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ABSTRACT

In this paper we propose a new technique to calibrate
a video sequence. We will compute the location and rota-
tion of the camera for each frame of the video sequence.
Classical methods for camera calibration work properly in
the case of a small number of cameras. When we take an
image sequence with a video rate, the number of frames
is very large and classical methods do not work properly.
To avoid this drawback, we focus the calibration process in
the estimation of the coordinates of a set of 3D points in
the scene, so the unknown are these 3D point coordinates
rather than the projection matrix associated to each frame.
The advantage of this approach is that with a few number
of 3D point coordinates we can estimate the projection ma-
trix of any frame using the relation between the 3D points
and its projection on each frame. In order to compute such
set of 3D points, we will use a classical camera calibra-
tion technique applied on a small subsequence of frames
taken from the large original video sequence. We also per-
form an iterative procedure to include the information of
all the cameras in the calibration computation. To illustrate
the capabilities of the proposed method, we will apply this
technique to include virtual 3D objects in a real video se-
quence.
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1. Introduction

The mathematical aspects of multiple camera calibration
have been deeply studied in the literature [3],[4]. In the
case of a few number of cameras the classical calibration
techniques work properly. However to calibrate a video se-
quence we have to deal with two important problems: On
one hand we have to calibrate a large number of cameras
(one camera per video frame) and on the other hand the dis-
placement between consecutive frames is in general very

small and the recovering of the camera parameters based on
the tracking of singular points across the sequence is very
unstable with a lot of local minima configuration far away
from the physical relevant solution. There are sophisticated
techniques to deal with these problems; however, probably
due to the commercial interest of such techniques, there is
not much public information about specific tools that deal
with these problems. In this paper we present a method
to calibrate a video sequence properly. We do not claim
that this method is better than the sophisticated tools pre-
sented in some commercial software packages (In particu-
lar we assume that the intrinsic parameters of the camera
are known, which is a restriction that could be avoided).
However, the technique we propose in this paper seems
to work properly, as it is shown in the experimental re-
sults, and it could be easily implemented for any domain
researcher.

The remainder of this paper is organized as follows:
In section 2 we present a general overview of multiple cam-
era calibration techniques. In section 3 we present the
method we propose in this paper. In section 4, we present
an application of this technique: the inclusion of virtual
objets in a real video sequence. Finally, in section 5 we
present the main conclusions of this paper.

2, Multiple Camera Calibration. A General
Overview

The problem of multiple camera calibration consists in re-
covering the camera positions and orientations with respect
to the world coordinate system, using as input data tokens,
such as pixels or lines, in correspondence in different im-
ages. Figure | shows this scenario for a system with three
cameras.

The specification of the i-th camera position is the 3D

point Ci(world), where the superscript is the reference sys-

tem in which the magnitude is expressed. The orientation
o . . 3 . X (world) . .
specification is a rotation matrix F; or any equiva-
lent representation, such as quaternions or Euler angles.
When the image tokens in correspondence are pro-
Jjections o% aset of‘ 3D points {Ad; }j:LN, where N is the
number of points, it is possible to reconstruct each 3D point
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Figure 1. Motion parameters derived from point matches.

expressed in the world coordinate system by simply esti-
mating the intersection point of the line set:
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{Tz = C{(world) + /\C(u'orlfl)ngorld)rngjz"g}
i=1.N

N 1ld . ~ . :
world) are the coordinates of the optical center in

the world reference system, and m E;) are the coordinates of
the projection of A4; in the normalized reference system for
the i-th camera. A reference system is normalized when the
optical center is in the origin, the focal distance is 1 and the
pixel is a square of size 1. We will assume that the intrinsic
parameters of the cameras are known, which allows us to
normalize the reference system.

In order to estimate the intersection 3D point of the
line set it is necessary to know the position of the opti-
cal center and the rotation matrix for each camera. The
computation of these parameters solves the problem of the
multiple camera calibration. After estimating these param-
eters, we can evaluate the solution accuracy by projecting
the reconstructed 3D points in each camera, and the best so-
lution for the calibration problem is the one that minimizes
the energy function:
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where m;<7> is the projection of the reconstructed

point A; in the i-th camera

There is no closed-form solution for the minimization
of the above energy fuction, and nonlinear minimization
methods must be used.

A restriction to take into account in the application of
these methods is that the solution must be not only min-
imum but also valid. (A solution is valid when firstly
the rotation matrixes are orthogonal, and secondly. the re-
constructed 3D points are always beyond the image plane,
since the reference system in the camera is normalized.)

It is important to find a good initial approximation,
close to the final solution, in order to supply as seed input
to the nonlinear minimization method which guarantees a
fast convergence.

This initial solution can be obtained by using linear
methods. In [2], the essential matrix E (for motion param-
eters (¢, R)) is defined, by:

E=TR (H
where T is the antisymmetric matrix:
0 —t. t
t: 0 _t:c (2)
~t, t. O

Matrix 7 is such that T = t A « for all vectors x.
The nine elements Ey; of E are called essential parame-
ters. Since two sets of points {m;} and {m}},i =1, ... N
can be interpreted as resulting from a 3D camera motion
(t,R) if and only if | t,m;, Rm; |= 0. then the last equa-
tion can be written as shown in [5]:
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Equation (3) is linear and homogeneous with respect
to the coefficient of E. Therefore, if eight of such equa-
tions are available, we can solve the system for those co-
efficients. The approach consists in first, estimating the
essential matrix F, and then recovering ¢ and R from E. It
is possible to rewrite equation (3) as:

aTX =0 4)

where X is the 9x1 vector [e], el el]T (e, is the i-th
column vector of the essential matrix E), and «a is the 9x1
vector [;L'm’Tym’sz’T]T

If we have n points in correspondence, each one
yields an equation like (4) and we can combine them as

follows:

A,X=0 ®)]

where 4,, is an nx9 matrix:

A, =1 ¢ (6)

In the presence of noise, equation (5) is only approx-
imately satisfied, and we can reformulate the problem as
that of finding the vector X that minimizes the norm of
A, X with the constraint that the norm of X is v/2.

It is well known that the solution to the last problem
is the eigenvector of norm /2 of the 9x9 matrix Af;—ln
corresponding to the smallest eigenvalue.

The computation of ¢ and R can also be performed
taking noise into account. The translation vector ¢ is the
solution of the following meansquare problem:

ming||ETt|? N

with the constraint that the norm of ||¢/|> = 1
In order to find the rotation matrix R, we have to solve
the following meansquare problem:

ming||E — TR (8)

subjectto RTR = Tand |R| =1

With this method it is possible to calibrate a sys-
tem with two cameras and without noise. When noise is
present, the method must be slightly changed because it is
not possible to find a valid solution to the calibration prob-
lem. Theses changes consist simply in introducing heuris-
tical rules to select the best solution.

To extend the method to more than two cameras it
is enough to carry out the calibration for each couple of
cameras (the first camera and the second, the second and
the third, and so on) and to fit a scale factor for each couple
of cameras.

In order to calculate the scale factor of two pairs of
cameras, we reconstruct each 3D peint, A, from its re-
spective correspondence pairs and then we minimize the
expression:

% P
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The analytical solution to this minimization problem is
given by:

—
(Y = 0,07) - R ar Y
2

This method has the advantage of being linear and
the disadvantage of being very noise sensitive (hence the
importance of a good estimation of the point coordinates
provided by a corner detection technique). Moreover, the
method does not take advantage of having multiple cameras
in order to improve the result of the calibration.

We can include all cameras using the linear solution
as initial approximation for minimization of equation (1).
In each iteration, we must take into account if the solution
is still valid. A possible strategy consists in adding a heavy
penalty term to the equation (1) when the restrictions are
violated.

A=
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3. Video Sequence Calibration

The method we propose in this paper to calibrate a video
sequence is divided into the following steps :

Step 1

In the first step we compute automatically sequences
of corresponding singular points across the video sequence.
We can use as singular points corners detected using the
classical Harris technique or a more sophisticated one, as
the one introduced in [1].

Step 2

In the second step we choose a small subsequence of
frames to recover a set of 3D points. The selected frames
could be chosen by hand, or taking a fixed step between
frames (i.e. we take for instance frames 1-25-50-75-.....).
We could also use a more sophisticated way to choose the
frames based on the robustness of the calibration informa-
tion between two cameras. Such robustness is based on the
two smallest eigenvalues A; < Ao of the matrix A?{An (see
(5)). The ideal case is that Ay = 0 and A» >> 0. So we can
choose the frames by maximizing some criteria associated
to such robustness, for instance

A2 — A1
/\2 + €
Once the video frame subsequence is obtained we
compute a set of 3D points M; using the technique showed
in the previous section.



iteration || step 1 | step 16
0 25 5.6
8 3.7 1.1
16 2.3 0.9
32 1.6 0.8
63 14 0.6

Table 1. Average reprojection error evolution

Step 3

First we notice that from the tracking step we know

for each 3D point M the projection of the point mg.) in
the i-th camera. From these relations we can compute the
projection matrix P; associated to each camera (see [2] for
details).

We update the 3D point coordinates and the projection

matrix using the following iterative scheme:

e From M; and mg;) we compute the projection matrix
P; for all frames in the video sequence.

e From P; and mg) we recompute the 3D points M by
intercepting the 3D lines going from mE;)
of Pl

to the focus

e We update M; with the new computed ones and we
start a new iteration until convergence of the iterative
scheme.

4. Experimental results. Inclusion of virtual
objects in a real video sequence

One of the main applications of video sequence calibration
is the inclusion of virtual objects in a real video sequence.
We will test our method in a real video sequence of 120
frames where we are going to include four artificial ob-
jets. In figure 2 we present four frames of the real video
sequence (left column) and the same frames with the inclu-
sion of the virtual objets using the calibration parameters
obtained with the proposed method (right column).

To illustrate the convergence behavior of the proposed
iterative scheme we present in figure 3 the evolution across
iterations of the average reprojection error in terms of im-
age pixel values. We present the results using two different
initial video subsequences. The first one is obtained using
frames 1-17-33-49-... (that is, we fit an step of 16 frames).
The second one is obtained using all frames (step equal to
D).

In table 1 we present the numerical values of the av-
erage reprojection error for the iterative scheme evolution
presented in figure 3.
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Figure 3. Average reprojection error evolution

5. Conclusions

In this paper we present a new method to perform video se-
quence calibration. The method is quite simple and seems
to work properly. The experimental results are very promis-
ing, as well as the convergence behavior of the iterative
scheme. In a real video sequence we arrive to get an av-
erage reprojection error of 0.6 pixels which is a very good
estimation.
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Figure 2. On the left, four frames of a real video sequence an
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objets (a glass, a mug, a teapot and a computer screen



