1.39 1.51 0.88 0.72
3 0.93 1.02 0.59 0.48
4 0.72 0.76 0.45 0.36
5 0.83 0.91 0.52 0.43
6 0.82 0.88 0.51 0.43
7 0.74 0.82 0.49 0.38
8 0.70 0.73 0.45 0.37
9 0.74 0.88 0.49 0.39
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Fig. 3: Speed-up related to C++ double precision implemen-
tation in CPU2. The combined performance of using both
SIMD and multicore generate a speed-up of 7.44 for a four
core CPU

5. Conclusion
The computation of the standard formulation of IAPWS

for seawater requires the evaluation of some multidimen-
sional polynomials from which are obtained the thermo-
dynamical properties useful in industrial processes as de-
salination and in the massive simulation of the oceans. A
computational model to parallelize the evaluation of those
polynomial that uses SIMD and multicore paradigms has
been proposed. In the implementations carried out, the
combined performance of both paradigms generates signif-
icant speed-up useful for the general scientific community
involved in processes and simulations related to the seawater.
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