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Abstract—Underwater gliders are strongly influenced by ocean
currents due to their low surge speed. Gliders may drift signif-
icantly from their expected trajectories, making path planning
a real concern for this type of vehicle, as it may reduce the
time taken to reach a given waypoint or save power. In such a
dynamic environment it is not easy to find an optimal solution or
any such requires large computational resources. In this paper,
we present a path planning scheme for this kind of underwater
vehicle combining a technique inspired by a variant of the A*
algorithm with an optimization process revealing the physical
vehicle motion pattern. This method models a glider affected by
the ocean current speed and direction, and generates a path
according to predefined objectives. The combination of these
two techniques allows static or dynamic obstacle avoidance,
frequently demanded in coastal environments, with land areas,
strong currents, shipping routes, etc. The method can easily be
configured and adapted to various optimization problems, in-
cluding missions in different operational scenarios. This planner
shows promising results in realistic simulations, including ocean
currents that vary considerably in time, and provides a superior
performance over other approaches that are compared in this

paper.

Index Terms—Path planning, underwater gliders, avoiding
obstacles.

I. INTRODUCTION

Robotic Unmanned Underwater Vehicles (UUV) have
demonstrated to be a valuable tool for a wide range of applica-
tions, including structure inspection, environmental monitoring
and control or security. Since the possibilities of human
intervention are quite limited during the robot mission, these
vehicles can be conceived as physical agents that must perform
their tasks with a high level of autonomy. In fact, they

Authors are with University Institute of Sistemas
Aplicaciones Numéricas en Ingenieria (SIANI),
Palmas de Gran Canaria.

Inteligentes 'y
Universidad de Las

Address: Edificio del Parque Cientifico-Tecnolégico, Campus Universitario
de Tafira 35017 - Las Palmas de Gran Canaria (Spain)

E-mails:
{ jisern, dhernandez, efernandez, jcabrera, adominguez } @ jusiani.ulpgc.es
vprieto@ono.com

This work has been partially supported by the project TIN2008-06068
funded by the Ministerio de Ciencia e Investigacién, Spanish Government. It
has also been partially supported by the Spanish Government (Secretaria de
Estado de Universidades e Investigacion - Ministerio de Ciencia e Innovacién)
and FEDER, grant contract: UNLP08-3E-010. Additionally, it has been
partially supported by project ProID20100062 funded by the Autonomous
Government of Canary Islands (Agencia Canaria de Investigacién, Innovacién
y Sociedad de la Informacién) and FEDER.

are commonly known as Autonomous Underwater Vehicles
(AUV). However, it is hard to accomplish this goal as a
consequence of the dynamism and uncertainty characteristic
of the state of both the vehicle and its environment, estimated
with a separate model each.

Automatic path planning constitutes a key capability be-
cause underwater robots are usually commanded in terms of
goal navigation waypoints to be hit or target regions to be
explored. Compared to ground mobile robotics, the underwater
scenario is much more challenging, since operating conditions
can vary notably even on reduced areas and over a relatively
short period of time. In the particular case of ocean gliders,
all the mentioned difficulties are magnified.

A glider (see Figure 1) is a type of UUV that operates
by modifying its buoyancy in a cyclic pattern. This results in
a vertical impulsion that is transformed into an effective but
low surge speed by means of the combined effect of internal
mass displacements and the vehicle wings and tail orientation,
resulting in up/down slope or climb/dive transects. In terms
of power consumption, the glider saw-tooth profile is very
efficient, since the gravity is used as the power source for
propulsion, that is the most critical task of UUVs autonomy.
Besides processing and communication, the batteries are only
used intensively during a small fraction of the cycle time
to change the vehicle buoyancy, using an electric pump;
and, much less demanding, to modify the vehicle attitude
and bearing angle while submerged using low consumption
actuators. Ocean gliders have been applied successfully in
Maritime Research, and they are expected to become one of
the reference technologies as observational tool in the coming
years [16].

Their low surge speed make gliders far more influenced
by ocean currents than other UUVs that can overcome them.
Gliders may drift significantly from its intended trajectory,
making path planning a crucial tool for this type of vehicles,
as it might reduce the time spent to reach a given waypoint
or save power. The coastal area is specially demanding as
currents strength is normally higher and there is a potential
risk of collision.

A. Related Works

Path planning for unmanned underwater vehicles has been
a subject of interest for researchers since the introduction of
these robotic platforms. Different approaches have been de-
veloped applying techniques that include searching algorithms
based on artificial intelligence, potential field modeling, multi-
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Fig. 1.

Glider saw-tooth navigation pattern.

objective optimization, etc. Some of the most relevant, in our
opinion, are summarized in the following.

An influential set of planners has evolved from the A*
algorithm [6] as a basis, and they operate on graphs and grids.
For example, Carroll et al. [3] apply this strategy on a quad-
tree search space. More recently, Garau et al. [5] propose
another alternative incorporating ocean currents on a uniform
grid discretization.

The approaches based on minimization of energy functions
are also worth commenting. As good examples, we can cite
the work of Kruger et al. [9], that includes the time as an
extra dimension in the search space, or Witt et al. [20], that
incorporate modeling of time-varying obstacles using potential
fields. The problem of local minima has been tackled by means
of strategies based on particle swarms, simulated annealing,
or genetic algorithms. In other proposals, the currents are
modeled as continuous time functions, as is the case of the
non-linear trajectory generation or NTG method [11] applied
over B-Splines of Zhang et al. [22].

Other alternatives that also make use of continuous models
are described on the works of Petres et al. [13], [14]. Later,
this line has been extended to deal with the presence of strong
currents [18].

Evolutionary computing has also been successfully applied
to this type of problems. A significant example can be found
in [1], where genetic algorithms are used for AUV trajectory
planning in environments characterized by time-varying cur-
rents.

The high dimensionality of the search space has led to
random exploration based approaches. The rapid random trees
or RRT [10] [17] are a good example of this, and have been
applied to the case of route planning for AUVs [19] and gliders
[15]. The problem is that this method has application only on
static maps.

Moqin et al. [12] propose an iterative optimization process
for glider path planning. However, the focus of that work is
centered on the waypoint precision enhancement, and not in
optimal path planning. Furthermore, only static ocean currents
are considered.

Finally, in the last years a line that has received a lot of

attention from researchers is the use of multiple vehicles in
a coordinated mission. Some relevant examples include [21]
and [2], that face the problem of adaptive sampling of oceanic
variables by means of gliders fleets.

B. Motivation

Our work has been organized around two main topics, being
the analysis of path planning requirements and the study cases.
Regarding the former, we have identified several factors that,
in our humble opinion, should be assessed at the design phase
of a path planner for ocean gliders. The path planning for
underwater glider presents clear differences in relation to the
classic planning problem:

e The currents field directly affects the movement of the
vehicle so that the cost of displacement is variable and
anisotropic at different points in space.

e The currents field is variable in time, so that it can be not
be guarantee the optimality of the result without revisiting
already visited nodes.

o The vehicle has one degree of freedom, the bearing, with
the additional restriction that is only updated in discrete
times.

For these reasons, most of classical approaches in the path
planning are not directly applicable to this problem. Many path
planners apply a certain form of discretization, either on the
trajectory or command space, to reduce the computational cost.
However, the downside of discretization lies in the presumably
degradation of the quality of the results, that might lead to
unrealistic trajectories.

The execution time is another factor which is often under-
stated due to the typical long duration of glider missions and
immersion periods. Although this is generally true, it is not
the case when the path planner must respond within a reduced
time interval to face an unforeseen situation.

In this paper we analyze the path planning problem in
specially troublesome scenarios, mainly coastal, that include
static and dynamic obstacles such as strong currents, land
areas or heavy traffic shipping routes. There, the planner
pursues the maximization of the distance traveled towards a
distant way-point —or, in other words, the minimization of
the remaining distance to reach it— over a short and known
period of time. This corresponds to a leg/stage range planning
with a maximum duration of three or four days and a typical
trajectory length around 100 km. For this temporal horizon,
ocean current forecasts of high temporal resolution are used.
These forecasts can be obtained from some Regional Oceanic
Models (ROM) with hourly outputs. The ROM are forecast
systems of currents and other oceanographic variables that
is based on numerical models. In such configuration, the
path planning problem is clearly performed in a time-varying
scenario.

In our previous works [7], [8] we presented a path planning
technique for underwater gliders using optimization processes.
This technique is based on the discretization of time instead
of space. Taking into account that a glider can not change
the bearing while is submerged, this method permits to reflect



accurately the vehicle navigation pattern without lost of in-
formation because of discretization processes. It offers good
results in offshore trajectories, however we have detected that
in some cases the planner do not give good solutions in the
presence of obstacles (land coast, strong currents against the
vehicle steering, ...).

In this work, we have searched to include a previous phase
to optimization process that allows to locate zones free of
obstacles in the trajectory to the waypoint, with the necessity
of low commotional cost. To solve this problem, here, we
introduce a novel path planning technique for underwater
gliders in troublesome coastal environments that combines a
technique inspired in A* search with optimization. The method
is quite flexible, as it can be applied to a number of other
optimization problems with few adaptation or configuration. It
shows promising results in realistic simulations, under highly
time-varying ocean currents. The proposal gives a superior
performance when compared with other approaches.

This paper is organized as follows: the next subsections
include a revision of UUV path planning approaches and the
motivation of this work. Then, in section II, the proposed
method is described in detail. Section III presents the exper-
iments carried out to validate our path planning algorithm.
Finally, section IV contains the conclusions extracted from
this work.

II. PATH PLANNER

As commented in the introduction, gliders propel them-
selves by changing their buoyancy and transforming the re-
sultant vertical motion, of continuous dives and climbs, into
a surge movement by means of the combined action of the
internal mass displacement and the external control planes.
These cycles are repeated typically for 6-12 hours periods,
called transects or stints. Once a stint is finished, the vehicle
surfaces to communicate the status and data gathered to the
control room and receive new orders, commonly the next
waypoint or bearing. After 15-30 minutes at the surface, the
next immersion period starts. An important fact is that glid-
ers do not communicate while submersed, and the on-board
navigation system simply tries to keep the last commanded
heading or bearing during the whole stint.

Following the requirements analysis, we have developed an
optimization process [7], [8] for the core of our planner. It
operates accepting the commanded glider bearings as vari-
ables, which are then iteratively optimized to find the path
of minimal cost. With this election, the benefit is twofold,
avoiding discretization and allowing for a physically realistic
simulation.

This approach produces acceptable results for static,
moderate-strength ocean currents. However, as indicated pre-
viously, we are interested in short-term coastal navigation.
There, and due to the complexity of the environment and
the coupled nature of the process variables, the optimization
can easily get trapped in local minimum or lead to wrong
paths, including collisions (Figure 2). To overcome such
limitations, our new path planner, that we call Optimization
with Intelligent Initialization, integrates a bootstrap module

based on A* search, that generates an appropriate initial set
of values to start the optimization phase.
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Fig. 2. Response in the presence of obstacles for the optimization method
(left) and the optimization with intelligent initialization method (right). In both
cases, the path ends after 4 days. Generated trajectories by glider bearings

at each surfacing, with time-varying currents —> (ocean currents that
exceed the glider speed vy = 0.4m/s are highlighted —> ) from the start
point @ to the goal point Q. ends after 4 days period

The cost function of the optimization process is computed
on the basis of a stint simulator that reproduces the glider
trajectory combining the commanded bearing with the nom-
inal glider speed and ocean currents. For this purpose, out
simulator applies a simple glider kinematic model. The figure
3 illustrates the strong influence of ocean currents on the
resultant glider trajectory, as a consequence of its relative low
surge speed. Also, it is observed the high variability of currents
orientation in only 3 days.

The number of variables to optimize is a function of the
stint and the total path durations. As an example, a 4-day
mission would require 12 variables for transect of 8 hours. In
most cases, the final value returned by the objective function
is computed as a distance metric.

A. The Algorithm

In our algorithm, the optimization takes a vector of bearings
as variables. As previously commented, the glider trajectory
is simulated on the basis of the real behavior, selecting the
control bearings sequentially and keeping it constant for a
whole stint. The path planner algorithm integrates two phases:
initialization and optimization. The objective function mini-
mized in these processes is the Euclidean distance between
the position at the last surface and the target point.

1) Initialization: In our method, we define a search space
generated from coarse-grain simulations using the CTS-A*
method [4], a variant of A* planner that uses the constant
bearing vehicle stint as operator for node transitions instead
of a regular equispaced grid. Thus, the initialization considers
a set of angularly equispaced radial vectors emanating from the
starting point and simulates a constant bearing glider trajectory
for each one, generating successive stints until the mission
time expires (Figure 4). Then, each trajectory is divided
into a set of turning points candidates at surfacing locations
uniformly spaced out. Recursively, a new set of trajectories is
generated for each one, simulating for the remaining mission
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Fig. 3. Snapshots of the optimal trajectory and glider bearings —> at
each surfacing, simulated for a 3-days period with time-varying currents —=>
(ocean currents that exceed the glider speed vy = 0.4m/s are highlighted
—> ) from the start point @ to the goal point Q .

time. As an heuristic, an optimistic estimation of the combined
glider-current velocity is computed, allowing to prune non
promising trajectories.

In practice, we have observed that it suffices to divide
the trajectory in a single turning point. This is a direct
consequence of the short path planned, since in a 4-day journey
a glider might travel up to approximately 100-150km.
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Fig. 4. First (top) and second (bottom) level of of the initialization process.



2) Optimization: In this phase, the algorithm takes the
initial bearings and applies successive glider stints simulations
trying to minimize the distance to target from the end of
trajectory as cost function.

III. EXPERIMENTAL RESULTS

We have carried out several simulations for the path planner
presented in this paper using Matlab®) to validate the proposal
and test its performance. The results have been compared with
the ones obtained with other methods.

We have simulated different missions in the Canary Islands
coast, using ocean current maps from the ESSEO-CAN model.
This is a ROM model that gives hourly outputs structured in
four 24h sets. The simulations described in this paper were
configured for a glider speed of 0.2-0.4 m/s and a stint of 8
hours.

The general objective of the simulations have been to obtain
the trajectory that leaves the vehicle closer to a goal point
navigating for 4 days. For the methods based in the bearing
optimization, this requires a total of 12 variables. Figure 3
illustrates one example of the typical results obtained in these
tests.

A. Alternative methods

The alternative methods selected for the comparison are
briefly described below:

o Direct to goal: This is the trivial solution to the problem.
At each surfacing the next bearing is computed as the
direction of the goal point.

o Standard A*: Adapted to operate over an uniform grid
of ocean currents, using optimistic time estimations to
reach the target waypoint as heuristic.

o CTS-A*: This method [4] is a variant of classic A* where
the times between two consecutive surfacings are kept
constant. It is based on the discretization of the bearings
that can be commanded at each surfacing, and is suitable
for both static and dynamic ocean current maps.

o Optimization: Our previous method [7], [8] uses the
direction to the goal point as initial guess for all bearings
that are the variables of the optimization process.

B. Comparative tests

To compare the performance of each path planning method
we have simulated the trajectories towards a distant waypoint
using ROMs for a 4-day forecast horizon. A total of 45 cases
have been generated and evaluated. We have divided the cases
in two situations and analyzed them separately. The first set of
cases correspond to coastal trajectories while the second one
includes only trajectories in offshore scenarios.

Two measures are computed for the comparison of the
methods: path quality and computational cost. We have es-
tablished as a quality measure for the generated trajectories
(the lower the better), the remaining distance from the final
glider position to the target point.

We should comment here that the A* results require a
special consideration, since the method used in the trajectory

TABLE I
DIFFERENCE OF THE REMAINING DISTANCE TO REACH THE GOAL WITH
RESPECT TO THE INIT-OPTIM METHOD. MEAN AND STANDARD
DEVIATION WITHIN BRACKETS, BOTH IN km. SIMULATIONS RUN FOR A
GLIDER SPEED vy = 0.4m/s.

[ Scen [[ Optim [ CTSA* [ A* [ Direct |
Total || 103 2D || 52 6) || 85 (18) || 42.4 (46)
Coast 19.6 (26) 5.8 (7) 53 (7) 67.4 (39)
Ocean 0 (0) 6.5 (4) 9.1 (6) 13.6 (24)

generation produces unrealistic non-constant surfacing times
that are dependent on the grid size. That is to say, the surfacing
points in A* do not correspond with the surfacing points of
the glider.

The computational cost is also an important factor to be
considered, as sometimes it is necessary to obtain a path in a
few minutes. For example, when an unforeseen risky situation
occurs while the glider is surfacing, a new bearing needs to
be computed before the glider initiates a new transect.

Regarding the algorithms’ parameters used in the compari-
son, we have selected the same equivalent discretization level
for each method, when applicable. For example, the spatial
grid for A* and CTS-A* is fixed to 1/20 degrees. The CTS-
A* algorithm has been configured to use a division of 20°
in the bearings rose. For our new approach we have used a
division of 5° for the initialization phase, inserting a candidate
turning point each 3 surfacings, the equivalent to one day of
navigation.

Table I shows the mean and standard deviation of the
difference of the remaining distance to the goal between each
method and our new approach, labeled as Init-Optim in the
tables. The global result for all cases and the mean in each
environment (near the coast, offshore) is shown separately.
The average distance traveled by the glider at 0.4 m/s has
been 120 km. Table II shows the computing time for each
method, measured on a Intel(R) Core(TM) 2 Quad processor
computer running at 2.5 Ghz.

Compared with the previous optimization method (Optim)
we can observe that the new approach gets approximately
the same results when no obstacles are present, while it
shows an important improvement when there is a need to
avoid obstacles. Regarding A* and CTS-A* methods we have
observed that, in general, we can obtain better quality in the
path with less computational cost. On the other hand, we have
verified that the computational cost of the new method when
the route is free of obstacles is approximately half the value
when the obstacles are present.

Figure 5 shows two of the cases include in the previous
analysis. The distance required to reach the waypoint after 4
days is presented. It must be noted that the currents vary on
time and only the last snapshot of them is shown in the figure.

Table II shows the computing time for each method. Our
new proposal consumes twice as long as the version with
simple initialization. Still, the computational cost is low.

To test the performance of the algorithms on adverse
conditions, the simulations were repeated using a glider at
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Fig. 5. Two comparatives of trajectories simulated for a 4-days period with
time-varying currents —> (ocean currents that exceed the glider speed vy =
0.4m/s are highlighted —> ) from the start point @ to the goal point Q.
Top graphic: Total Distance = 176.5 km. Distance remaining to reach the
goal point: Init-Optim: 13.3 km; Optimization: 22.1 km; CTS-A*: 20.6 km;
A*: 25.9 km; Direct to goal: 157.1 km. (stop in land). Bottom graphic: Total
Distance = 343.4 km. Distance remaining to reach the goal point: Init-Optim:
67.4 km; Optimization: 68.8 km; CTS-A*: 85.1 km; A*: 169.4 km; Direct to
goal: 217.6 km.

TABLE II
COMPUTATIONAL TIME. MEAN AND STANDARD DEVIATION WITHIN
BRACKETS, BOTH IN SECONDS. GLIDER VELOCITY AT 0.4 M/S AND 0.2
M/S.

[ Methods [ 04mis [ 02m/s |
Init-Optim 26 (10) 24 (12)
Optim 15 (11) 12.5 (10)
CTS-A* 477 (93) 105 (28)
A* 55 (11) 12 (4)
Direct to goal <1 (0) <1 (0)

TABLE III

DIFFERENCE OF THE REMAINING DISTANCE TO REACH THE GOAL WITH
RESPECT TO THE INIT-OPTIM METHOD. MEAN AND STANDARD
DEVIATION WITHIN BRACKETS, BOTH IN km. SIMULATIONS RUN FOR A
GLIDER SPEED vy = 0.2m/s.

[ Scen [ Optim | CTSA* [ A* [ Direct |
Total 6.2 (13) 9.9 (10) 13.5 (49) 18.0 (29)
Coast 16.3 (17) 7.0 (7) 10.5 (13) 30.4 (29)
Ocean 0.2 (1) 11.5 (10) 15.3 (19) 10.5 (27)

0.2 m/s (Table III). The basic version of the optimization
method reduces the difference due to the fact that the obstacles
are in the same point and the Optimization with Intelligent
Initialization method covers less distance. A* and CTS-A*
obtain worse results due to the use of discretization in their
implementations and in some cases they are not able to avoid
obstacles, so it has a high standard deviation. On the other
hand, while the two versions of optimization keep their times,
A* and its variant reduce notably their cost. In the first group,
the process is the same, as they need to optimize the same
number of variables, while in the second one the search area
has less extension and the number of nodes visited is reduced.

Figure 6 shows an example of one these cases with the
glider at 0.2 m/s. This example shows how to obtain some
more kilometers can be significant to find the right path to
reach the target.

Finally, the influence of some algorithm parameters has been
analyzed. If we reduce the division of the bearing rose from
20° to 5° in Init-Optim, the results are improved in a 4% at
a cost of duplicating the computational cost. Similarly, if we
use a search grid of double resolution in A*, the results are
improved in a 2%, but the computational cost is 5 times higher.

IV. CONCLUSIONS

We have described a novel path planning algorithm for
gliders based on combination of A* search and optimization
process that offers promising results in realistic simulations.
The pattern of displacement of the gliders (the bearing can
not be changed while submerged) allows to easily adapt our
method to problems where there is a temporal discretization,
in which the size of each time window coincides with the
duration of the stints. In addition, our method uses a continu-
ous representation of the bearing space using an optimization
method and eliminating the problems discussed. Furthermore,
it incorporates an initialization phase that allows for obstacle
avoidance, at a negligible computational time penalty. This
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Fig. 6. Two comparatives of trajectories simulated for a 4-days period with
time-varying currents —> (ocean currents that exceed the glider speed vy =
0.2m/s are highlighted —> ) from the start point @ to the goal point Q.
Top graphic: Total Distance = 75.2 km. Distance remaining to reach the goal
point: Init-Optim: 46.7 km; Optimization: 54.2 km (stop in land); CTS-A*:
60.7 km (stop in land); A*: 58.9 km (stop in land); Direct to goal: 61.3 km
(stop in land).

heuristic-guided process generates a coarse initial solution
that is then refined using optimization. In sum, our method
is suitable for dynamic scenarios with obstacles or forbidden
areas, making it a practical tool for coastal environments.

The method shows a superior performance when compared
with other alternative approaches. In general, classical A* or
variants, like the CTS-A* algorithm analyzed here, do not find
a path better than iterative optimization methods. Notice that
an improvement of 5-10km in trajectories of three days can
have a huge impact in many glider missions, e.g. it might
reduce the economical cost of data collection after the mission
of several weeks. Anyhow, it is in the computational cost
where the latter clearly outperforms the former.

Finally, the solution presented in this paper is valid for this
particular problem, but would not have the same benefits if
it is applied in the path planning of other kind of vehicle
because there is not a temporal discretization in their pattern
of displacement.
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