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ABSTRACT
The meta–analysis of two trials is valuable in many practical situa-
tions, such as studies of rare and/or orphan diseases focussed on a
single intervention. In this context, additional concerns, like small
sample size and/or heterogeneity in the results obtained, might
make standard frequentist and Bayesian techniques inappropriate.
In a meta–analysis, moreover, the presence of between–sample
heterogeneity adds model uncertainty, which must be taken into
consideration when drawing inferences. We suggest that the most
appropriate way to measure this heterogeneity is by clustering the
samples and then determining the posterior probability of the clus-
ter models. The meta–inference is obtained as a mixture of all
the meta–inferences for the cluster models, where the mixing dis-
tribution is the posterior model probability. We present a simple
two–component form of Bayesian model averaging that is unaf-
fected by characteristics such as small study size or zero–cell counts,
and which is capable of incorporating uncertainties into the estima-
tion process. Illustrative examples are given and analysed, using real
sparse binomial data.
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1. Introduction

The main role of meta–analysis is to summarise data from various clinical studies using
ad–hoc statistical procedures. One area where a meta–analysis may usefully be conducted
is that of rare or orphan diseases, about which few studies have been conducted and where
research findings may be heterogeneous. In this context, heterogeneity is understood as
the statistical variation present in the collected effect size data, to be identified and anal-
ysed after pooling the information drawn from the studies included [33]. In considering
Bayesian random–effects for meta–analyses, it is assumed that for each study iwith sample
size ni, the observed effect xi follows a normal distribution with mean parameter θi (the
treatment effectiveness conditional on study i) and variance τi. In addition, the true treat-
ment effect θi in trial i is normally distributedN (θi | θ , τ), where θ , the meta–parameter,
is the true effect of the treatment in question. The link distribution N (θi | θ , τ) accounts
for the uncertainty on θi around θ for each study i, and τ for the biased assessment
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of the treatment effect. Finally, priors on θ and τ are obtained in order to perform a
Bayesian estimation for the parameters of interest. The question of the link distribution
has received little previous attention in the literature, but it is important to note that it
must be coherent with the specified marginals and be able to accommodate considerable
between–study heterogeneity. When effectiveness is measured by a discrete 0–1 random
variable, this hierarchical normal model is typically applied to the logit transformation
of the data log(xi/(ni − xi)) with the reparametrisation log(θi/(1 − θi)) [3,4,11,25,36].
As observed by Thomas et al. [37] the performance of a meta–analysis regarding binary
data has received much attention. This question is of interest for several reasons. On the
one hand, effectiveness is commonly measured in terms of a binary variable according to
whether or not a specific objective has been achieved (in the healthcare context, for exam-
ple, objectives such as survival, non–relapse or achieving a low viral load). Charles et al.
[6] found that fully half of all trials calculated the necessary sample size according to stipu-
lated binary outcomes. It is important to note that different statistical considerations must
be made for binary outcomes than for continuous ones. If the samples contain zeros, a
fixed data continuity correction is normally applied, after which a logit approximation is
made. However, this practice has been criticised by Sweeting et al. [36], who proposed an
alternative empirical data correction. Friedrich et al. [16] showed that significant aspects of
the meta–analysis could be invalidated if trials with no outcome events in the treatment or
control arms are either not considered or are modified by the common continuity correc-
tion of 0.5. The same problemmay arise when themeta–analysis contains a double zero, i.e.
when both the treatment and the control arms contain zero events.Weber et al. [42] recom-
mended that zero–cell corrections should be avoided due to the unsatisfactory statistical
properties thus produced.However, continuity corrections are not the onlyway option, and
other forms of meta–analysis have been proposed, such as those based on binomial mod-
els, as described by Günhan et al. [18]. IntHout et al. [24] noted that small studies present
more heterogeneity than large ones. Moreover, between–sample heterogeneity introduces
model uncertainty into the process. Rücker et al. [33] observed that statistical heterogene-
ity and small–study effects are major issues that can impair the validity of a meta–analysis.
Furthermore, it can be difficult to estimate heterogeneity when the analysis is based on
a small number of studies. This could give rise to model uncertainty and hence produce
misleading results. In view of these considerations, we believe the degree of heterogeneity
present, i.e. the statistical variation in the effect size data, must be identified and assessed
to ensure the validity of the meta–analysis performed [33]. The statistical heterogeneity in
a meta–analysis is usually determined by one of the following approaches

(a) by estimating the between–study variation, which is characterised as the variance,
or heterogeneity parameter τ . Spiegelhalter et al. [35] proposed the following ranges
of typical τ threshold values for heterogeneity: 0.25 (moderate), 0.5 (substantial), 1
(large) and 2 (very large);

(b) alternatively, by testing the null hypothesis that the true treatment effects across stud-
ies are identical [3,5], using the test–statistics Q, or the sum of squared deviations of
all effects about the mean, on a standardised scale, given by Q = ∑k

i=1(xi − θfe)
2/vi,

where θfe is themean effect size using fixed effect weights, and vi is the square standard
error of the ith study (assumed to be known). Under the null hypothesis of homogene-
ity,Q follows aχ2–distributionwith k−1 degrees of freedom i.e. the number of studies
minus 1). As the Q test only informs practitioners about the presence or absence of



2762 M. MARTEL ET AL.

heterogeneity, alternative measures such as the I2 = 100 × (Q − (k − 1))/Q index
have been proposed to quantify the degree of heterogeneity in a meta–analysis, i.e.
the total inter–study variation attributable to heterogeneity (Higgins et al. [22]). I2
ranges from 0 to 100%, and a practical guide offered byHiggins et al. [23] assigned val-
ues of 25%, 50% and 75% to represent low, moderate and high levels of heterogeneity,
respectively, and considered a significant degree of heterogeneity to be present when
I2 > 50%.

However, both of these approaches present certain problems when the meta–analysis is
based on a small number of studies. This is especially serious when there are only two stud-
ies. Thus, the intensive simulations described by Chuang et al. [7] suggest that estimates
of between–study variance are inaccurate for meta–analyses based on small numbers of
studies.

Another important consideration is that tests of heterogeneity have relatively little detec-
tion power when data are sparse and/or the meta–analysis is based on a small number of
studies [15,27,33]. Such a situation commonly arises, for example, in analyses concern-
ing rare or orphan diseases, in which zero values are often observed in both the trial and
the treatment arms considered and in many cases the meta–analysis is based on just two
studies.

The problem of statistical heterogeneity in a meta–analysis based on just two studies
has been highlighted by Friede et al. [15], IntHout et al. [24] and Pateras et al. [30] among
many others. The inherent difficulty in this situation is heightened in small–scale trials by
the presence of zero–cell counts, i.e. the non–occurrence of the event being investigated.
In such cases, significant between–study heterogeneity is very likely. If this is not properly
accounted for, the research conclusions drawn will be unreliable [36,41,42]. Gonnermann
et al. [17] observed that, in the presence of heterogeneity, the meta–analysis of two studies
remains an ‘unsolved’ problem. The question of meta–analyses based on only two studies
has been addressed by the European Medicines Agency, [13,14] in its guides to statisti-
cal principles for clinical trials. Among many randomised controlled trials located on the
Cochrane ReviewDatabase, Crins et al. [8] andMiller et al. [26] identified real–life datasets
on which statistical methods for two–study meta–analyses have been utilised (Friede et al.
[15]).

1.1. Amotivating example

Extracted from Friede et al. [15], the data shown in Table 1 correspond to the compari-
son between treatment (85 patients were treated with Krystexxa 8mg every 2 weeks) and
control (placebo), followed by an analysis of the safety endpoint (infusion reaction), based
on US Food and Drug Administration approval of Krystexxa, a treatment for chronic gout
in adult patients refractory to conventional treatment, in the context of orphan diseases.

Table 1. Krystexxa dataset.

Treatment Control

Study Events Total Events Total

Study C405 (x1) 11 43 1 20
Study C406 (x2) 11 42 1 23
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Although these data correspond to a case–study in which there are no zero cells, an ini-
tial consideration is useful to understand our approach to heterogeneity. Section 3 provides
a comprehensive analysis of this case–study and of two others, containing single and dou-
ble–zeros. In a study based on frequentist techniques, Friede et al. [15] found no evidence
excluding the presence of homogeneity, with estimated τ̂ = 0.00, and I2 = 0.0%. However,
this simplistic 0–1 decision (accepting or rejecting the presence of homogeneity) ignores
the real import of the heterogeneity within the dataset. As a result, misleading inferences
may be drawn. Our paper proposes a statistical model for meta–analyses that may contain
zeros and be based on only two studies. In thismodel: (1) no logit transformation ismade of
the data and parameters; (2) any uncertainty arising from between–sample heterogeneity
is quantified. We suggest these goals can be achieved by means of Bayesian clustering.

The data considered in themeta–analysis of two studies consist of x = (x1, x2)with xi =
(xi, ni), i = 1, 2. When only two studies are considered, there may be only two data–based
heterogeneity structures: (i) the case in which the data observed are from the same sam-
pling model (i.e. homogeneity, in notation {x1x2}) or (ii) the data are from two different
sampling models (i.e. heterogeneity, in notation {x1}{x2}).

This induced between–sample heterogeneity could be viewed as a simple clustering
problemwhere themodel uncertainty is included in the inference, using a two–component
mixture model (or equivalently, a two–component Bayesian model averaging).

Obtaining the likelihood function using x is a major problem, because the sample infor-
mation xi from study i is related to θi but not to the parameter of interest θ . Therefore, the
likelihood function required for estimating θ must be strongly dependent on the cluster
structure of the samples.

In this context, we compute the posterior probabilities of each cluster structure (repre-
senting heterogeneity or homogeneity), and then obtain the meta–inference as a mixture
of those derived from the cluster models, with the posteriormodel probabilities being used
as a mixing distribution. Unlike previous work in this field, in which studies have analysed
between–study heterogeneity for a given quantity such as mean difference, relative risk or
odds ratio, we analyse each treatment separately, thus enabling the heterogeneity structure
to vary between the intervention and the control.

The rest of this paper is organised as follows. In order to overcome possible problems
with samples containing zero events, as well as the need to perform continuity correc-
tions [4,18,24,36], we first introduce the Bayesian binomial model. In this methodological
section, we consider clustering as a possible approach tomanaging sampling heterogeneity
in a meta–analysis of two studies. We then develop the likelihood function needed to draw
inferences about the parameter of interest, when cluster structures are considered. Next,
Section 3 presents some examples with real data, applying the proposed methodology.
Finally, some brief conclusions are drawn.

2. Statistical modelling

In this section, a Bayesian binomial approach is taken to perform a meta–analysis of two
studies. For each study i, we have the Binomial–Beta model given by

Xi ∼ Bin(xi | ni, θi), xi = 0, . . . , ni,

θi ∼ Beta(θi | 1, 1), i = 1, 2, (1)
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where θi represents the treatment effectiveness, ni the number of patients, and xi the
number of successful treatments, conditional on the study i = 1, 2, such that

Pr(xi | ni, θi) =
(
ni
xi

)
θ
xi
i (1 − θi)

ni−xi , xi = 0, . . . , ni. (2)

Inmost situations, the data contain a preponderance of zeros, and therefore we assume that
the prior information on the conditional effectiveness θi is weak and assign the uniform
prior Beta(θi | 1, 1).

Although Jeffreys and Haldane distributions are possible alternatives that are widely
accepted as objective priors for the Bernoulli parameter, in the presence of sparse data,
some arguments favour the use of uniform ones, for instance, when there is a prepon-
derance of zeros. Thus, Tuyl et al. [38] stated, ‘the Jeffreys prior Beta(θ | 1/2, 1/2) can be
too informative concentrating too much probability mass close to 0, thus suppressing the
importance of the observed data’. On the other hand, the Haldane prior is Beta(θ | 0, 0)
and improper. Such a link function is not desirable in the meta–analysis context. More-
over, when the data are equal to 0, the Haldane posterior is in fact improper which, as
Bernardo [2] noted, ‘is less than adequate’. Posterior predictive arguments in favour of the
Beta(θ | 1, 1) are also given in Tuyl et al. [39].

Let us now consider a binary ‘latent’ variableX, representing a treatment result obtained
in a virtual study. Obviously, the distribution assigned to X is of the same type as that
of Xi, i.e. we have the Bernoulli meta–model Ber(x | θ), where θ is the true (uncondi-
tional) treatment outcome, which is not affected by between–study variability. A Bernoulli
meta–model is induced by

Pr(x | θ) = θx(1 − θ)1−x, and π(θ) = Beta(θ | 1, 1). (3)

As usual, two arms are compared in each study (labelled treatment (T) and control/placebo
(C), respectively). The proposed model is analogous in each case, and so for simplicity we
omit the subindex describing the arm in each study. In practical applicationswith a real data
set, a subindex notation will be used in each meta–analysis. The Bayesian meta–analysis
is then based on the posterior distribution of the parameter θ , which is derived via Bayes’
theorem and given by

π(θ | x) ∝ f (x | θ)π(θ), 0 < θ < 1, (4)

where x = (x1, x2) with xi = (xi, ni), i = 1, 2, and f (x | θ) denotes the likelihood function
for estimating θ given the observed data. However, the likelihood function in (4) cannot
be obtained with the information on sample xi on study i, which is related to θi but not to
θ . Therefore, further steps are required to derive an appropriate likelihood function.

2.1. The linking distribution

A distribution π(θi | θ) is needed to link the experimental parameters θi with the
meta–parameter θ . This hierarchical structure implies a crucial consideration in choosing
a linking distribution, one that is sometimes overlooked by practitioners, namely that this
linking distribution must ensure there is coherence between the conditional and marginal
distributions of the experimental parameter and themeta–parameter. Mathematically, this
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requires that the corresponding bivariate distribution belong to the class of bivariate distri-
butions with given marginals, i.e. the bivariate distribution π(θi, θ) = π(θi | θ)π(θ) must
satisfy the integral equations

∫ 1

0
π(θi, θ) dθi = π(θ) and

∫ 1

0
π(θi, θ) dθ = π(θi), i = 1, 2. (5)

Following Moreno et al. [28] we consider the conditional intrinsic linking distributions
given by

π(θi | θ) =
t∑

z=0
Bin(z | t, θ) × Beta(θi | z + 1, t − z + 1), (6)

that is, a finite mixture of Beta distributions with binomial weights, where t is an integer
representing the (imaginary) training sample size used in creating the link distribu-
tion. The mean and variance of this distribution are E(θi | θ) = 1+t θ

2+t , and V(θi | θ) =
(1+t)(1−2tθ(θ−1))

(2+t)2(3+t) , respectively. Given that the mean converges to θ as t → ∞ and the vari-
ance vanishes at infinity, the hyperparameter t indicates how strongly the conditional
distribution π(θi | θ) concentrates mass around θ . Note that the correlation coefficient
between θi and θ is t/t + 1. In practice, this hyperparameter t is fixed, assuming a large
enough correlation. The bidimensional prior π(θi, θ) = π(θi | θ) × Beta(θ | 1, 1) has two
interesting properties. Firstly, it satisfies equations (5) for any t (i.e. it belongs to the Fréchet
class with uniformmarginals), and therefore, the linking class of intrinsic distributions and
the Bayesian models (2) and (3) are coherent. Furthermore, the concentration of π(θi | θ)

around θ is determined by the size of the training sample t. Thus, the larger the t the greater
the concentration.

Assuming that θ1 and θ2 are conditional independent given θ , the joint linking distri-
bution of (θ1, θ2) conditional on θ is given by

π(θ1, θ2 | θ) = π(θ1 | θ) × π(θ2 | θ). (7)

Finally, observe that the proposed intrinsic linking distribution of θi, conditional on θ , does
not require the use of the continuity correction and logit transformation for the sparse data,
as is the case with standard random–effect models, whereby several concerns might arise.

2.2. The likelihood

It is clear that the likelihood function strongly depends on the cluster structure of the
samples. As in Moreno et al. [29] and Vázquez–Polo et al. [40], we adopt the following
definition of a cluster: two samples x1 and x2, from f (x | θ1) and f (x | θ2), respectively, are
in the same cluster if θ1 = θ2.

When there are only two studies in the meta–analysis, only two cluster structures are
possible: either i) x1 and x2 are in the same cluster, with the notation {x1, x2}, which
corresponds to a sample structure of homogeneity; or ii) x1 and x2 are in different clus-
ters, with the notation {x1}, {x2}, which corresponds to sample heterogeneity. Therefore,
for the data x = (x1, x2), we need to obtain the likelihood for θ conditional on a given
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cluster model. Each cluster model indicates a different heterogeneity structure of the sam-
pling model for x, and the posterior probability informs us about the uncertainty for this
structure. Finally, the likelihood for estimating θ conditional on data x is obtained as a
two–component mixture of the above conditional likelihood functions. Following the par-
tition model approach introduced by Barry and Hartigan [1], the cluster model given by
the homogeneity structure {x1, x2} has the sampling distribution

f (x | {x1, x2}, θ1) =
(
n1 + n2
x1 + x2

)
θ
x1+x2
1 (1 − θ1)

n1+n2−(x1+x2), (8)

and the heterogeneity configuration {x1}, {x2} has the corresponding sampling model

f (x | {x1}, {x2}, (θ1, θ2)) =
(
n1
x1

)
θ
x1
1 (1 − θ1)

n1−x1
(
n2
x2

)
θ
x2
2 (1 − θ2)

n2−x2 . (9)

From this, we can obtain the likelihood, conditional on each cluster model:

(i) For the homogeneity configuration, we have

f (x | {x1, x2}, θ) =
∫ 1

0

(
n1 + n2
x1 + x2

)
θ
x1+x2
1 (1 − θ1)

n1+n2−(x1+x2)π(θ1 | θ) dθ1, (10)

where π(θ1 | θ) is given in (6). After some algebra, expression (10) can be rewritten as

f (x | {x1, x2}, θ) = �(x1 + x2 + 1)�(n1 + n2 + t − x1 − x2 + 1)
�(n1 + n2 + t + 2)

× (1 + t)(1 − θ)t3F2
(
a, b,

θ

θ − 1

)
, (11)

where 3F2(a, b, z) denotes the generalised hypergeometric function with argument
z and vector parameters a and b of dimensions 3 and 2, respectively, with a =
(−t,−t, x1 + x2 + 1) and b = (1,−n1 − n2 − t + x1 + x2), and

(ii) for the heterogeneity configuration:

f (x | {x1}, {x2}, θ)

=
∫ 1

0

(
n1
x1

)
θ
x1
1 (1 − θ1)

n1−x1π(θ1 | θ) dθ1

×
∫ 1

0

(
n2
x2

)
θ
x2
2 (1 − θ2)

n2−x2π(θ2 | θ) dθ2

= (1 + t)2(1 − θ)2t
�(x1 + 1)�(n1 + t − x1 + 1)

�(n1 + t + 2) 3F2
(
a1, b1,

θ

θ − 1

)

× �(x2 + 1)�(n2 + t − x2 + 1)
�(n2 + t + 2) 3F2

(
a2, b2,

θ

θ − 1

)
, (12)

where ai = (−t,−t, xi + 1) and bi = (1,−ni − t + xi), for i = 1, 2.

Finally, to derive the likelihood function we sum (11) and (12) with respect to a discrete
prior on the cluster structures. An objective prior on the space of heterogeneity structures
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is the discrete uniform prior. Thus, the (unconditional) likelihood for estimating θ for the
data x is given by

f (x | θ) = 1
2
f (x | {x1, x2}, θ) + 1

2
f (x | {x1}, {x2}, θ), (13)

and the posterior distribution in (4) is obtained via Bayes’ theorem by π(θ | x) ∝
π(θ)f (x | θ).

2.3. The posterior distributions

Given that our approach is based on a simple two–component mixture and averaging the
two cluster configurations, when making inferences about the parameter of interest, the
required posterior distribution can also be obtained as a mixture of posterior distributions
over each cluster configuration. For instance, if θ is the treatment effect under the control
treatment, its posterior distribution, given data x, is given by

π(θ | x) = π(θ | {x1, x2})π({x1, x2} | x) + π(θ | {x1}, {x2})π({x1}, {x2} | x) (14)

where

π({x1, x2} | x) = m(x | {x1, x2})
m(x | {x1, x2}) + m(x | {x1}, {x2}) , (15)

and π({x1}, {x2} | x) = 1 − π({x1, x2} | x), represent the (posterior) weights in the mixture
of each cluster configuration, with

m(x | {x1, x2}) =
∫ 1

0
f (x | {x1, x2}, θ1)π(θ1 | {x1, x2}) dθ1 (16)

m(x | {x1}, {x2}) =
∫ 1

0

∫ 1

0
f (x | {x1}, {x2}, (θ1, θ2))π(θ1, θ2 | {x1}, {x2}) dθ1 dθ2 (17)

where f (x | {x1, x2}, θ1) and f (x | {x1}, {x2}, (θ1, θ2)) as in (8) and (9), respectively, and
π(θ1 | {x1, x2}) and π(θ1, θ2 | {x1}, {x2}) are the intrinsic priors for the corresponding
cluster configuration, i.e.

π(θ1 | {x1, x2}) =
∫ 1

0
π(θ1 | θ)π(θ) dθ ,

and

π(θ1, θ2 | {x1}, {x2}) =
∫ 1

0
π(θ1 | θ)π(θ) dθ ×

∫ 1

0
π(θ2 | θ)π(θ) dθ ,

The posterior distributions of each cluster configuration in (14), since π(θ) =
Beta(θ | 1, 1), are given by

π(θ | {x1, x2}) = f (x | {x1, x2}, θ)∫ 1
0 f (x | {x1, x2}, θ) dθ

, (18)
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and

π(θ | {x1}, {x2}) = f (x | {x1}, {x2}, θ)∫ 1
0 f (x | {x1}, {x2}, θ) dθ

. (19)

The same procedure is applied when θ represents the treatment effect under a new treat-
ment to be compared. These posterior distributions are computed numerically over the
parametric space � = (0, 1), using Wolfram Mathematica, which has a huge library
of ready–to–use functions and the advantage of simple code. Furthermore, once posterior
distributions are obtained, the command ProbabilityDistribution can be used
to generate any sample of the posterior distribution of the parameter of interest, which is
transformed as in the following illustrations.

3. Illustrations

To illustrate the arguments developed in the preceding section, we now revisit themotivat-
ing example presented in the first section and introduce two new real datasets. For these
case studies, we assume in our examples that t = 49, which implies a correlation of 0.98,
indicating that the intrinsic link distribution concentrates a considerable mass of probabil-
ity around θ . Other values of t have also been used and the results obtained are very robust.
The Mathematica code for the case–study data sets can be found in the Supplementary
Material online section.

3.1. Motivating example revisited

Returning to the motivating example considered in Section 1, it can be seen from Table 2
that we have different posterior probabilities for the cluster structures and thus for the
Bayesian model averaging of the true treatment effect under Treatment (T) or Control (C),
θT and θC.

All quantities of interest can be obtained from the posterior mixture distribution in
(14). Moreover, using (14), it is straightforward to simulate the posterior distribution of
parameters θT and θC and their usual transformations, such as the risk and odds ratio, log
odds ratio, etc. Table 3 shows the estimated values obtained for the treatment effects θT and
θC and their 95% Bayesian intervals, using the proposed BMA approach. The odds ratio
and its 95% Bayesian credible interval (95% CI) are also obtained.

Friede et al. [15] proposed point and interval estimators for the OR, based on the DerSi-
monian andLaird [12] approach (denoted byDL–Normal), theHartung andKnapp [20,21]
and Sidik and Jonkman [34] approach (DL–HKSJ) and the modified KH (DL–mKH) pro-
posal [32]. The estimated odds ratios and 95% confidence intervals obtained are shown at

Table 2. Krystexxa cluster configuration.

Cluster configuration

Treatment Control

Cluster model Posterior probability Cluster model Posterior probability

Homogeneity {x1x2} 0.62 {x1x2} 0.57
Heterogeneity {x1}{x2} 0.38 {x1}{x2} 0.43
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Table 3. Estimated treatment effects and 95% Bayesian credible
intervals in the Krystexxa dataset.

Treatment Control

E(θT | x) 95% CI E(θC | x) 95% CI

0.27 (0.11, 0.46) 0.08 (0.00, 0.22)

OR

E(OR | x) 95% CI

5.88 (0.87, 89.59)

Estimated odds ratios and 95% confidence interval obtained in Friede et al. [15]

DL–Normal (τ̂ = 0.00): 7.14 (1.59, 32.01)
KL–HKSJ (τ̂ = 0.00): 7.14 (2.30, 22.18)
DL–mKH (τ̂ = 0.00): 7.14 (0.00, 119543.65)

the end of Table 3. All three methods obtain an estimation of τ̂ = 0.00, indicating there is
no evidence suggesting we should reject the presence of homogeneity. However, the poste-
rior probabilities shown in Table 2 indicate that other heterogeneity configurations should
also be considered, specifically that of {x1}{x2}. This example highlights the differences
arising with the above estimation (including the unrealistic mKH case).

In an alternative approach, Friede et al. [15] presented a Bayesian estimation model
using half–normal priors, obtaining the following results: HNormal(1.00) (τ̂ = 0.55) 7.14
(95%Highest Density Interval 1.04–49.15) and HNormal(0.50) 7.14 (τ̂ = 0.31) (95%HDI
1.39–36.70), where HNormal(ν) refers to a half–normal distribution with scale parameter
ν. These values of τ̂ are indicative of heterogeneity, and then the respective Bayesian inter-
vals are much narrower. However, this ignores the case of homogeneity, which accounts
for a large proportion of the posterior probability in both treatments. In consequence, mis-
leading inferences may be drawn. In contrast to the frequentist and Bayesian estimations
described above, the BMA interval for the OR, shown in Table 3, takes into account all of
the uncertainty about between–study variability.

Finally, Figure 1 shows the posterior distribution of the log odds ratio, revealing a
positively skewed behaviour that clearly indicates an increase in the infusion reaction
(Pr(log(OR) > 0 | x) = Pr(OR > 1 | x) = 0.963), as previously noted by Davi et al. [9].

3.2. A single zero example

Thrombo–embolic complications are amajor cause of morbidity andmortality in hip frac-
ture patients, a substantial proportion of whomwill develop deep vein thrombosis. For this
condition, the standard treatment is pharmacological thromboprophylaxis, while heparin
and other anticoagulants are less commonly used.

The data set in this example is extracted from Handoll et al. [19] and corresponds to
a meta–analysis conducted to investigate the use of prophylactic subcutaneous unfrac-
tionated or low–molecular weight heparin after hip fracture repair to prevent deep vein
thrombosis in elderly patients. Among other results, Handoll et al. [19] concluded that
‘data were insufficient to establish any effect on the incidence of fatal pulmonary embolism
and overall mortality’.

Table 4 contains data from a subanalysis conducted to compare LMW heparin versus
control/placebo with the outcome of fatal pulmonary embolism. The table also presents
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Figure 1. Posterior distribution of the log(OR) in the Krystexxa dataset.

Table 4. Dataset in Handoll et al. [19]: LMW heparin vs control/placebo, Outcome: fatal
pulmonary embolism.

Treatment Control

Study Events Total Events Total

Figuerido 1994 (x1) 1 16 3 25
Jorgensen 1992 (x2) 0 30 1 38

Cluster configuration

Cluster model Posterior probability Cluster model Posterior probability

{x1x2} 0.53 {x1x2} 0.56
{x1}{x2} 0.47 {x1}{x2} 0.44

the posterior probabilities of the cluster configurations obtained by the method we
propose.

Table 4 shows there are different posterior probabilities for the cluster structures. In
both arms, the homogeneity structure {x1, x1} concentrates the highest posterior prob-
ability of being true, but failure to incorporate the heterogeneity structure in the analysis
could producemisleading results since this configuration contains a large part of themodel
uncertainty (more than 0.4 in each case).

Table 5 shows the posterior summaries of the true treatment effect under Treatment (T)
or Control (C), θT and θC, and their 99% Bayesian credible intervals (99% CI). The risk
ratio (RR) and its 99% credible intervals are also obtained.

Figure 2 (left panel) shows the BMAposterior density of θT and θC. It can be seen that the
posterior density of θ under the control treatment is slightly shifted towards higher values
with respect to the LMW heparin treatment. Moreover, the sparsity of the data induces a
reverse J–shaped posterior distribution for θT . On the other hand, Figure 2 (right panel)
shows the posterior distribution of the risk ratio (RR), where the (posterior) probability
Pr(RR < 1 | x) = 0.71, revealing an apparent probability in favour of heparin.
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Table 5. Estimated treatment effects and99%
Bayesian intervals in the LMWheparin dataset.

Treatment Control

E(θT | x) 99% CI E(θC | x) 99% CI

0.05 (0.00, 0.23) 0.09 (0.00, 0.28)

RR

E(RR | x) 99% CI

0.97 (0.00, 8.21)

Figure 2. Posterior distributions in the Handoll et al. [19] dataset. (a) BMA posterior density of the
parameters θT (continuous line) and θC (dashed line) and (b) Posterior distribution of the RR.

For the sake of comparison, we note the following. Handoll et al. [19] obtained a Man-
tel–Haenszel estimate for the risk ratio of 0.47 (99%CI, 0.08−2.90). These estimated values
differ from those presented in Table 5, obtained by the methods we propose. Handoll et al.
[19] found no evidence of heterogeneity with estimated τ̂ = 0 while I2 was estimated at
0.0%. However, these results are slightly different from those given in Table 4. Certainly,
the homogeneitymodel has the largest posterior probability, for both arms, but a large pro-
portion of the uncertainty accumulated in the remaining heterogeneity structures cannot
be discounted as is the case with the BMA approach. In consequence, a wider interval is
obtained by themixture procedure containing all the associated uncertainty of the models.

3.3. A case with two and double–zero studies

The prescription of antibiotics for sore throat is an open question in medical practice.
This condition is very common and usually remits spontaneously. Nevertheless, primary
care physicians commonly prescribe antibiotics. The data set in Table 6 corresponds to a
meta–analysis of the use of antibiotics to prevent rheumatic fever, seeking to assess their
benefit in the management of sore throat, as reported by Del Mar et al. [10]. The data rep-
resent antibiotics versus control for the treatment of sore throat (with fever symptoms).
The binary outcome is the detection of fever symptoms on day 3 (in children, compared
to adults).

According to Del Mar et al. [10], the two studies have the following Peto ORs: OR and
95% confidence interval cannot be estimated for the Krober study due to the presence of
double zeros; for the Nelson study, these values are 1.87, 95%CI 0.48–7.23; and the same
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Table 6. Antibiotics vs control for the treatment of sore throat in the Del Mar et al. [10]
dataset.

Treatment Control

Study Events Total Events Total

Krober 1985 (x1) 0 15 0 11
Nelson 1984 (x2) 12 17 10 18

Cluster configuration

Cluster model Posterior probability Cluster model Posterior probability

{x1}{x2} 0.96 {x1}{x2} 0.83
{x1x2} 0.04 {x1x2} 0.17

Treatment effects

E(θT | x) 95% CI E(θC | x) 95% CI

0.35 (0.15, 0.57) 0.32 (0.12, 0.56)

OR

E(OR | x) 95% CI

Krober 1985 6.68 (0.02, 34.16)
Nelson 1984 2.91 (0.31, 12.07)

Overall 1.53 (0.25, 5.10)

Note: Cluster configuration and estimated treatment effect and 95% Bayesian credible intervals.

values are obtained 1.87, 95%CI 0.48–7.23 for the overall effect estimates. Moreover, het-
erogeneitymeasures cannot be applied to a double–zero cell in the data set. Table 6 presents
the posterior probabilities of the cluster configurations (heterogeneity and homogeneity
partitions).

In contrast to the results reported by Del Mar et al. [10], shown in Table 6, the het-
erogeneity and homogeneity configurations can be computed numerically by considering
their posterior probabilities. For both arms, although the heterogeneity structure is the best
model, this omits part of the uncertainty associated with the homogeneity configuration
and may produce a misleading estimation. Table 6 presents the estimated treatment effects
and the 95% Bayesian credible intervals for each treatment, together with the correspond-
ing odds ratio. These findings seem to indicate that the results obtained by Del Mar et al.
[10] reflect slightly better outcomes for the control vs. the treatment group (1.87 vs 1.53).
Nevertheless, there is general agreement between the reports for each procedure (Peto and
BMA). A striking difference between the BMAapproach and [10] is that the former enables
us to obtain the posterior quantities of interest in each study considered, whether or not it
contains a double–zero cell.

Obviously, the inclusion of a double–zero cell in the study data increases the uncer-
tainty of the analysis, which is reflected in the ranges obtained. However, when these
cells are incorporated into the complete analysis (with both studies) they contribute addi-
tional information that must be taken into account. The interval (0.25, 5.10) spans all the
uncertainty in the data, whether or not they are derived from a study with a double zero.

Figure 3 shows the BMA posterior density of θT and θC (left panel) and the posterior
distribution of the odds ratio (OR), where the (posterior) probability Pr(OR > 1 | x) =
0.74, which shows there is a certain probability in favour of the control.
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Figure 3. Posterior distributions in the Del Mar et al. [10] dataset. (a) BMA posterior density of the
parameters θT (continuous line) and θC (dashed line) and (b) Posterior distribution of the overall OR.

4. Conclusions

When a meta–analysis is based on just a few studies, the possibility of between-study sta-
tistical heterogeneity is a factor of major significance [15,24,30]. Moreover, the problem
of ensuring statistical validity is exacerbated if this sort of trial includes zero–occurrence
events. Additionally, the improper use of continuity correction procedures can result in
invalid conclusions being drawn [36]. To overcome these problems, Veroniki et al. [41]
described various methods that can be used to estimate between–study heterogeneity.
However, the case studies we present show that the usual frequentist measures employed
to determine the presence or otherwise of heterogeneity, i.e. I2 and τ , may not address all
the scenarios considered in the meta–analysis and therefore might not be appropriate.

Even when a standard Bayesian approach with suitable priors is adopted (see
Section 3.1), the estimates obtained may detect some heterogeneity but fail to quantify the
model uncertainty. In consequence, inferences regarding the parameters of interest, such
as OR or log(OR), may not properly reflect the variations presented in the data.

Our proposal, based on Bayesian model averaging, effectively addresses the prob-
lem of accounting for between–study heterogeneity and statistical uncertainty, even in
meta–analyses with zero–occurrence events. In the method we present, the heterogeneity
structures (models) obtained are averaged by creating a cluster of the data observed in order
to draw valid inferences about the treatment effect. This clustering procedure necessarily
incorporates any uncertainty present in the models (if it were ignored, invalid conclusions
might be drawn). This consideration is of major importance, as the likelihood function is
different for each model considered.

Accordingly, the BMA approach we describe is not only conceptually persuasive, it also
provides a novel method for probabilistic clustering by which challenging meta–analysis
scenarios (such as those involving two studies and single/double–zero occurrence cells)
can be addressed and resolved.

The approach we describe can easily be extended to meta–analyses of more than two
studies, containing single or double zeros. In such cases, the number of heterogeneity con-
figurations can become very large, according to the Bell number (Rota [31]). However, 75%
of meta–analyses contain five or fewer studies, and so the necessary coding is not compu-
tationally expensive. The code included in the supplementary section allows these analyses
to be performed automatically.
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