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Abstract. This paper presents an interpretation of a classic optical flow
method by Nagel and Enkelmann as a tensor-driven anisotropic diffusion
approach in digital image analysis. We introduce an improvement into
the model formulation, and we establish well-posedness results for the
resulting system of parabolic partial differential equations. Our method
avoids linearizations in the optical flow constraint, and it can recover
displacement fields which are far beyond the typical one-pixel limits that
are characteristic for many differential methods for optical flow recovery.
A robust numerical scheme is presented in detail. We avoid convergence
to irrelevant local minima by embedding our method into a linear scale-
space framework and using a focusing strategy from coarse to fine scales.
The high accuracy of the proposed method is demonstrated by means of
a synthetic and a real-world image sequence.

1 Introduction

Optical flow computation consists of finding the apparent motion of objects in
a sequence of images. It is a key problem in artificial vision and much research
has been devoted to this field; for a survey see e.g. [23].

In the present paper we shall consider two images I1 (z,y) and I>(z,y) (defined
on R? to simplify the discussion) which represent two consecutive views in a
sequence of images. Under the assumption that corresponding pixels have equal
grey values, the determination of the optical flow from I; to I> comes down to
finding a function h(z,y) = (u(z,y),v(z,y)) such that

L(z,y) = L(z+u(e,y),y+o(z,y),  V(zy) R (1)

To compute h(z,y) the preceding equality is usually linearized yielding the
so-called optical flow constraint

I(Z) - L(Z) = (VI2(T), h(Z)) VE € R?,



where T := (z,y). The linearized optical flow constraint assumes that the object
displacements h(T) are small or that the image is slowly varying in space. In
other cases, this linearization is no longer valid.

Frequently, instead of equation (1), researchers use the alternative equality

Il('r - U’(may)vy - v(m,y)) = IQ(xvy)a V(x,y) € Rz' (2)

In this case the displacement h(zx,y) is centered in the image I»(z,y).

The determination of optical flow is a classic ill-posed problem in computer
vision [7], and it requires to be supplemented with additional regularizing assump-
tions. The regularization by Horn and Schunck [16] assumes that the optical
flow field is smooth. However, since many natural image sequences are better
described in terms of piecewise smooth flow fields separated by discontinuities,
much research has been done to modify the Horn and Schunck approach in order
to permit such discontinuous flow fields; see e.g. [8,10,11,21,24,25,27,32] and
the references therein.

An important improvement in this direction has been achieved by Nagel and
Enkelmann [24] in 1986. They consider the following minimization problem:

Eng(h) =/R2 (I(z = u(@,y),y — v(z,y)) - L(z,y))’ de (3)

+C /}R ,trace (V) D (V1) (Vh)) de

where C' is a positive constant and D (V1) is a regularized projection matrix in
the direction perpendicular of VI:

1 oIy oIy g
_ Oy Oy 2
D(Vh)— |V11|2+2)\2 _% _% + \°Id

In this formulation, I'd denotes the identity matrix. The advantage of this method
is that it inhibits blurring of the flow across boundaries of I; where |VI;| >> .
This model, however, uses an optical flow constraint which is centered in I,
while the projection matrix D in the smoothness term depends on I;. This
inconsistency may lead to erroneous results for large displacement fields. In order
to avoid this problem, we consider a modified energy functional where both the
optical flow constraint and the smoothness constraint are related to I;:

E(h) = /R (1(2,9) — Lz + u(z,y),y + v(z,9)))* de (4)

+C/IR2 trace ((Vh)TD(VIl) (Vh)) dz.



The associated Euler-Lagrange equations are given by the PDE system

Cdiv (D (V1) Vu) + (I(Z) — (T + h(z))) %(z FhE) =0, (5)

C div(D (V) Vo) + (I (T) — I,(T + h(T))) %—;2(3 +h(@)=0. (6)

In this paper, we are interested in solutions of the equations (5)-(6) in the case
of large displacement fields and images that are not necessarily slowly varying
in space. Therefore, we do not introduce any linearization in the above system.
We obtain the solutions by calculating the asymptotic state (¢ — oo) of the
parabolic system

% = Cdiv (D (V1) Vu) + (I, (Z) — I(Z + h(T))) %(E +h(Z)), (7)
v . _ _ o\ O _
5= Cdiv (D (VI) Vv) + (I[1(T) — L(T + h(T))) 8—y(x +h(T)). (8)

Interestingly, this coupled system of diffusion—reaction equations reveals a
diffusion tensor which resembles the one used for edge-enhancing anisotropic
diffusion filtering. Indeed, D(V1;) has the eigenvectors vy := VI; and vy :=
VIi-. The corresponding eigenvalues are given by

)\2

M(VL]) = VL 232 (9)
VI |2 + A2
A(|VL]) = VL + 20 (10)

We observe, that A\; + A2 = 1 holds independently of VI;. In the interior
of objects we have |[VI;| — 0, and therefore \y — 1/2 and A2 — 1/2. At
ideal edges where |VI;| — oo, we obtain Ay — 0 and Az — 1. Thus, we
have isotropic behaviour within regions, and at image boundaries the process
smoothes anisotropically along the edge. This behaviour is very similar to edge-
enhancing anisotropic diffusion filtering [30], and it is also close in spirit to the
modified mean-curvature motion considered in [3]. In this sense, one may regard
the Nagel-Enkelmann method as an early predecessor of modern PDE techniques
for image restoration. For a detailed treatment of anisotropic diffusion filtering
we refer to [31], and an axiomatic classification of mean-curvature motion and
related morphological PDEs for image analysis is presented in [2].

Without any linearization, the optical flow constraint may cause a nonconvex
energy functional (4). In this case we cannot expect the uniqueness of solutions
of the elliptic system (5)-(6), and the asymptotic state of the above parabolic
system depends on the initial data for the flow v and v. In order to encourage
convergence to the physically correct solution in case of large displacement
flow, we will design a linear scale-space focusing procedure for the optical flow
constraint. Using a scale-space approach enables us also to perform a finer and



more reliable scale focusing as it would be the case for related pyramid [4] or
multigrid approaches [12].

The paper is organized as follows: In Section 2 we sketch existence and
uniqueness results for the nonlinear parabolic system (7)-(8). In Section 3 we
apply a linear scale-space focusing which enables us to achieve convergence to
realistic solutions for large displacement vectors. Section 4 describes a numerical
discretization of the parabolic system (7)-(8) based on an explicit finite differ-
ence scheme. In Section 5 we present experimental results on a synthetic and a
real-world image sequence. Finally, in Section 6 we conclude with a summary.

Related work. Proesmans et al. [25] studied a related approach that also
dispenses with a linearization of the optical flow constraint in order to allow
for larger displacements. Their method, however, requires six coupled partial
differential equations and its nonlinear diffusion process uses a scalar-valued
diffusivity instead of a diffusion tensor. Their discontinuity-preserving smoothing
is flow-driven while ours is image-driven. Another PDE technique that is similar
in vein to the work of Proesmans et al. is a stereo method due to Shah [28]. With
respect to embeddings into a linear scale-space framework our method can be
related to the optical flow approach of Florack et al. [14]. Their method differs
from ours in that it is purely linear, applies scale selection mechanisms and
does not use discontinuity-preserving nonlinear smoothness terms. Our focusing
strategy for avoiding to end up in irrelevant local minima also resembles the
graduated non-convezity (GNC) algorithms of Blake and Zisserman [9].

2 Existence and Uniqueness of the Parabolic System

Next we investigate the parabolic system of nonlinear partial differential equa-
tions (7)-(8). In [1], the authors develop a theoretical framework to study the
existence and uniqueness of solutions of a similar parabolic system, but with a
different regularization term. The main techniques used in [1] can be applied
in order to obtain the existence and uniqueness of the solutions of the system
(7)-(8). This leads to the following result.

Theorem 1. Let I, € C*(R?) and I, € C*(R?). Then the parabolic system (7)-
(8) has a unique generalized solution h(.,t) € C ([0,00); L*(R*) x L*(R?)) for
all initial flows hg € L*(R?) x L?(R?).

3 A Linear Scale-Space Approach to Recover Large
Displacements

In general, the Euler-Lagrange equations (5)-(6) will have multiple solutions. As
a consequence, the asymptotic state of the parabolic system (7)-(8), which we use
for approximating the optical flow, will depend on the initial data. Typically, the
convergence is the better, the closer the initial data is to the asymptotic state.
When we expect small displacements in the scene, the natural choice is to take



u = v = 0 as initialization of the flow. For large displacement fields, however,
this may not work, and we need better initial data. To this end, we embed our
method into a linear scale-space framework [17,33]. Considering the problem at
a coarse scale avoids that the algorithm gets trapped in physically irrelevant
local minima. The coarse-scale solution serves then as initial data for solving the
problem at a finer scale. Scale focusing has a long tradition in linear scale-space
theory (see e.g. Bergholm [6] for an early approach), and in spite of the fact
that several theoretical problems exist, it has not lost its popularity due to its
favourable practical behaviour. Detailed descriptions of linear scale-space theory
can be found in [13,15,18, 19,22, 29].

We proceed as follows. First, we introduce a linear scale factor in the parabolic
PDE system in order to end up with

a;‘t" = Cdiv(D(VGy * 1) Vu,) +

+(Go # L@ ~ Go s @ + ho(2) 2 B @ png@), )
% = Cdiv(D(VGy % 1) Vu,) +

+ (G h@ = Go v o+ 1, @) Y R @ o), 12)

where G, * I represents the convolution of I with a Gaussian of standard devi-
ation o.

The convolution with a Gaussian blends the information in the images and
allows us to recover a connection between the objects in I; and I. We start with
a large initial scale o¢. Then we compute the optical flow (us,,vs,) at scale o
as the asymptotic state of the solution of the above PDE system using as initial
data u = v = 0. Next, we choose a number of scales 0, < 05,1 < .... < 09, and
for each scale o; we compute the optical flow (u,,,vs;) as the asymptotic state
of the above PDE system with initial data (u,, ,,vs,_,). The final computed
flow corresponds to the smallest scale o,. In accordance with the logarithmic
sampling strategy in linear scale-space theory [20], we choose o; := niocy with
some decay rate n € (0,1).

4 Numerical Scheme

We discretize the parabolic system (11)-(12) by finite differences. All spatial
derivatives are approximated by central differences, and for the discretization
in t direction we use an explicit (Euler forward) scheme. Gaussian convolution
was performed in the spatial domain with renormalized Gaussians, which where

truncated at 5 times their standard deviation. Let D(VG, 1) = (‘; g) Then



our explicit scheme has the structure

k+1 k k k k k
Yig “Uij _ o[ Qi ¥ Gy Yy — ey Gic1y F G Mg My
T 2 h? 2 h?
k k k k
4 Gkl T Cig Vil — ey Cigo1 F Cig Uit T Yy
2 2
2 h2 2 h2
k k k k
bit1,j+1 +0ij Yivrjrr =iy bicaj1 +big Yiay0 Wi
2 2h1hs 2 2h1hs
k k k k
_ i A big Wiy Ty bicayen Fbig Yioae T
2 2h1hs 2 2h1ho
+ (Do @) = Loy @i + 7k ) Toreo @iy + B i) (13)
Lo \Tj j 2,0 (Ti,j 0,isj 2,2,0\Li,j 0,5/
k+1 k k k k k
Vig "% _ o [ Qg F i Ying Yy Gimng tag Vs Yy
T 2 h? 2 h?
k k k k
4 Gt T Cig Vigit Y Cig—1 ¥ G Va1~ Yag
2 2
2 h2 2 h2
k k k k
bitijpr 4 0ij Vivrger Vi bimuio Hbiy Vi TV
2 2hi1hy 2 2hi1hy
k k k k
C o A big Vi1 TV b biy Vit TV
2 2h1hs 2 2hi1hy
+ (Do @) = oo (@ij + P ) Torgo iy + ) (14)
1,0\Z; j 2,0 \Li,j o,i,] 2,y,0\Li,j o)

The notations are almost selfexplaining: for instance, 7 is the time step size, hy

and hsy denote the pixel size in x and y direction, respectively, uf ; approximates

U, in some grid point z; ; at time k7, and I ; , is an approximation to G, * %.
—k . . .

We calculate values of type I» ,(T;,; + hmi,j) by linear interpolation, and we use

the time step size

0.5

T = — — .
4C + n}%x(|11,z,g(a:i,j)|2, 11,y,0 (Ti,5)[?)

(15)

This step size can be motivated from a stability analysis in the maximum norm
applied to a simplification of (13)—(14) where a scalar-valued diffusivity and a
linearized optical flow constraint is used.

5 Experimental Results

The complete algorithm for computing the optical flow depends on a number of
parameters which have an intuitive meaning:



— The regularization parameter C' specifies the balance between the smoothing
term and the optical flow constraint. Larger values lead to smoother flow
fields by filling in information from image edges where flow measurements
with higher reliability are available. Recent results show that there is also a
close relationship between the parameter C' of a regularization method and
the scale parameter of a diffusion scale-space [26].

— The constant A in the smoothing term serves as a contrast parameter: loca-
tions where the image gradient magnitude is larger than A\ are regarded as
edges. The diffusion process smoothes anisotropically along these edges. In
our experiments we used A := 1. The results were not very sensitive to
underestimations of A.

— The scale oy denotes the standard deviation of the largest Gaussian. In
general, og is chosen according to the maximum displacement expected. In
our case we used og := 10.

— The decay rate n € (0,1) for the computation of the scales o, := n™0o. We
may expect a good focusing if n is close to 1. We have chosen 7 := 0.95.

— The smallest scale is given by o,,. It should be close to the inner scale of the
image in order to achieve optimal flow localization.

— The stopping time T for solving the system (11)—(12) at each scale oyy,.
When good initializations from coarser scales are available, we observed that
T := 20 gives results which are sufficiently close to the asymptotic state.

Figure 1 shows our first experiment. We use a synthetic image composed
of four black squares on a white background. Each square moves in a different
direction and with a different displacement magnitude: under the assumption
that the z axis is oriented from left to right and the y axis from top to bottom,
the left square on the top moves with (u,v) = (10,5), the right square on the
top is displaced with (u,v) = (—10,0), the left square on the bottom is shifted
by (u,v) = (0, —5), and the right square on the bottom undergoes a translation
by (—10,—10). In order to visualize the flow field (u,v) we use two grey level
images (ug,vq) defined by ug := 128 + 8u and vy := 128 + 8v. We use the
regularization parameter C' = 15000. The depicted optical flow was obtained
without scale-space focusing, i.e. with o9 = 0. As can be expected, the algorithm
gets trapped in a physically irrelevant local minimum.

Figure 2 shows that the proposed scale-space focusing leads to significantly
improved results. We start with initial scale o9 = 10 and show the results for
focusing to the scales 019 = 5.99, 029 = 3.58, 039 = 2.15, 049 = 1.29, 059 = 0.77,
o060 = 0.46, and 079 = 0.28, respectively. The other parameters are identical with
those in Figure 1. We notice that the computed flow is a good approximation of
the expected flow. In fact, not only the orientation of the flow is correct, but also
the flow magnitude is surprisingly accurate: the maximum of the computed optic
flow magnitude is 14.13, which is a very good approximation of the ground truth
maximum 10v/2 & 14.14. Tt results from the square which moves in (—10, —10)
direction. This indicates that — under specific circumstances — our method may
even lead to optical flow results with subpixel accuracy.

This observation is confirmed in the quantitative evaluations carried out in
Figure 3. The left plot shows the average angular errors in the four squares of the



Fig. 1. Optic flow obtained without scale-space
focusing (T = 800).

first frame. The angels between the correct flow (u.,v.) and the estimated flow
(te,ve) have been calculated in the same way as in [5]. The right plot depicts
the Euclidean error \/(ue — u.)? + (ve — v.)? averaged over all pixels within the
four squares of the first frame. In both cases we observe that the error is reduced
dramatically by focusing down in scale-space until it reaches a very small value
when the Gaussian width o approaches the inner scale of the image. Further
reductions of o leads to slightly higher errors. It appears that this is caused by
discretization effects.

In the fourth experiment, we use the classical taxi sequence, but instead of
taking two consecutive frames — as is usually done — we consider the frames 15
and 19. The dark car at the left creates a largest displacement magnitude of
approximately 12 pixels. In Figure 4 we present the computed flow using the
regularization parameter C' = 500 and focusing from g9 = 10 to o79 = 0.28.
The computed maximal flow magnitude is 11.68, which is a good approximation
of the actual displacement of the dark car. Figure 5 shows a vector plot of the
computed flow field.

6 Conclusions

Usually, when computer vision researchers deal with variational methods for
optical flow calculations, they linearize the optical flow constraint. Except for
those cases where the images a sufficiently slowly varying in space, linearization,
however, does only work for small displacements. In this paper we investigate



Fig. 2. From top to bottom and from left to right: the original pair
of images I; and I», and the flow components (4, v,) resulting from
focusing to the scales o190 = 5.99, g20 = 3.58, 030 = 2.15, 40 = 1.29,
o050 = 0.77, 6o = 0.46, and 079 = 0.28, respectively.
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Fig. 3. Left: Average angular error of the optic flow calculations for the squares in the
first frame of Figure 2. Right: Corresponding average Euclidean error.



Fig. 4. Optic flow computation of the taxi sequence using frames 15 and 19.

an improved formulation of a classical method by Nagel and Enkelmann where
no linearization is used. We identify this method with two coupled anisotropic
diffusion filters with a nonlinear reaction term. We showed that this parabolic
system is well-posed from a mathematical viewpoint, and we presented a finite
difference scheme for its numerical solution. In order to avoid that the algorithms
converges to physically irrelevant local minima, we embedded it into a linear
scale-space approach for focusing the solution from a coarse to a fine scale.
The numerical results that we have presented for a synthetic and a real-world
sequence are very encouraging: it was possible to recover displacements of more
than 10 pixels with high accuracy. It is our hope that this successful blend
of nonlinear anisotropic PDEs and linear scale-space techniques may serve as
a motivation to study other combinations of linear and nonlinear scale-space
approaches in the future.
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