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Abstract

In this paper we present a new model for optical flow calculation using a
variational formulation which preserves discontinuities of the flow much better
than classical methods. We study the Euler-Lagrange equations asociated to
the variational problem. In the case of quadratic energy, we show the existence
and uniqueness of the corresponding evolution problem. Since our method avoid
linearization in the optical flow constraint, it can recover large displacement in
the scene. We avoid convergence to irrelevant local minima by embedding our
method into a linear scale-space framework and using a focusing strategy from
coarse to fine scales.

Introduction

Optical Flow computation is a key problem in artificial vision. It consists of finding
the motion of objects in a sequence of images. We shall consider 2 images I (z,y)
and Iy(z,y) (defined on IR* to simplify the discussion) which represent 2 consecutive
views in a sequence of images. Determining the optical flow is then finding a function
h(z,y) = (u(x,y),v(z,y)) such that :

Il(xay) ~ IQ(:E +U(.’L’,y),y+ U(.’L’,y)), V(ZL',y) S IR2

In general this problem has an infinite number of solutions. Take for example a sequence
representing a black disk moving on a white background. In this case any function
(xz,y) + h(z,y) associating a point of the black disk in the first image to a point on
the black disk in the second image, and a point of the background in the first image
to another point on the background in the second image satisfies the last equality for
all points (z,y). Notice that we only best can compute the apparent motion, i.e. the
motion in the direction normal to the disk boundary. The possible circular motion (a
rotation leaves the disk unchanged) is totally undetectable.

To compute h(z,y) the preceeding equality is usually linearized yielding the so-
called ”optical flow constraint”

I,(Z) — I(T) = (VIy(Z), h(T)) V(z,y) € IR?,

where T = (z,y). If at each point we suppose that the motion is only in the perpen-
dicular direction to the level line passing through this point, i.e. h(Z) = k(T)VI1(7),



then we deduce from last equation that when (VIy(T), VIi(T)) # 0, then :

L(7) — L(T)
(VIx(7), VIi(T))

k() =

Unfortunately this last equality is too local, and allows only for estimating motions
of the order of one pixel. Indeed in images sequences, objects move with ”a priori”
unpredictable velocities, and thus there can be an important displacement of the objects
between two consecutive images. In order to estimate these large displacements it is
necessary to introduce a scale factor for the fusion of information before computing
the flow A(T). A common way of doing this is to convolve both images with a gaussian
kernel G,(Z) (where o is the standard deviation) before computing the motion. In
other words we study equation :

G, * (I1 — ) (T) = (V (G, x L) (T), h(T)), Y(z,y) € R?.

Notice that this model does not impose any regularity condition on the solution h(T).
In this work we propose a new model for computing h(Z) via the minimum of the
following energy functional :

B(h) =5 /IRZ (1(7) - B+ h(D))* dz

+C [ g(IVL]) @ ([[Vu(@)]]) dv

IR?

+C [ (VL)@ ([Vu(@)l) do
IR?
where h(Z) = (u(T),v(T)), C is a positive constant, g is a strictly positive, decreasing
function, and ® is an increasing function with ®(0) = 0. This formulation preserves
discontinuities of the flow much better than the classical one introduced in [4] where
g =1 and ®(s) = s?. The associated Euler-Lagrange equations of the above functional
give rise to the following system of partial differential equations :

(L(F) — LT + h(F))) 22(T + h(z )+de( (V1)) LUz vu) =0
(1(%) — L(T + h(T))) 22 (x+h(x)+0div( (IV L)) ”gﬁ")w) =0

In this work we shall study the solutions to this system of partial differential equations
for the determination of the optical flow. More specifically we will consider as good
candidates the asymptotic solutions of the associated evolution problem for different
choices of the function ®. Some natural candidates for the fuction ® are:

2

(s) = 5
O(s) =s

the first choice provides the quadratic classical functional, and the second choice pro-
vides the total variation functional. In this paper we will focus our attention in the
quadratic case.



The quadratic case

Let us consider in this section the case when ®(x) = x?/2. In this case we will study
the following parabolic problem :

% = Cdiv (g (IV 1)) V) + (I = (I + ) G2 (Id + 1) 1
{ 5 = Cdiv (g (VL)) V) + (I = L(Id + h)) G2(Id + h) (1)

with initial condition (u(0),v(0)) = hy and seeing functions I; and I, as two periodized
consecutive images (which are defined on a unit square for example) in a sequence of
images.

Abstract framework

Let H = L*(IR?) x L*(IR?), and let us denote by A : D(A) C H — H the maximal
monotone operator (C' and g are strictly positive) defined by :

o div(g(IVL]) V)
A(h) = -C < div (g (||V11]]) Vv) ) ,

and by F': H — H the function defined by :
Then the abstract evolution problem writes :

4+ Ah = F(h)in H,Vt € [0,T] (2)
h(0) = hy in H

where H is a Hilbert space, F' : H — H is continuous and A : D(A) C H — H is a
maximal monotone operator. Any classical solution h € C'([0, T]; H)NC([0,T]; D(A))
of (2), where the norm on D(A) is defined by ||| 4y = [[hll g + | AR 5, writes :

¢
h(t) = S(t)ho +/ S(t— s)F(h(s))ds, (3)

0
where {S(t) };~0 is the contractions semi-group associated to the homogeneous problem.
Definition 1 We shall say that h € C([0,T]; H) is a generalized solution of (2) if it

satisfies (3).

Existence and uniqueness result

We shall start with the following preliminary result.

Lemme 2 Suppose that I, € WY®(IR?) and I, € L®(IR*). Then, F is L-Lipschitz,
for some constant L depending on functions I, and Is.



Proof 3 Let hy,hy € H. For the i-th component of F(hy) — F(hs), i = 1,2, we have

|F5(hy) — Fi(ho)| = |(I — L(Id 4 hy))d I, (Id + hy)
— (I = L(Id+ hy))diIr(Id + hy)],
< |L(Id+ hy)0i I (Id + hy) — I(Id + hy)0;Io(Id + hy)|
+ L]0 I (Id + hy) — 0; 1o (Id + hy)|,

1
< §|5i(|f2|2)(fd +h) = O,(|1*)(Id + ho)
D oo | BT + ) — DI (Id + ho),
1
< §CLip(5i(|12|2))-|h1 = ha| + 11]loc-CLip(9i12).|h1 — he

1
< <§CLip(3i(|12|2)) + ||11||oo-CLz’p(3z'12)> Jh1 = hal,

where Cri,(f) denotes the Lipschitz constant of function f. We finally deduce that :

|F'(hy) = F(ha)|g = |F1(h1) — Fi(ha) | + |Fa(h1) — Fa(h2)|m
< Z (%Cup(ai(|[2|2)) + ||11||oo-CLz’p(3z'12)> Jh1 = halm.

we can conclude letting

2

L= Y (GL@UEP) + Il Cryloit).

We now can state the existence and unicity result for problem (1).

Theorem 4 If I, € WH®(IR?) and I, € L>®(IR?), then, for all hy € H there exists a
unique generalized solution h(t) € C ([0,00[; H) of (1). Moreover, if hy € D(A), then
the solution is a classic one.

Proof 5 In view of hypothesis on Iy and Iy we can apply Lemma 2. Assume hy(t) and
ha(t) are solutions of (3) for initial conditions hy(0) and hy(0) we then have, using the
fact that — A is dissipative (which yields |S(t)f|lg < |f|u), and the Lipschitz continuity
of F' :

t
[71(t) = ha(t)|r < [~1(0) — h2(0)]m + L/ |h11(s) = ha(s)|mds.
0
Now applying Gronwall Lemma, we have :

|ha(t) = ho(t) | < ".|hy (0) — ho(0)]a,

which yields unicity of the solution if it exists. Now consider the Banach space defined
by

E={heC([0,00; H) : sup|h(t)|ge " < oo}

>0



endowed with the norm ||h|| = sup,s, [h(t)|ge X' Let ¢ : E — C([0,00[; H) defined
by :

t
d(h)(t) = S(t).ho + / S(t — s)F(h(s))ds.
0
If K > L, then ¢(F) C E and ¢ is %—Lipschitz since :

[é(h1) — ¢(ha)| = sup () (t) = ¢(h2) (t) [ e ™",

¢
< sup/ Llh(s) — h2(8)|Hd8€_Kt,
0

>0
t
<sup L||h; — h2||.eKt/ eXeds,
>0 0
L ~Kt( Kt
< sup —|lhy — hafl.e” " (e™" = 1),
>0 K
L
< —||h1 — ho|.
< il = b
We deduce that ¢ is a contraction and by Banach fized point theorem there exists a

unique h such that ¢(h) = h, which is a generalized solution of (1). Now let hy € D(A),
7 >0 andt > 0. Let us recall that

|h(t+7) = h(t)|g < eLt|h,(7') — holu- (4)
On the other hand we have :
|h(1) — h(0)|y < |S(T)ho — holu +/ |F'(ho)|uds + L/ |h(s) — h(0)|xds,
0 0
< 7(|All-|holm + [ F'(ho)|#) + L/ |h(s) — h(0)|mds,
0

and we deduce from Gronwall Lemma and the fact that e — 1 < Lte*, ¥Vt > 0, that :

elm —1

|h(7) — h(0)|n < 7 ([[A]]-1hol + |F (ho)|a),
< 7" (|A[|lhol i + [F (ho)|u)- (5)

>From (4) and (5) we get, for all t,t' € [0,T],
[h(t) = h(t) | < e (Al 1hol + |F (ho) ) [t — ¥'].

h(t) being lipschitz, so is t — F(h(t)), and following some classical results (see for
instance [2]) we can conclude that the solution is a classical one.



A Linear Scale-Space Approach to Recover Large Displace-
ments

In general, the Euler-Lagrange equations will have multiple solutions. As a conse-
quence, the asymptotic state of the parabolic system , which we use for approximating
the optical flow, will depend on the initial data. Typically, the convergence is the
better, the closer the initial data is to the asymptotic state. When we expect small
displacements in the scene, the natural choice is to take © = v = 0 as initialization of
the flow. For large displacement fields, however, this will not work, and we need better
initial data. To this end, we embed our method into a linear scale-space framework.
Considering the problem at a coarse scale avoids that the algorithm gets trapped in
physically irrelevant local minima. The coarse-scale solution serves then as initial data
for solving the problem at a finer scale. Scale focusing has a long tradition in linear
scale-space theory (see e.g. Bergholm [1] for an early approach. Detailed descriptions
of linear scale-space theory can be found in [3], [5].

We proceed as follows. First, we introduce a linear scale factor in the parabolic
PDE system in order to end up with

o _ .
e~ caio (5196, » 1) Iy ¢
+ (GU # I1(T) — Gy x Ir(T + hg(f))) 9(Go » 1) (ng* ) (T + ho (7)), (6)
o @Ol
ot =Cd (g(”VGO' Il“) ||V’U|| \Y >+
+(Gor 1@ - Go s B +1,@) L B @), @)

where GG, * I represents the convolution of I with a Gaussian of standard deviation o.

The convolution with a Gaussian blends the information in the images and allows
us to recover a connection between the objects in I; and /5. We start with a large initial
scale 0p. Then we compute the optical flow (u,,,vs,) at scale oy as the asymptotic
state of the solution of the above PDE system using as initial data v = v = 0. Next,
we choose a number of scales 0,, < 0,1 < .... < 09, and for each scale o; we compute
the optical flow (u,,, v,,) as the asymptotic state of the above PDE system with initial
data (uy, ,,vs_,). The final computed flow corresponds to the smallest scale o,. In
accordance with the logarithmic sampling strategy in linear scale-space theory, we
choose o; := n'oy with some decay rate € (0, 1).

Numerical Scheme

The numerical scheme follows the general framework described in [6]. We discretize the
parabolic system (6)—(7) by finite differences. Derivatives in  and y are approximated
by central differences, and for the discretization in ¢ direction we use an explicit (Euler
forward) scheme. Gaussian convolution was performed in the spatial domain with
renormalized Gaussians, which where truncated at 5 times their standard deviation.



Then our explicit scheme has the structure

k:+1 k k k
,] ui,j _ C gz+1] + gz] z+1] ,] + gz 1,5 + gz,] z 1,5 ui,j +
T 2 h? 2 h?
k:
gz]+1+gz] ]+1 ] gz] 1+gz3 ]1 z'j
+ . = + . . . +
2 h,g 2 02
_ —k _ _ —k
+ (fl,a(ffi,j —hgig) — f2,a($i,j)> Do (Tig — hgij)s (8)
k+1
Vi _ c Giv1 + G Vivrg ~ Vi . Gi-1 + Gig Vim1j ~ Vi n
T 2 h? 2 h?
k
+ gm+1 + gm 7]+1 5 i + gm 1t gm ,J 1 5 — Uiy +
2 12 2 12
_ —k _ _ —k
+ (fl,a(l“i,j —hgij) — 12,0(%',]')) Ly (Tig — heyg)- 9)

The notations are almost selfexplaining: for instance, 7 is the time step size, h; and
hy denote the pixel size in x and y direction, respectively, u?. approximates u, in

ZJ

some grid point Z;; at time k7, and I ,, is an approximation to G, * %. 9ij =
’ k —

g (||IVG, x I]|) %(ihl, ihy) We calculate values of type Iy ,(T; ; — hij) by linear

interpolation,
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