
Design and implementation of a distributed
computing infrastructure using commodity

hardware components and Open Source Software
within the University of Las Palmas de Gran

Canaria

Fidel García' Enrique Rubio' Antonio Ocón' Luis Álvarez'
and Manuel J. Galán'

Abstract
In this paper we make a study of the computer devices knowri as "clusters". We

focus on a special cluster initially developed by T. Sterling and D. Becker named
"Beowulf Cluster". Next we enumérate the severa! advantages of such device.
Finally we make a proposal about the implementation of a Beowulf Cluster using
commodity equipment dedicated to run high-performance computing tasks at the
University of Las Palmas de Gran Canaria.

Introduct íon

Concurrency and Parallelism

Regarding program execution, there is a very important distinction that needs to be
made: the difference between "concurrency" and "parallelism". We will define these
two concepts as follows:

• "Concurrency": refers to the parts of a program that can be computed
independently.

• "Parallelism": the parallel parts of a program are those "concurrency" parts that
are executed on sepárate processing elements at the same time.

The distinction is very important, because "concurrency" is a property of the program
and efficient "parallelism" is a property of the machine.

Ideally, "parallel" execution should result in faster perfomiance. The limiting factor in
parallel performance is the communication speed (bandwidth) and latency between
computing nodes.

Many of the common parallel benchmarks are highly parallel thus comrnunication and
latency are not the bottle neck. This type of problem can be called "obviously parallel".
Other applications are not so simple and executing "concurrent" parts of the program in
"parallel" may actually cause the program to run slower, thus offsetting any perfonriance
gains in other "concurrent" parts of the program. In simple terms, the cost of

891

communication time must pay for the savings in computation time, otherwise the "parallel"'
execution of the "concurrent" part is inefficient.

Nüw, the task of the programmer is to determining what "concurrent" parts of the
program should be executed in "parallel" and what parts should not. The answer to this
wili determine the efficiency of the application.

In a perfect parallel computer, the ratio of communication/processing would be equal to
one and anything that is "concurrenf could be implemented in "parallel". Unfortunately,
real parallel computers, including shared memory machines, do not behave "this well".

Architectures for Parallel Computing

The following description of parallel computing architectures is by no means
exhaustive, we are only giving the basic defmitions of some concepts that will be used
later.

HARDWARE ARCHITECTURES

There are three common hardware architectures for parallel computing:
• Shared memory machines, SMP, that communicate through memory, i.e. MPP

(Massively Parallel Processors, like the nCube (see [1]), Convex SPP (see [2]), Cray
T3D, Cray T3E (see [3]), etc.). This kind of configuration is sustained on dedicated
hardware. The main characteristic is a very high bandwidth between CPUs and
memory.

• Local memory machines that communicate by messages, i.e. NOWs (Networks of
Workstations) and clusters. In this category each workstation maintains its
individuality, however there is a tight integration with the rest of the members of the
cluster. So we can say they constitute a new entity known as "The Ch^ster". In our
proposal we will foeus on a particular kind of cluster called "Beowulf Cluster" (see
[4]).

• Local memory machines that intégrate in a loosely knit coUaborative network. In this
category we can include several coUaborative Internet efforts which are able to share
the load of a diftlcult and hard to solve problem among a large number of computers
executing an "ad hoc" client program. We can mention the SETI@home (see [5]),
Entropía Project (see [6]), etc.
The fonuer classification is not strict, in the sense that it is possible to connect many

shared memory machines to créate a "hybrid" shared memory machine. These hybrid
machines "look" like a single large SMP machine to the user and are often called NUMA
(Non Unifonn Memory Access). It is also possible to connect SMP machines as local
memory compute nodes. The user cannot (at this point) assign a specific task to a specific
SMP processor. The user can, however, start two independent processes or a threaded
processes and expect to see a perfonnance increase over a single CPU system. Lastly we
could add several of this hybrid system into some coUaborative Internet effort building a
super hybrid system.

SOFTWARE ARCHITECTURES

In this part we will cOnsider both the "basement" software (.API) and the application
issues.

892

Software API (Application Programmirm Interface)

There are basically two ways to "express" concurrency in a program, i.e. Messages and
Threads:

A Message is a simple entity: some data and a destination processor. Common message
passing APIs are PVM (see [7]) or MPI (see [8]). Messages require copying data while
Threads use data in place. The latency and speed at which messages can be copied are the
limiting factor with message passing models. The advantage to using messages on an SMP
machine, as opposed to Threads, is that if you decided to use clusters in the ftiture it is
easier to add machines or scale up your application.

Threads were developed because shared memory SMP designs allowed very fast shared
memory communication and synchronization between concurrent parts of a program. In
contrast to messages, a large amount of copying can be eliminated with threads. The most
common API for threads is the POSIX API. It is difficult to extend threads beyond one
SMP machine, It requires NUMA technology that is difficult to implement.

Other methods do exist, but the fornier are the most widely used. It is important to
remember that the expression of concurrency is not necessarily controlled by the
underlying hardware.

Application Issues
In order to run an application in parallel on múltiple CPUs, it must be explicitly broken

into concurrent parts. There are some tools and compilers that can break up programs, but
parallelizing cedes is not a "plug and play" operation. Depending on the application,
parallelizing code can be easy, extremely difficult, or in some cases impossible due to
algorithm dependencies.

Deflnition of Cluster

A previously stated a cluster is a collection of machines connected using a network in
such a way that they behave like a single computer. Clusters are used for parallel
processing, for load balancing and for fault tolerance. Clustering is a popular strategy for
implementing parallel processing applications because it enables companies to leverage the
investment already made in PCs and workstations. In addition, it is relatively easy to add
new CPUs simply by adding a new PC or workstation to the network.

The Beowulf Cluster

Beowulf is not a special software package, new network topology or the latest Linux
kemel hack. It is a kind of cluster built primarily out of commodity hardware components,
running an OSS (Open Source Software) (see [9]) operating system like Linux or
FreeBSD, interconnected by a prívate high-speed network, dedicated to running high-
performance computing tasks.

One of the main differences between a Beowulf Cluster and a COW (Cluster of
Workstations) is the fact that Beowulf behaves more like a single machine rather than
many workstations. The nodes in the cluster don't sit on people's desks; they are dedicated
to running cluster jobs. It is usually connected to the outside worid through only a single
node.

While most distributed computing systems provide general purpose multi-user
environments, the Beowulf distributed computing system is specifically designed for single
user workloads typical of high end scientific workstation environments.

893

Beowulf Systems have been constructed from a variety of parts. For the sake of
performance some non-commodity components (i.e. produced by a single manufacturer)
have been employed. In order to account for the different types of systems and to make
discussions about machines a bit easier, It has been proposed the foUowing classification
scheme:

CLASS I: This class of machines are buiU entirely from commodity "off-the-shelf
parts. We shall use the "Computer Shopper" (see [10]) certifícation test to define
commodity "off-the-shelf parts. (Computer Shopper is a 1 inch thick monthly
magazine/catalog of PC systems and components). A CLASS I Beowulf is a machine that
can be assembled from parts found in at least 3 nationally/globally circulated advertising
catalogs.

The advantages of a CLASS I system are:
• Hardware is available form múltiple sources (low prices, easy maintenance).
• No reliance on a single hardware vendor.
• Driver support from O.S. commodity usually based on standards (SCSI,

Ethernet, etc.).
The disadvantages of a CLASS I system are:

• Best performance may require CLASS 11 hardware.
CLASS II: This class is simply any machine that does not pass the Computer Shopper

certifícation test.
The advantages of a CLASS II system are:

• Perfonnance can be quite good
The disadvantages of a CLASS II system are:

• Driver support may vary
• Reliance on single hardware vendor
• May be more expensive than CLASS I systems.

One class is not necessarily better than the other. It all depends on your needs and
budget. In the last times we are seeing an increment in the number CLASS II Beowulf
Clusters using 64-bit ALPHA Processors due to the large performance increase that can be
achieved.

Evolution of the Beowulf Cluster: State of the Art

In the summer of 1994 T. Sterling and D. Becker, working at CESDIS (Center of
Excellence in Space Data and Infonnation Sciences) (see [11]) under the sponsorship of
the ESS (Earth and Space Sciences) project (see [12]), built a cluster computer consisting
of 16 DX4 processors connected by channel-bonded Ethernet. They called their machine
Beowulf The machine was an instant success and their idea of providing COTS
(Commodity Off The Shelf) base systems to satisfy specifíc computational requirements
quickly spread through NASA and into the academic and research communities. The
development effort for this fírst machine quickly grew into a what we now cali the
Beowulf Project. Some of the major accomplishment of the Beowulf Project will be
chronicled below, but a non-technical measure of success is the observation that
researchers within the High Performance Computer community are now referring to such
machines as "Beowulf Class Cluster Computers". The Beowulf Project is now hosted by
Scyld Computing Corporation, which was founded by members of the original Beowulf
team with a mission to develop and support Beowulf systems in the larger commercial
arena.

894

The first Beowulf-class computers that achieved the gigaflops goal appeared at
Supercomputing '96 in Pittsburgh. One of those carne from a collaboration between
Caltech and the Jet Propulsión Laboratory and the other from Los Alamos National
Laboratory. Both systems consisted of 16 200-megahertz Pentium Pro processors and were
built for about $50,000 in the fall of 1996. One year later, the same machines could be built
for about $30,000.

In a paper for the 1997 supercomputing meeting ~ simply called SC97 - Michael
Warren of Los Alamos and his colleagues wrote: "We have no particular desire to build
and maintain our own computer hardware. If we could buy a better system for the money,
we would be using it instead."(see [13]).

Finally we can mention that the Avalon, which is a co-operative venture of the Los
Alamos National Laboratory Center for Nonlinear Studies and Theoretical División, built
as a 140 64-bit processors Alpha Beowulf Cluster machine appears as the 265"^ in the list
of the fastest computer systems in the word (see [14]).

There are a lot of Beowulf Clusters spread around the word, dedicated to every kind of
computationaljy intensive task. Among them we can mention:

• Stone SouperComputer Oak Ridge National Lab (ORNL) a 126 node cluster at zero
dollars per node. The system has already been used to develop software for large-
scale landscape analysis (see [15]).

• The SuperAbacus: an implementation in the CityU Image
Processing Lab at City University of Hong Kong. To support multimedia signal
processing (see [16]).

• LoBoS Supercomputer for Molecular Graphics and Simulation Laboratory,
National Institutes of Health NIH, (see [17]). This cluster is dedicated to study
more complex biological systems using computational methods.

Beowulf Clusters are also deployed in our country (Spain), they are also used for
intensive computation. The most mature projects could be;

• HIDRA University of Barcelona's UB-UPC Dynamical Systems Group dedicated
to several projects that require a huge amount of computations (i.e., numerical
simulations of continuous and discrete systems, bifurcation analysis, numeric and
symbolic computation of invariant manifolds, etc.) (see [18]).

• LAMA's Materials Laborator)' at UPV/EHU running Monte Cario simulations of
phase transitions in condensed matter physics (see [19]).

Characteristics of the Beowulf Cluster

Commodity networking, especially Fast Ethernet, has made it possible to design
distributed-memory systems with relatively high bandwidths and tolerably low latencies at
low cost.

Free operating systems, such as Linux, are available, reliable, and well-supported, and
are distributed with complete source code, encouraging the development of additional tools
including low-level drivers, parallel file systems, and communication librarles.

With the power and low prices of today's off-the-shelf PCs and the availability of
100/1.000 Mb/s Ethernet interconnect, it makes sense to combine them to build High-
Performance-Computing and Parallel Computing environment.

With free versions of Linux and public domain software packages, no commercially
available parallel computing system can compete with the price of the Beowulf system.

895

The drawback to this system is, of course, that there will not exist any "support center"
to cali when a problem arises (anyway, "support centers" are many times only marketing
hype and do not provide real support). We can say that the Open Source Support Center is
the whole Internet, in the sense that there does exist a wealth of good information available
through FTP sites, web sites and newsgroups. Besides that you can also sign a maintenance
agreement with any of the increasing number of companies that provide commercial
support to these installations.

Another key component contributing to forward compatibility is the system software
used on Beowulf With the maturity and robustness of Linux, GNU software and the
"standardization" of message passing via PVM and MPI, programmers now have a
guarantee that the programs they write will run on future Beowulf Clusters, regardless of
who makes the processors or the networks.

That said the main characteristics a Beowulf Cluster can be summarized in the
following points:

• Very high perfonnance-price ratio.
• Easy scalability.
• Recycling possibilities of the hardware components.
• Guarantee of usability / upgradeability in the future.

Our proposal of Beowulf Cluster for the University of Las Palmas de
Gran Canaria.

All the good characteristics of the Beowulf Cluster justify its deployment in any
organisation that require high computational power. In the case of an academic institution
we can say that it is not only advisable but imperative. The Beowulf cluster is not only a
wonderful tool to provide high computing power to the University but, at the same time, is
a very interesting objects of sludy "per se". The evaluation of its performance, adaptability,
scalability, its behaviour regarding the parallelization of procedures, etc. Is a field of study
that we suspect full of fmdings.

In our case we propose the initial deployment of a first step Beowulf Cluster made up
of a small number of hardware components that can be eventually incremented.

System Description

Our system has a hardware part and a software part. Hardware part consists in eight
PCs connected by a Fast Ethernet switch at 100 Mb/s. One of this PCs is the cluster's
consolé that controls the whole cluster and is the gateway to the outside world (master
nodc). Nodes are contigured and controUed by the master node, and do only what they are
told to do.

The proposed node contiguration consists of an AMD single processor based PC at 750
Mhz, with 256 megabytes of RAM and including a local IDE hard disk drive of 8GB
capacity. They have also a non expensive video card and floppy disk drive. Besides they
will be provided with a Fast Ethernet network interface card.

The master node is provided with a larger hard disk drive (24 MB) and a better
graphics video card, besides it has a second network interface and also CD-ROM drive,
médium sized monitor and keyboard and mouse to be able to perfonn the controlling tasks
for the cluster.

The proposed Fast Ethernet switch will have 24 autosensing ports and will be SNMP
capable.

896

.

Nodes
^^

i

rn

i

¡ I I T
-

j -

i

- i -

i

_L

1

^

ffjgpggggH Fast Ethernet switch

O
1 \

Master

m

no(j e

Fig. 1. Beowulf Cluster Hardware Components

In the description of the hardware we can see that only one node needs input/output
devices. The second network interface card in the master node is used to connect the
Intranet to the Internet. The switch has a number of port bigger than strictly necessary to
can enlarge the cluster in the future.

The logical part will be built using GNU / Linux operating system according to the
distribution "Extreme Linux CD" (see [20]) with additional OSS software such as kemel
modifications:

• PVM: Parallel Virtual Machine: PVM is a software package that permits a
heterogeneous collection of Unix / Linux or NT computers hooked together by a
network to be used as a single large parallel computer. It is freely-available,
portable, message-passing library generally implemented on top of sockets. It is
clearly established as the de-facto standard for message-passing cluster parallel
computing (see [7]).

• MPI libraries: Message Passing Interface: Communication between processors on a
Beowulf Cluster is achieved through the Message Passing Interface (MPI). This is a
standardized set of library routines. Both the C and the Fortran programming
languages are supported (see [8]).

Additionally we will be proceed to the installation of several configuration,
management and monitoring tools which make the Beowulf architecture faster, easier to
configure, and much more usable.

Basic Software Installation and Configuration

As previously stated the installations pathway will run along the "Extreme Linux CD".
The following steps will be taken:
The fírst step we will installing the Master Server which involves the following tasks:
• Partition sizes.
• Installing Red Hat Linux.
• Network conílguration.

897

!ÍN-'

• Setting up DNS.
• Network file configuration: "/etc/hosts", "/etc/resolv.conf and "/etc/hosts.equiv".

• Local file configuration: ".cshrc".
• Clock synchronization.
After the installation of the master servar we will proceed to the installation and
configuration of the client nodes;
• Installing the operating system on one client.
• Cloning clients.
• Configuring clients.
The third step will be installation of basic application software:
• Compilers.
• Communication Software: PVM and MPI.
• Conversión Software.
• System Monitoring Software: bWatch, httpd and CGI scripts, Netpipe, netperf, NASA

parallel Benchmarks, CMS.
Finally we will attend the security concems both in the master sever and client nodes.

Fields of Application

There are a lot of OSS software packages optimizad to run in clusters like Beowulf We
can mention the following:
• MP_SOLVE, Parallel Sparse Irregular System Solvers solving large, irregular, sparse,

indefinite systems of equations with múltiple excitation vectors on distributed memory
parallel computers using LU factorization (see [21]).

• NAMD is a parallel, object-oriented molecular dynamics code designed for high-
performance simulation of large biomolecular systems (see [22]).

• POV-RAY, The Persistence of Vision Raytracer is a high-quality too) for creating
stunning three-dimensional graphics (see [23]).

• FFTW is a C subroutine library for computing the Discrete Fourier Transform (DFT)
in one or more dimensions, of both real and complex data, and of arbitrary input size
(see [24]).
Nevertheless there are many other applications that can take profit when run in a

Beowulf Cluster, their range covers from standard numerical applications, going through
high intensive physical and chemical computation, biochemical modeling and multimedia
and CAD applications.

Conclusions
In the present paper we have made a quick and succinct overview about the state of

distributed computing, centering our focus on a concrete cluster configuration called
"Beowulf Cluster".

The advantages of this class of cluster configuration are evident for any organization
that requires high computational power "for the buck". This is, when we take into account
the performance/price ratio, easy scalability and upgradeability and recycling properties of
the hardware components. If this is truc for any organization, we are convinced that it is
imperative for an academia institution like our University. Therefore we make a proposal

898

of deployment of such a device starting with a schematic installation to be eventually
enlarged and improved.

References
[I] nCUBE, http://www.ncube.com/
[2] Convex, http://www.convex.com/
[3] Cray Inc., http://www.cray.com/
[4] The Beowulf Project, http://www.beowulf.org/
[5] Search for Extraterrestrial Intelligence (SETI), http://www.kevlar.karoo.net/seti.html.
[6] Entropia.com Inc., http://www.entropia.com/
[7] Parallel Virtual Machine (PVM), http://www.epm.oml.gov/pvm/pvm_home.html
[8] LAM / MPI Parallel Computing, http://www.mpi.nd.edu/lam/
[9] N. Drakos, ''Debunking Open-Source Myths: Development and Siipport",

http://gartner3.gartnerweb.com/public/static/hotc/hc00088469.html, 2000.
[10] Computer Shopper.com, http://www.zdnet.com/computershopper/
[I I] Center of Excellence in Space Data and Information Sciences,

http://cesdis.gsfc.nasa.gov/
[12] Earth and Space Sciences project (ESS), http://sdcd.gsfc.nasa.gov/ESS/overview.html
[13] Michael Warren, ''Pentium Pro Inside: I. A Treecode al 430 Gigqflops on ASCI Red,

II. Price/Performance of$50/Mflop on Loki and Hyglac" , SC97.
[14] TOP500 Supercomputer Sites,

http://www.netlib.org/benchmark/top500/top500.list.html, 1999.
[15] Stone SouperComputer Oak Ridge National Lab (ORNL),

http://stonesoup.esd.oml.gov/
[16] SuperAbacus, http://abacus.ee.cityu.edu.hk/
[17] LoBoS Supercomputer, National Institutes of Health NIH,

http://www.lobos.nih.gov7
[18] HIDRA University of Barcelona's UB-UPC Dynamical Systems Group,

http://www.maia.ub.es/dsg/hidra/index.html
[19] LAMA's Materials Laboratory at UPV/EHU,

http://lcdxOO.wm.lc.ehu.es/~svet/beowulf/
[20] Extreme Linux CD, ftp://beowulfgsfc.nasa.gov/mirror/extreme_linux/
[21] MPSOLVE, Parallel Sparse Irregular System Solvers,

http://emlab2.nmsu.edu/mp_solve/
[22] NAMD, http://www.ks.uiuc.edu/Research/namd/
[23] POV-RAY, The Persistence of Vision Raytracer, http://www.povray.org/
[24] FFTW, http://www.fftw.org/
[25] Jacek Radajewski and Douglas Eadline, ''Beowidf HOWTO",

http://www.linux.org/help/ldp/howto/Beowulf-HOWTO.html, 1998.
[26] Jacek Radajewski and Douglas Eadline, ''Beowulf Installation and Administration

HOfVTO", http://www.beowulf-underground.org/doc_project/BIAA-
HOWTO/Beowulf-lnstalIation-and-Administration-HOWTO.html, 1999.

1. ClCEl. Centro de Innovación en Tecnologías de la Información . University of Las
Palmas de Gran Canaria. Edificio de Ingenierías, Campus Universitario de Tafira Baja.
35017 Las Palmas de G.C. SPAIN. (www.cicei.ulpgc.es), (fidel@polaris.ulpgc.es).

899

http://www.ncube.com/
http://www.convex.com/
http://www.cray.com/
http://www.beowulf.org/
http://www.kevlar.karoo.net/seti.html
Entropia.com
http://www.entropia.com/
http://www.epm.oml.gov/pvm/pvm_home.html
http://www.mpi.nd.edu/lam/
http://gartner3.gartnerweb.com/public/static/hotc/hc00088469.html
Shopper.com
http://www.zdnet.com/computershopper/
http://cesdis.gsfc.nasa.gov/
http://sdcd.gsfc.nasa.gov/ESS/overview.html
http://www.netlib.org/benchmark/top500/top500.list.html
http://stonesoup.esd.oml.gov/
http://abacus.ee.cityu.edu.hk/
http://www.lobos.nih.gov7
http://www.maia.ub.es/dsg/hidra/index.html
http://lcdxOO.wm.lc.ehu.es/~svet/beowulf/
ftp://beowulfgsfc.nasa.gov/mirror/extreme_linux/
http://emlab2.nmsu.edu/mp_solve/
http://www.ks.uiuc.edu/Research/namd/
http://www.povray.org/
http://www.fftw.org/
http://www.linux.org/help/ldp/howto/Beowulf-HOWTO.html
http://www.beowulf-underground.org/doc_project/BIAA-
http://www.cicei.ulpgc.es
mailto:fidel@polaris.ulpgc.es

