
Programming with Components in

Robotics∗

Antonio C. Domı́nguez-Brito,
Daniel Hernández-Sosa

and Jorge Cabrera-Gámez

Dpto. Informática y Sistemas

Universidad de Las Palmas de Gran Canaria, Spain

Edf. Informática y Matemáticas, Campus de Tafira

35017 Las Palmas de Gran Canaria, Spain

{acdbrito,dhernandez,jcabrera}@dis.ulpgc.es

Abstract

This paper describes a component-oriented programming framework
for robotics, CoolBOT, which is actually under development at the Uni-
versity of Las Palmas de Gran Canaria (ULPGC). The framework has
been designed to assist robotic system developers in building more struc-
tured and reusable systems. Components are the basic building blocks
used in this framework, modeled as Port Automata, PA [7], that interact
through their ports and that can be composed to build up new compo-
nents from existing ones. Components, whether atomic or compound, are
internally modeled as Discrete Event Systems and controlled using the
same state control graph. CoolBOT hides any aspects related to commu-
nications and provides standard mechanisms for different modes of data
exchange between components, exception handling and support for dis-
tributed computing environments.

1 Introduction

During the last years we have known about a number of successful projects in
robotics in very different fields, ranging from exploration in space and harsh
environments on Earth to medical robotics and entertainment. These systems
illustrate from different perspectives that there is actually a wealth of well de-
veloped solutions to many of the basic problems that need to be solved and
integrated when designing a robotic system, even though many of them still re-
main as very active research fields. This situation is fostering the development
of more ambitious systems of increasing complexity to face new challenges, but
also makes evident some difficulties.

∗This work has been partially supported by the UE/DGES research project 1FD1997-
1580-C02-02, and by the research project PI/1999/153 funded by the Autonomous Gov-
ernment of Canary Islands - Gobierno de Canarias.

One of them is the lack of a methodology to develop robotic systems in
a principled way, a problem that has been identified by several authors, who
have recognized that traditional programming and validation techniques are not
adequate for intelligent robotic systems [5][1]. Such a methodology should help
in designing systems that were more scalable, reusable in new scenarios, more
robust and reliable, and easier to debug and profile.

These problems have been often tackled proposing new robot architectures
and specification languages (see [1] for a good up-to-date review). Certainly,
some architectures seem better suited than others to favor the goals stated above
as proved by the fact that majority of current intelligent robot systems use some
sort of hybrid architecture [4][?][?][6], effectively combining the advantages of
reactive and deliberative architectures.

Other research has been focused in the design of specification languages for
robot systems, with a large variety in objectives and scope. Relevant to the
research presented here, are those languages designed for task-level control as
RAP [?], ESL [3] or TDL [?]. Typically, these languages offer primitives for task
coordination and control, task communication, and also basic primitives for ex-
ception handling. An advantage of ESL and TDL is that they are, respectively,
extensions of Lisp and C++. This allows to use the same language for coding
the whole system, that is, not only for task control, but also for coding the rest
of the system.

Along this paper we will introduce CoolBOT, a component-oriented pro-
gramming framework being developed at ULPGC, whose main goal is to bridge
the gap between these two approaches for tackling the design of complex robot
systems. The rest of this paper discusses first the design objectives that are
guiding the development of CoolBOT, followed by a description of CoolBOT,
then its methodology of use, and finally, some discussion about the proposed
framework.

2 Design Objectives

Latest trends in Software Engineering are exploiting the idea of Components as
the basic units of deployment when building complex software systems, specially
if software reuse, modular composition and third-party software integration are
important issues. CoolBOT should be understood as a component framework,
in the sense defined in [9].

The following are the most important considerations that have guided the
design of CoolBOT:

• Component-Oriented. CoolBOT is conceived as a component-oriented
programming framework that relies on a specification language to ma-
nipulate components as building blocks in order to functionally define a
robotic system by integrating components.

• Component Uniformity. A component-based approach clearly demands
certain level of uniformity among components. Within CoolBOT this uni-
formity manifests itself in two important aspects. First a uniform inter-
face is defined for all components based on the concept of port automata.
Additionally, a uniform internal structure for components facilitates its
observability and controllability, i.e. the possibility of monitoring and

controlling the inner state of a component, besides component uniformity
sets the real basis for development of debugging and profiling tools.

• Robustness & Controllability. A component-oriented robot system
will be robust and controllable because its components are also robust
and controllable. A component is considered robust when:

1. It is able to monitor its own performance, adapting to changing op-
erating conditions, and it also implements its own adaptation and
recovery mechanisms to deal with all errors that are internally de-
tectable.

2. Any error detected by a component that cannot be recovered by
its own means, should be notified using standard means through its
interface, bringing the component to an idle state waiting for external
intervention, that either will order the component to restart or to
abort.

Furthermore a component will be considered controllable when it can be
brought with external supervision - by means of a controller or a supervisor
- along an established control path. In order to obtain such an external
controllability, components will be modeled as automata whose states can
be forced by an external supervisor, and where all components will share
the same control automaton structure [?].

• Modularity & Hierarchy. The architecture of a robot system will be
defined in CoolBOT using components as elementary functional units. As
in almost any component-based framework, there will be atomic and com-
pound units. An atomic component will be indivisible and a compound
component will be a component which includes in its definition other com-
ponents, whether atomic or not, and provides a supervisor for their mon-
itoring and control. A whole system is nothing else but a large compound
component including several components, which in turn include another
components, and so on. This chain of decompositions finishes when an
atomic component is reached. Hence a complete system constitutes a
hierarchy of components.

• Distributed. CoolBOT components can be distributed along a computer
network to integrate a system.

• Reuse. Components are units that keep their internals hidden behind a
uniform interface. Once they have been defined, implemented and tested
they can be used as components inside any other bigger component or
system.

• Completeness & Expressiveness. The computing model underly-
ing CoolBOT should prove valid to build very different architectures for
robotic systems and expressive enough to deal with concurrence, paral-
lelism, distributed and shared resources, real time responsiveness, multiple
simultaneous control loops and multiple goals in a principled and stable
manner.

3 Framework Description

In CoolBOT, components are modeled as Port Automata [7][8][2], because
this concept establishes a clear distinction between the internal functionality of
an active entity, the automaton, and its external interface, the input and output
ports. Components define active entities which carry out a specific tasks, and
perform all external communication by means of their input and output ports.
Components act on their own initiative, running in parallel or concurrently, and
are normally weakly coupled, i.e. no acknowledgements are necessary when they
communicate through their ports.

Atomic and compound components are externally equivalent, offering the
same uniform external interface and internal control structure. These properties
are extremely important in order to attain standard mechanisms that guarantee
that any component can be externally monitored and controlled.

3.1 Default Variables, Default Ports and the Default Au-
tomaton

In order to be able to build modular systems from reusable units, in CoolBOT
all components must be observable and controllable at any time from outside
the component itself. W ith this purpose, CoolBOT components may define:

• observable variables, variables which are externally observable and permit
publishing aspects of the component which are meaningful in terms of
control, or just for observability,

• controllable variables, variables representing aspects of the component
which can be controlled, i.e. modified or updated, externally.

Observable and controllable variables are read and written through two spe-
cial ports, called the default ports, which are present in every component.
Figure 1 displays these ports: the control port c, through which a component is
externally controlled using its controllable variables; and the monitoring port m,
which exports the components observable variables, and allows the component
to be externally observable.

1i

in

o1

ok

c m

Figure 1: The default ports.

Internally components have a common structure embodied as an automa-
ton, shown on figure 2, the default automaton, that contains all possible
control paths for a component. In the figure some transitions are labeled as
ci’s denoting that they are provoked by a command through the control port
c displayed in figure 1. The default automaton is said to be ”controllable” be-
cause it can be brought externally by means of its control port c to any of the
controllable states of the automaton: ready, running, suspended and dead,
in finite time. The rest of states are reachable only internally, and from them

a transition to one of the controllable ones can be forced. The running state,
the dashed state in figure 2, represents the state or set of states that structures
the specific functionality of a certain component. This particular automaton,
termed user automaton, varies among components and must be defined by
the developer/user when the component is implemented.

starting ready end deadrunning

starting
error

starting
error

recovery

suspended

recovery
errorrunning

error

attempt
last

attempt
(empty−timer)

attempt
(empty−timer)

last
attempt

nsre

ok

ok

nsr

nsr

exception

ok

nsd

nsd

finish

nsd

exception

nsre

np
np

np

nsr

np

nsd

nex

nc

nss

nc

nsd

nc

nc

nsre

Figure 2: The Default Automaton.

As implied by figure 2, CoolBOT endows all components with several default
observable and controllable variables. As to the observable ones: state is the
default automaton state where the component is at each instant; user state, the
state where the automaton is when the component is in the user automaton,
i.e. the actual state within the running pseudostate; result, indicates if a
task has been finished, and in that case, the results achieved – success or fail–
and complementary information about the execution; and error, describes the
situation when the component gets either into starting error state or into
running error state. As to the controllable variables: new state, used to bring
the component to one of the controllable states of the default automaton; and
configuration, the execution and parameters of a component can be modified
through this controllable variable.

3.2 Port Connections and Communication Models

A pair output port/input port constitutes a connection between two compo-
nents. Data is transmitted through port connections in discrete units called
port packets, [2], that can carry information or not. In the last case they are
used to signal the occurrence of an event and are called event packets; the
other ones are termed data packets. Each port can only transmit a type of
data packet, although it is also possible to define converters between different
types of port packets.

CoolBOT also provides different typologies of output and input ports that
define the type of port connections they can form. Figure 3 depicts all the
possibilities, and its graphical representation; the left side represents the types
of output ports, the right side the types of input ports, the number at both
ends of the arrows indicate the possible cardinality of connections. The possible

types of connections are: a variable connection, transports data packets which
are variables, whether observable or controllable, mainly used to implement
the default ports; a poster connection, transport data packets and allows a
component to publish data for different consumers; a tick connection, only
transport event packets, mainly used to implement timers and signal events; a
last connection, transports data packets and permits a component to publish
data for different consumers as well, but in this case local copies are kept on
the input end of the connection; a fifo connection, transports data packets, the
input end of the connection is a queue where packets are queued in a queue of
finite length; and finally, a ufifo connection is like a fifo connection that grows
a bit when it is full (ufifo stands for ”unbounded fifo”).

variablevariable

poster poster

tick tick

1 1

n

n

m

m
generic

generic last

fifogeneric

ufifo

n

n

n

m

m

m

Figure 3: Port Connections

Additionally, there are two basic communication models for port connec-
tions: the push model and the pull model. In a push connection the initiative
for sending a port packet relies on the output port part, i.e., the data producer
sends port packets on its own, completely uncoupled from its consumers. By
default all port connections are ”pushed”. A pull connection implies that pack-
ets are emitted when the input part of the communication – the consumer –
demands new data to process. In this model the consumer keeps the initiative,
and hence it must send a request to the producer whenever a port packet is
demanded. Pull connections are implemented using two push connections, for
minimum overhead.

3.3 Atomic Components

An atomic component is embodied as a thread and models a port automaton
[2]. Atomic components have been devised to abstract hardware like sensors
and effectors, and/or other software libraries like third party software.

As any component in CoolBOT, an atomic component is implemented as a
port automaton following the model of the default automaton (figure 2). Be-
sides, it is necessary to define the part of the component automaton that is
specific to its internal control and functionality, the user automaton, repre-
sented by the dashed running state in figure 2. Once the user automaton has
been defined, to complete the component coding it is necessary to fill in the
transitions between automaton states and the states themselves, where several
possible sections are provided for each state: an entry section, which is a
starting code executed each time the automaton gets into the state; an exit
section, a code executed each time the automaton is about to leave the state;
and a periodic section, executed periodically when the automaton remains in
the state.

Atomic components are implemented as simple DES [2] and a description lan-
guage is used to define its observable, controllable and local variables, input and
output ports, user automaton and the code sections necessary to implement the
different states. The description code should include information about what

third party libraries - hardware drivers or other software libraries - must be
linked with the component to achieve an executable component. This compo-
nent description will be then compiled generating a C++ class embodying the
component where all transitions and necessary state sections will be codified
as class function members that should be filled in by the developer. Also the
necessary makefiles will be created to compile the component with the specified
third party libraries.

Figure 4 shows two examples of atomic components: a motion controller,
a component having direct access to a robotic platform and abstracts the low
level vehicle motion interface executing motion commands received from other
components at a specified frequency; and an ir/us/bumper server that encap-
sulates the low level interface to the sensor suite typically found in any mobile
robot, providing time-stamped sensory data scans at a specific frequency; it also
detects emergency situations when the platform is too close to an obstacle. On
the figure are also depicted the non default observable and controllable variables
provided by each component, besides the configuration of each is detailed.

working frequency,
motion parameters, ...

emergency
odometry/kinematics

configuration:

sensor configuration, ...
commands

emergency Controller

Motion

c

m IR/US/Bumper

Server

c m

raw

emergency threshold,

ov: emergency
configuration:

working frequency,

Figure 4: Two Atomic Components

3.4 Compound Components

A compound component, is a composition of instances of another components
which, in turn, can be either atomic or compound. Figure 5 graphically illus-
trates this concept using a compound component that abstracts sensors and
motors available in a mobile robot. In other words, a compound component
is a component that uses the functionality of instances of another atomic or
compound components to implement its own functionality.

The automaton that coordinates and controls the functionality of a com-
pound component is called its supervisor, shown also on figure 5, and like
atomic components it follows the control graph defined for the default automa-
ton (figure 2). Similarly to atomic components, compound components will be
specified by means of a description code. In it, the developer/user completes the
rest of the automaton describing the states and state transitions that constitute
the user automaton, and also state code sections. Alike atomic components,
when this description code is compiled, a C++ class is generated implementing
the compound component. The description code of the compound component
specifies all its interface including how its local components’ input and output
ports are mapped as input and output ports of the compound component; its
observable and controllable variables, where some of them can be either com-
pletely new or mappings of observable and controllable variables of instances of
its local components. Automaton transitions between states in the supervisor
are triggered by rules which are conditions involving observable and controllable

Supervisor

Reflector
State

IR/US/Bumper
Server

Server

Laser

Controller

Motion

Monitor

Battery

c
m

c m

c

c

c

c

m

mm

m

ir/us/bumper raw

laser raw

state request

state

odometry/kinematics
commands

emergency

emergency

emergency

raw

raw

odometry/kinematics
commands

emergency

laser

SensorsAndMotion

ir/us/
bumper

odometry/
kinematics

Figure 5: A Compound Component

variables of its local components and/or its own local variables.

3.5 Exception Handling

CoolBOT’s exception handling mechanisms exploits two basic ideas. First, all
components, no matter if they are atomic or compound share the same exception
handling, communication and control schemes. Second, CoolBOT capitalizes
on the idea presented in section 2 to build up a reliable system from reliable
components.

A component should incorporate the capability to measure its own perfor-
mance. For example, in case of a periodic task, if it is respecting its frequency
of operation, of if another component in a chain of connected components is not
keeping its pace or not working at all. The component’s definition includes a list
of the exceptions that the component can detect, along with specific ”continu-
ity plans” whenever they are available. The evolution of the component’s state
when an exception has occurred is the same for all components. The possible
transitions are evident from the control graph of the default automaton.

As it was explained previously, when a component detects an error that it
can not deal with, either because there is not any possible recovery mechanism
at this level or because the error recovery plan has failed, it communicates the
error to its supervisor and goes into a running error state where it waits for
external intervention to restart or die. Errors arriving to a supervisor from
its local components must be managed first by this supervisor. They can be
either ignored, propagated to higher levels in the hierarchy or handled as ex-
plained above. However, when handling exceptions within compound compo-
nents some standard recovery mechanisms are possible, aside from the obvious
re-instantiation of the faulty component. Let’s suppose, for example, that we
have several components that constitute equivalent alternatives for developing
the same task, possibly using different resources, but offering the same external
interface. Such components could be used alternatively to carry out a specific

task and hence, a general strategy to cope with components in running error
might be just s

¯
ubstitution of one component with another one providing an

equivalent interface and functionality. A complementary strategy may also be
useful to avoid suspending a compound component whenever a member of the
composition gets into running error. Equivalent components can be declared as
redundant and executed concurrently or in parallel (i.e. if redundant compo-
nents execute on different processors), so that if one of then fails, the others will
keep the whole component running.

Thus, when a local component instance gets into running error, if a substitute
exists, the supervisor will create an instance of it to carry out a substitution
and keep the compound component working, and the erroneous instance will be
put in a queue of instances to be recovered. Instances in that recovery queue
are restarted periodically to check out if the running error persists. There is
a deadline for each instance in this recovery queue, if the deadline expires the
instance is deleted from the queue and destroyed. Otherwise, if any of them is
recovered, the previous situation before its substitution is restored. If a local
instance in a running error can not be substituted, it will be added to the
recovery queue previously mentioned. If its deadline in the queue is reached
then the instance is retired from the queue and destroyed. This may provoke
the whole compound component to go to running error, or not, depending on
its functionality.

3.6 Adaptation

In an environment like CoolBOT, with multiple periodic component execut-
ing concurrently, interactions can lead to low performance situations. If this
problem receives no attention, the whole system reactivity/security could be
threatened.

We will focus here in system capability to deal with computational resource
lack. In a hard real-time system an off-line worst-case analysis can guarantee
a correct execution. However, for soft real-time systems this is not a good
solution. CoolBOT offers a set of resources and policies aimed at obtaining
run-time system adaptability.

This adaptability includes a graceful degradation when there are not enough
resources and a performance recovery strategy when some resources are freed.
Additional objectives are reactivity, stability and coordination to avoid system
imbalance.

3.6.1 Control Actions

Control actions are associated with several component variables. Related con-
trollable variables include period or operating frequency for periodic compo-
nents, maximum response time that indicates for the maximum delay for
input event processing in aperiodic components, and priority. Observable vari-
ables are CPU or processing time as execution time in zero load context (best
possible performance), and elapsed time as total execution time in operating
conditions.

CoolBOT generates three different types of control actions: degradation
for reducing computational load, promotion for recovering from a degraded
situation and equalization for uniforming load distribution. Each action type

activates in response to different events. Degradation operates on temporal lim-
its violations, promotion on the detection of spare CPU intervals, and equaliza-
tion on peak-valley load profiles. Diverse techniques apply for event detection:
atomic output monitoring for timeout, temporal labeling of input data for re-
sponse time verification, CPU time versus elapsed time for load profiling, and
lowest priority test component for idle CPU intervals.

From the programmers point of view, equalization constitutes an automatic
low level mechanism that operates transparently and will not be discussed here.
Focusing then on degradation and promotion, they must be taken into account
at several application development phases.

• Atomic component design: the designer must define degraded operating
modes, if any.

• Compound component design: the designer integrates already existing
components adding, in some cases, relative priority levels.

• Application design: the designer selects components and connects them.
Priorities, periods and maximum response times are then assigned from
high level tasks specifications, e.g. from a task planner reflecting system
goals. Periods can be expressed as intervals, indicating maximum and
minimum valid operating frequencies.

Available control action are processing time reduction (quality degradation)
and period increase (frequency degradation). Control policies coordinate these
actions in order to get a fast and balanced reaction to system state.

Degradation follows a hierarchical scheme. At local level and after a time vi-
olation detection, the corresponding supervisor enters into error recovery state.
If local actions are not sufficient to correct the problem, the supervisor at next
level is notified. To avoid system imbalance, local action is limited to degrada-
tion levels inside a global homogeneity interval. If, even at whole system level,
degradation is not enough, component suspension or system reconfiguration
must be considered.

Degradation is organized in two phases. If period intervals have been defined,
the system degrades first in frequency, moving into less demanding configura-
tions. After that, if time errors persist, quality degradation applies.

Promotion starts at higher levels on the detection of spare computational
resources. The Supervisor coordinates recovery, sending promotion signals to
lower level supervisor. As with degradation, homogeneity limits must be ob-
served to guarantee a uniform progress.

3.6.2 Control Policy Algorithms

The implementation of control policies is based on supervisor algorithms and
component event detection. Figure 6 ilustrates a simplified version of such a
control algorithm.

The selection of component for degradation must consider several factors
as priority level associated with time violation, estimated repetition period of
errors, components topology, or component’s computational demand. Fastest
correction actions are obtained when degrading high priority, high load, short

While(1)

If(Time violation)

If(All components at Current_Max_Deg_Level)

If(Highest level Supervisor)

If(Current_Max_Deg_Level equals Max_Deg)

Reconfiguration

Else

Increase Current_Max_Deg_Level

Else

Notify higher level

Else

Select component for degradation

Figure 6: Degradation Algorithm

While(1)

If(Available resources and not Time violation)

If(All components at Current_Min_Deg_Level)

If(Current_Min_Deg_Level > 0)

Decrease Current_Min_Deg_Level

Else

Select component for promotion

Figure 7: Promotion Algorithm

period components. Actual selection criteria is defined by the component’s
designer according to its special characteristics.

Component selection for promotion is organized first by priority levels and
then by degradation level.

4 Methodology of Use

The process of generating full working components is resumed on figure 8. This
process starts with a description code for the component, whether atomic or
compound, which is compiled to generate makefiles and C++ files implement-
ing the component, which in the case of atomic components should be completed
filling in the skeleton of C++ code generated by the compiler. Once a compo-
nent has been completely implemented it can be integrated in other compound
components or systems, by local or remote instantiation.

component
compiler

filling in
code

C++ compiler

C++ skeleton
classes

completed
C++ classes

executable
files

component
compiler

C++ compiler

executable
files

compound

makefiles
makefiles

C++ classes
&

description
component

atomic

description
component

Figure 8: Generating components

5 Final Discussion

Along this paper it has been presented a component-oriented programming
framework for robotics, CoolBOT, which is actually a research initiative under
development at ULPGC. CoolBOT shouldn’t be understood as a new architec-
ture for perception-action systems but as an alternative design methodology and
its associated set of development tools, that should assist the robotics researcher
in the process of conceiving and validating different architecture proposals. We
think it belongs to a group of recent proposals that are aimed at defining new
languages (e.g. ESL [3] or TDL [?]) not new ”architectures”.

Components developed with CoolBOT will share the same communication
abstractions and inner control organization making possible to monitor and de-
bug any of these components using a standard set of tools. We expect that
theses features will reveal as essentials to achieve reliable, modular and easy to
extend systems. Besides, CoolBOT will provide mechanisms for adaptation to
run-time available resources. Obviously, it is too premature to make any claims
about the validity of the approach described in this paper over others address-
ing the same or similar goals. Only a posteriori, that is, through extensive
experimentation and cross-validation it will be possible to validate CoolBOT’s
approach if the systems so built proved to be more reliable, extensible and easier
to maintain or adapt.

References

[1] E. Coste-Maniere and R. Simmons. Architecture, the Backbone of Robotic
Systems. Proc. IEEE International Conference on Robotics and Automation
(ICRA’00), San Francisco, 2000.

[2] A. C. Domı́nguez-Brito, M. Andersson, and H. I. Christensen. A Software
Architecture for Programming Robotic Systems based on the Discrete Event
System Paradigm. Technical Report CVAP 244, Centre for Autonomous Sys-
tems, KTH - Royal Institute of Technology), S-100 44 Stockholm, Sweden,
September 2000.

[3] E. Gat. ESL: A language for supporting robust plan execution in embedded
autonomous agents. Proc. of the AAAI Fall Symposium on Plan Execution,
AAAI Press, 1996.

[4] D. Kortenkamp, R. P. Bonasso, and R. (Eds) Murphy. Artificial Intelligence
and Mobile Robots: Case Studies of Successful Robot Systems. MIT Press,
1998.

[5] D. Kortenkamp and A. C. Schultz. Integrating robotics research. Au-
tonomous Robots, 6:243–245, 1999.

[6] B. Pell, D. E. Bernard, S. A. Chien, E. Gat, N. Muscettola, P. Nayak, M.D.
Wagner, and B.C. Williams. An autonomous spacecraft agent prototype.
Autonomous Robots, 5:29–52, 1998.

[7] M. Steenstrup, M. A. Arbib, and E. G. Manes. Port automata and the
algebra of concurrent processes. Journal of Computer and System Sciences,
27:29–50, 1983.

[8] D. B. Stewart, R. A. Volpe, and P. Khosla. Design of dynamically reconfig-
urable real-time software using port-based objects. IEEE Transactions on
Software Engineering, 23(12):759–776, December 1997.

[9] C. Szyperski. Component Software: Beyond Object-Oriented Programming.
Addison-Wesley, 1999.

