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Resumen In this paper, we present a vascular tree model made with
synthetic materials and which allows us to obtain images to make a 3D
reconstruction. We have used PVC tubes of several diameters and lengths
that will let us evaluate the accuracy of our 3D reconstruction. In order
to calibrate the camera we have used a corner detector. Also we have
used Optical Flow techniques to follow the points through the images
going and going back. We describe two general techniques to extract a
sequence of corresponding points from multiple views of an object. The
resulting sequence of points will be used later to reconstruct a set of 3D
points representing the object surfaces on the scene. We have made the
3D reconstruction choosing by chance a couple of images and we have
calculated the projection error. After several repetitions, we have found
the best 3D location for the point.

1. Introduction

Given the difficulties to obtain medical images in good conditions, due to
their privacy and diverse technical problems that these can present, such as:
artifacts, occlusions, poor definition of the image, etc; we have developed a model
of vascular tree using PVC.

This way we can obtain a series of images following the same technology of
a rotational angiography, planning an arch of fixed radius about the model and
obtaining the images with an angular separation of about 3 degrees. Once obtai-
ned, they were manipulated in order that the final result is as similar as possible
to the angiographies, but without the problems previously mentioned. Besides,
by having the 3D model it is possible to test the quality of the results obtained,
knowing exact values such as: distances between bifurcations, the diameters of
the glasses, etc; which will allow us to know the kindness of our results.

2. Obtaining the images

We want to reconstruct images to apply in the Rotational Angiography field
that it has the next features:
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The series of images in Rotational Angiography is acquired while the imaging
assembly rotates in a continuous arc around the patient. The whole acquisition
is rather fast, so that the complete series can be acquired with a single injection
of contrast agent.

The quality of the individual images is generally fully adequate for diagnosis,
with the following added advantages: wide range of projections, optimum views
of vascular structures.

For the 3D reconstruction, it is essential for the images to precisely match
each other. This requires an extremely stable and reproducible image geometry.
The system is calibrated to compensate for distortion in the image intensifier
such us pincushion and the varying distortion caused by movement through the
magnetic field of the earth.

The images are acquired in the rotational angiography mode over an angle
of 180 degrees. The run maybe carried out in one of three different angulations:
-30 degrees cranial, 0 degrees axial, 30 degrees caudal. Images are acquired at a
frames rate of 12.5 frames by seconds, and a rotation speed of up to 30 degrees
per second, the whole acquisition takes 8 seconds resulting in an average of 100
images per run.

We have made the images with an angle of 3.6 degrees and approximately
three meters of distance from the model using a of 70 mm focal distance with
a digital camera and because the characteristics of its digitizer then we have a
focal distance 105 mm with an arc of 270 degrees that allows around 70 images.
We have also obtained images of a calibrator in order to obtain the intrinsic
parameters of the camera.

3. Multiscale Analisis and Calibration Camera

One of the main concepts of vision theory and image analysis is multiscale
analysis. A Multiscale Analysis Tt associates, with an original image u(0) = u0 a
sequence of smoothed images u(t, x, y) which depend upon an abstract parameter
t > 0, the scale.

f(x, y) −→ u(t, x, y)u(0, x, y) = f(x, y)

The datum of u0(x, y) is not absolute in perception theory, but can be con-
sidered as the element of an equivalence class. If A is any affine map to the
plane, u0(x, y) and u0(A(x, y)) can be assumed equivalent from a perceptual
point of view. Last but not least, the observation of u0(x, y) does not generally
give any reliable information about the number of photons sent by any visible
place to the optical sensor. Therefore, the equivalence class in consideration will
be g(u0(A(x, y))), where g stands for any contrast function depending on the
sensor. These considerations lead us to focus on the only multiscale analyses
which satisfies these invariance requirements : The Affine Morphological Sca-
le Space (AMSS). This multiscale analyses can be defined by a simple Partial
Differential Equation:
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Figura 1. Acquired images.
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where u(t,x,y) denotes the image analyzed at the scale t and the point (x,y).
In order to calibrate a camera system we need to corner detection and this

is very sensitive to noise. The AMSS multiscale analysis present the advantage
that we know, analytically, the displacement of the corner location across the
scales. Then we can search it in at the scale tn = t0 + n∆t, for n=1,..,N, where
Ut represents the discretization step for the scale and t0 represents the initial
scale that we use to begin to look for corners.

We compute for the scale t0 the location of the extreme of the curvature that
we denote by (xi

0, y
i
0) ,for i=1,.., M, these points represent the initial candidates

to be corners. We follow across the location (xi
n, yi

n) of the curvature extreme.
For each sequence (xi

n, yi
n) n=1,..,N, we compute in a robust way(using ort-

hogonal regression and eliminating outliers) the best line which fit the sequence
of points, this line corresponds to the bisector line of the corner, and we can
represent it as a straight line which equation:

(x(t), y(t)) = (X0, Y0) + tan(
α

2
)−

1
2 t(bx, by)

where α is the angle of the corner and
−→
b = (bx, by), is the unit vector in the

direction of the bisector line of the corner, and t is the scale. Then we can find
the corner doing t = 0 in this equation.
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In order to calibrate the cameras system, we extract the characteristics of
the sequence of views with a morphologic corner detector. This detector gives us
sub pixel information. When the views are taken from very close positions, the
conventional methods of calibration can be unstable, to solve this problem we
divide the sequences of views into several sub sequences (in this way the optical
centre displacements are bigger). Now, we calibrate every subsequence of view
in an independent way.

In the last step, we make the calibration between the different sub sequences
to obtain only one calibration. The method we have used is very stable, even
when there are noise and small displacements between the optical centres.
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Figura 2. Motion parameters derived from point matches.

4. Optical Flow

Once we have calibrated the camera system we propose a method for the
recovering of disparity maps between pair of stereoscopic images. Disparity maps
are obtained through a matching process in where we have to find for the pixels in
the left image their correspondent on the right image. There are some methods,
like correlation-based techniques, that estimate good matching points but do
not generate smooth disparity maps for the whole image, so the solutions in this
case are not continuous.

To improve the accuracy of the matching process we make use of the so-called
epipolar geometry. This geometry represents the relation that exists between
stereoscopic images. Thanks to this geometry, the method is able to look for
correspondences in straight lines only.
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Figura 3. Displacement function is parameterized in order to take ad-vantage of the
information given by the epipolar geometry.

The method we propose for the computation of disparity maps is based on
an en-ergy minimization approach:

E(λ) =
∫

(I(−→x )− I ′(−→x +
−→
h (λ)))2 +

∫
5λD(5I)5 λ

Where I and I ′ are the stereoscopic images,λ is a parameter that gives us
the distance between the point that it is the projection of m over the it epipolar
straight line and the responsive point of m in I ′, m′ ****(see image 3)*****. The
second term in the equation is used to regularize. D is a diffusion tensor that
diffuses in one or another way depending where the point is placed. If gradient
of I is high then the regularization is over the contour line and if it is low, we
make regularization.

This energy consists of an attachment term that enables the process to find
similar pixels in both images and a regularization term that is necessary to
constraint the number of possible solutions and to generate smooth solutions.
This method is a dense method in the sense that for every pixel on one image
we obtain its correspondent on the other image.

When we minimize this energy, we obtain the Euler-Lagrange equations, whi-
ch are represented by means of partial differential equations. This is a diffusion-
reaction equation that behaves anisotropically at contours with high values for
the gradient of the images and isotropically at homogeneous regions where the
image gradient is low. The diffusion part is formulated in such a way that the
discontinuities of the images are preserved. We use a scale-space and pyrami-
dal strategy to allow the method to locate large displacements. Thanks to this
energy minimization approach the resulting disparity maps that we may obtain
are smooth by regions.
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5. Corresponding Points and 3D Reconstruction.

To search the corresponding points in every image, we start with a point in
one image, and using the optical flow techniques, we search the corresponding
point in the next image. Once this point is obtained, we go back and we search
if the corresponding point in the first image is the start point. If it is true, we
continue searching other point in the next image. Once we have this new point
we come back until the first image verifying that the points calculates are the
same points that we have with a small error. We finish this process when we
search a point bad placed.

First, we will describe an efficient algorithm for computing sequences of
corresponding points with maximum lengths. Second, we will describe a fast
algorithm for computing sequences of corresponding points, but in this case wit-
hout maximum lengths. Experimental results show the validity of this algorithm.
Both algorithms try to include a candidate to a sequence of n corresponding
points to obtain a sequence of n + 1 points. We will explain different quality
criterions, which are applicable to decide whether to add a new point to the
sequence, or not.

In order to calculate the sequence of points in correspondence, we must know
the Optical Flow from every view j to the precedent view j − 1 (backward),
that we denote by hj

−(x) = hj
−(x, y) = (ui

−(x, y), vj
−(x, y))T and the Optical

Flow from the view j to the next view j + 1 (forward),hj
+(x) = hj

+(x, y) =
(ui

+(x, y), vj
+(x, y))T .

The main idea is using the Optical Flow hj
+(x) to localize the correspondent

point x′ in the view j + 1, from the point x in the view j, and using the Optical
Flow hj+1

− (x) in the opposite direction from the view j+1 to the view j to come
back from the point x′ in the view j + 1 to a point xprime′ in the view j.
Then we have, from the Optical Flow definitions,x′ = x + hj

+(x) and xprime′ =
x′+hj+1

− (x′) = x+hj
+(x)+hj+1

− (x+hj
+(x)). In ideal conditions, both points, x

and x′′ must be the same point, but in real conditions, this is usually false, due
to several reasons as limitations to calculate the Optical Flow, imprecision in
the Camera calibration, numerical errors, etc. In those cases, we have a distance
between these points d(x, x′′) = ‖x′′ − x‖. With this idea we can construct
sequences of couples of points from every couple of images. Then the distance
d(x, x′′) can be used as a criterion of quality.

We can extend this idea to obtain sequences with more than two points. One
point xj , in the view j, has its corresponding point xj+1 = xj + hj

+(xj), in the
view j + 1, and comes back to the point x′j = xj+1 + hj+1

− (xj+1) with an error
dj(xj , x

′
j)(forward and backward). To add a new point to the sequence, we use

the point xj+1 in the view j + 1 and the Optical Flow hj+1
+ (x) to go from the

view j + 1 to the view j + 2. In this way we obtain, in this view, the point xj+2,
in correspondence with the point xj+1, in the view j + 1. The backward Optical
Flow, allows us to establish a first measure of quality of the new sequence of three
points. In this way, in the view j + 1, we have the error forward and backward
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Figura 4. Backward and Forward Optical Flow for a point in a couple of views.

dj+1(xj+1, x
′
j+1) where x′j+1 = xj+2 + hj+2

− (xj+2), and in the view j, the error
forward and backward is dj(xj , x

′
j) with x′j = x′j+1 + hj+1

− (x′j+1).

Figura 5. Backward and Forward Optical Flow for a sequence of several points.

Generally, to add a new point xj+n to the sequence of n points in correspon-
dence xj ,xj+1,. . . ,xj+n−1, we use the last point added to the sequence, xj+n−1,
and the Optical Flow hj+n−1

+ (x) to calculate the point xj+n in the view j + n.
This point could become a new point in the sequence of corresponding points,
xj+n = xj+n−1 +hj+n−1

+ (xj+n−1). To do that, we calculate the errors backward
di(xi, x

′
i)(i = j, j + 1, . . . , j + n − 1) where we use the Optical Flow hi+1

− (x) to
calculate the point backward x′i, in the view i, because x′i = x′i+1 + hi+1

− (xi+1)′.
This point will be added to the sequence if these errors are lower lower than a
threshold that we have defined.

We have seen that the forward and backward error is an initial quality mea-
sure of a sequence of corresponding points. The forward and backward error
also allows us to establish a first test to decide whether to add a new point to
the sequence or not. When we have a large number of views the initial point of



VIII

a sequence will not appear on the view of the candidate point and, therefore,
the forward and backward errors will be big. For a better 3D reconstruction, it
is convenient that the sequence of points would be as large as possible in or-
der to turn the algorithm less sensible to errors. We may define more complex
criterions to obtain sequences with many points. Instead of using a constant
threshold for the forward and backward errors, we may adapt this threshold to
the sequence length. This would benefit larger sequences of points with bigger
error rather than short sequences with a smaller error. Another possible criterion
that would be more robust is that of using the candidate point, the sequence of
corresponding points and the calibration matrices to reconstruct the 3D point
and measure the reprojected errors on the projection planes. In case that the
reprojected errors would be smaller that a given threshold we would include the
candidate point into the sequence. It is also possible and adaptive scheme to
benefit the larger sequences.

************************************* *************************************
***************************************

5.1. The Optimal Algorithm

The Optimal Algorithm to calculate sequences of points in correspondence
is the following:

1. For every view
a) For every pixel

1) Calculate the sequence of points in correspondence and its quality
2) Add the sequence of points in correspondence calculated in the pre-

vious step to an ordered repository. The first order criterion is the
number of points and the second one is the quality of the sequence
of points in correspondence

2. For every sequence in the sequence repository
a) Check that the sequence of points in correspondence is not included in

another sequence of points in correspondence with a higher number of
points, or with the same number of points but with a higher quality
1) If the sequence of points in correspondence is not included in any

final repository of sequences of points in correspondence, then add
the sequence to the final repository of sequences

2) If the sequence of points is included, then reject the sequence

In the step iterates through all views building for each pixel on the view
a sequence of corresponding points and assigning a quality value. n views will
produce n ∗ widthview ∗ heightview sequences of corresponding points. In the
step the sequences of corresponding points are selected. Normally some of the
sequences will be included on larger sequences or they would be as close to
consider that they are practically the same sequence. Although this algorithm
constructs large sequences of corresponding points, it has the disadvantage that
it is computation costly. Step ... takes into account that a new sequence will not
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be introduce into the repository if the sequence already exists. At the beginning
when the repository size is small it is fast to test if a sequence is already included,
but when the size is increased the number of the comparisons will also increase
making the process much slower.

5.2. The Fast Algorithm

To decrease the computational cost of the efficient algorithm presented above
we modify the algorithm by adding a flag to every pixel. This flag indicates if a
pixel is included in a sequence of corresponding points. The algorithm would be
as follows:

1. For every view
a) For pixel on the view not included in a sequence

1) Compute the sequence of corresponding points. Mark every point in
the sequence as included in a sequence of corresponding points

2) The computed sequence in the previous step is added to a repository

Contrary to the efficient algorithm, the fast algorithm does not guarantee
that the sequences of corresponding points would contain the larger number of
points.

When we have a set of images, then we take a couple of cameras by chance
and we reconstruct the 3D point. We project this point to the plane of the whole
cameras and we calculate the projection error, the distance between both points,
the real point and the projected point in every camera.

Later we take another couple of cameras, always by chance, and we repeat
the same steps several times, up to 8 times if it is possible. We keep with the
point that minimizes the projection error.

6. Results

In order to obtain the 3D reconstruction we have used two set of images,
first set has 16 images, and second set has 25 images. And we have used three
different threshold of projection error: 1.0,1.2 and 1.5. In the next images, we
can see the different 3D reconstruction:

When we use more views to make the 3D Reconstruction, we have more
points, but the time to do it is bigger. In the other hand when the projection
error increases, the number of points increases too, but the points are located
with less precision.
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Figura 6. 3D Reconstruction in the first line we have the results with 16 views in the
second line we have the results with 25 images and from left to right we have the image
with a projection error 1.0, 1.2 and 1.5.
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