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Abstract 
In this paper, a new tracking algorithm for active contours using wavelets is presented. 

First it is shown how to construct contour descriptions based on a multiscale representation of 
planar shapes using wavelet basis. Second, in order to model smooth contour transitions between 
image frames, probabilistic shape priors for modelling contour deformation using wavelets are 
presented. And finally this new formulation is applied to the problem of tracking a contour in a 
cluttered environment using stochastic models to predict contour location and appearance in 
successive image frames. These three components are integrated in the Condensation (Conditional 
Density Propagation) tracking algorithm which is specially designed to work in cluttered 
environments. Computational results are given for two real image problems and show that this 
formulation successfuUy tracks the objects in the image sequences. 

Keywords: pattem recognition, computer visión, contour modelling, wavelets, tracking. 

1 Introduction 
Active shape models [1] encompass a variety of forms, principally snakes, 

deformable templates and dynamic contours. The framework has evolved from the 
principies of the "snake" which is an elastic model for shapes in motion that can be 
coupled to image features. 

Another theme that is related to the snakes idea has been the representation of geometric 
prior Information which can be incorporated into the tracker by means of a témplate. 
Templates have been used effectively in non-dynamic shape-fitting processes Some 
include statistical learning of shape variations. 

Active contours are based on prior geometric models which are defmed in terms of a 
low dimensional parametric representation of shape with B-splines. Prior geometric 
models are then posed in a probabilistic setting leading to probabilistic models of shape. 

In [2] a new probabilistic model of shape was proposed for active contours. It is based 
on a compact and invariant representation of shape using wavelet basis. 

There are a number of salient features in wavelet transforms that make wavelet-domain 
statistical contour processing attractive: 
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-Locality: Each wavelet coefficient represents the signal contení localized in spatial 
location and frequency 
-Multiresolution: The wavelet transform analyzes the signal at a nested set of scales 
-Energy Compaction: The wavelet transform of real-world signáis tend to be sparse. A 
wavelet coefficient is large only if singularities are present within the support of the 
wavelet basis 
-Decorrelation: The wavelet transform of real world signáis tend to be approximately 
decorrelated. 
The Locality and Multiresolution properties enable the wavelet transform to efficiently 

represent sharp contour changes with large coefficients, resulting in the Compaction 
property. The Compaction and Decorrelation properties simplify the statistical modelling 
in wavelet domain as compared with a direct spatial domain modelling. Because most of 
the wavelet coefficients tend to be small, we need to model only a small number of 
coefficients. This is of particular importance in real time applications. 
In this work we will show how to intégrate the wavelet contour description and its 
probabilistic priors in a contour tracker using the Condensation [1] framework, 

This paper is divided in five parts: in Section 2 we show a compact and invariant 
contour coding using the wavelet transform. Then in Section 3 the wavelet based 
probabilistic shape model is presented and its relation with Besov spaces is established. In 
Section 4 we introduce the Condensation algorithm. In Section 5 we show several tracking 
application of this formulation and finally in Section 6 we present the conclusions of this 
work. 

2. Wavelet contour description 

A wavelet basis uses translations and dilations of a scaling fiinction ^ and a wavelet 
function cp. A 1-D fijnction f can be expressed as: 

/ W = ZSo,*2^í*(2'"^-'t) + ZZ'^M2>(2^Ar-¿) (1) 

Let then r(s) = ( x{s), y(s)) be a discrete parametrized closed planar curve that represents 
the shape of an object of interest. If the wavelet transform is applied independently to each 
of the x(í), y(s) functions, we can describe the planar curve in terms of a decomposition of 
r{sy. 

Jo 00 J 

keZ j=jQkeZ 

r C j.t.Tí I , [d j,k; 

\^ j,k\y j 

where subindex x and y represent coordínate function pertenence. 

2.1 Compact coding using the wavelet coeiincients 

Since one of our goals is to obtain a compact representation of contour it is necessary to 
develop a contour simplification strategy. In [2] we propose to threshold the dj,k vector 
based on its norm. It can be show that this yields an invariant simplification under 
Euclidean similarities that overperforms other simplification methods based on B-splines 
or Fourier descriptors. 
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3. Wavelet based Probabilistic Modelling of Curve Deformation 
The simplest wavelet transform statistical models [3] are obtained by assuming that the 

coefficients are independent. Under the independence assumption, modelling reduces to 
simply specifying the marginal distribution of each wavelet coefFicient. 

Wavelet coefficients are generally modelled using the generalized gaussian distribution, 
in this work the usual gaussian distribution will be used as an approximation 

For the tractability of the model, all coefficients at each scale are assumed to be 
independent and identically distributed. That is: 

(d. > 
d , . 

j,k,x 
N2(dM^^ I) (3) 

where I denotes the identity matrix. 
Assuming a exponential decay of the variances, the final model is: 

d,,, ~N,(d,„2-^^^CT¿I) (4) 

In order to complete the model definition we have to specify the distribution for the 
coefficient associated with the scaling fiínction co.o This coefficient is associated with a 
rigid traslation of shape and we will assume that it is normally distributed and independent 
of the non-translation components dj,k. 

c > 

K'^OAyJ 
N2(Co,o,a¿I) (5) 

We will use this distributions to model smooth changes of shape between frames. A 
justification for the proposed model comes from the following theorem[3]: 

Theorem 
Let f(x) be decomposed in wavelet coefficients and suppose each coefficient is 

independently and identically distributed as: 
dj.k ~ N(0,Oj^) with ,Oj =2"J''ao (6) 

with p > O and ao > O then, for O < p,q < oo, the realizations of the model are almost surely 
in the Besov Space B"ci(Lp(I)) if and only if (3 > a+1. 

Besov spaces are smoothness spaces: roughly speaking, the parameter a represents the 
number of well behaved derivatives of f 

With the above assumptions we can then define a prior probabilistic shape model for 
curve deformation as: 

p{\) X expí - - (X - X f E"' (X - X) 

X = (Co.o.x,do.o..v>--.d,.t,;,,...dj_j2^_,_i^.,Co.o,y,doo.;.,...,d,,^,^.,...dj_jy^_j^^), (7) 

j = 0...]-\,k = 0..2' - 1 
where n=2^ is the number of points in the discretized curve, X is a vector of 2n wavelet 
coefficients and E is a diagonal matrix with the above defined variances. Using the 
theorem we can see that smooth deformations of the curve are prefered with this model. 

In the following figure we can see a shape (in discontinous Une) with some realizations 
of the probabilistic model for various valúes of parameter p. As expected, when the 
parameter increases smoother deformations arise. Around the figure we can see in light 
grey a 99% confidence interval for the points in the curve. 
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Fig. 1 Realizaíions qf theprohabilistic model. Parameter valúes are ¡5=0 (no deformation 
smoothing) for the left image and P=1.6. in the right image. In lightgrey a 99% confidence 

intervalfor the points in the curve is shown. 

A property of the prohabilistic model that we will use is the following: 
Theorem 
Let a curve be described as (7) then the mean square displacement along the curve is given 
by: 

_,^Trace(E) ^̂ ^ 
n 

Now we present in the next section an application of this prohabilistic modelling to the 
contour tracking problem. 

4. Contour tracking 
This section describes the use of the Condensation algorithm with the wavelet 

prohabilistic formulation. This algorithm is applied to cases where there is a substantial 
clutter in the hackground. In this case the prohabilistic density of the curve is muhimodal 
and therefore not even approximately gaussian, However change hetween successive 
frames can he expected to he smooth so the ahove formulation can he used. 

4.1 Dynamic model 
An adequate statistical framework for motion tracking must be able to provide a 

prior for possihle motions, in the broad sense of a rigid motion plus a deformation of 
shape. We will use a second order AR process in shape space to model motion; 

X( í , ) -X = A,(X(í,_i)-X) + A,(X(í,_,)-X) + E » ' X , w, ~N,„(0,I) (9) 

where X represents a mean shape and E the noise covariance. 
Therefore motion is decomposed as a deterministic drift plus a diffusion process that is 
assured to be smooth using the above derivations. 

4.2 Parameter determination 
In order to make the model usable it is necessary to show how to determine the parameters 
A2, AI, Z. We first decompose motion in several orthogonal linear subspaces P¡ 
determined by their projection matrix Pi. Typically these subspaces spaces are translation, 
rotation and deformation (euclidean similarities) or translation, affine change and 
deformation (planar affine motion). 
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Therefore we can write: 
X ( Í , ) - X = X P . ( X ( ' * ) - X ) (10) 

i 

and we will model dynamics into each subspace: 

A,=2:«/p.. A,=2:«fPi, 2:"'=2:*,Pi> «'.«f,¿,^R (H) 
/ / í 

and use the following theorems: 

Theorem 
Let contour dynamics be given by (9) and (11) and suppose that a steady state distribution 
exists. Then the distribution is normal with mean X and its covariance matrix C«,verifies: 

Trace(C<„)=Si Trace(Cooi) (12) 
Where Cmi is the covariance of the steady-state into subspace P¡ 

Theorem 
Let contour dynamics be given by (9) and (11) and suppose that a steady state distribution 
exists into subspace P,. Then its distribution is normal with mean Pi X and its covariance 
matrix Cooi verifies: 

Trace(C„,) = , . ,,, f'^y~"I\ , Trace(P, Z) (13) 

Corollary 
Let contour dynamics be given by (9) and (11) and suppose that a steady state distribution 
exists into subspace P,. To obtain a mean displacement p, we must set ¿¡to: 

b, = 4ñp, 1 I ¿ r I 1 r ^ ' " j \-»y / ^ -w-w-^1 
IV 

l-a} Trace(P,E) 
(14) 

This leads us to determine the parameters associated with the random noise if we can 
estímate the deterministic motion and the mean square displacement of shape. 

In case no steady-state distribution exists we can use the following theorem: 
Theorem 
Let contour dynamics be given by (9) and (11) and suppose that no steady state distribution 
exists into subspace ?,. Then the mean displacement p,(^) into subspace P, at time 4 
verifies: 

p,{k)^^Trace{V^)h,k^'^ (15) 

4.3 External observadon model 
The effect of an external observation Z(A) is to superimpose a reactive effect on the 
diffusion in which the density tends to peak in the vicinity of observations so that we can 
use the posterior probability p(X|Z) to estímate X añer using evidence Z. We must 
therefore model the observation density p(Z|X). 
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In one dimensión observations reduce to a set of scalar positions z={zi,z2,..,Zm) and the 
observation density has the form p(z|x) where x is an scalar position. We will use [1]: 

/;(z|Ar)ocl + -̂ = -^e '-' (16) 
v2;r era „ 

where a represents uncertainty in the position of the Zi and a balances the probability of no 
one of the Zi to be the corresponding feature in the curve. 
In a two dimensional image Z is, in principie, the entire set of features in the image, 
however in order to achieve real time perfomance the two dimensional observation density 
is evaluated as the product of one-dimensional densities along several curve normáis. 

4.4 The Condensation algorithm 
The Condensation algorithm allows us to approximate the posterior density p(X|Z) using 
factored sampling it proceeds as follows: 
First we will rewrite the AR model (9); 

X( í , ) -X = A(X(?,)-X) + BWk, 

^ih) = 
X(í,_,y 

X(í.) 
an we apply the foUowing steps: 

X = 
^X^ 

vXy 
A = 

vAj 
B = 

A,. 

(17) 

StepO 

Stepl 

Genérate a sample set S={sQ\7rg'\cg\i = ]...N} fortime step O where: 

SQ ̂  is a sample from the prior distribution of the curve 

;rQ' is a probability for this curve to be chosen from S (initially \/N) 

Cg' is the cumulative probability distribution for S 
Set the time step k=l 

From the previous sample set S construct a new sample set Sne» as follows: 
Set 7=1 
While i <Ndobegin 

Step 1.1 (Selection) 
Select a sample Sk'''' as follows: 

Genérate a random number r uniformly distributed in [0,1] 
- Find by binary subdivisión the smallest j for which Ck-i''' > 

- SetSk'<"=Sk.,'̂ ^ 
Step 1.2 (Prediction) 

Genérate a prediction by sampling from: 
.(') ,^ - X = A(s7-X) + BWk (18) 

Step 1.3 (Measurement) 

Measure and weight the new position in terms of the observed 
features Zk: 
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; r f = M Z u l X , = s f ) (19) 

Store these valúes in Snew. Increment i 

end while 

Normalize weights so that 'Y_¡^'k^ = !> ^^^ evalúate cumulative probabilities 

as: 4"»= O, c f ,('-!) + 71 (O i = \...N 

Set S = Snew. Increment k. Goto Stepl 

5. Computational results 
A set of experiments have been carried out to test the validity of the approach both in an 
indoor scene and an outdoor scene. The number of wavelet coefFicients used has been 16, 
the wavelet fünction used is Daubechies LA(8) and the number of elements in set S has 
been 250. 

In the first example (Fig. 2) motion is modelled as traslation plus deformation with 
parameters: 

Traslation subspace P,: a\=2, a^=-\, /O = 3 (No steady-state) 

Deformation subspace P,: a\-0, a^ =0, p = 0.5 

and the smoothness parameter for frame to frame deformation has been (3=2.25 

To visualize the pdf a set of 20 curves has been sampled from the contour distribution in 
all frames. As more clutter appears (frame 4) the uncertainty about position grows leading 
to the curves being more disperse around the hand. In frame 5 we can see how a false 
matching appears (the distribution becomes multimodal), however the condensation 
aigorithm recovers as the hands goes on moving as can be seen in frame 6. 

Fig 2 An indoor scene. Frames are tmmbered 1-6 from top to bottom and left to right 
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In the second case (Fig. 3) the background is cluttered with changes between light and 
shadows and there are several moving elements interacting with the person being tracked. 
Parameters in this case have been: 

Traslation subspace F,; a] =2, a¡ =-\, p = \ (No steady-state) 

Deformation subspace P :̂ a^ = O, O, p=0.1 

and the smoothness parameter for frame to frame deformation has been P=2.25 

As we can see the head of the girl is in general successfully tracked. In frame 5 the 
dynamic model fails because the girl suddenly stops leading to the curves being more 
disperse around the head. However the condensation algorithm recovers as the girl goes on 
moving as can be seen in frame 6. 

f 
'4 

h'ig 3. An outdoor scene. Frames are numbered l-6from top to bottom and left to right 

6. Conclusions 
In this work, a tracking algorithm for active contours using wavelets and the 

Condensation algorithm has been presented. It is based on a multiscale representation of 
planar shapes using wavelet basis and a probabilistic prior that favours smooth frame to 
frame deformations. It is shown how to use this formulation to predict contour location and 
appearance in successive image frames using stochastic models. These components are 
integrated in the Condensation tracking algorithm and computational results show that this 
formulation successfully tracks the objects in the image sequences. 

References 
[1] A.Blake A. and M. Isard M. Active Contours, Springer, London, 1998. 
[2] F. Pérez and A. Falcón, "Planar shape representation based on multiwavelets", Proc. 
Eusipco 2000. Tam.pere. Finland 

[3] H. Choi and R. Baraniuk, "Wavelet Statistical Models and Besov Spaces" , 
Proceedings of SPIE Technical Conference on Wavelet Applications in Signal 
Processing Vli 1999 

678 


