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Abstract
Introduction  Skin melanoma incidence has risen in the last decades becoming a major public health problem in many regions 
of the world. Geographic variation of rates is not well understood.
Purpose  To assess the spatial distribution of skin melanoma in Gran Canaria Island (Canary Islands, Spain) and to evaluate 
the role of environmental, socio-economic, and demographic factors in this distribution.
Methods  We performed a small-area study with disease mapping at the census-tract level (CT) in Gran Canaria between 2007 
and 2018. After testing for spatial autocorrelation, we integrated individual-level health data with census-based demographic 
and socio-economic indicators, and satellite-based environmental data. Finally, we assessed the role of demographic, socio-
economic and environmental factors on skin melanoma incidence using a Bayesian analytical framework, with options for 
non-spatial and spatial random effects.
Results  1058 patients were diagnosed with invasive skin melanoma in the study period and geolocated to a CT (number 
of CT in Gran Canaria = 565). We found evidence of global spatial autocorrelation in skin melanoma incidence (Moran’s 
I = 0.09, pseudo p-value = 0.001). A few hotspots were detected, fundamentally in urban northern tracts. A radial pattern of 
high values was also observed in selected ravines with historical isolation. Multivariable conditional autoregressive models 
identified urbanicity, percent of females, and a high socio-economic status as risk factors for disease. Solar radiation did not 
show a significant role.
Conclusion  Urbanicity and a high socio-economic status were identified as the main risk factors for skin melanoma. These 
associations might reflect differential melanoma susceptibilities or be explained by health inequalities in detection. This study 
also uncovered high-risk areas in particular ravines. Future targeted research in these regions might help better understand 
the role of genetic and toxic factors in melanoma pathogenesis.
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Introduction

Geographic variability in skin melanoma incidence is a 
long-standing observation, with the highest rates occurring 
in Australasia, North-western Europe, and Northern Amer-
ica [1]. Environmental, phenotypic, and socio-economic fac-
tors are thought to explain this variation [2, 3] that is still 
poorly understood.

Excessive ultraviolet radiation (UV) exposure among fair-
skinned populations has been identified as the main envi-
ronmental risk factor to develop disease [4] and high socio-
economic status (SES) populations have consistently been 
associated with increased incidence rates [3], which has 
given rise to the concepts of a latitudinal and a social gradi-
ent in melanoma distribution [5–7]. However, many regions 
escape these gradients and, despite the potential confound-
ing role that environmental and socio-demographic factors 
could have for one another, the influence of both types of 
risk factors has deserved little attention [8, 9].

The evolution of spatial epidemiology in the last two dec-
ades as Geographic Information Systems (GIS) have become 
more available, together with the advent of methodological 
and computational developments, has enabled the assess-
ment of geographic variations of disease with a new scope 
[10]. By allowing to integrate and link data from multiple 
sources at a small-area level, spatial methods have become 
an asset in cancer surveillance and as a hypothesis generat-
ing tool [11].

The Canary Islands are a Spanish archipelago located in 
the Atlantic Ocean off the coast of North-western Africa, 
with a subtropical climate. The population in the islands is 
exposed to a high environmental risk for the development 
of skin cancers [12], yet unexpectedly the incidence of skin 
melanoma in the region is among the lowest in Spain and 
below the estimates provided by the World Health Organiza-
tion for Southern Europe [1, 13].

Mapping skin melanoma distribution in Gran Canaria, 
one of the main Islands, and evaluating the factors driving 
this geographic distribution could provide insight into this 
unexpected epidemiological finding and contribute to disen-
tangle the role of environmental and socio-economic factors 
in melanoma incidence at a small geographic scale.

In this study, we assessed the spatial heterogeneity of skin 
melanoma incidence at the census-tract (CT) level across 
Gran Canaria in the period 2007–2018. In addition, we 
aimed at identifying the occurrence of potential hotspots, 
namely areas at higher risk of skin melanoma across the 
island, and at evaluating whether demographic, socio-eco-
nomic, and environmental variables could represent risk fac-
tors for skin melanoma occurrence and explain its spatial 
variation.

Methods

Study site and study population

Gran Canaria is one of the two main islands of the Canary 
Islands archipelago. With a population of about 850,000 
inhabitants, its area is relatively small (1,560 km2), yet the 
altitude range is high (0–1,956 m), reflecting its volcanic 
origin. With an almost circular shape of diameter 47 km, it 
can be topographically divided into ravines that start in the 
central summit down to the coast, in a radial configuration 
(Supplementary Fig. S1) [14]. The capital city of Las Palmas 
de Gran Canaria (LPGC) is located in the northeast cor-
ner of the island and concentrates about half of the island’s 
population.

Universal health coverage is available in the region and 
delivered through the government-funded Canary Islands 
Healthcare Service (CIHS). Access to dermatologic care in 
the CIHS is available through a General Practitioner (GP) 
referral, and GPs are assigned based on residential address.

Data sources

Skin melanoma cases were obtained from the Gran Canaria 
skin melanoma dataset specified below, and covariate data 
were downloaded from the open-data sources listed in sup-
plementary Table S1. A detailed description of the datasets 
is also provided.

Skin melanoma cases

The Gran Canaria skin melanoma dataset used in this study 
has been previously described in detail [13]. It includes 
demographic, clinical, and histological information of 
all invasive skin melanoma cases evaluated at the CIHS 
among GC residents, diagnosed between January 2007 and 
December 2018. It has a comprehensive geographic cover-
age within the island and contains all cases diagnosed in the 
public CIHS facilities (which represent 86% of all healthcare 
in the region) [15] and most cases diagnosed in the private 
setting. It was compiled following the International Classi-
fication of Diseases ICD-10 diagnosis code C43 (malignant 
melanoma of skin), thereby excluding in situ and mucosal 
melanomas. In case multiple melanomas were diagnosed in 
a patient, only the first one was counted, in accordance with 
the International Agency for Research on Cancer rules [16].

The information about the residential address of patients 
at the time of diagnosis was retrieved from the clinical 
records before the dataset was de-identified for further anal-
yses. Cases were located at the street level and then reas-
signed to a CT by georeferencing the street.
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Spatial unit

CTs are the smallest geographic unit for which census data 
are available in Spain. Population data for Gran Canaria 
and the outline of CTs were downloaded from the Span-
ish National Institute of Statistics (INE) and corresponded 
to the Spanish Population and Housing Censuses of 2011 
(SPHC2011)[17].

In Spain, the census is updated every ten years. 
SPHC2011 was the first census based on a sampling survey 
and included 12.3% of the population. Surface areas of CTs 
in Gran Canaria varied from 8,798 to 12,306,130 m2, the 
population size range was 320 to 5,565 inhabitants and the 
number of CTs 565.

Demographic and socio‑economic variables

Demographic (age and sex composition of the population) 
and educational attainment indicators were obtained from 
the SPHC2011 database.

Some additional economic indicators, such as 
unemployment rates, income type, and rent, were 
obtained from  Spain’s Household income distribution atlas 
for 2015 at the same geographic scale (CT level) [18].

In addition, we also considered the first deprivation 
index with full geographic coverage in Spain (IP2011) that 
has recently been made publicly available [19]. Based on 
socio-economic indicators from the SPHC2011 and elabo-
rated using principal component analysis, IP2011 integrates 
information regarding percentages of the following indica-
tors: manual workers, temporary workers, unemployment, 
insufficient (incomplete compulsory) education overall, 
insufficient education among youth (16 to 29-year-olds), 
and dwellings without internet access [19]. Constructed as 
a quantitative variable at the CT level, it is a standardized 
index with a mean of 0 and standard deviation of 1 and is 
to be interpreted on relative terms, with values close to 0 
indicating the average deprivation of the country, positive 
values indicating more deprivation (meaning more poverty) 
and negative values less deprivation.

Environmental variables

Cartographic data included administrative boundaries, roads, 
water surfaces, and altitude data. Land cover information 
was obtained from the European Environmental Agency’s 
satellite data of the Copernicus Land Monitoring Service 
[20]. Solar radiation data were downloaded from the global 
climate and weather data WorldClim (version 2.0) [21].

Data preparation

Georeferencing skin melanoma cases

We georeferenced the residential addresses of cases at the 
street level with two widely used Application Programming 
interfaces (APIs): OpenCage geocoder and Google Earth 
Engine, extracting longitude and latitude for each occurrence 
with both APIs. For this, we used the packages opencage 
v0.2.2 and ggmap v3.0.0 in R v3.6.3 [22–24]. We mapped 
coordinates to cross-check for spatial consistency. Discord-
ant cases and those with potential geolocation errors were 
manually geolocated with OpenStreetMap. As a second step, 
we aggregated the spatial point data to the CT level. Gran 
Canaria is divided into 565 CTs, yet when linking the shape-
file to the census, three tracts did not exist and were merged 
to the corresponding ones with a final number of 562 tracts. 
A shapefile was created with these aggregated data.

Spatial covariates: potential predictors of the distribution 
of cases

The proportion of females per CT was obtained by dividing 
the total number of females by the total population, within 
each CT.

Regarding SES variables available at the census, we 
generated a new variable named p_basic (basic studies) by 
aggregating the variables: (i) illiterate persons, (ii) those 
without studies (less than 5 years of schooling), and (iii) 
those with first-level studies (elementary school completed, 
as higher educational attainment). For each CT, all variables 
of educational attainment were divided by the population 
aged over 16 years, to obtain a proportion of the population 
with different degrees of educational attainment within each 
CT (p_basic, p_2_grd, and p_3_grd, supplementary Tables 
S1, S2). Economic indicators of 2015 were aggregated to 
their corresponding CT.

The deprivation index covariate had the same geographic 
coverage as the other SES variables and was linked to the 
census shapefile without incidences.

Land cover and climatic data were downloaded at a 
global scale in a raster format (continuous surface divided 
into regular grids) and extracted for the Canary Islands with 
the Mask feature of ArcGIS and projected in ETRS89/UTM 
zone 30 N (EPSG: 25830) at 1km2 resolution. Land cover 
data originally had 44 different categories and were obtained 
at 100-m resolution. It was expected that data scarcity for 
many categories would be troublesome, therefore a simpli-
fied Corine classification with broader categories was used, 
those being: artificial surfaces (urban), agricultural areas, 
and forests and semi-natural areas. In case a CT contained 
many categories, it was assigned the modal value (most fre-
quent category). In order to allow for modeling with binary 
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or numeric variables, a further simplified categorization 
of these three categories was performed, finally using per-
cent of urban land and percent of non-urban land (agricul-
tural, forests and semi-natural areas).

Hillshade and slope rasters were created using the corre-
sponding ArcGIS Spatial Analysis tools, by integrating the 
information about altitude and azimuth from cartographic 
data.

For rasters with numeric values (Hillshade, solar radia-
tion, digital elevation, and slope), the mean value for each 
cell was extracted. Input grids were resampled to a com-
mon spatial resolution of 1 km2 using the nearest neighbor 
approach and clipped to match the geographic extent of a 
map of Gran Canaria and eventually aligned to it. Raster 
manipulation and processing were undertaken using raster 
[26] package in R and final map layouts created with ArcGIS 
10.8 software [25].

Missing data for covariates were scarce (the maximum 
missing data of a covariate occurred in 16 CTs). For miss-
ing values, multiple imputation was performed with mice 
[27] R package, by means of a linear regression using 
bootstrapping.

Statistical analyses

Outcome definition

The outcome of this study was the spatial distribution of 
skin melanoma incidence in Gran Canaria in 2007–2018, 
measured as standardized incidence ratios (SIR) per CT for 
the study period. SIR is defined as a ratio of the number 
of observed cases to the number that would be expected, 
if the study population experienced the same incidence 
rates as the reference population. In our study, the refer-
ence population was the total population of Gran Canaria. 
An SIR was calculated for each CT, taking the number of 
cases and the CT population into account: SIRi = Observedi/
Expectedi, where Oi is the observed number of cases, Ei = rPi 
is the expected number of cases, Pi is the population, and 
r = sum of (observed cases/total population) is the overall 
incidence ratio. An SIR of 1 indicated an incidence equal 
to that expected for the CT, based on the overall crude inci-
dence in the island.

Skin melanoma incidence is known to increase with 
age. To account for the potential confounding effect that 
age composition per CT might have, expected counts were 
calculated for each age group category available at the 
census (< 16, 16 to 64, and > 64 years) and then added, to 
obtain an age-adjusted SIR (aSIR) = Observed cases/Age-
adjusted expected cases, for each CT [28]. An aSIR of 1 
indicates an incidence equal to that expected for the CT, 
taking into account the total population of the CT and its age 

composition. An aSIR > 1 indicates a higher incidence than 
expected, and an aSIR < 1 a lower incidence than expected.

Analysis of spatial clustering

We initially tested for global spatial autocorrelation with 
Moran’s I statistic using GeoDA software [29], to identify 
whether geographic variations in incidence were random or 
whether there was evidence for spatial clustering in the data.

The spatial weights matrix used to define the spatial rela-
tionships of the CTs was based on Queen’s contiguity, with 
a spatial lag of one (first-order adjacency). Queen contiguity 
defines neighbors as spatial units sharing a common edge 
or a common vertex and seemed more appropriate for Gran 
Canaria than the available alternatives due to the geographic 
variability of tracts in morphology and size. Monte Carlo 
simulation was performed in order to test the statistical sig-
nificance of Moran’s I coefficient. 999 permutations were 
used to obtain more stable pseudo p-values.

In case evidence for spatial autocorrelation was found, 
local spatial autocorrelation with Local Moran’s I statistic 
(LISA) would be performed to check for the presence of 
clusters/outliers, and Monte Carlo methods applied again. 
We performed sensitivity analyses and increased the sig-
nificance level to 0.01 to decrease the risk of false positives 
arising from multiple comparisons.

Bayesian statistical modeling

CTs are small areas, and limitations of SIR comparisons 
across small areas have previously been noted. Bayesian 
modeling methods allow to adjust for data from neighbor-
ing small areas and to obtain a quantification of the uncer-
tainty around the estimates, improving former approaches 
[30]. Since the dataset was too sparse to fit a spatiotemporal 
model due to the relatively low melanoma incidence in the 
region, annual cases were aggregated to consider a spatial 
model for the whole study period (2007–2018).

We modeled the incidence of skin melanoma in Gran 
Canaria by fitting multivariable spatial generalized linear 
mixed models with inference in a Bayesian setting, using 
Integrated Nested Laplace Approximations. Models were 
implemented with INLA and CARBayes packages in R [22, 
31, 32]. The response variable, aSIR, was fitted using mul-
tiple Bayesian Poisson models with a range of explanatory 
variables as potential risk factors (fixed effects) and different 
options for random effects with (i) no random effects (Model 
1), (ii) independent random effects (Model 2), and (iii) spa-
tially correlated random effects, implemented through a 
conditional autoregressive model (CAR, Model 3). Inde-
pendent random effects are a tool conceived for modeling 
and structuring the sources of variability underlying the data 
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[33]. Model 2, fitted with the effect of covariates and with 
independent random effects, provided a baseline to assess 
whether residual spatial dependence (added in model 3) was 
required to model the data [34]. Model 3 was fitted using the 
widely used Besag, York, and Mollié (BYM) spatial model 
[35, 36].

For the selection of covariates, based on previous evi-
dence we decided a priori that an adjustment for age, sex, 
and SES needed to be included in the final model, apart 
from the effect of environmental variables that we aimed 
to test [3, 13]. Age was accounted for by modeling age-
adjusted SIR, and sex by adjusting for percent of females per 
CT. For the other predictors, we explored the distribution of 
each covariate and fitted univariable models using simple 
Poisson regression without accounting for random effects. A 
correlogram of all covariates was performed to (i) evaluate 
the relationship between them, (ii) assess how the depriva-
tion index IP2011 behaved compared to other SES meas-
ures in the region, and (iii) exclude correlated covariates 
in order to reduce the risk of collinearity and overfitting in 
the final model (see Supplementary Fig. S3). All covariates 
were scaled ((value-mean)/standard deviation) and then the 
selected ones fitted as fixed effects in all models.

The adequacy of the fitted models was explored using 
standard posterior predictive checks. A final comparison was 
made to select the best model using the deviance information 
criterion (DIC), i.e., the one with a lowest DIC [37]. Details 
on the specifications of these Bayesian Poisson models are 
given in the supplementary file (Supplementary Text T1).

Ethical clearances

The study was approved by the regional Research Ethics 
Committee (CEI/CEIm HUGCDN, Code 2019-515-1).

Results

In the period 2007–2018, 1,058 skin melanoma cases were 
diagnosed among Gran Canaria residents, of which 1,055 
(99.7%) could be ascribed to a CT and mapped. The overall 
incidence rate was of 10.4 cases per 100,000 person-years. 
The age-specific rate in the 16- to 64-year-old age stratum 
was of 9.4 cases per 100,000 person-years, while in people 
older than 64, the rate rose to 29.4. No cases were diag-
nosed in people younger than 16 in the whole study period. 
Age-adjusted SIR (aSIR) were obtained for each CT across 

Fig. 1   Choropleth map showing 
the incidence of skin melanoma 
in Gran Canaria Island and in 
the capital city of Las Palmas 
de Gran Canaria (LPGC) in 
2007–2018, at the census-tract 
level.
Incidence presented as Age-
adjusted Standardized Incidence 
Ratios (aSIR) per census tract 
(CT). An aSIR of 1 in a CT 
indicates an observed number 
of cases equal to that expected 
for the CT in the study period, 
based on the overall incidence 
in the island and considering 
the total population of the CT 
and its age composition. An 
aSIR > 1 indicates a higher 
incidence than expected, and 
aSIR < 1 a lower incidence 
than expected. An aSIR of 3 
indicates an incidence 3 times 
higher than expected for the CT
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the island, with a median of 0.77 (IQR 0.00–1.56) and a 
maximum value of 7.85. The distribution of aSIR across 
the island is presented in Fig. 1, where high values can be 
observed in some CTs of the capital city (LPGC) and follow-
ing selected ravines of the island (Tirajana, Telde, Azuaje, 
and end of Guiniguada ravines, supplementary Fig. S1).

We found evidence of spatial heterogeneity in the dis-
tribution of skin melanoma incidence across the island. 
Moran’s I coefficient of spatial global autocorrelation 
indicated positive clustering with SIR (I = 0.09, pseudo 
p-value = 0.001), meaning cases were more spatially clus-
tered than expected by chance, and neighboring tracts tended 
to have more similar incidences than distant tracts. After 
adjusting for the effect of age using aSIR, there was still 
evidence for spatial autocorrelation although the magnitude 
was lower (I = 0.06, pseudo p-value = 0.009).

Figure 2 shows the results of the analysis of local spa-
tial autocorrelation (LISA), highlighting CTs that are clus-
tering based on measured aSIR. A few areas at increased 
risk (hot spots) were identified in the northern region of 
the island, particularly in Triana, an urban, high-SES 
area of LPGC and in neighborhoods of Agaete and Firgas 
municipalities. Clusters of low aSIR (cold spots) were also 

identified in more deprived, central rural neighborhoods 
of Tejeda and La Vega de San Mateo and in the northern 
municipality of Santa Maria de Guía (Fig. 2 and supple-
mentary Figs. S1 and S2).

Maps showing the distribution of covariates at the CT 
level, and correlation plots of covariates are presented 
in supplementary Figs. S2 and S3. Regarding SES vari-
ables, IP2011 showed correlation (Pearson’s correlation 
coefficient > 0.5 or < -0.5) with both economic and edu-
cational attainment variables, including those from the 
SPHC2011 used to elaborate the index itself and with the 
supplementary economic covariates of Spain’s Household 
income distribution atlas. Therefore, IP2011 was selected 
as the covariate to adjust for SES in further modeling 
steps.

Urbanization, measured as the percentage of CT area 
covered by urban land, showed strong negative correlation 
with altitude, slope, and other land cover types and was 
selected as the single land cover and topographic variable, 
as it was deemed as potentially more relevant based on 
previous findings [38, 39]. Solar radiation and Hillshade 
did not show collinearity with other potential explanatory 
factors and were then selected for further analyses.

Fig. 2   Cluster maps of skin 
melanoma incidence showing 
the type of spatial association 
between adjacent neighbor-
hoods in Gran Canaria and in 
LPGC city in 2017–2018.
Local Indicator of Spatial Auto-
correlation (LISA) cluster map. 
High–high and low–low indi-
cate clustering of similar values 
and high–low and low–high 
indicate spatial outliers. Spatial 
weights with Queen’s contiguity 
of first order, with age-adjusted 
SIR as outcome and signifi-
cance filter of p < 0.01
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Bayesian Poisson regression models of aSIR were 
fitted with the selected explanatory covariates (depri-
vation index, percent of females, percent of urbanized 
land, solar radiation) and with different options for ran-
dom effects implemented through a BYM CAR model. 
The model accounting for independent random effects 
(model 2) outperformed the model with only fixed effects 
(Table 1). There was no evidence of spatial autocorrelation 
in the residuals, indicating that the covariates reasonably 
accounted for the existing spatial structure in the aSIR.

Bayesian CAR models with spatially structured random 
effects (global and local spatial smoothing, models 3 and 
4, respectively) did not show a significant improvement on 
model fit compared to the fitted model with independent 
random effects (Table 1). Therefore, the model with inde-
pendent random effects was selected as the final model. 
Sex, deprivation index, and urbanicity were the covari-
ates that better explained case distribution in the region 
(Table  2). We explored adding Hillshade as a covari-
ate, but it did not improve model fit and led to slightly 
decreased dispersion of the residuals and was therefore 
discarded. Figure 3 shows the fitted aSIR values through-
out Gran Canaria with the final model (modeled aSIR with 
fixed effects—the explanatory covariates—and with inde-
pendent random effects). 

Discussion

We found evidence of spatial heterogeneity in the distribu-
tion of skin melanoma incidence in Gran Canaria for the 
period 2007–2018, at the CT level (Moran’s I = 0.06, pseudo 
p-value = 0.009). Hot spots were identified in northern urban 
CTs, whereas a few cold spots clustered in central non-urban 
CTs (Figs. 1, 2). In the Bayesian multivariable model, a high 
SES and urbanicity were independently associated with an 
increased incidence (Table 2). This supports the existence 
of a social and an urban–rural gradient in melanoma inci-
dence in the island and adds to the international body of 
evidence that high-SES populations present higher rates of 
skin melanoma [3].

Previous studies have suggested that high-SES popula-
tions might present higher rates of disease due to an easier 
access to recreational sun-related activities; hence, more 
sunburns and melanoma risk [3, 40, 41]. However, Gran 
Canaria is a sun-and-beach destination itself and the hypoth-
esis of a differential accessibility to sun-related activities 
would not hold in this region. Additionally, low-SES CTs 
tended to suffer from higher solar radiation than high-SES 
ones (Supplementary Fig. S2), and lower-SES populations 
might struggle to buy sunscreen products. A differential sun-
tanning behavior based on SES, with high-SES populations 
seeking sun tanning more intensively, rather than accessibil-
ity, could explain the social gradient in Gran Canaria [41].

Urbanicity was also associated with a higher incidence 
(Table 2). This is consistent with previous studies con-
ducted in some Northern European countries and Canada 
[9, 38, 42]. Conversely, rurality was found to be a risk fac-
tor in Costa Rica [39], mostly linked to pesticide exposure. 
Urbanicity might also be associated with increased sun-
seeking behaviors, with differential perceptions of tanned 
skin or clothing trends, posing individuals living in urban 
neighborhoods at an increased risk of melanoma [41]. Future 
qualitative studies in GC might help disentangle the mecha-
nisms explaining these associations.

An alternative explanation of these social and urban–rural 
gradients might be the presence of a diagnostic access bias, 
with early-stage forms of melanoma going underdiagnosed 

Table 1   Deviance information criteria (DIC) values for the different types of Bayesian Poisson models

CAR: conditional autoregressive model. All models include fixed effects (i.e. the covariates: age, %females, deprivation index, % urban land, and 
solar radiation)

Model type DIC values

Model 1: No random effects 2088.7
Model 2: Independent random effects 1929.5
Model 3: Globally smoothed CAR (global spatial smoothing) 1928.6
Model 4: Locally smoothed CAR (local spatial smoothing) 1940.5

Table 2   Posterior median and 95% credible intervals for the fixed 
effects of the final model for the distribution of skin melanoma inci-
dence in Gran Canaria, 2007–2018

Final model: Bayesian conditional autoregressive model with fixed 
effects and independent random effects

Covariates Regression  
coefficient

95% credible 
interval (CI)

Intercept 0.84 (0.77; 0.92)
Proportion of females 1.09 (1.00; 1.18)
Deprivation index 0.86 (0.79; 0.94)
Urbanicity 1.13 (1.03; 1.23)
Solar radiation 1.00 (0.92; 1.09)



	 Cancer Causes & Control

1 3

in deprived and remote settings [3, 43]. Although Spain’s 
universal healthcare should make this hypothesis unlikely, 
a previous study showed that in northern Gran Canaria, a 
low educational attainment was associated with late-stage 
melanoma diagnoses [44]. Future research should aim at 
clarifying whether the aforementioned gradients reflect a 
health inequality [45].

The distribution of incidence was a revealing finding 
that might deserve further study. A radial pattern could 
be observed, overlapping to the ravines’ map of the island 
(Fig. 1 and supplementary Fig. S1). High values could be 
observed following the ravines of Tirajana, Telde, Azuaje, 
and end of Guiniguada. On the other hand, low values were 
found in the Arguineguín, Mogan, Tasartico, La Aldea, 

Fig. 3   Modeled skin melanoma 
incidence in Gran Canaria 
Island and in the city of Las Pal-
mas de Gran Canaria (LPGC) in 
2007–2018 at the census-tract 
level, with the final model.
A Fitted values of median aSIR 
with the Bayesian conditional 
autoregressive model account-
ing for fixed and independent 
random effects. B Lower and 
upper bounds of the 95% CI for 
modeled aSIR across the island. 
aSIR age-adjusted standardized 
incidence ratios, CI credible 
interval
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Moya, and Tenoya ravines. The regression model that 
showed better fitting of aSIR was a model with fixed effects 
(the selected explanatory covariates) and independent ran-
dom effects. The latter, associated to each CT, are intended 
to account for any variance unexplained by the fixed effects 
and can be explained as unmeasured individual or CT factors 
which might have helped better explain the spatial distribu-
tion of skin melanoma (Table 1). Genetic and toxic factors 
are especially relevant in the epidemiology of geographically 
isolated areas, like islands [46], and might account for this 
uncaptured variability and explain this radial pattern. His-
torically, communication across the steep ravines was very 
difficult due to the lack of roads [47], favoring inbreeding 
and similar water supplies within ravines.

Distinct genetic populations might exist in Gran Canaria 
[48, 49] reflecting the influx of the varying ethnical groups 
that progressively populated the island. New mutations with 
founder effects have been discovered, with some genetic dis-
eases clustering in particular ravines [50, 51]. Gran Canaria 
islanders are fundamentally of Spanish descent [52], due to 
the colonization process occurring in the fifteenth century 
by the Crown of Castile [49, 53, 54]. Settlers from Italy, 
Portugal, Flanders, and north African territories repre-
sented significant population influxes during the sixteenth 
century onward [55] and tended to group together accord-
ing to origin [49, 55]. British communities followed later 
on, settling predominantly in urban regions of Gran Canaria 
capital city, LPGC [56–59]. Particularly, British merchants 
established in the commercial area of Triana and around the 
modern La Luz port [51, 57, 60] of LPGC, where a hotspot 
was identified (Fig. 2). Genetic susceptibility to melanoma 
is still poorly understood [61], and the particular distribution 
of cases in Gran Canaria, together with its anthropologi-
cal evolution, might render the island a setting of particular 
interest for future genetic research.

An alternative explanation of the radial pattern could be 
related to water toxicity. Radon and pesticides have been 
attributed a potential causal role in skin melanoma [39, 
62–64]. The cleanest waters of the island are considered to 
be in the top central areas of Tejeda and Artenara, where 
spring water is available. Those municipalities were classi-
cally the most isolated areas of the island, with the higher 
intensities of solar radiation, yet they constitute the pre-
dominant cold spot of incidence. Additionally, the Azuaje, 
Guiniguada, and Tirajana ravines (regions with high inci-
dence) have long suffered from polluted waters [65–68]. 
A comparative study of water composition across ravines 
would allow to test potential associations between selected 
chemicals and skin melanoma occurrence. Future research 
should aim at clarifying whether genetic, toxic factors, or 
both might better explain the radial pattern of skin mela-
noma incidence in Gran Canaria.

Regarding the covariates used, this study supports the 
validity of IP2011 [19] as a measure to assess SES in Spain 
[69]. Despite SES being a multidimensional construct, most 
health studies have used a single variable to adjust for SES, 
either related with education, wealth, or occupation, but 
seldom integrating many of them, which might have led to 
biased adjustments [3, 70]. Deprivation indexes have been 
developed in some regions to overcome these limitations 
[71]. Until very recently, Spain had a deprivation index 
available for major cities [72] but not for the whole exten-
sion of the country. In this study, IP2011 correlated well 
with wealth and educational variables others than the ones 
used for its composition (Supplementary Fig. S3).

Our study has some limitations. First, the relatively low 
number of cases per year did not allow to evaluate the tem-
poral fluctuations within the study period, nor to perform 
separate calculations for men and women. The effect of sex 
on incidence was therefore measured as percent of females 
per CT and the population denominator of the 2011 neigh-
borhood considered as fixed for the entire study period, 
which might have produced residual confounding.

Second, our assessment of the role of solar radiation 
might not have provided an adequate measurement of the 
effect of this variable. Epidemiological studies using a 
small-area approach are ecologic, and exposure estimates 
of covariates are assigned to individuals based on location 
of residence. This approach has been validated for demo-
graphic and socio-economic variables [73], but might be 
more limited for solar radiation. Due to data availability, 
exposure was estimated at the place of residence, at the time 
of diagnosis. Yet a long spatial lag is expected between sun 
exposure and melanoma development [40, 74].

Finally, this study relies on the assumption that all inci-
dent skin melanoma cases diagnosed in Gran Canaria resi-
dents in the study period were considered. Because of how 
the dataset was elaborated, we have certainty that all cases 
diagnosed in the public healthcare system (CIHS) were 
included, but a few cases diagnosed in private practices 
might have been missed [13]. The CIHS covers about 87% 
of all healthcare in the region, and cases diagnosed in private 
clinics in our dataset represented 15.8%, that is, more than 
expected [13, 15]. Therefore, the plausible number of miss-
ing cases is unlikely to have meaningfully biased the results. 
Moreover, the uptake of private healthcare services in Spain 
is more common among high-SES individuals [75], and the 
plausible missing cases would be more likely to reside in 
high-SES neighborhoods, thereby increasing the effect esti-
mates found.

Our study also has many strengths. The small-area 
approach used allowed the integration of individual-based 
health data and high-resolution small-area data, provid-
ing high-level granularity. This “semi-ecological” design 
is considered to allow a finer adjustment than traditional 
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ecological studies, thereby diminishing the risk for ecologi-
cal fallacy and improving causal inference [73].

The geospatial approach allowed disease mapping in Gran 
Canaria, providing the first identification of high- and low-
risk areas in the region. It also establishes the role of demo-
graphic, socio-economic, and environmental variables in the 
relative risk of skin melanoma occurrence in Gran Canaria 
and provides new opportunities to assess their impact from 
a public health perspective [76]. Both the insularity and the 
anthropological evolution of Gran Canaria might provide 
a unique setting to test unresolved questions in melanoma 
epidemiology and pathogenesis.

Conclusion

We found evidence of spatial heterogeneity in the distri-
bution of skin melanoma incidence in Gran Canaria in 
2007–2018 at the CT level. High values were identified 
in northern urban CTs and in certain ravines of the island, 
whereas a few cold spots clustered in central non-urban terri-
tories. A high SES and urbanicity were independently asso-
ciated with increased incidence. Future studies will need to 
address whether SES and urbanicity truly explain differential 
melanoma susceptibility in the region, or whether they might 
be the result of health inequalities in skin melanoma detec-
tion. The clustering of high values following some ravines 
with historical isolation might represent an opportunity for 
future discoveries of the potential role of genetic and toxic 
factors in melanoma pathogenesis.
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