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Abstract

In this work, we present a new model for a dense disparity estimation and the 3—
D geometry reconstruction using a color image stereo pair. First, we present a brief
introduction to the 3 — D Geometry of a camera system. Next, we propose a new
model for the disparity estimation based on an energy functional. We look for the
local minima of the energy using the associated Euler-Lagrange partial differential
equation. This model is a generalization to color image of the model developed in
[2], with some changes in the strategy to avoid the irrelevant local minima. We
present some numerical experiences of 3 — D reconstruction, using this method for
some real stereo pairs.

1 The 3 — D geometry of a camera system and the
calibration problem.

This section is an introduction to the 3 — D geometry of a camera system and the cali-
bration problem. Most of the results presented in this section can be found (with much
more details) in [17]. To study the problem of camera calibration, we will use the classi-
cal ”pinhole model” which assumes the simplest projective model for the camera image
acquisition. The camera is represented by a projection plane R in 3 — D and a focus
C = (Cy,Cy, C,). The projection of the point M = (z,¥, z) of the 3 — D scene into the
camera is given by the interception of the line MC with the plane R, (see figure 1).



Figure 1: Projection of a 3-D point in the camera plane.

To calibrate the camera means to find out the parameters which determine the way
that the projection works. There are 2 types of parameters: the intrinsic parameters
and the extrinsic parameters. A digital color image I(z,y) = ([1(z,y), L2(z,y), I3(x,vy))
is given by 3 matrices where the values I;(x,y) k = 1,2,3 represent the 3 color channels
(red, green and blue) in each pixel (x,y). The pixels represent small cells where the light
arrive into the camera. The intrinsic parameters are the focal length f, the pixel size
(pz,py) and the position (c,,c,) into the camera of the interception point between the
plane R and the perpendicular line to R passing through the focus C. For instance, if the
focus is centered with respect to the plane image dimension then:

Number of horizontal pixels
Cyp =
2

Number of vertical pixels
Cy =
2

from a projective point of view f and (p,,p,) are not independent in the sense that if we
take a constant k the projection generated by the intrinsic parameters f and (p,,p,) is
the same that the one generated by the parameters kf and (kp,, kp,). Then, instead of
using the parameters f and (p,,p,), we use the normalized parameters o, = p,/f and
ay = py/f. So to conclude, we have 4 intrinsic parameters: g, oy, ¢z, ¢,. The intrinsic
parameters do not depend on the camera location in the 3 — D scene. In figure 2 we
illustrate the intrinsic parameters.

The extrinsic parameters of the camera determine the 3 — D) location of the camera in
the scene with respect to some ”a priori” fixed reference system. The extrinsic parameters
are given by a translation vector t = (t,,1,,?,) and a rotation matrix R = (r;;) with respect
to the fixed reference system. Since a rotation is given by 3 parameters (the rotation axe



>

e
<><
/i '<
P
;ﬁx C

Figure 2: Intrinsic parameters illustration

and the rotation angle), therefore, they are 6 extrinsic parameters. In figure 3 we illustrate
the extrinsic parameters

The next result establish how the intrinsic and extrinsic parameters determine the
way the projection works.

Theorem 1 (Faugeras [17]) Let be M = (My, My, M3, My) € P3, then the projection
point m = (my, my, m3) € P? of a 3— D point M in the camera is given by

My

my ¥y + CoT3 Qgly + Cyly M
my | = | ayra+eyrs auty + oyt M2 (1)

3

msa Irs tz M4

where r; represents the rows of the rotation matrix R. In what follows, we note by P the
423 matrix which determines the projection, that is m = PM. We note that the matrix
P is a linear projective application which is defined up to a scale factor.

To calibrate the camera we will assume that we know a set of 3 — D points /]\z and
their respective projections m; in the camera. So we formulate the calibration problem
as to find out a P matrix such that:

m;=PM; Vi=1,.,N (2)
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Figure 3: Extrinsic parameters illustration

where NV is the number of points that we use. In practice, we will use a special object
shown in figure 4 for which we know the 3 — D position of the black squares. In fact we
will use as points A; the corners of the black squares, and as points m; the projection of
M, into the camera.

We note that matrix P has 12 elements, and that for each (7\\4/1,7711) equation (2)
provides (once the projective parameter is removed), 2 linear equations with respect to P
elements given by:

3 3
ZpliMi + P — 1y (ZP&'MZ- + p34> =0 (3)
i=1 i=1

When N (the number of pairs (7\\4/“7711)) is bigger than 5, and the points are in general
position (that is, they are not in some special degenerated configuration) then, we can
recover matrix P following the relation (2). The technique to estimate P is very simple.
We note by p = (p11,P12....,p34) the 12 elements vector given by the lines of matrix P.
Then, the relations (3) can be written as Ap = 0, where A is a 2Nxz12. matrix. Since p
is defined up to a scale factor, we can assume that ||p|| = 1. Then, we look for a vector p
which minimize the energy F(p) given by:

E(p) = || Ap||” = p" A" Ap

with the constraint ||p|| = 1. A straightforward computation yields to p equal to the
eigenvector associated to the smallest eigenvalue of AT A. On the other hand, using stan-
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Figure 4: 3 — D object used for camera calibration

dard techniques, once the matrix P is known, we can deduce the intrinsic and extrinsic
parameters.

Even if matrix P is a projective application and it is defined up to a scale factor, we
can recover some very useful euclidean information from P. First, we can recover the focus
position C' of the camera:

D14
C=—-P ' pu

D34

and given a point m = (my,ms) in the camera, the director vector mC of the line mC is
given by:
my
m = ]371 My
1
where
N Pt P12 Pis
P=1 pa pe Dpos
P31 D32 P33

Then, using P, we can associate the line m(C' to any point m in the camera where the
3 — D point M has to be located.

The Epipolar Geometry



Until now, we have focused our attention in the case of 1 camera. In the case of 2
cameras, we have two views of the same scene. FEach camera has its own matrix P that
we will note by P and P’ and for any 3 — D point M, there exist two projections m and
m/. We note that if we know P and P’ and two corresponding points m and m/, then, we
can recover the 3 — D position of M as the interception of lines mC and m/C’. This is
illustrated in figure 5.

Figure 5: 3 — D Geometry of a stereo pair.

The point m' that corresponds to m in the other camera has to lie in the projection
of the line mC in the other camera. This projection is named epipolar line associated to
m. A straightforward calculus yields to the following expression for the epipolar lines:

mq
(m’l,m’Q,l)([P’C} P’P’l) my | =0
" 1

where the symbol [ ¢]  associated to a vector ¢ is the antisymmetric matrix:

0 —t
[ t]m = t, 0 —t,
—t, tp O
the 313 matrix ' = |P'C| P'P~! is named fundamental matrix, and it determines the

X
epipolar geometry, that is, it determines the epipolar line associated to each point m. In
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Figure 6: Epipolar Geometry

figure 6 we illustrate the epipolar geometry. The epipoles are the interception of the line
C'C" with the planes in both cameras.

2 Dense disparity map estimation and partial differ-
ential equations.

We name disparity to the displacement between the point m on the image [ and its
corresponding point m’ on I’. The accuracy of the disparity estimation is very important
because it determines the quality of the 3 — D reconstruction

Over the years, numerous algorithms for stereo vision have been proposed, which use
different strategies.

e Feature based: Those algorithms establish correspondences between some selected
features extracted from the images [23], such as edge pixels [41, 43], line segments [6,
31, 32] or curves [12, 39, 47]. Their main advantage is to yield accurate information
and to manipulate reasonably small amounts of data, thus gaining in time and
space complexity. Their main drawback is the sparseness of the recovered depth
information. This class of methods has been widely used some years ago, when it
was not possible to retrieve a dense and accurate reconstruction within a reasonable
amount of time.



e Area based: In these approaches, dense depth maps are provided by correlating
the grey levels of image patches in the views being considered, assuming that they
present some similarity [15, 18, 22, 40]. These methods are well adapted for relatively
textured areas; however, they generally assume that the observed scene is locally
front-parallel, which causes problems for slanted surfaces and in particular near the
occluding contours of the objects. Lastly, the matching process does not take into
account the edge information which is actually a very important information that
should be used in order to get reliable and accurate dense maps.

e Energy based: A last kind of approach which does not suffer any of the short-
comings presented above, consists of solving the correspondence problem in a min-
imization and regularization formulation [2, 7, 9, 25, 45, 46, 49, 56].

The method that we propose in this paper belong to the energy based methods. To
establish the model we will introduce some notations: we note by F' = (f;;) the fundamen-
tal matrix associated to the stereo pair. We define the auxiliary functions: a(z,y),b(x,y)
and c¢(x,y) in the following way:

a(z,y) = fur+ fy+ fis,
blx,y) = fax+ foy+ fos,
c(x,y) = farx+ fou+ fas.

with this notation, the epipolar line associated to a point m = (z,y) is given by:
a(z,y)a’ + bz, y)y + c(z,y) = 0. (4)

we will use this equation in order to parametrize the displacement between a point m =
(z,y) on I and its corresponding point m' = (z',vy') on I'.

2.1 Parametrization of the disparity

Under the assumption that corresponding points in both images have equal_)color lev-
els, to estimate the disparity is equivalent to look for a vector function h (z,y) :=
(u(z,y),v(z,y))*" such that:

Li(z,y) = Lz +u(z,y),y +v(z,y)) V(z,y) € R 1=1,2,3 (5)

where I; (respect. I]) represent the 3 color channels of image [ (respect. I'). We note
that the corresponding point (2/,7') = (x + u(x,y),y + v(x,y)) belongs to the epipolar
line associated to (x,y) and then it satisfies:

Re(2,y) = alz,y) (v + u(z,y)) + b(w,y) (y + v(2,y)) + c(,y) = 0
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If we parametrize the epipolar line using a function A(z,y) then we obtain:

w(w,y) = ANz, y)b(z,y)  alz,y)z+ bz, y)y + c(a:,y)a@ )

7 \/aQ(a:,y) + 0% (z,y) a*(z,y) + b*(z,v) I
ol _ Az, y)a(z,y) _ a(z,y)x + b(x,y)y + c(z,y) .

) Va2 (i, y) + 0*(z,y) a2(z,y) + b2(z,y) b, y),

where A(z,y) represents the parameter of the epipolar line. We will note W(A(a:,y)) =
(u(A(z,y),v(A(z,y))) to indicate that the disparity term depends just on the parameter
A(x,y). We point out that the case A(z,y) = 0 determines the point in the epipolar line
which minimize the distance between the epipolar line and m = (z,y). In figure 7 we
illustrate the disparity parametrization using A(x,y).

Figure 7: Parametrization of the disparity

Next, we present the model that we propose to estimate A(x, ).

2.2 The proposed energy model

To estimate A(z,y), we will consider the next energy functional:
3
BO) = Y [ (o) — L+ ulAw )y + 0O ) dady
i—1 /82
+ C / (VA" D (VInax) VAdz dy (6)
Q
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where ) is the image domain, C is a positive constant [ = ([y, I, I3) (respect. [’ =
(11,1}, I})) represent the color images of the stereo pair. D (V/yay) is the matrix given

by:
1 Ilmax Olmax t 9
D (ana.x) = ’v] ’2 _I_ 2]/2 l _88[ymax 1 l _% 1 + v ]d

oz ox

where Id denotes the identity matrix and

vjmax('r?y) = {v]m(aj?y) SU'Ch tha’t Hv]10<aj7y>H Z HVIZ<$7y)H VZ = 17273}

Basically, the above energy functional establish a balance between the equality of the
color channels between the corresponding points and the regularity of the function A(x, ).
We can interpret the regularity term in the following way:

[VA@9)[* i [V ()] = 0
(72=) if Vi@, >> 0

(VA D (Vipay) VA {

This regularity term is an extension,in the case of color images, of the one proposed in
[34, 36] developed in the context of optic flow estimations in an image sequence. This
method has demonstrated its performance numerous times in the context of optical flow

estimations [3, 4, 8, 16, 34, 35, 36, 50].

The energy model presented in this paper is a generalization, in the case of color
images, to the one proposed in [2], with some changes in the strategy to avoid the irrelevant
local minima. In [2] authors use a focusing strategy based on a linear gaussian multiscale
analysis in order to avoid the irrelevant local minima. In this work we propose a pyramidal
strategy which speed up the algorithm. We compute the disparity in a small version of
the original images and then we extrapolate the information toward the original stereo
pair. On the other hand, in this paper, we build our own calibration system in order to
perform the numerical experiences.

2.3 Energy minimization.

In order to compute the minima of the energy functional, we are going to use the associated
Euler-Lagrange partial differential equation. This Euler-Lagrange equation is given by:

‘ PRI ) Rl Nl
C div (D (V) VA)+;(L( ) = (1) ( )) N _o,<7>
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where T = (x,y), and the superscript A indicates a displacements of magnitude

(w(A(z,y),v(A(z,y)), that is, for instance (IN (Z) = I(T + (u(A(z,y),v(A(z,y))). In
the interior of the homogeneous part of the image I, |VIyax| — 0, and then the eigenvalues
A1 and Ag of matrix D (VIpax) behave as A\; — 1/2 and Ay — 1/2. In the case of a point
in the edges of image I, |V, | — o0, and then \; — 0 and Ay — 1. This behavior of
the eigenvalues shows the anisotropic character of the regularization term.

In general, the Euler-Lagrange equation (7) will have multiple solutions. Typically,
we may expect that the algorithm converges to a local minimum of the energy functional
(6) that is located in the vicinity of the initial data. To avoid convergence to irrelevant
local minima, we will use a pyramidal strategy to compute the disparity. That is, from
the original stereo pair I and I’, we define the pyramid of images 12", I’*" where n = 0
corresponds to the original images, and I?", I'?" is defined in the following recursive way:
In order to go from image 7" to image 1" we apply a linear smoothness filter to i
and then we perform a sampling of the image, in such a way that we keep 1 pixel from
each 4 pixels. We perform this procedure a number of times that we note by ny.

Next, we compute the disparity in the step ng by applying a gradient descent method
to the Euler-Lagrange equation. We use as initial guest for the method the disparity
computed using some simple technique as for instance a correlation window technique.
We note that in the step ng the images are quite small, so the disparity estimation is
much simpler and we reduce the risk to be trapped in irrelevant local minima.

Once the disparity in the step ng is computed, we extrapolate the value of the disparity
to the step ng—1. In order to do that, we use again the gradient descent method in the step
ng — 1, but using as initial guest an extrapolation of the disparity previously computed
in the step ng. We point out that if the displacement, in the step ng between 2 points
in both images is given by (u(z,y),v(z,y)), then, the displacement in the step ng — 1 is
given by (2u(2x,2y),2v(2z,2y)). In this way we compute the disparity in all the steps
until the original stereo pair is reached.

We note that when we modify the image size, we have to take into account that the

epipolar geometry changes. In fact, we can show easily that if we note by F?" = ( 12;1)

the fundamental matrix in the step n, then:

on on on on—1 on—1 on—1
11 12 13 4f11 L 4f12 L 2f13 L
on on on o gn— gn— gn—
211 2% 2.2)1 - 4f21 Ny 4f22 1 2f23

2 2 2 2m = 2™ 2" —1
31 32 33 2f31 2f32 33

In figure 8 we illustrate the pyramidal approach.

[
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Figure 8: Illustration of the pyramidal procedure to compute the disparity

2.4 Invariance Under Linear Grey-value Transformations

A remaining shortcoming of the modified model is that the energy functional is not
invariant under grey level transformation of the form (I,1") — (kI,kI'), where k is a
constant. Therefore, the choice of the parameters depends strongly on the image contrast.

This problem can be solved as follows. We compute C' and v by specifying two
parameters «, s € (0,1) such that

- I(I;?y})<<y<v1max><x,y>>!2>’

8:/ H\wmax\(z)dz
0

where H v .| (2) represents the normalized histogram of |V [,..|. We name s the isotropy
fraction. When s — 0, the diffusion operator becomes anisotropic at all locations, and
when s — 1, it leads to isotropic diffusion everywhere. In practical applications of our
method it is thus sufficient to specify the parameters o and s instead of C' and v.

12



3 Existence and Uniqueness of the Parabolic Equa-
tion

To apply a gradient descent method to the Euler-Lagrange equation yields to solve the
associated parabolic equation:

O\ .

5 = Cdiv(D (Vi) VA)
; o (%) @) -0 (%) (=)

EOY ) - 1) (%) ¢Tb( i) ®

the asymptotic state of this equation when ¢ — oo provides the disparity. This equation

leads to a mathematically correct concept, we shall prove existence and uniqueness in the
Appendix. We obtain the following result.

THEOREM: If II' are enough regular functions, then, for any initial datum X\° €
L*(R* R), there exists a unique solution of the above partial differential equation.

It’s worth to point out here that we will use the technique developed in [2] in order to
proof the above theorem.

4 Numerical Analysis

In order to compute the disparity, we will use a finite difference discretization of the above
partial differential equation. We note by D(VIpa.x) in a pixel (i, j) the matrix

s = () 5 )

The numerical algorithm that we propose is based on the next implicit implementation
of the partial differential equation (8):

13



k41 k k41 k41 k41 k41
Mg~ Mg _ C (dz‘+1,j +diy Ay — Mg n di1,j+dig M1y — N

2 2
T 2 hi 2 hi
B+l k1 B+l yk+1
n figir + Jig Mg — Mg n fig i+ Jig Nija— Mg
2 h3 2 h3
k+1 E+1 k+1 k41
1 Cit1,j41 T €iy )‘i+1,j+1 — )‘i,j €i—1,j—1 T Cij )‘ifl,jfl - )‘i,j
2 2h1hs 2 2h1hg
E+1 k+1 k41 E+1
Ceigate Ay T Ay et e Al — Ay
2 2h1he 2 2h1hs

b AL \E I\ M 9\ M
Y N L(Tiy) = L (W) — === | ai <8_a§> (Ti5) — by <3—yl> ()

2 2
=1 \/ @i T b3

o\ M o\
ai,j(am) (%,j)—bz‘,j(ay) ()

9
Z’J Z’J

where 7 is the time step size, hy and hy denote the pixel size in x and y direction,
respectively, )\ﬁ ; approximates A in some grid point Z';; at time k7. We calculate values

outside grid points by linear interpolation, and we solve the resulting linear system of
equations iteratively by a symmetric Gaui—Seidel algorithm [4].

The linear implicit scheme offers the advantage of using large time steps in order to
accelerate convergence to the steady state.

5 3 — D Reconstruction and Experimental Results.

Our algorithm for computing the disparity depends on a number of parameters that have
an intuitive meaning:

e The regularization parameter «a specifies the balance between the smoothing term
and the equality of the 3 color channels for the corresponding points. Larger values
lead to smoother flow fields by filling the information from image edges.

e The isotropy fraction s determines the contrast parameter v

e The number of times ng that we sample the image stereo pair in the pyramidal
approach.
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e The time step 7 for solving the linear system to go from )\fj to )\Zﬂ, and the stopping
time T for computing the asymptotic state of the parabolic equation. These are pure
numerical parameters. We experiences that fixing 7 = 4 and T = 500 create results
that are sufficiently close to the asymptotic state.

The first experience of 3-D geometry reconstruction that we present corresponds to
the stereo pair given in figure 9 (at the end of the document). In this experience, the
projection matrix P and P, and the fundamental matrix F', obtained using the calibration
object of figure 4 are given by:

1396 —1308 —15.54 1485116 1501  —1101  73.05 1468058
P= 201.7 189.2 —1872 1687977 | P = 385.1 354.1  —1764 1481735
0.7846 0.6186 0.0394 4103 0.69466 0.69548 0.18373 3953

0.738724 0.841469 —12056.94
"= —0.46314623 —0.645678  8582.56
11312.11 —8491.66  594096.29

In figure 9, we present 4 views of the 3 — D reconstruction of the stereo pair using the
disparity computed by the method proposed in this paper.

The second experience of 3-D geometry reconstruction that we present corresponds to
the stereo pair given in figure 10. In this experience, the projection matrix P and P’, and
the fundamental matrix F, are the same that in the first experience.

We notice that the results are very accurate, we have to take into account that human
faces are really difficult objects because the human vision is very sensitive to the human
face shapes, so, in particular, we are very sensitive to the error in the 3 — D shape
reconstruction.

Finally, In figure 11, we present a numerical experience based on 2 outdoor views of
the Instituto Universitario de Ciencias y Tecnologias Cibernéticas de la Universidad de
Las Palmas de Gran Canaria. In figure 11 we present the stereo pair as well as 4 views of
the 3 — D geometry reconstruction using the method proposed in this paper. The results
are fair but not so perfect as in the case of the human faces because, on the one hand,
there are multiple occlusion phenomena in the scene, an on the other hand the textures of
the ground and the wall are very homogeneous and then, to find out the correspondence
between points is more difficult.

Concerning the choice of the parameters, we have taken ng = 4 and o« = 1.5 in all the
experiences. We have taken s = 0.5 in the case of the human faces and s = 0.2 in the case
of the outdoor scene, in order to keep better the strong discontinuities of the disparity
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present in this scene. We notice that the algorithm is very robust with respect to the

choice of the parameters and that with equal or similar values, we obtain good results in
very different situations.

For more details about the numerical experiences you can visit the web site:

http:/ /serdis.dis.ulpgc.es/ lalvarez /research /demos/ColorStereoFlow.
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6 Appendix. Existence and Uniqueness of the Parabolic
Equation

We show the existence and uniqueness of solution of the parabolic equation (8) The
parameters C' and v can be arbitrary positive real numbers. First we introduce an abstract
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framework where we study the above system. This framework is used to show the existence
and uniqueness of the solutions afterwards.

Abstract Framework

For simplicity, we will assume that the images are defined in R2. We define H :=
L*(R* R), and the differential operator A : D(A) C H — H given by:

AN) = —Cdiv (D (Vi) VA) .

we define 2 = R? x R? x R%. We will assume that I, I’ € Wh>(R? Q). Therefore V ax
is bounded and the eigenvalues of matrix D (VIya.x) are strictly positive. Therefore, as
C > 0, the operator A()) is a maximal monotone operator. For more details about
maximal monotone operators we refer to Brezis [11]. Next, let us introduce the function

I': H — H defined by

3 _ ., oh
a3

POY =3 (1= 11d + T ())) —2 Jd+ h <AC>; : ;a; (d+ (V)

=1

Then the abstract evolution problem can be written as

DL AN =F\) eH Yte[o,T]
{ 2(0) A (10)
Any classical solution A € C'([0,T]; H) N C([0,T); D(A)) of (10) is given by:
At) = SN + /t S(t—s)F(A(s)) ds, (11)

where {S(t)}s~0 is the contraction semi-group that is associated to the homogeneous
problem.

Definition. We say that h € C([0,T]; H) is a generalized solution of (10) if it satisfies

(11).
Existence and Uniqueness Result

To simplify the discussion, we will assume that the epipolar line satisfies that a? + b2
is strictly positive. In fact, the case a = b = 0 corresponds to epipolar lines located at
the infinity plane (m3 = 0), which is of course not very interesting from a practical point
of view. In order to prove existence and uniqueness, we have to establish a lemma first.

Lemma. Let us assume that [, I' € WH°(R? Q), then F is a Lipschitz function.
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Proof: Given A\{, Ay € H, we have the following pointwise estimate

’F<)\1) - Fi<)‘2>’ =

3 , - —Ba([d+ B () aZi(ld+ B (\))
;(L — L[(Id+ I’ (\))) ( Nz + 0 )
—m-nUw+Wu»»(4%%§§%§M”+“J$;;%Qm ,
sffmua+ﬁ7a»@ﬂUd+%Ra»—LUd+ﬁX&»@ﬂ0d+ﬁx&»

L0 I (Id + B (A) = 8;01(1d + B (X)),

3 (|12 - a(I!]? -
< Z} b2 (1d+ W () b2 (1d + R ()
- — 2 ‘/CLQ—I—bQ ‘/CLQ—I—bQ
L1 oL (1d+ 7 (N))  oXEE(1d + R (A)
2 Va? + b2 Va® + b2

Ul b2 (1d+ W (\) —bZ(Id+ B (M)

> Va? + b2 Va? + b2
1] o2(Id+ H () aSi(ld+ B ()

o0 vaZ + b2 vaZ + b2 !

3
— — — —
<D P e TR ) = B Q)]+ 20 oo 1 g | B (M) = 7 (A)]
=1

3
<SP e + 2 oo 12l 11 = Al

i=1
We conclude the proof of the lemma by setting

3

L= ([P e + 20 o 1 e ) -

=1

This shows the assertion of the lemma.

Now we can prove the existence and uniqueness theorem

THEOREM: If I, I' € Wh>°(R? Q) then for any initial datum \° € L*(R?), there exists
a unique solution of (8).
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Proof: Using the previous lemma we deduce that F'is lipschitz. Assume that A;(¢) and
A2(t) are solutions of (11) for initial conditions A1(0) and A9(0), then we have, using the
fact that —A is dissipative (which yields ||S(¢)f||lz < ||f]lz), and the Lipschitz continuity
of F' the following estimate.

¢
[A1(8) = Ao(O)][ e < [ A1(0) = A2(0)]|r + L/ IA1(s) = Aa(s)[| ads.
0
Applying the Gronwall-Bellman lemma [11] gives

IAa(8) = Ae(@)llzr < €™ Ae(0) — A2(0)| 1,
which yields uniqueness of the solution if it exists. Now consider the Banach space defined
by
E={\eC([0,00); H) such that sup ||A(t)||ge *" < oo}
>0

endowed with the norm ||[A||g = sup;q [|A(#)||pe *". Let ¢ : E — C([0,00); H) be
defined by

d(N)(t) = S(t)d® + /Ot S(t — s)F(A\(s)) ds.

If K> L, then ¢(F) C F, and ¢ is %—Lipschitz since

[600) = 6(0) 2 = sup [ $(A)(8) = 6 () e,
- t
< sup/ LA (s) = Ao(s) | ds e K
>0 Jo
t
< sup L|| A\ — AQHE.eKt/ eXds
t>0 0
£ . ~Kt; Kt _
S sup KH)\l )\QHE.e (6 1)
t>0
L
< =IA; = Aol
< 2lh = alle

We deduce that ¢ is a contraction, and by Banach’s fixed point theorem there exists a
unique A such that ¢(A) = A. This is the generalized solution of (10), and the proof is
concluded.
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