
978-1-6654-2161-4/22/$31.00 ©2022 IEEE

TCPConex: library to create TCP/IP communication
applications

Juan Cerezo Sánchez
 Inst. Univ. de Microelectrónica

Aplicada (IUMA). Univ. Las
Palmas de G.C. (ULPGC).

L.P. de Gran Canaria, Spain.
ORCID: 0000-0002-2914-170X

Sonia León del Rosario
Inst. Univ. de Microelectrónica
Aplicada (IUMA). Univ. Las
Palmas de G.C. (ULPGC).

L.P. de Gran Canaria, Spain.
ORCID: 0000-0001-8998-455X

Carlos Vega García
Inst. Univ. de Microelectrónica
Aplicada (IUMA). Univ. Las
Palmas de G.C. (ULPGC).

L.P. de Gran Canaria, Spain.
ORCID: 0000-0002-5629-1471

Aurelio Vega Martínez
Inst. Univ. de Microelectrónica
Aplicada (IUMA). Univ. Las
Palmas de G.C. (ULPGC).

L.P. de Gran Canaria, Spain.
ORCID: 0000-0002-4154-8799

Abstract—A library is presented that makes it easier for

students to create TCP/IP communications applications. Even

though the library offers elementary and high-level usage

functions, additionally, resolves all asynchronous call sequences

with low-level sockets.

Keywords— Library, Communication Application, Sockets,

TCP/IP

I. INTRODUCTION

During the development of communication applications
over TCP/IP, the problem of managing the sequence of calls
to low-level functions that work with sockets arises. This issue
may be solved by using blocking functions or asynchronous
functions. The library presented in this article handle this
problem by using an asynchronous approach for managing the
sockets [1] [2].

The developed library, TCPConex, release the
programmer from managing calls to the socket functions.
With this library, the student or programmer who wants to
create a TCP communication application may leave out the
low-level functions and only needs to focus on the high-level
functionality of the application, that is, the exchange of
messages.

II. THE TROUBLE

A. Creation of communications applications

In the Industrial Informatics subject of the Electronic and
Automatic Engineering Degree, communications applications
are work focus. One of the laboratory tasks consists of the
development of an integration application that needs to
establish TCP connections between client and server (Fig. 1)
The development has to be done in C# language with the .Net
Framework library on Microsoft's Visual Studio environment.

Fig. 1 - Integration Application

a) Students face a double problem during its
development:

b) Manage client and server connections to connect they
both.

c) Manage transferred messages.

The problem of message managing is unavoidable and
depends on the functional specifications of the application to
be developed. However, the problem of connections
managing is also a very common situation and can be faced in
many ways.

There are multiple options to manage TCP connections in
C#. The available libraries offer classes with methods that
allow the user to solve this problem. In all cases, to use these
libraries, it is necessary to handle concepts that touch the limit
of the content scope worked on a subject based on
communication concepts.

Due to the aforementioned idea, it was decided to create a
DLL, that is, a library of methods supporting the necessary
functionality to make it easier for students to manage TCP
connections in their communications applications.

III. DEVELOPMENT ALTERNATIVES

A. Libraries

There are multiple options for using libraries to manage
TCP connections in C# on Visual Studio The first thing is to
decide which library you are going to work with. .Net
Framework is used in the subject. However, other options
exists: .NET, .NET Core, and .NET Standard. Recently it
seems that even Microsoft has realized the mess of options and
versions it offers, so the trend is to unify everything and use a
single library [3].

B. Using the functions

Even so, after choosing a library, there are also multiple
ways to solve the problem. In the case of the .Net Framework,
there are also multiple classes that allow finding a solution.

The underlying problem to be solved is that in
communications applications it is necessary to attend to the
different situations that may occur at any time during the
connections.

C. TCP connection

In a TCP connection, there are two types of applications
involved:

a) Client application.

It is the application that initiates the communication
and sends a connection request to the server. Once
sent, it waits to receive a response from the server.

b) Server Application.

It is an application that waits to receive a connection
request from a client, so it must be started before
receiving this request. Once the request is received, it
will send an affirmative response to establish the
connection, or a negative response to reject it.

Server and Supervision PC

Data Register

(Files)

Comunicaciones

(RS-232)
Supervision

Application

TCP Server

TCP Client

Aplication

Ethernet Communication

(TCP/IP)

ELECTRIC VEHICLE

E/S and

Monitoring

Module (Arduino)

(Industrial Informatics Lab Task)

20
22

 C
on

gr
es

o
de

 T
ec

no
lo

gí
a,

 A
pr

en
di

za
je

 y
 E

ns
eñ

an
za

 d
e

la
 E

le
ct

ró
ni

ca
 (X

V
Te

ch
no

lo
gi

es
 A

pp
lie

d
to

 E
le

ct
ro

ni
cs

 T
ea

ch
in

g
Co

nf
er

en
ce

 (T
AE

E)
 |

 9
78

-1
-6

65
4-

21
61

-4
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
TA

EE
54

16
9.

20
22

.9
84

05
84

20
22

 C
on

gr
es

o
de

 T
ec

no
lo

gí
a,

 A
pr

en
di

za
je

 y
 E

ns
eñ

an
za

 d
e

la
 E

le
ct

ró
ni

ca
 (X

V
Te

ch
no

lo
gi

es
 A

pp
lie

d
to

 E
le

ct
ro

ni
cs

 T
ea

ch
in

g
Co

nf
er

en
ce

 (T
AE

E)
 |

 9
78

-1
-6

65
4-

21
61

-4
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
TA

EE
54

16
9.

20
22

.9
84

05
84

Authorized licensed use limited to: UNIV DE LAS PALMAS. Downloaded on August 24,2022 at 08:57:12 UTC from IEEE Xplore. Restrictions apply.

Once the TCP connection is established, both applications
can send and receive messages independently of each other.
At any time, any application can close the connection (Fig. 2).

Fig. 2 - TCP connection

D. Synchronous vs Asynchronous

The pint is to decide which classes to use, which methods
to use and how to do it, which ones are better, why and for
which cases.

There are two large groups of methods:

a) Synchronous methods.

They perform their functionality, and it is assumed
that the conditions for the execution to be carried out
are met. If the conditions are not met, the method does
not return until finished, so it becomes a blocking
function, that is, the execution remains blocked
waiting to finish the function, and this can cause the
program and the application to block. To solve these
situations, these calls to blocking functions are
usually included into independent processes or
threads, so that if the thread is blocked it does not
affect the rest of the program. This type of method fits
for simpler applications.

b) Asynchronous methods.

They are based on launching an execution indicating
that it must notify when finished by means of an
event. On the other hand, this event must be attended
when it occurs. In this type of methods, there are no
blocking situations, but events must be handled.
Methods called ‘callback’ are usually used to manage
the events. Callback methods are executed when the
expected event occurs.

Both types of methods are useful for creating the
aforementioned DLL, since it does not need high
requirements.

Synchronous methods are easier to handle, but threads
need to be well synchronized. On the other hand,
asynchronous methods are more complex to control due to the
handling of events with callbacks. However, they adapt better
to be used in the DLL to be created, since it provides more
flexibility and is more interesting from the didactic point of
view.

E. Classes and Methods

C# is a language that works with object-oriented
programming, and with classes. Classes are functional blocks

with a predefined behaviour, with methods to perform
operations and use properties to store their own information.
Additionally, classes are grouped into what is called a
NameSpace. Table 1 shows the main classes to create
applications that work with TCP communications.

Table 1 - Clases del Namespace System.Net.Sockets

Name Description

Socket The Socket class provides a rich set of methods and
properties for network communications. The Socket class
allows to perform both synchronous and asynchronous
data transfer.

TcpClient The TcpClient class provides simple methods for
connecting, sending, and receiving stream data over a
network in synchronous blocking mode.

TcpListener The TcpListener class provides simple methods that listen
for and accept incoming connection requests in blocking
synchronous mode. Either a TcpClient or a Socket to be
connected with a TcpListener.

IV. TCPCONEX

A. Objectives

The main objective of this TcpConex library is to provide
students with a utility so that they can easily create
communications applications without having to manage TCP
connections.

B. DLL outline

A DLL has been created that offers TCP connection
management methods to users. It allows distinguishing the
use depending on whether it is a server or client application.
The library has been developed in C# on Microsoft's Visual
Studio environment.

It makes use of the Socket class and works with
asynchronous communications. This way, non-blocking
methods are created that notify about the completion of their
execution by firing events. For each event there is a callback
function associated that is called when the event is activated.

The library offers the user methods and properties to be
invoked and queried respectively. It also offers Structures,
Delegates and enumerations that are needed for using the
methods.

C. Structures

Las estructuras son agrupaciones de datos (Table 2 -
StructuresTable 2).

Table 2 - Structures

Name Description

tcpEvArg It mainly contains the following data fields:
• string message.

Contains Text generated by the DLL
• byte[] buffer.

Contains the transferred bytes
• int BytesTransfered.

Indicates the amount of data in buffer.

D. Delegates

Delegates are C# types that encapsulate methods, like
pointers to functions (Table 3). They are mechanisms that
allow methods to be executed indirectly.

Authorized licensed use limited to: UNIV DE LAS PALMAS. Downloaded on August 24,2022 at 08:57:12 UTC from IEEE Xplore. Restrictions apply.

Table 3 - Delegates

Name Description

successHdler public delegate void successHdler (object sender,
tcpEvtArg e);

It allows creating callbacks that warn of an event in
the DLL. The information of the occurred event is
included in the object e of type tcpEvtArg .

loggerMsgConex public delegate void loggerMsgConex (string msg
, eMessageType type = eMessageType.FORM);

Allows to create a callback function that notifies that
a message has been generated. The message is in the
first argument. This kind of messages are offered to
the user in case he/she wants to record the sequence
of operations carried out by the DLL.

E. Enumerations

They are C# types that contain sets of constants (Table 4).

Table 4 - Enumerations

Name Description

connectionState Indicates connection status
eConexType Indicates the type of connection: client or server.
eConexOp Indicates the type of operation to be executed
eTipoMensaje Indicates the type of message
eTcpConexError Indicates the type of error occurred

F. Methods

These are the functions offered by the DLL to perform
operations with TCP connections (Table 5).

Table 5 - Methods

Name Description

tcpConex tcpConex(successHdler cbOperation, loggerMsgConex
cbLoggerMsg = null, string name = "")

It is the constructor method that creates the object to be used
with the rest of the methods.

connect public eTcpConexError connect (string ipAddr, int port)

It is the method to create a client and connect it to the server
at the indicated address and port

listen public eTcpConexError listen (string ipAddr, int port)

It is the method to create a server and stay listening to a client
request at the indicated address and port

read public int read (int RXBufferSize, int MaxBytesToReceive)

It is the method used to read the received data. Buffer size
and max size of the receiving buffer are indicated.

close public int close()

It is the method to close the connection

G. Properties

These are the values that can be queried (Table 6).

Table 6 - Properties

Name Description

version Indicates the version of the library
Credis It is the text that indicates the credits of the library

V. APLICACIÓN DEMO

A. Open application

Along with the library, the students are provided with a
demonstrative application of the use of the library (Fig. 3).
This application is offered with all the source code so that its
structure and operation can be studied.

Fig. 3 – Demo Application

B. Documentation

Students are also provided with a manual that describes the
steps to follow to use the library along with the demo
application example. It is summarized in the following table.

Table 7 - Steps to execute

Step 1.- Initialize  TcpInit()

• Assign the variables that register the callBacks functions

m_cbSuccessOp = new successHdler(successOperationTcpLib);
m_cbLoggerMsg = new loggerMsgFunction(mostrarMensajePorTipo);

SERVER:

Step 2.- Connect  tcpListen_Server ()

• Create the tcpConex object and pass it the callbacks functions
• Execute the listen function. The listening IP and PORT are passed to

it. Waits for a connection request from a client.

m_tcpConex_Server = new tcpConex(m_cbSuccessOp, m_cbLoggerMsg,
"DemoServidor");
err = m_tcpConex_Server.listen(Param.sIpAddr, Param.iPort);

Step 3.- Read  tcpRead_Server ()

• Execute the read function. Size of the receive buffer, and the
maximum size of the message to receive are passed.

m_tcpConex_Server.read(Param.iTamBufRX, Param.iTamMaxMsgRX);

Step 4.- Write  tcpWrite_Server ()

• Create the message to send
• Execute the write function. The message is passed.

byte[] buf = u.creaMensajeGenerico(Param.iTamMsgTX);
if (m_tcpConex_Server != null) m_tcpConex_Server.write(buf);

Step 5.- Status  tcpStatus_Server ()

• Executes the status function. Returns the connection status. Indicates
bytes left to read (Available)

st = m_tcpConex_Server.status();

Step 6.- Close  tcpClosed_Server ()

• Execute the close function. Close the connection.

st = m_tcpConex_Server.close();

CLIENT:

Step 2.- Connect  tcpConnect_Client()

• Create the tcpConex object. Callbacks functions are passed.

Authorized licensed use limited to: UNIV DE LAS PALMAS. Downloaded on August 24,2022 at 08:57:12 UTC from IEEE Xplore. Restrictions apply.

• Execute the connect function. IP and connection PORT are passed.
Try to connect to the server.

m_tcpConex_Client = new tcpConex(m_cbSuccessOp, m_cbLoggerMsg,
"DemoCliente");
err = m_tcpConex_Client.connect(Param.sIpAddr, Param.iPort);

Step 3.- Write  tcpWrite_Client ()

• Create the message to send
• Execute the write function. The message is passed.

byte[] buf = u.creaMensajeGenerico(Param.iTamMsgTX);
if (m_tcpConex_Client != null) m_tcpConex_Client.write(buf);

Step 4.- Read  tcpRead_Client ()

• Execute the read function. The size of the receive buffer, and the
maximum size of the message to receive are passed.

m_tcpConex_Client.read(Param.iTamBufRX, Param.iTamMaxMsgRX);

Step 5.- Status  tcpStatus_Client ()

• Executes the status function. Returns the connection status. Indicates
bytes left to read (Available)

st = m_tcpConex_Client.status();

Step 6.- Close  tcpClosed_Client ()
Execute the close function. Close the connection.

st = m_tcpConex_Client.close();

VI. RESULTS

The results obtained after delivering this library to the
students have been quite satisfactory. This tool was optionally
provided to them. Most of the students used it in their

development (78%). However, there was a small part of them
that decided not to use it (12%). Maybe it because the repeat
students had already developed it with the alternatives studied
in previous courses.

Perhaps more efforts are required to clarify and
demonstrate the advantages of using it over another
alternatives.

VII. CONCLUSIONS

The library that has been presented in this article is the
result of an extra work dedicated to creating tools to assist the
work of students. In the near future it is planned to modify this
library so that it can be used with .NET Core.

REFERENCES

[1] M. J. D. K. L. C. David Makofske, TCP/IP Sockets in
C#, Morgan Kaufmann, 2004.

[2] A. Davies, Async in C# 5.0, O'Reilly Media, Inc., 2012.

[3] «¿Confusión de términos? .NET vs .NET Core vs .NET
Framework vs .NET Standard ¡Te lo explicamos!.,» [En
línea]. Available:
https://www.campusmvp.es/recursos/post/confusion-
de-terminos-net-vs-net-core-vs-net-framework-vs-net-
standard-te-lo-explicamos.aspx.

Authorized licensed use limited to: UNIV DE LAS PALMAS. Downloaded on August 24,2022 at 08:57:12 UTC from IEEE Xplore. Restrictions apply.

