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a Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain 
b Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain 
c Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain 
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A B S T R A C T   

Iron participates in myriad processes necessary to sustain life. During the past decades, great efforts have been 
made to understand iron regulation and function in health and disease. Indeed, iron is associated with both 
physiological (e.g., immune cell biology and function and hematopoiesis) and pathological (e.g., inflammatory 
and infectious diseases, ferroptosis and ferritinophagy) processes, yet few studies have addressed the potential 
functional link between iron, the aforementioned processes and extramedullary hematopoiesis, despite the 
obvious benefits that this could bring to clinical practice. Further investigation in this direction will shape the 
future development of individualized treatments for iron-linked diseases and chronic inflammatory disorders, 
including extramedullary hematopoiesis, metabolic syndrome, cardiovascular diseases and cancer.   

1. An overview of iron and ferroptosis: it all starts from ferrum 

1.1. Some historical milestones in the study and understanding of iron 

For biological entities, the precise regulation of iron homeostasis is 
critical for the proper functioning of the cellular machinery and for 
preventing the toxicity derived from an overload of this trace element. 
Iron deficiency is a unique condition within a group of disorders of 
similar etiology. It is the depletion of absolute body iron content, 
especially of hepatocyte and macrophage iron stores, and its diagnosis is 
straightforward unless the setting is masked by an inflammatory milieu. 

Iron deficiency often resembles iron-deficiency anemia, as anemia is its 
more evident sign; however, it is a broader concept [1–3]. Iron overload 
or excess storage, an opposite condition to iron deficiency, can be 
classified based on different criteria such as the access route within the 
body, the predominant site of storage, or the cause of its overload. 
Regarding the latter classification, iron overload can be primary (often 
inherited) or secondary to other pre-existing factors/conditions such as 
hemolysis, transfusion, or excessive parenteral and/or dietary con
sumption of iron [4–6]. Iron has many crucial functions in mammalian 
cells, including the catalysis of metabolic redox reactions and oxidative 
phosphorylation, DNA synthesis, heme formation, oxygen transport and 
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storage, and erythrocyte fate. By enhancing the release of reactive ox
ygen species (ROS), it is also a major contributor to tissue damage 
through its effects on lipids, proteins and even DNA [7,8]. 

While the importance of iron has been recognized since ancient times 
(and from its knowledge by the ancient Egyptian, Hindu, Greek and 
Roman cultures) [7], we have to fast-forward to the 1990 s when the 
study of its biology began to flourish through seminal studies by Finch 
and Feder. Finch was the first to describe the role of erythropoiesis and 
iron stores in the regulation of systemic iron metabolism, hypothesizing 
the existence of erythroid and iron store regulators [9]. Feder and col
leagues identified the mutation in the HFE (homeostatic iron regulator) 
gene related to classical hereditary hemochromatosis, which results in 
excess iron deposition and consequent multi-organ damage [10]. These 
findings, added to earlier research on ferrokinetics and subsequent 
studies using molecular and genetic approaches, led to a better under
standing of iron regulation disorders, which can lead to the development 
of serious diseases that are among the most common in humans [7, 
1112]. 

1.2. Iron regulation 

Iron modulates itself through regulatory proteins (and the genes that 
encode them), which regulate its uptake, recycling and storage. Among 
them, the acute-phase peptide hepcidin, which is synthesized in the 
liver, is an important modulator of iron homeostasis owing to its control 
by mediators dependent on the iron stores present in macrophages [13], 
erythropoiesis and inflammation [14,15]. Hepcidin expression in he
patocytes is controlled mainly by the bone morphogenetic 
protein-SMAD (BMP-SMAD) pathway [16]. Functionally, hepcidin pro
motes the degradation of the iron exporter ferroportin (FPN) in gut 
enterocytes and in macrophages, which reduces iron uptake [3,8,12]. 
Other important molecules involved in the cellular regulation of iron 
include the iron storage and release protein ferritin and the iron trans
porter glycoprotein transferrin. Ferritin is present in the cytoplasm in 
almost every cell, whereas transferrin is synthesized and secreted by the 
liver. Interestingly, similar to transferrin, ferritin can also be released 
into circulation, albeit at moderate levels [17,18]. Both proteins 
contribute to iron redistribution, maintaining it in a nonreactive form 
that prevents the release of oxygen radicals; ferritin stores most of the 
iron in the body. The process by which iron is released from ferritin has 
recently attracted attention for its association with human diseases. This 
process has been defined as ferritinophagy [19–21], a selective auto
phagy pathway. It is triggered by nuclear receptor coactivator 4 
(NCOA4) on the surface of autophagosomes, which targets ferritin for 
lysosomal destruction [22,23]. Levels of iron inversely modulate the 
levels of NCOA4 and, therefore, the number of ferritin molecules to be 
processed and the released iron. This is a key process in the regulation of 
erythropoiesis, in which hepcidin plays a significant role by regulating 
the cellular iron levels (6). The aforementioned mechanisms are 
important for the global flow of iron inside the body through the 
participation of the small intestine, the bone marrow, the liver, the 
spleen and the circulatory system, among others [12,19,22,24]. Fasci
natingly, the microbiota (now considered as a human organ [25,26]) has 
been recently related to iron homeostasis and bioavailability [27,28]. 
The gut microbiota depends on iron, and its deficiency negatively in
fluences the microbial ecosystem and can harm the health of the host. 
Iron is also essential for pathogenic bacteria, but there are different re
quirements for this metal owing to the considerable variability of mi
croorganisms [27,29]. Iron accumulation and lipid peroxidation in the 
brain has been linked to cryptococcal meningitis [28], and both pro
cesses are the main characteristics of iron-programmed cell death, or 
ferroptosis. 

2. Iron-dependent cell death 

Recent studies have defined ferroptosis as a new type of non- 

apoptotic cell death characterized by high levels of iron accumulation 
and lipid peroxidation [5,30–33]. The term was first coined in a land
mark paper by Brent R. Stockwell and colleagues in 2012 [34], where 
they described a type of oxidative cell death that results from a pro
nounced decrease in the antioxidant capacity of cells and an increase in 
lipid-related ROS due to the sum of factors that affect the activity of 
glutathione (GSH) peroxidases. In this regard, lipoxygenases (LOXs) and 
their products, lipid hydroperoxides, are thought to be key participants 
in the initiation and progression of ferroptosis through the induction of 
lipid autoxidation. Pharmacological inhibition of LOX isoforms (5-LOX, 
p12-LOX and 15-LOX-1) is protective against ferroptosis [35]. 

Cell morphology and function differentiate ferroptosis from other 
types of cell death (apoptosis, necrosis, autophagy, necroptosis, pyrop
tosis, oxidative glutamate toxicity or parthanatos) [33,36–39]. More
over, ferroptosis has unique morphological characteristics including 
shrunken mitochondria with increased membrane density and loss or 
reduction of mitochondrial cristae, and ruptured outer membrane, 
normal-sized nuclei and non-condensation of chromatin. From a 
biochemical perspective, ferroptosis is defined by the depletion of 
intracellular GSH and reduced activity of glutathione peroxidase 4 
(GPX4), which hinders the reduction of lipid peroxides and leads to ROS 
generation through the Fenton reaction-dependent oxidation of lipids by 
Fe2+ [40]. The basic mechanisms regulating ferroptosis and phospho
lipid peroxidation have been studied in depth in recent years [33]. 
Ferroptosis is considered as an important downstream pathway of 
oxidative stress [32,41]. In addition to this, oxidative and metabolic 
stress are connected to human diseases [42,43] and this includes altered 
bone marrow hematopoiesis and extramedullary hematopoiesis (EMH) 
[44,45]. 

3. Iron, ferroptosis and EMH: an undefined link possibly 
connected to severe clinical outcomes 

Iron biology and ferroptosis likely have a relevant impact on 
inflammation, chemotherapy, photodynamic therapy and neuro
degeneration. Yet, few studies have examined the relationship between 
iron, ferroptosis (reviewed in [46]) and EMH, which is the topic dis
cussed in the present review (see graphical abstract). 

EMH is defined as the development and growth of hematopoietic 
cells outside the medullary spaces of the bone marrow [45,47–49], with 
the most common sites being the spleen and liver [47]. This manifes
tation of compensatory hematopoiesis typically occurs under adverse 
conditions, such as the insufficient or inappropriate formation of blood 
cell components by the bone marrow (i.e., chronic hemolytic anemias, 
thalassemias, atherogenesis, and lymphomas or leukemias) [45], but 
excessive EMH can trigger inflammatory diseases [45]. EMH can also 
occur when the bone marrow becomes an inhabitable niche for stem and 
progenitor cells due to the replacement of the niche by collagenous fi
bers (such as in myelofibrosis) [48]. 

Interestingly, enhanced erythroid EMH in the spleen (mainly 
occurring in the red pulp) contributes to decrease the synthesis and 
release of hepcidin [50] and lowers iron availability [49]. All blood cell 
lineages are generated and replenished during hematopoiesis by he
matopoietic stem cells (HSCs) [51]. As an example of the potential link 
between iron, ferroptosis and EMH, we recently described the contri
bution of the immune receptor nucleotide-binding oligomerization 
domain 1 (NOD1), which is associated with leukocyte ontogeny and 
recruitment, to iron metabolism and ferroptosis regulation in the spleen, 
a relevant organ in EMH [52,53]. The potential interplay between iron, 
EMH and ferroptosis is discussed in the following subsections. 

3.1. Iron and hematopoietic cells 

3.1.1. Erythrocytes 
Mature red blood cells (RBCs) are highly specialized cells that are the 

result of a complex maturation process from HSCs. Given that 200 
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billion of these mature cells are generated daily, requiring 25 mg of iron, 
it is not surprising that iron physiology is important for the regulation of 
the erythroid lineage. 

Erythroid precursors contain molecules, such as transferrin receptors 
(TFR), whose main functions are the transport, use and storage of iron 
[54,55]. They are characterized by their enormous requirements for iron 
to maintain hemoglobin synthesis, and the recycling of iron from se
nescent RBCs by macrophages is crucially important for internal iron 
flux. Iron homeostasis is also controlled by the absorption of iron from 
the diet, which can balance iron requirements when levels are low (i.e., 
during childhood, hypoxia, or pregnancy) or iron is lost (as in bleeding) 
[56,57]. These finely regulated molecular and cellular mechanisms are 
essential to support the supply of oxygen (and iron) to cells and all body 
tissues, and have motivated the study of the mechanisms involved. As an 
example, the erythroid hormone erythroferrone suppresses hepcidin, 
which enhances the bioavailability of iron for hemoglobin synthesis in 
times of erythropoietic stress [3,58]. In addition, iron deficiency impairs 
erythropoietin production through the iron regulatory protein 1-hypox
ia inducible factor 2α (IRP1-HIF2α) pathway, which prevents the 
wasteful use of iron for erythropoiesis during iron restriction conditions 
[56]. 

3.1.2. Other hematopoietic cells 
In addition to its well-recognized roles in erythropoiesis and eryth

rocyte homeostasis, iron also contributes to the development of other 
hematopoietic cell lineages. Accordingly, changes in iron levels (either 
due to deficiency or over-abundance) can negatively influence he
matopoietic flow, affecting the normal biology of different hematopoi
etic cell lineages and leading to several diseases [4,11,59–65]. 

3.1.3. Iron: from its deficiency to its excess 
Iron deficiency impairs embryonic hematopoiesis by inhibiting pro

liferation, clonogenic capacity and survival of progenitor cells. It does 
not, however, affect the endothelial-to-hematopoietic transition, which 
is the first stage of hematopoiesis [58]. Erythroid-myeloid progenitors 
appear to be more influenced by iron deficiency than primitive erythroid 
cells [64]. 

In contrast to iron deficiency, more studies have been carried out on 
iron overload, both primary and genetically determined or secondary to 

other conditions, [31–38]. It is widely known that iron can be very toxic 
to the bone marrow, leading to ROS accumulation, changes in the 
expression of hematopoiesis-regulatory genes and the deterioration of 
the hematopoietic microenvironment (Fig. 1). 

3.1.3.1. Promising strategies for iron overload at a glance. Iron chelation 
therapies, such as deferasirox, have been developed to mitigate the 
deleterious effects of iron overload [4,65]. NADPH oxidase 4 and 
p38-MAPK (p38 mitogen-activated protein kinase) signaling pathways 
have been identified as being responsible for the ROS-dependent dam
age in bone marrow hematopoietic cells under iron overload [59]. Other 
studies demonstrated that both p38-MAPK and JNK (Jun N-terminal 
kinase) pathways are involved in disturbances in hematopoietic stem/
progenitor cells and natural killer cells during iron overload in myelo
dysplastic syndromes [61]. The impact of iron excess in myelodysplastic 
disorders has been studied in depth [6,61,62]. Other approaches for the 
treatment of iron overload, some in the preclinical phase, include anti
oxidants (flavonoid compounds such as quercetin), calcium channel 
blockers (nifedipine or amlodipine acting on divalent metal 
transporter-1 [DMT1]) [66], ebselen (DMT1 inhibitor; [67]), erythro
poiesis modulation inhibitors (such as luspatercept, ACE-536; and 
sotatercept, ACE-011) [68], phytochemicals and phytochelants [69], 
minihepcidin peptides (alone or in combination) or other strategies, 
such as targeting TMPRSS6, a type II transmembrane serine protease 
that is primarily expressed in the liver and downregulates hepcidin 
expression through the BMP-SMAD pathway [3,70]. 

3.1.3.2. Iron deficiency/overload: the importance of iron regulation in 
cardiovascular diseases. Cardiovascular diseases, which are responsible 
for ~30% of all global deaths, are known to be affected by hematopoi
esis and leukocyte accumulation [52,53,71]. Interestingly, both the 
deficiency or the excess of iron are frequently observed in a many of 
these diseases, favoring their onset and determining their development 
and fate [72]. Cellular uptake of iron occurs by the binding of iron-laden 
transferrin, containing two ferric iron molecules, to transferrin receptor 
protein 1 (TFR 1). This triggers the endocytosis of the protein complex 
dependent on clathrin. Acidification of the endosome by vacuolar 
ATPase leads to reduction to ferrous iron, which is then released into the 

Fig. 1. Iron dependence and regulation of hematopoietic cells and derived lineages. Virtually all organisms require iron to carry out their functions. Subtle changes in 
the body’s iron concentrations, including its deficiency or overabundance, have consequences for physiological processes, such as hematopoiesis. Iron dysregulation 
affects hematopoietic cell lineages and can cause different diseases. 
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cytoplasm by the DMT1 transporter. This underscores the potential for 
DMT1-targeted approaches in iron-overload cardiovascular diseases. 
There is some controversy about whether non-transferrin-bound iron is 
transported into cardiomyocytes by voltage-dependent calcium chan
nels [73]. As an example of this process, it has been described that L-type 
Ca2+ channels have a role in iron transport and iron-overload cardio
myopathy. These channels can take-up ferrous iron in cardiomyocytes in 
a highly effective manner and especially under iron excess conditions. 
Indeed, L-type Ca2+ channels may also contribute to iron uptake in other 
excitable cells including pancreatic β-cells and neurons. Accordingly, 
inhibitors of these types of channels represent a promising new therapy 
to diminish the adverse effects of iron overload [74]. Curiously, calcium 
has been demonstrated to inhibit iron absorption. Firstly, CaCO3 was 
demonstrated to inhibit Fe absorption in experimental models, and later 
studies showed that several sources of Ca (including CaCO3, CaCl2, 
calcium phosphate and calcium lactate) reduced the retention of Fe and 
the rate of hemoglobin regeneration in animals [75]. Among the 
mechanisms responsible for these inhibitory effects of calcium, the 
presence of one-site competitive binding at a receptor has been sug
gested, making it an interesting target in iron-related diseases and 
especially in those involving iron overload [75]. 

3.1.4. Iron regulation and immune cells 
Several receptors for iron-regulation proteins are expressed by he

matopoietic immune cells. For example, lymphocytes express ferritin 
receptors [76], whereas activated lymphocytes, erythroid precursors 
and most rapidly dividing cells express the classical transferrin receptor 
(TFR1) [5,12,77]. Megakaryocytes, which generate thrombocytes/pla
telets, and the myeloid lineage, particularly phagocytic cells (macro
phages and neutrophils), have been tightly linked to iron homeostasis. In 
the case of neutrophils, their link to iron includes the control of cellular 
apoptosis (the intrinsic pathway) and oxidative responses. However, 
because macrophages are the main players in iron homeostasis and 
erythroid cell proliferation and differentiation, most of the research has 
focused on these populations [60,77]. As a recent example, the role of 
iron and heme metabolism has been studied in inflammatory responses 
mediated by TLR4/NF-κB (Toll-like receptor 4/ nuclear factor κB) 
signaling in human monocytes [78]. 

3.2. Hematopoiesis, iron and inflammation 

Hematopoiesis has long been associated with inflammation and 
infection [79–81]. Given the breadth of studies in these fields, we will 
only briefly touch upon the relationship between iron and these 
processes. 

3.2.1. Hematopoietic cells and inflammatory milieu in EMH: a role for 
damage signals, cytokines and growth factors 

HSCs are exposed to inflammatory or damaging signals that allow 
them to replenish mature immune cells under conditions of infection or 
tissue injury. HSC proliferation and differentiation are essential during 
these inflammatory processes, but they need to be tightly regulated to 
avoid immunopathology. Indeed, prolonged exposure to inflammatory 
signals triggers HSC aging and the selection of malignant-prone HSC 
clones [80,82]. As an example of stem cell exposure to inflammatory 
signals, HSCs are the main target of the IL-23 (inter
leukin-23)-dependent inflammatory pathway in colitis, a disease that 
presents with an abnormal intestinal accumulation of inflammatory 
monocytes and neutrophils. This indicates that inflammatory cytokines 
mediate hematopoiesis dysregulation. Also, interferon-γ (IFN-γ) partic
ipates in the medullar and splenic accumulation of proliferating HSCs, 
which promotes EMH [47]. More recently, it has been shown that 
granulocyte-macrophage-colony stimulating factor (GM-CSF) causes 
HSC dysregulation and pathogenic EMH in experimental models of 
spondyloarthritis. This disease is characterized by systemic inflamma
tion and comprises different inflammatory arthropathies, such as 

psoriatic or enteropathic arthritis. In this regard, HSCs and both bone 
marrow and EMH play important roles [83]. 

3.2.2. Inflammatory-derived EMH sites 
EMH sites can be established in areas of local inflammation, injury, 

ischemia or tissue repair. This is made possible by the molecular, cellular 
or stromal factors and/or the changes associated with these complex 
processes, which mimic those contributing to hematopoiesis. Along this 
line, a large number of inflammatory mediators and cytokines can 
enhance the number of peripheral HSCs, leading to their establishment 
in damaged tissues and their participation in local inflammatory or 
regenerative processes [49]. 

3.2.3. Oxidative stress and HSCs 
HSC function is not only affected by acute and chronic lesions or 

infectious processes, but also by auto-inflammatory pathologies, irra
diation, and physiological or pathological states such as aging, obesity or 
cardiovascular diseases [82,84]. Oxidative stress is a principal under
lying mechanism in these settings. Indeed, both experimental and clin
ical research have identified ROS and Nrf2 (nuclear factor erythroid 
2-related factor 2) as important participants in the functional and 
transcriptional regulation of HSC biology and hematopoiesis [85]. HSCs 
are mainly located in the hypoxic niche of the bone marrow and their 
function is modulated by both intrinsic (signaling pathways) and 
extrinsic (multiple, with the most influential derived from the 
micro-environmental niche) factors. ROS can behave as either intrinsic 
(endogenous ROS, mainly derived from oxidative metabolism in mito
chondria, inflammatory pathways or metabolic processes) or extrinsic 
(external sources) mediators. ROS levels in HSCs contribute to their 
mobilization, migration, proliferation, repopulation potential and dif
ferentiation, and ROS overload damages DNA and triggers cell cycle 
arrest. In this regard, Nrf2 acts as a master modulator of cellular anti
oxidant responses, being key in the metabolism of ROS and redox 
modulation of HSCs [85]. Nrf2 is now considered as a master tran
scription factor in ameliorating lipid peroxidation and ferroptosis 
through its regulation of downstream targets, such as several redox 
enzymes (e.g., glutathione-S-transferases pi-1 and α-1, GSTP1 and 
GSTA1, thioredoxin reductase, TXNRD1, and even GPX4) or, perhaps 
more importantly, by regulating ferritin and FPN. It is also an essential 
transcriptional modulator of anti-ferroptotic genes that play roles in 
mitigating lipid peroxidation and ferroptosis [86,87]. These data pro
vide a link between iron and ferroptosis with the modulation of oxida
tive stress and subsequent tissue damage. Notably, inflammation is also 
considered a hallmark of tissue injury. 

3.2.4. Anemia of inflammation 
Among the many debilitating disorders related to iron deficiency, 

anemia of inflammation (AI) (or anemia of chronic disease) is arguably 
the most studied link between iron and inflammation [14,18,57,88–90]. 
AI is an acquired, multifactorial disorder of iron regulation associated 
with prolonged immune activation such as infections, inflammatory 
diseases or malignancies. It is a typically normocytic normochromic 
anemia characterized by macrophage-mediated iron retention due to 
diminished iron export. During inflammation, enhanced levels of serum 
hepcidin are induced through the IL-6/STAT3 (interleukin-6/signal 
transducer and activator of transcription 3) axis, which triggers FPN 
degradation. Cytokines such as IL-1β also participate in this process. 
Inflammation similarly promotes iron-binding proteins including 
haptoglobin, lactoferrin, hemopexin and lipocalin 2, which limit iron 
availability for erythropoiesis, [57,89]. AI is the most common anemia 
in chronically ill and hospitalized patients [14]; however, at the onset of 
inflammation, AI and iron-deficiency anemia can be difficult to differ
entiate, and the two can also coexist [89]. 
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3.2.5. Anemia, inflammatory diseases, iron levels and hepcidin, and heme 
regulation 

Anemia has also been linked to other inflammatory diseases such as 
inflammatory bowel disease [91–93] (wherein the gut microbiota seems 
to have an important role in the regulation of the hepcidin-FPN axis 
[57]), rheumatic disorders [94], or splenomegaly linked to EMH [95]. In 
addition, inflammatory cytokines and hepcidin, as a master regulator of 
iron homeostasis, block the intestinal absorption of iron and its retention 
by reticuloendothelial cells, leading to iron-restricted erythropoiesis and 
further contributing to AI [14]. Interestingly, hepcidin expression is not 
only regulated by anemia, serum iron levels and erythropoiesis, but also 
by hypoxia, infection and inflammation [90,96]. Hepcidin is closely 
related to inflammatory diseases [15]. Furthermore, heme catabolism is 
also associated with inflammation and its immunomodulation, and ap
pears to have a leading regulatory function in various physio- and 
pathological processes, particularly cell protection and apoptosis. 
Among these intricate mechanisms, heme oxygenase 1 (HO-1) is 
prominent, as it can catabolize free heme into Fe2+, CO and bili
verdin/bilirubin [97]. 

3.3. Iron, ferroptosis and EMH 

3.3.1. Ferritinophagy 
Several recent reviews have updated the molecular mechanisms 

associated with ferroptosis and their potential therapeutic control [19, 
31,98,99]. As an example of these pathways, ferritinophagy is known to 
induce ferroptosis by triggering iron overload following ferritin degra
dation. Excess Fe2+ promotes the peroxidation of lipids, favoring plasma 
membrane damage and further ferroptotic cell death. Indeed, it is 
thought that ferritinophagy may directly impact the activity and func
tion of metabolic enzymes that contain Fe2+, such as phenylalanine 
hydroxylase, by delivering Fe2+ to the cytoplasm. Accordingly, the in
hibition of this specific type of autophagy may help to mitigate meta
bolic and inflammatory diseases whose underlying cause is ferroptosis 
[19,100,101]. 

3.3.2. Iron and EMH 
Despite their obvious connection and the many pieces of evidence 

outlined in previous sections, there are scarcely any studies that link iron 
with EMH. For example, it is known that the absence of cardiac iron 
correlates with EMH in patients with thalassemia who have been poly
transfused [47]. In this study, patients with EMH were all splenectom
ized and presented higher concentrations of the soluble form of the 
transferrin receptor and a higher nucleated RBC count. In addition, the 
patients had a lower transfusional iron intake and an elevated hemo
globin level after transfusion [44]. Most of them were highly predis
posed to thrombotic events. With regard to the improved red blood cell 
counts mentioned above, it has been shown that GPX4 and vitamin E 
indirectly regulate stress erythropoiesis, iron biology, and reticulocyte 
maturation. Indeed, deficiency of Gpx4 in murine hematopoietic cells 
triggers iron excess in the bloodstream [58]. 

3.3.2.1. Iron-EMH-macrophage axis: a ferroptosis perspective. As we 
briefly mentioned earlier, macrophages perform essential immune- 
metabolic functions and also regulate iron flow, and so their involve
ment in ferroptosis (and EMH) is fundamental. Macrophages are known 
to maintain a very close relationship with erythroid cells from their 
origin until their death. Erythrocyte development is favored by a 
specialized subclass of macrophages (the nurse macrophages), mainly 
under stressful settings, and they are also responsible for their own 
destruction when senescent and for iron recycling to maintain erythro
poiesis [102]. Indeed, heme per se can stimulate the differentiation of 
monocytes into iron-recycling macrophages by activating the 
heme-binding transcriptional repressor BACH1 (Btb and Cnc homology 
1). This, in turn, induces a specific cell differentiation program through 

the transcription factor SPI-C [57,103]. As an example of the role of 
macrophages in iron-related cell death, recent evidence has indicated 
that differential activation signals in macrophages establish sensitivity 
to lipid peroxidation process and ferroptosis [104]. We also recently 
described an important link between iron, ferroptosis and macrophage 
regulation dependent on NOD1 activation [52,53,105,106]. In this work 
it is shown that under hypercholesterolemic and athero-prone condi
tions in mice, the spleen shows elevated counts of macrophages in the 
absence of NOD1, while iron levels in this tissue are decreased [49]. In 
addition, in these mice, splenic mRNA levels of iron-related genes such 
as Slc40a1 (which encodes for ferroportin 1, FPN1), Spic and Slc7a11 are 
enhanced [52,53]. Interestingly, Gpx4 levels increase upon NOD1 acti
vation, pointing to a protective role of this immune receptor against 
ferroptosis in the spleen [52]. These findings allow us to suggest that 
ferroptosis is closely related to EMH despite the paucity of studies 
directly linking the two concepts. As we will discuss in the next section, 
more research in this field would add clarity and might inform new 
clinical practice treatments. 

4. Ferroptosis and inflammation: benefits from their association 
with EMH and novel strategies to combat important diseases 

Ferroptosis is pro-inflammatory due to its immunogenicity, as it 
triggers the release of different damage-associated molecular patterns, 
such as high-mobility group box 1 and lipid metabolites, which function 
to modulate immune response but ultimately induce a type of immu
nogenic cell death. As an example, ferroptosis-derived immunogenicity 
plays an important role in inflammation following ischemia-reperfusion 
injury [107,108]. Not surprisingly, agents that inhibit ferroptosis have 
been shown to have anti-inflammatory activity in several diseases [108]. 

The new field of ferroptosis and inflammation has been studied in 
depth in recent years [26,32,38]. Ferroptotic cell death has been 
described at sites of inflammation in different severe disorders, 
including inflammatory bowel disease and acute pancreatitis. This is 
based on the concurrence of lipid peroxidation metabolites (e.g., 
malondialdehyde) and gene expression profiles associated with ferrop
tosis [26]. Both deficient or excessive ferroptotic cell death contributes 
to a wide range of physio- and pathological mechanisms and are linked 
to impaired immune responses [26]. Ferroptosis-specific necrotic 
signaling pathways produce harmful factors that dysregulate the im
mune system by activating immune cells. Subcellular structures such as 
destructive peroxisomes or ruptured mitochondria are also upregulated 
under these conditions [38]. 

Ferroptosis is directly and closely associated with the biological 
processes of relevant diseases as varied as kidney injury, cancer, nervous 
system dysfunctions, or blood-related pathologies [40]. In the latter 
case, ferroptosis is considered a novel key regulator of blood cells and 
their differential functions, including neutrophils, T-cells, B-cells, or 
platelets [109]. 

Of note, most of the aforementioned diseases are also related to in
flammatory processes involving the recruitment of myeloid cells and the 
release of chemoattractants and inflammatory cytokines. Because of 
this, specific approaches that focus on regulating ferroptotic cell death 
might be promising tools in many areas of precision medicine, as 
described below. 

4.1. Ferroptosis, metabolic syndrome and diabetes 

Of all the metabolic diseases, patients with diabetes might derive the 
most benefit from the study of ferroptosis regulation [110–115]. Hy
perglycemia and insufficient endogenous insulin (or its misuse) are the 
main characteristics of diabetes, and several mechanisms linked to fer
roptosis have been studied in the development of diabetic disease. For 
example, ferroptotic cell death contributes to impaired 
glucose-stimulated insulin secretion and pancreatic damage induced by 
arsenic [116]. 
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Diabetic complications like myocardial ischemia or diabetic cardio
myopathy are also worsened with ferroptosis [111,114]. Indeed, recent 
evidence correlates poor wound healing, involving oxidative stress and 
inflammation at the wound site, with ferroptosis. Specifically, fibro
blasts and vascular endothelial cells exhibited altered survival and 
migration under these conditions of diabetic ferroptosis [110]. 

Other studies again link oxidative stress, Nrf2 and HO-1 in the setting 
of hyperglycemia with ferroptosis [113,115], and a mitochondrial 
regulation of ferroptosis has also been proposed [117]. Ferroptosis is 
also considered an important player in other metabolic diseases [118]. 
Ferroptosis-regulating molecules participate in complex metabolic net
works that modulate, for instance, cysteine use, GSH status, nicotin
amide adenine dinucleotide phosphate function, lipid peroxidation, or 
iron homeostasis, which all of contribute to human health or disease 
when impaired [119]. As an example, enhanced levels of hepcidin, iron 
and ferroptosis are all well-known markers of obesity, in addition to 
chronic and systemic low-grade inflammation [7]. 

4.2. Ferroptosis, cardiovascular diseases and atherosclerosis 

Cardiovascular diseases, including ischemic heart disease, stroke and 
atherosclerosis, are the leading cause of mortality and morbidity 
worldwide [120,121]. The relationship between cardiovascular diseases 
and ferroptosis has been extensively studied in recent years because of 
its potential therapeutic applications [32,46,122–128]. Myocardial 
infarction, heart failure, cardiomyopathy, ischemia/reperfusion injury 
and atherosclerosis are all tightly related to iron-dependent cell death. 
As an example, cardiac mTOR inhibits ferroptosis and ROS release in the 
setting of myocardial infarction, whereas its deficiency triggers 
iron-induced cell death. Indeed, ferroptosis was found in the infarcted 
myocardium and cardiomyocytes after hypoxic injury. However, both 
iron overload and iron deficiency are related to heart failure and car
diomyocyte function [124,126,127,129]. Another recent study found a 
direct relationship between ferritinophagy-derived iron and car
diomyocyte death and heart failure induction [130]. 

In the setting of atherosclerosis, which is profoundly influenced by 
lipid homeostasis and peroxidation, GPX4 overexpression was shown to 
alleviate aortic atheroma lesions in an Apoe-/- mouse model [131]. Other 
studies have examined the link between atherosclerosis and ferroptosis, 
involving oxLDL, NOD1 and enzymes such as cyclooxygenase 2 and or 
ACSL4 (acyl-CoA synthetase long-chain family member 4), among 
others [52,132]. Ferroptosis also affects other atherosclerosis-related 
cells such as vascular endothelial cells, macrophages and vascular 
smooth muscle cells [122,124,128,133]. Accordingly, targeting ferrop
tosis emerges as promising approach to treat or prevent cardiovascular 
diseases. 

Accumulating evidence suggests that iron chelators, ferroptosis in
hibitors, genetic manipulations and antioxidant molecules can be used 
to block ferroptosis and alleviate vascular and myocardial injury. For 
instance, deferoxamine is an approved very high-affinity iron chelator 
with cardioprotective properties that can protect against ferroptotic cell 
death. In addition, dexrazoxane is the only FDA-approved iron-chelator 
drug, and it also shows cardioprotective benefits and ferroptosis inhi
bition characteristics in animal models of doxorubicin-induced cardio
myopathy [32,123,125]. 

4.3. Ferroptosis and other inflammatory diseases 

Inflammatory diseases can occur in almost all human tissues and 
organs including the liver, lungs and heart [134], and ferroptotic cell 
death has been reported in these different anatomical sites (Fig. 2). 

Ferroptosis has been studied in severe liver inflammatory diseases 
[20,135,136], including nonalcoholic steatohepatitis [137–139] and 
fibrosis [140,141]. These important discoveries have opened up new 
research fields on potential pharmacological strategies, such as studies 
using the anti-malarial drug artesunate to ameliorate liver fibrosis 

through its modulation of ferroptosis [21,30]. 
Beyond the liver, ferroptosis is also being studied in kidney disorders 

(mainly involving ROS-dependent mechanisms, lipid accumulation and 
subsequent ferroptotic cell death leading to kidney injury [142–144]), 
lung dysfunction, where oxidative stress and uncontrolled inflammatory 
responses can occur after sepsis, injury, smoking or toxic gas inhalation, 
among others [145–147]), and blood cell-related diseases, as ferroptosis 
influences the function of blood cells and ferroptosis impairment affects 
erythropoiesis and the development of erythrocytes, causing anemia. 

Ferroptosis also contributes to neutrophil recruitment, formation of 
neutrophil extracellular traps, B-cell differentiation and antibody re
sponses, T-cell polarization and function [109]), and nervous system 
and neurological diseases. Indeed, ferroptosis has been studied as a key 
mechanism of cell death in intracerebral hemorrhage, stroke, acute 
brain injuries and degenerative brain dysfunctions [148,149]. In the 
latter case, several features of Parkinson’s disease are similar to fer
roptosis processes, including iron accumulation, lipid peroxidation, 
oxidative stress and damage [150,151]. 

In addition, it should be noted that both hematopoiesis (classical or 
extramedullary), and the functions exerted by hematopoietic cells and 
derived leukocytes are essential regarding the generation, regulation, 
protection and regeneration of these organs (liver, kidney, brain, etc.) 
[152–154], reinforcing the suggested ferroptosis-hematopoiesis 
interplay. 

4.4. Ferroptosis and cancer 

Cancers present with a high inflammatory component, but beyond 
inflammation, ferroptosis mechanisms play crucial roles in their biology 
[136]. A new compound, erastin, was discovered in 2003, presenting a 
lethal and selective effect on RAS-expressing cancer cells [40]. Addi
tionally, later studies showed that iron-chelating molecules inhibited 
this new type of cell death, thus linking it to iron regulation, and to 
cancer biology [155]. In this line, a new compound called RSL3 
(RAS-selective lethal 3) was further found to trigger iron-dependent cell 
death [40]. Cancer cells need significantly more iron to survive than 
normal cells and, accordingly, they are more susceptible to 
iron-dependent cell death. This holds promise for new therapies, as 
targeting ferroptosis arises as a valuable molecular strategy to fight 
therapy-resistant cancers [37,156]. 

Ferroptosis is garnering more attention in oncological research and it 
has been investigated in many types of cancer, including colorectal, 
breast, lung, and pancreatic cancer, and also metastasis [37,157–161]. 
Given the breadth of recent studies in this field and the different 
metabolic pathways involved, such as PI3K-AKT-mTOR signaling [162, 

Fig. 2. Inflammation, tissue dysfunction and ferroptosis. Relationship be
tween ferroptosis, inflammatory processes and tissue damage. Interestingly, the 
same organs are also studied (but independently) in the context of cancer and 
ferroptosis. 
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163], we will only cite some examples of interest (Fig. 3). 
For lung tumors, ferroptosis has become a novel target with prom

ising clinical potential. Lung cancer patient samples (serum, bron
choalveolar lavage fluid and exhaled air condensate) show elevated 
ferritin levels, and TFR1 is highly expressed in most non-small-cell lung 
cancers, suggesting enhanced iron intake by lung cancer cells. Indeed, 
ferroptosis and lung cancer cells are connected by signaling pathways 
and molecules as varied as lymphoid-specific helicase (LSH), NFS1 
(mitochondrial cysteine desulfurase) enzyme, long noncoding RNAs, 
Nrf2/HO-1, serine/threonine tyrosine kinase 1/novel oncogene with 
kinase domain (STYK1/NOK), ferroptosis suppressor protein 1 (FSP1) or 
p53 [77,156,164–167]. 

As a key protein in stress and cancer regulation, p53 has been studied 
in the context of ferroptosis. Protein polymorphisms in p53 are known to 
affect the response to cell fate [148]. The so-called cancer-related p53 
has been further investigated in other tissues where ferroptosis has been 
demonstrated to have preeminent roles, such as the liver [168]. These 
findings contribute to the establishment of novel tumor prognostic or 
therapeutic modalities and different strategies [37,169]. For instance, 
manipulation of tumor-associated macrophages to a 
ferroptosis-enhanced state endows potent tumoricidal activity [170]. 
Novel combination therapies along these lines include the use of both 
ferroptosis and immune-based strategies, such as myeloid-derived sup
pressor cells, again pointing to the importance of studying the links 
between ferroptosis and hematopoiesis [37,169]. Table 1 summarizes 
ferroptotic processes linking cancer and hematopoiesis. It is known that 
molecules such as erastin, and the more recently discovered RSL3, 
trigger RAS activation, which has been widely studied in cancer 
research. Interestingly, the oncogenic RAS pathway, which is involved 
in iron metabolism, and the activation of ferroptotic responses remains 
an open issue depending on the involvement of other molecules such as 
TFR1, ROS synthesis, and activation of the MAPK and PI3K/Rac1 
signaling [171], as shown in Table I. Notably, the indicated pathways 
are also closely related to the hematopoietic process. For instance, TFRC 
is a relevant protein in hematopoiesis by binding diferric transferrin and 
providing iron to cells. Moreover, the MAPK, PI3K/AKT and RAS/
Raf/MEK/ERK signal transduction pathways are imperative for the 
transmission of signals from plasma membrane receptors to downstream 
targets, leading to the modulation of essential cellular processes such as 
cell growth, differentiation, gene expression and apoptosis. This also 
occurs in hematopoietic cells, in which MAPK signaling cascades are key 
for their regulation. Additionally, cysteine depletion, considered as a 

potential therapeutic approach in cancer, has also been associated with 
MAPK pathways, heme biosynthesis, iron-sulfur cluster generation, 
regulation of central carbon metabolism, and in the increase of intra
cellular metabolites such as taurine and coenzyme A. 

Interestingly, ferroptosis is also dependent on cell density and 
confluence through the tumor suppressor Hippo-YAP/TAZ pathway 
(controlled by TAZ activity), a process linked to the progression of 
several cancer types [172]. This pathway also promotes ferroptosis, via 
the E3 Ligase SKP2 in a YAP-dependent manner [173]. Both pathways 
are required for the normal division and fate of hematopoietic cells, 
connecting ferroptosis with Hippo signaling and basic physiological 
processes such as cell proliferation, survival and differentiation. 

It is well known that elevated GSH levels suppress ferroptosis; 
however, the regulation of the intracellular content of GSH and how it 
modifies ferroptosis sensitivity remains an open issue [41,174–176]. 
Inhibition of the multidrug resistance-associated protein 1 (MRP1), 
encoded by the ABCC1 gene in humans and important in the establish
ment of therapeutic resistance mechanisms in tumor cells, prevents GSH 
efflux, thereby, protecting against ferroptosis. In this context, other 
GSH-dependent enzymes are important in the control of hematopoiesis. 
A good example is the microsomal glutathione-transferase 1 (MGST1) 
which inhibits ferroptosis via the Nrf2 pathway and is required for he
matopoiesis [177]. In the same category of ferroptosis-regulating mol
ecules, inhibitors of GPX4 or SLC7A11 cystine-glutamate 
antiporter/system Xc- promote ferroptosis and play a role in cancer 
through enhanced lipid peroxidation [162]. They trigger ferroptosis 
induction but also contribute to the fate of hematopoietic stem and 
progenitor cells [87,178]. 

Conditions associated with DNA damage, such as ionizing radiation 
or the pathways regulated by the ATM (ataxia-telangiectasia mutated)/ 

Fig. 3. Ferroptosis: at the forefront of cancer research. Impairment in 
programmed cell death pathways, such as apoptosis, necroptosis, autophagy- 
dependent cell death or pyroptosis, can trigger physiological dysfunction. 
This fact can be translated into the biology and regulationof cancer cells, which 
require high levels of iron to survive and, therefore, are susceptible to ferrop
totic cell death. This involves several mechanisms (described in Table 1). The 
tendency for ferroptosis in tumor cells can be used to develop targeted treat
ments to combat resistant cancers. 

Table 1 
Proposed models for ferroptotic responses associated with cancer and linked to 
hematopoiesis.  

Cause/triggering stimuli Mechanisms References 

RAS signaling induced by 
molecules such as erastin or 
RSL3 (RAS-selective lethal 
3) 

↑TFR1 (transferrin receptor 1) 
↑Intracellular iron 

[55,60, 
189] 

ROS and p38-MAPK-dependent 
oxidative response 
NOXs (NADPH oxidases) 
PI3K/Rac1 (phosphoinositide 3- 
kinase/ RAS-related C3 botulinum 
toxin substrate 1) 
RAS-Raf-MEK-ERK pathway 

[190–193] 

Cystine/cysteine deprivation MAPK pathways, 
iron sulfur cluster generation, 
heme biosynthesis, 
central carbon metabolism, 
production of several 
intracellular metabolites (i.e., 
taurine and CoA) 

[190, 
194–196] 

Hippo signaling pathway YAP/TAZ (yes-associated protein 
1/ transcription adaptor putative 
zinc finger) 

[197–199] 

Multidrug resistance- 
associated protein 1 
(MRP1) 

Disturbance in glutathione efflux [58,177, 
200] 

Ionizing radiation (IR), ATM 
(ataxia-telangiectasia 
mutated)/ATR (ATM and 
Rad3-related), and tumor 
suppressor p53 

DNA damage response [179–181] 

Ferroptosis-inducing 
molecules (e.g., artesunate) 

Such as GPX4 (glutathione 
peroxidase 4) and/or the amino 
acid antiporter SLC7A11/System 
Xc- (cystine-glutamate solute 
carrier family 7 member 11/ 
System Xc-) inhibitors 
Ferroptosis and iron- and ROS- 
dependent manner 

[162,175, 
182] 
[21,59,63, 
183] 

bold terms are also linked to hematopoiesis 

V. Fernández-García et al.                                                                                                                                                                                                                    



Pharmacological Research 183 (2022) 106386

8

ATR (ATM and Rad3-related), or the tumor suppressor p53, in addition 
to regulating ferroptosis in cancer are associated with DNA-damage 
responses in hematopoietic stem cells, being involved in normal hema
topoiesis but also in the development of different malignancies 
[179–181]. Finally, alterations in intracellular ROS have been identified 
in hematopoietic progenitors of patients with myelodysplastic syn
drome, establishing an association with iron overload and blast count 
[21,59,63,162,175,182,183]. 

5. Conclusions, facts and open questions 

5.1. Conclusions 

The above evidence points to ferroptosis regulation as an unexplored 
therapeutic avenue. Not only may iron chelators, ferroptosis inhibitors, 
or antioxidant molecules [32,37,123,125,156,169] help to fight human 
diseases such as cardiovascular diseases or cancer, but also other 
ferroptosis-related responses. With this aim, it is essential to understand 
the links between iron-related cell death and the target disease [184, 
185]. As an example, a recent study demonstrated that the regulation of 
heat stress combined with the use of iron oxide nanoparticles destroy 
tumor homeostasis, determining the cell fate to ferroptosis in cancer 
therapy [186]. In addition, inhibition of ferroptosis-dependent genes 
may promote iron-dependent cell death in other clinical interventions 
[174]. Undoubtedly, the modulation of iron and ferroptosis-regulatory 
proteins represents an interesting milestone in many biomedical 
research fields [187,188]. Additional focus on iron-related inflamma
tory and hematopoietic processes promises further successful thera
peutic strategies [47,126]. Research into these complex connections will 
be needed to establish the role of iron and the subsequent iron-derived 
metabolism (including ferroptotic pathways) under clinical contexts. 
We suggest that the hematopoietic-inflammation-iron metabolism axis 
is a promising hub for future ferroptosis research. A better under
standing of these biological and metabolic scenarios should lead to 
effective preventive and therapeutic opportunities for human diseases. 

5.2. Facts  

• Iron homeostasis is tightly regulated to prevent harmful effects on 
organs due to iron overdose or deficiency.  

• While iron deficiency can be controlled via oral supplements to 
prevent anemia, the deleterious effects of excess iron remain an open 
field of research.  

• Ferroptosis, a form of non-apoptotic cell death, occurs after iron 
accumulation and induction of lipid peroxidation.  

• Extramedullary hematopoiesis depends on the bioavailability of iron 
and is involved in the outcome of several inflammatory diseases. 

5.3. Open questions 

• What are the molecular links involved in the control of extra
medullary hematopoiesis associated with altered iron 
bioavailability?  

• Is there a connection between iron homeostasis and extramedullary 
hematopoiesis?  

• Is it possible to identify biomarkers associated with the prevention of 
ferroptosis in patients with metabolic syndrome, diabetes or iron- 
overload cardiomyopathy?  

• Is it possible to introduce ferroptosis-specific cell death strategies to 
eradicate cancer cells? 
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[132] V. Fernández-García, S. González-Ramos, P. Martín-Sanz, J.M. Laparra, L. Boscá, 
Beyond classic concepts in thyroid homeostasis: Immune system and microbiota, 
Mol. Cell. Endocrinol. 533 (2021), e111333, https://doi.org/10.1016/j. 
mce.2021.111333. 

[133] A. Cornelissen, L. Guo, A. Sakamoto, R. Virmani, A.V. Finn, New insights into the 
role of iron in inflammation and atherosclerosis, EBioMedicine 47 (2019) 
598–606, https://doi.org/10.1016/j.ebiom.2019.08.014. 

[134] L. Chen, H. Deng, H. Cui, J. Fang, Z. Zuo, J. Deng, Y. Li, X. Wang, L. Zhao, 
Inflammatory responses and inflammation-associated diseases in organs, 
Oncotarget 9 (2017) 7204–7218, https://doi.org/10.18632/oncotarget.23208. 

[135] J. Wu, Y. Wang, R. Jiang, R. Xue, X. Yin, M. Wu, Q. Meng, Ferroptosis in liver 
disease: new insights into disease mechanisms, Cell Death Disco 7 (2021) 276, 
https://doi.org/10.1038/s41420-021-00660-4. 

[136] L. Mao, T. Zhao, Y. Song, L. Lin, X. Fan, B. Cui, H. Feng, X. Wang, Q. Yu, J. Zhang, 
K. Jiang, B. Wang, C. Sun, The emerging role of ferroptosis in non-cancer liver 
diseases: hype or increasing hope, Cell Death Dis. 11 (2020) 518, https://doi.org/ 
10.1038/s41419-020-2732-5. 

[137] D. Lu, Q. Xia, Z. Yang, S. Gao, S. Sun, X. Luo, Z. Li, X. Zhang, S. Han, X. Li, M. Cao, 
ENO3 promoted the progression of NASH by negatively regulating ferroptosis via 
elevation of GPX4 expression and lipid accumulation, Ann. Transl. Med. 9 (2021) 
661. 〈https://atm.amegroups.com/article/view/68207〉. 

[138] J. Qi, J.W. Kim, Z. Zhou, C.W. Lim, B. Kim, Ferroptosis affects the progression of 
nonalcoholic steatohepatitis via the modulation of lipid peroxidation-mediated 

cell death in mice, Am. J. Pathol. 190 (2020) 68–81, https://doi.org/10.1016/j. 
ajpath.2019.09.011. 

[139] S. Tsurusaki, Y. Tsuchiya, T. Koumura, M. Nakasone, T. Sakamoto, M. Matsuoka, 
H. Imai, C. Yuet-Yin Kok, H. Okochi, H. Nakano, A. Miyajima, M. Tanaka, Hepatic 
ferroptosis plays an important role as the trigger for initiating inflammation in 
nonalcoholic steatohepatitis, Cell Death Dis. 10 (2019) 449, https://doi.org/ 
10.1038/s41419-019-1678-y. 

[140] Q. Pan, Y. Luo, Q. Xia, K. He, Ferroptosis and liver fibrosis, Int J. Med Sci. 18 
(2021) 3361–3366, https://doi.org/10.7150/ijms.62903. 

[141] Y. Zhu, C. Zhang, M. Huang, J. Lin, X. Fan, T. Ni, TRIM26 induces ferroptosis to 
inhibit hepatic stellate cell activation and mitigate liver fibrosis through 
mediating SLC7A11 ubiquitination, Front. Cell Dev. Biol. 9 (2021) 488, https:// 
doi.org/10.3389/fcell.2021.644901. 

[142] J. Wang, Y. Liu, Y. Wang, L. Sun, The cross-link between ferroptosis and kidney 
diseases, Oxid. Med. Cell. Longev. 2021 (2021), 6654887, https://doi.org/ 
10.1155/2021/6654887. 

[143] L. Zhou, X. Xue, Q. Hou, C. Dai, Targeting ferroptosis attenuates interstitial 
inflammation and kidney fibrosis, Kidney Dis. 8 (2022) 57–71, https://doi.org/ 
10.1159/000517723. 

[144] L. Su, X. Jiang, C. Yang, J. Zhang, B. Chen, Y. Li, S. Yao, Q. Xie, H. Gomez, 
R. Murugan, Z. Peng, Pannexin 1 mediates ferroptosis that contributes to renal 
ischemia/reperfusion injury, J. Biol. Chem. 294 (2019) 19395–19404, https:// 
doi.org/10.1074/jbc.RA119.010949. 

[145] X. Yin, G. Zhu, Q. Wang, Y.D. Fu, J. Wang, B. Xu, Ferroptosis, a new insight into 
acute lung injury, Front. Pharmacol. 12 (2021) 1994, https://doi.org/10.3389/ 
fphar.2021.709538. 

[146] B. Xu, H. Wang, Z. Chen, Puerarin inhibits ferroptosis and inflammation of lung 
injury caused by sepsis in LPS induced lung epithelial cells, Front. Pediatr. 9 
(2021) 725, https://doi.org/10.3389/fped.2021.706327. 

[147] H. Cheng, D. Feng, X. Li, L. Gao, S. Tang, W. Liu, X. Wu, S. Yue, C. Li, Z. Luo, Iron 
deposition-induced ferroptosis in alveolar type II cells promotes the development 
of pulmonary fibrosis, Biochim. Biophys. Acta - Mol. Basis Dis. 1867 (2021), 
166204, https://doi.org/10.1016/j.bbadis.2021.166204. 

[148] J.I.J. Leu, M.E. Murphy, D.L. George, Mechanistic basis for impaired ferroptosis in 
cells expressing the African-centric S47 variant of p53, Proc. Natl. Acad. Sci. 116 
(2019) 8390, https://doi.org/10.1073/pnas.1821277116. 

[149] L. Magtanong, S.J. Dixon, Ferroptosis and brain injury, Dev. Neurosci. 40 (2018) 
382–395, https://doi.org/10.1159/000496922. 

[150] L. Mahoney-Sánchez, H. Bouchaoui, S. Ayton, D. Devos, J.A. Duce, J.C. Devedjian, 
Ferroptosis and its potential role in the physiopathology of Parkinson’s Disease, 
Prog. Neurobiol. 196 (2021), 101890, https://doi.org/10.1016/j. 
pneurobio.2020.101890. 

[151] M.A. Shibu, M. Bharath, B.K. Velmurugan, Regulating inflammation associated 
ferroptosis - a treatment strategy for parkinson disease, Curr. Med. Chem. 28 
(2021) 6895–6914, https://doi.org/10.2174/0929867328666210419125032. 

[152] J.Y. Lee, S.H. Hong, Hematopoietic stem cells and their roles in tissue 
regeneration, Int J. Stem Cells 13 (2020) 1–12, https://doi.org/10.15283/ 
ijsc19127. 

[153] J.M. Bernitz, K.A. Moore, Uncovering the origins of a niche, Elife 3 (2014), 
e05041, https://doi.org/10.7554/eLife.05041. 

[154] M. Kørbling, Z. Estrov, Adult stem cells for tissue repair - a new therapeutic 
concept? N. Engl. J. Med 349 (2003) 570–582, https://doi.org/10.1056/ 
NEJMra022361. 

[155] J.C. Reed, M. Pellecchia, Ironing out cell death mechanisms, Cell 149 (2012) 
963–965, https://doi.org/10.1016/j.cell.2012.05.009. 

[156] R. Xiong, R. He, B. Liu, W. Jiang, B. Wang, N. Li, Q. Geng, Ferroptosis: a new 
promising target for lung cancer therapy, Oxid. Med. Cell. Longev. 2021 (2021), 
8457521, https://doi.org/10.1155/2021/8457521. 

[157] R.A.M. Brown, K.L. Richardson, T.D. Kabir, D. Trinder, R. Ganss, P.J. Leedman, 
Altered iron metabolism and impact in cancer biology, metastasis, and 
immunology, Front. Oncol. 10 (2020) 476, https://doi.org/10.3389/ 
fonc.2020.00476. 

[158] X. Chen, R. Kang, G. Kroemer, D. Tang, Targeting ferroptosis in pancreatic cancer: 
a double-edged sword, Trends Cancer 7 (2021) 891–901, https://doi.org/ 
10.1016/j.trecan.2021.04.005. 

[159] C.-C. Lin, J.-T. Chi, Ferroptosis of epithelial ovarian cancer: genetic determinants 
and therapeutic potential, Oncotarget 11 (2020) 3562–3570, https://doi.org/ 
10.18632/oncotarget.27749. 

[160] J. Yang, Y. Zhou, S. Xie, J. Wang, Z. Li, L. Chen, M. Mao, C. Chen, A. Huang, 
Y. Chen, X. Zhang, N.U.H. Khan, L. Wang, J. Zhou, Metformin induces Ferroptosis 
by inhibiting UFMylation of SLC7A11 in breast cancer, J. Exp. Clin. Cancer Res. 
40 (2021) 206, https://doi.org/10.1186/s13046-021-02012-7. 

[161] Y. Yuan, S. Ni, A. Zhuge, B. Li, L. Li, Iron regulates the warburg effect and 
ferroptosis in colorectal cancer, Front. Oncol. 11 (2021) 1491, https://doi.org/ 
10.3389/fonc.2021.614778. 

[162] M.J. Kim, G.J. Yun, S.E. Kim, Metabolic regulation of ferroptosis in cancer, 
Biology 10 (2021) 83, https://doi.org/10.3390/biology10020083. 

[163] J. Yi, J. Zhu, J. Wu, C.B. Thompson, X. Jiang, Oncogenic activation of PI3K-AKT- 
mTOR signaling suppresses ferroptosis via SREBP-mediated lipogenesis, Proc. 
Natl. Acad. Sci. 117 (2020) 31189, https://doi.org/10.1073/pnas.2017152117. 

[164] C.M. Bebber, E.S. Thomas, J. Stroh, Z. Chen, A. Androulidaki, A. Schmitt, M. 
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[177] L. Bräutigam, J. Zhang, K. Dreij, L. Spahiu, A. Holmgren, H. Abe, K.D. Tew, D. 
M. Townsend, M.J. Kelner, R. Morgenstern, K. Johansson, MGST1, a GSH 
transferase/peroxidase essential for development and hematopoietic stem cell 
differentiation, Redox Biol. 17 (2018) 171–179, https://doi.org/10.1016/j. 
redox.2018.04.013. 

[178] M. Dodson, A. Anandhan, D.D. Zhang, MGST1, a new soldier of NRF2 in the battle 
against ferroptotic death, Cell Chem. Biol. 28 (2021) 741–742, https://doi.org/ 
10.1016/j.chembiol.2021.05.013. 

[179] S. Biechonski, M. Yassin, M. Milyavsky, DNA-damage response in hematopoietic 
stem cells: an evolutionary trade-off between blood regeneration and leukemia 
suppression, Carcinogenesis 38 (2017) 367–377, https://doi.org/10.1093/ 
carcin/bgx002. 

[180] D. Delia, S. Mizutani, The DNA damage response pathway in normal 
hematopoiesis and malignancies, Int J. Hematol. 106 (2017) 328–334, https:// 
doi.org/10.1007/s12185-017-2300-7. 

[181] M. Li, L. You, J. Xue, Y. Lu, Ionizing Radiation-Induced Cellular Senescence in 
Normal, Non-transformed Cells and the Involved DNA Damage Response: A Mini 
Review, Front. Pharmacol. 9 (2018) 522, https://doi.org/10.3389/ 
fphar.2018.00522. 

[182] Q. Hu, Y. Zhang, H. Lou, Z. Ou, J. Liu, W. Duan, H. Wang, Y. Ge, J. Min, F. Wang, 
Z. Ju, GPX4 and vitamin E cooperatively protect hematopoietic stem and 
progenitor cells from lipid peroxidation and ferroptosis, Cell Death Dis. 12 (2021) 
706, https://doi.org/10.1038/s41419-021-04008-9. 

[183] L.S.A. Chan, L.C. Gu, H.A. Leitch, R.A. Wells, Intracellular ROS profile in 
hematopoietic progenitors of MDS patients: association with blast count and iron 
overload, Hematology 26 (2021) 88–95, https://doi.org/10.1080/ 
16078454.2020.1870373. 

[184] M. Conrad, D.A. Pratt, The chemical basis of ferroptosis, Nat. Chem. Biol. 15 
(2019) 1137–1147, https://doi.org/10.1038/s41589-019-0408-1. 

[185] H. Yan, T. Zou, Q. Tuo, S. Xu, H. Li, A.A. Belaidi, P. Lei, Ferroptosis: mechanisms 
and links with diseases, Signal Transduct. Target. Ther. 6 (2021) 49, https://doi. 
org/10.1038/s41392-020-00428-9. 

[186] S. Xie, W. Sun, C. Zhang, B. Dong, J. Yang, M. Hou, L. Xiong, B. Cai, X. Liu, 
W. Xue, Metabolic control by heat stress determining cell fate to ferroptosis for 
effective cancer therapy, ACS Nano 15 (2021) 7179–7194, https://doi.org/ 
10.1021/acsnano.1c00380. 

[187] G. Cairo, S. Recalcati, Iron-regulatory proteins: molecular biology and 
pathophysiological implications, Expert Rev. Mol. Med. 9 (2007) 1–13, https:// 
doi.org/10.1017/S1462399407000531. 

[188] A.R. Bogdan, M. Miyazawa, K. Hashimoto, Y. Tsuji, Regulators of iron 
homeostasis: new players in metabolism, cell death, and disease, Trends Biochem 
Sci. 41 (2016) 274–286, https://doi.org/10.1016/j.tibs.2015.11.012. 
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