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ABSTRACT
Many authors have proposed power management techniques
for general-purpose processors at the cost of degraded per-
formance such as lower IPC or longer delay. Some proposals
have focused on cache memories because they consume a
significant fraction of total microprocessor power. We pro-
pose a reconfigurable and adaptive cache microarchitecture
based on field-programmable technology that is intended to
deliver high performance at low energy consumption. In
this paper, we evaluate the performance and energy con-
sumption of a run-time algorithm when used to manage a
field-programmable L1 data cache. The adaptation strat-
egy is based on two techniques: a learning process provides
the best cache configuration for each program phase, and
a recognition process detects program phase changes by us-
ing data working-set signatures to activate a low-overhead
reconfiguration mechanism. Our proposals achieve perfor-
mance improvement and cache energy saving at the same
time. Considering a design scenario driven by performance
constraints, we show that processor execution time and cache
energy consumption can be reduced on average by 15.2%
and 9.9% compared to a non-adaptive high-performance mi-
croarchitecture. Alternatively, when energy saving is prior-
itized and considering a non-adaptive energy-efficient mi-
croarchitecture as baseline, cache energy and processor ex-
ecution time are reduced on average by 46.7% and 9.4%
respectively. In addition to comparing to conventional mi-
croarchitectures, we show that the proposed microarchitec-
ture achieves better performance and more cache energy re-
duction than other configurable caches.
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1. INTRODUCTION
Programs and their execution phases exhibit different ef-

ficiencies when fixed processor hardware is adopted [21].
Adaptive processors can exploit this phenomenon to pro-
vide higher efficiency than fixed hardware systems [22, 24].
These processors activate the reconfiguration of its microar-
chitecture under architectural criteria: highest performance,
lowest energy consumption, etc.

Hardware reconfigurability is a more general concept re-
lated to physical resources needed to modify the hardware
organization after chip fabrication. Some reconfigurable ca-
che memories have been proposed to improve the perfor-
mance or power dissipation of general-purpose processors [2,
13, 14, 18]. However, improvements are limited by the level
of reconfigurability, which has been forced to not degrade the
operating frequency of processor. We have observed that if
the clock speed of the reconfigurable system is allowed to be
slightly slower, higher performance and reduced power dis-
sipation can be achieved at the same time compared with
non-reconfigurable hardware systems.

In this paper, we propose the microarchitecture of the
Field-Programmable Cache Array (FPCA) and evaluate its
impact on processor performance and cache energy con-
sumption. FPCA is a specialized reconfigurable circuit for
the cache memory of a general-purpose processor. In com-
parison with a conventional cache, the access time is only
slightly longer. Furthermore, the temporal and power over-
heads required to control the reconfigurable microarchitec-
ture are low because programs exhibit large execution phases
and reconfigurations are only sporadically activated. The
additional hardware is also small because the circuit is spe-
cialized in cache memory.
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Our field-programmable data cache is similar to others
reconfigurable caches in that they try to obtain the highest
performance or the lowest energy consumption by selecting
the best configuration at critical runtime points [2, 14, 18].
However, their range of configurations is fixed at design-time
and is not scalable to different chip area budgets: from server
processors to low-cost processors. In these cases, we have
observed that it can be possible that a unique cache config-
uration is selected for the majority of applications. Further-
more, the efficiency of caches is not fully exploited because
the same set of tuneable cache configurations is used for dif-
ferent goals: performance improvement, energy saving, etc.

The FPCA cache can be used in designs with different
initial budgets for the processor development, each of them
can adopt a distinct FPCA. Additionally, since the number
of tuneable cache configurations can be large, they can be
efficiently exploited not only by the range of applications
and execution phases, but also by tuning a preferred metric
(performance, power dissipation, etc.).

Conventional control algorithms for adaptive caches spend
long times in the tuning process because they explore all the
configurations for picking the best one [2, 6]. In these cases,
the temporal and energy overheads are higher as the number
of tuneable cache configurations increases. Then, the large
number of cache configurations that can be implemented
with a FPCA may prevent achieving improvements. We also
propose an on-line control algorithm called Cache Matching
Algorithm for instantaneously tuning the FPCA cache with
accuracy, minimal hardware cost, and an overhead that is
independent of the number of tuneable cache configurations.

The rest of the paper is organized as follows. Section 2
presents the internal organization of the FPCA cache, and a
model that is used in our architectural evaluations. Section
3 describes the control methodology for run-time adapta-
tion. In Section 4, we describe the simulation methodology
employed to evaluate our proposals, the benchmark appli-
cations used, and additionally, a performance and cache en-
ergy analysis (static and dynamic) of several baseline con-
figurations including three systems: conventional caches,
the adaptive cache proposed by other authors, and an ideal
adaptive mechanism with future knowledge. Section 5 eval-
uates our control methodology for high-performance pro-
cessors with a FPCA L1 data cache and compares it with
several baseline architectures. Sections 6 and 7 contain ad-
ditional discussion of related work and concluding remarks.

2. A FIELD-PROGRAMMABLE CACHE
In this section, we describe a specialized reconfigurable

circuit for cache memories called Field-Programmable Cache
Array (FPCA), which is based on Field-Programmable Gate
Array technology. The FPCA circuit can be integrated into
conventional processors, from high-performance to low-cost
processors. The FPCA circuit is organized into an array of
reconfigurable cells called Configurable Cache Blocks (CCB),
which are selectively connected by a power-on configuration
bit (called Vcc). Fig. 1 shows a block diagram of the FPCA
where four CCBs can be identified.

A CCB is based on the classical organization of CMOS
memories, and its design was guided by results of the ar-
chitectural study of the cache adaptation shown in Section
5. Each CCB consists of eight complete cache memories
called T-D, each of them consists of 128 sets with 20 bits for
tags and 8 bytes for data (T and D respectively in Fig. 1).
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Figure 1: The Field-Programmable Cache Array

Some tag bits can be selectively activated, depending on the
cache configuration. The overall capacity of each CCB is 8
Kbytes, and the reconfigurability of CCBs allows up to three
degrees of set-associativity: 2-way, 4-way and 8-way, and up
to four line sizes: 8, 16, 32, 64 bytes. A FPCA includes 10
additional configuration bits which are shared by all CCBs.
When a different cache organization is required, the FPCA
can implement it by changing the configuration bits.

Reconfigurability requires additional hardware resources:
SL, OE, and RC. SL represents the selection logic that se-
lects the index bits which are the same for all CCBs. This
module uses four configuration bits to select the appropriate
bits from the variable sections of the address called Variable
Tag/Index and Variable Index/Block (see Fig. 1). OE rep-
resents the hardware module that selects the output data,
which uses other four configuration bits and the block bits
of the address (Fixed Block and Variable Index/Block in
Fig. 1). RC represents the reconfigurable comparator where
the information read from the tag array T is compared to the
tag bits of the address (Fixed Tag and Variable Tag/Index
in Fig. 1). This circuit uses two configuration bits.

The range of configurations that can be implemented with
FPCA has the following constrains: the number of sets has
to be higher than or equal to 128, 8-way set-associativity is
the highest allowed associativity, the cache lines can store
data from 8 to 64 bytes, and the biggest size depends on the
number of CCBs, which is related with the chip area devoted
to FPCA. Therefore, FPCA allows different cache configu-
rations to be implemented, in which capacity, associativity
and line size can be varied independently. The hit latency
(in cycles) can also be variable and depends on the operat-
ing frequency. We have observed that better performance
can be achieved when the operating frequency is reduced
slightly in order to maintain a minimal hit latency in cycles
of FPCA accesses. This is the reason why we do not fix the
operating frequency, which is supposed to be limited by the
frequency of the non-reconfigurable baseline system.

2.1 Architectural Model
An architectural model of the FPCA circuit is required for

detailed cycle-by-cycle simulations of complete processors.
We modified the analytical model used by CACTI tool [17],
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which predicts the access time, power dissipation and chip
area of conventional CMOS cache memories. Our modifica-
tion was guided by PSPICE simulations of the FPCA circuit
and provided the following average results.

Access Time. The conventional paths that are affected by
the specialized reconfigurable architecture are the address
decoder, comparator, multiplexer driver, and wire lines of
the input address and output data (see dotted line in Fig. 1).
The access time and cycle time of a FPCA cache configu-
ration on average was 20% longer than provided by original
CACTI for the same CMOS technology.

Power. Since a FPCA has more transistors than the
equivalent non-reconfigurable cache memory, the power dis-
sipation of a memory access is on average 5% higher.

Reconfiguration Time. This temporal overhead is propor-
tional to the number of configuration bits. For the FPCA
shown in Fig. 1, its four CCBs have 14 configuration bits (10
shared + 4 Vcc), which are loaded when a change of cache
organization is activated. Supposing that these bits are se-
rially loaded with a 100 MHz configuration clock signal, the
reconfiguration time of FPCA is 0.14 µs. During this re-
configuration phase, we suppose that FPCA can not be ac-
cessed, and the previous content of the cache is discarded.
The data cache uses write-back policy, and before its con-
tent is flushed out, L2 cache is updated. This additional
overhead was accounted for in our architectural model.

Chip Area. The FPCA was 10% larger in chip area than
the equivalent non-reconfigurable memory cache.

3. RUN-TIME ADAPTATION
In this section, we show how Basic Block Vectors (BBV)

obtained from dynamic program traces can be used to deter-
mine changes in some characteristics of the data working-set
accessed by an instruction interval. Then, we explain how
a hardware algorithm called Cache Matching Algorithm col-
lects BBV vectors during program run-time for instanta-
neously tuning an adaptive data cache. This algorithm is
applied to the on-line control of an FPCA cache.

3.1 Predictor of the Data Working-Set
The size of a Basic Block (BB) is determined from the

instruction count between branches. A Basic Block Vec-
tor (BBV) is gathered for each instruction interval during
the program execution. Each component of a BBV vec-
tor collects the frequency of basic blocks with a determined
size. BBV-based techniques for detecting recurring program
phases have been shown to provide better sensitivity and
lower performance variation in phases compared to other
techniques [7]. These techniques have been used for acceler-
ating architectural cycle-by-cycle simulations [20].

We propose using BBV vectors to feature the data working-
set of an instruction interval and configure a FPCA cache.
Working-set representations have the advantage that they
can be used to estimate the working set size directly. They
are useful in cases where performance of a functional unit is
directly related to the working-set characteristics. Dhodap-
kar and Smith proposed another representation of instruc-
tion working-sets called Working-Set Signature [6], which
has been shown to contain less information about the in-
struction interval than the BBV vector [7].

The usefulness of using BBV vectors as predictors of the
properties of data working-set is shown with the following
synthetic code, which consists of two nested loops.

//Nested loop #1, BB1= 12 instructions

for (j=0;j<10;j++)

//BB2= 8 instructions

for (i=0;i<1000;i++) x[i]=x[i]+x[i+1];

//Nested loop #2, BB3= 16 instructions

for (j=0;j<10;j++)

//BB4= 11 instructions

for (i=0;i<1000;i++) y[i]=x[i]+y[i]+y[i+1];

The first one uses one array (int x[]), and the second one
additionally uses a second array (int y[]) with the same
size. The sizes of dynamic basic blocks (BBi) are shown
in the comment lines of the example code above. Each ba-
sic block is determined by a branch instruction required to
implement the loops. Now, suppose instruction intervals of
10,000 instructions. The first basic block executed is BB1,
which is executed in each iteration of the first loop j. After
each execution of BB1, basic block BB2 is executed in 999
iterations. Taking intervals of 10,000 instructions, the most
frequent basic block vector obtained from the first nested
loop is the following,

BBV1 = (0, ··, 1249BB2×8i/BB2 , 0, ··, 0, 1BB1×12i/BB1 , 0, ··, 0)

The data working-set, i.e. the amount of data accessed
during each instruction interval in which we obtain BBV1 is
4,004 Bytes. After that, the most frequent BBV obtained
from the second nested loop is the following,

BBV2 = (0, ··, 908BB4×11i/BB4 , 0, ··, 0, 1BB3×16i/BB3 , 0, ··, 0)

The number of different words accessed during the exe-
cution of the second nested loop is 7,276 Bytes. With a
4 KB data cache, the first nested loop would only exhibit
cold misses. However, the second nested loop would exhibit
cold and capacity misses. It is possible to use an 8 KB data
cache for all the program and the capacity misses disappear.
However, half of the cache is inefficiently activated during
the first nested loop, i.e., superfluous energy is consumed
and the access time is larger than required because the tag
and data matrices can store more bits than accessed in the
first nested loop.

BBV1 is only collected from the first nested loop, and
BBV2 is only collected from the second nested loop. The
detection of one of these BBVs can predict the volume of
accessed data. So, a cache capacity accommodated to the
data working-set can be activated when a BBV vector is rec-
ognized during program execution. Vectors very similar to
BBV1 or BBV2 appear many times during run-time. Both
groups of BBV vectors are clearly different from each other
and represent two patterns or program phases. Traditional
pattern-matching techniques can cluster these BBV vectors
and partition the representation space [8]. We propose to
match each partition with a distinct cache configuration by
using the following algorithm.

3.2 Cache Matching Algorithm
The Cache Matching Algorithm (CMA) is proposed to

dynamically detect changes of program phases and execute
each phase with the maximum efficiency by reconfiguring an
adaptive FPCA data cache. This hardware/software algo-
rithm uses BBV vectors and is inspired in other approaches
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used by human-like systems [8]. Three stages are required:
Learning, Recognition, and Actuation.

3.2.1 Learning
The Learning stage is used to identify patterns/phases

of program behaviour. Additionally, it associates each pat-
tern with a configuration of the reconfigurable FPCA cache,
which provides the highest performance and is selected from
a set of many different configurations. This task is per-
formed by software and is divided into three major steps.

In the first learning step, a BBV vector collects for each
instruction interval the frequency and size of all executed
basic blocks. Every BBV vector may have thousands of
components. Since BBV vectors are processed by the run-
time control system, they determine the major cost of the
additional hardware. Then, it is necessary to find the lowest
dimensional effective subspace for classification purposes. A
feature extraction method called Decision Boundary Feature
Extraction (DBFE) was used to calculate the optimal trans-
formation to a lower dimensional space [15]. It uses training
samples to determine discriminative informative features.
Each feature is defined by an eigenfuncion and has asso-
ciate an eigenvalue to characterize the usefulness of the cor-
responding feature. The DBFE was applied to BBV vectors
collected from all SPEC benchmarks considering 5,000 in-
tervals of 100,000 instructions/interval in each program. In
all cases, the sum of eigenvalues is higher than 95% of the
maximum value by using only three new features.

We propose to transform the original hyperspectral BBV
vectors by accumulating the frequency of basic blocks whose
sizes range in three non-superimposed intervals. These inter-
vals are defined in the learning stage from the eigenfunctions.
This step needs to be done only once for each program. For
each instruction interval, three BB Sensors (counters) in the
processor core hold the components of a three-dimensional
BBV vector (called 3-D BBV ). Vectors that are close to-
gether in that space represent instruction intervals with sim-
ilar behaviour, i.e. a program pattern/phase.

In the second learning step, the K-means clustering al-
gorithm (used in the SimPoint Toolkit for another purpose
[20]) runs iteratively on 3-D BBV vectors collected from the
execution of a relatively large number of 100,000 instruction
intervals. The number of iterations (K) is fixed previously,
with values of K from 1 to M. Each run of K-means pro-
duces a clustering, which is a partition of the representation
space into K clusters. Using a probabilistic measure of the
goodness of fit of a clustering within a dataset, the smallest
K is chosen. So, the 3-D BBV vectors are grouped into a set
of K clusters called SimPoint (SP) Classes, where each SP
class represents a different program pattern/phase. Finally,
the 3-D representation space is partitioned into hypercubes;
each of them encloses the 3-D BBV vectors assigned to an
SP class. Fig. 2 shows an example of a bidimensional pro-
jection of the 3-D representation in which clusters of BBVs
divide the representation space into SP classes.

In the last learning stage, associating each SP class with
an optimal cache configuration involves executing several
instructions intervals for every tuneable configuration, and
monitoring the respective SP classes and execution times.
After picking all cache configurations, each SP class is as-
signed to the cache configuration which exhibits the highest
performance in most of the instruction intervals assigned
to that SP class. This task and the periodic activation of
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Figure 2: The Basic Block Vectors (BBV) are clus-
tered and the Representation Space is divided into
hypercubes that enclose the clusters. Each hyper-
cube represents a SimPoint (SP) Class. The Rep-
resentation Space Table associates a SP class with
each BBV vector. The Pattern Table associates a
SP class with the best cache configuration.

the cache reconfiguration are also implemented by software.
Since we are assuming that the best cache configuration is
the same for all the intervals belonging to the same SP class,
it is not necessary to execute the full program for every
available cache configuration. Since an SP class should be
composed of many intervals, the learning time is negligible
in comparison with the total execution time.

A Representation Space Table is used to store the SP class
assigned to each 3-D BBV. Another Pattern Table contains
the association between an SP class and the cache config-
uration with the highest performance (see Fig. 2). Both
tables are implemented in hardware for a fast look-up, and
are set-up by software after the last learning step has fin-
ished. Next, the reconfigurable cache can operate in one of
two modes of operation called Recognition and Actuation.

3.2.2 Recognition and Actuation
The Recognition stage implements the cache tuning and

is active on-line for the whole program execution. It de-
tects if the current cache configuration does not provide the
highest performance for the running program pattern/phase,
and determines what different cache configuration should be
used instead. A hardware coprocessor performs the recogni-
tion task by firstly reading the 3-D BBV vector from the BB
sensors after each execution interval. Next, the vector posi-
tion in the Representation Space Table allows the SP class
of the interval to be recognized. If the currently activated
cache configuration does not coincide with the configuration
associated with this SP class, which is stored in the Pattern
Table, it means that the instruction interval was not effi-
ciently executed. The Recognition stage can be executed in
parallel with the instruction flow and does not modify the
critical execution path. So, this tuning stage provides no
performance degradation.
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The Actuation stage is activated by the coprocessor when
the SP classes of three consecutive instruction intervals are
assigned in the Pattern Table to the same cache configura-
tion and this configuration is different from the current one.
When an actuation is fired, the instruction flow is stalled
and a Configuration Table is read to obtain the bitstream
required for the reconfiguration process, including the oper-
ating frequency. After reconfiguring the hardware, the cache
content is lost and the instruction flow and recognition pro-
cess are restarted. Before running a different program, the
Representation Space Table, Pattern Table and Configura-
tion Table are loaded with the information derived from the
respective learning stage.

In summary, the association of a cache configuration with
a program phase/pattern is learned once, stored, and used
each time the program phase/pattern is recognized. There-
fore, the overhead at runtime is independent of the number
of available configurations.

3.3 Cache Adaptation Driven By Other
Preferred Metrics

The criterion used by the CMA algorithm in assigning the
best cache configuration to each program phase was based
on performance. Other preferred metrics such as energy
dissipation, and time-energy product can be used instead.
The CMA algorithm is extended to allow prioritizing other
architectural metrics. For each SP class, by monitoring a
preferred metric in the Learning stage, the cache configu-
ration that achieves a minimal value can be determined.
Then, the representation space table of a program can be
associated with several pattern tables, which pursue differ-
ent architectural goals. By loading one of the contents of
the pattern table for the running program, the recognition
stage can be also tuned to optimize a preferred metric. In
this way, the same hardware can be architecturally tuned
to achieve either the highest performance improvement, the
highest energy saving, or the lowest time-energy product.

3.4 Hardware Controller
Supposing intervals of 100,000 instructions, three 17-bit

counters measure the number of executed instructions in
BBs with three different ranges of sizes. The three more
significant bits from each counter builds one of the compo-
nents of the 3-D BBV vectors. Six 12-bit registers load the
upper and lower limits of the three ranges of BB sizes before
running the program. Another 17-bit counter registers the
clock cycles for each instruction interval, and a pair of 16-bit
counters measures hits and misses in the L1 data cache.

The hardware coprocessor required for the Recognition
and Actuation stages contains three small tables (see Fig. 3).
The Representation Space Table provides for each 3-D BBV
the respective SimPoint Class. Since each BBV component
has three bits and 16 is an appropriate number of SP classes,
its size is 29×4 bits. The Pattern Table contains the associ-
ation between SP Class and cache configuration (identified
by a Cache ID). Supposing that the maximum number of
different configurations is 16, its size is 24×4 bits. The Con-
figuration Table stores for each Cache ID the configuration
bits needed for reconfiguring the FPCA data cache (14 bits),
including the operating frequency and the hit and miss la-
tencies. Its size is 50 bytes.

A FIFO memory is used to store the Cache ID of the last
three instruction intervals, and a single register stores the
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Table 1: Selected SPEC benchmarks.

Program Input SPEC Program Input SPEC

ammp ref fp00 applu ref fp00
apsi ref fp00 art ref fp00
bzip2 graphic int00 crafty ref int00
eon cook int00 equake ref fp00

facerec ref fp00 fma3d ref fp00
galgel ref fp00 wupwise ref fp00
gcc 200,

expr
int00 gzip random,

source
int00

ijpeg ref int95 lucas ref fp00
mcf ref int00 mesa ref fp00

mgrid ref fp00 parser ref int00
perlmbk ref int00 sixtrack ref fp00

swim ref fp00 twolf ref int00
vortex ref int00 vpr route int00

current FPCA configuration ID. Another hardware module
provides the activation signal of the Actuation Stage. Ad-
ditionally, a small circuit is needed to read the Configura-
tion Table and configure the FPCA in the Actuation Stage.
Supposing eight instructions/cycle, 100,000 instructions are
executed in 12,500 clock cycles. It is enough for reading the
Representation Space and Pattern tables, and for the glue
logic to activate the Actuation stage.

4. EXPERIMENTAL METHODOLOGY
We have used the Simplescalar-Alpha-3.0 tool set [5] to

generate the dynamic instruction trace of the first 2 bil-
lion instructions for 26 programs of the SPEC benchmark
suites. Table 1 shows the selected benchmarks and their
inputs (compiled for the Alpha ISA, cc DEC 5.9, −O4).
These programs were chosen to demonstrate how our pro-
posed hardware/software methodology can outperform both
highly efficient non-adaptive approaches and other adaptive
systems on SPEC benchmarks, and additionally, because
they represent different program domains (integer, floating-
point, and multimedia).

Accurate cycle-by-cycle simulation was performed using
a superscalar CPU simulator based on Simplescalar [5], to
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Table 2: Microarchitecture parameters for the cycle-
accurate simulations.

General Out-of-Order
Microarchitecture

L1 Field-Programmable
Data Cache

Up to 8 instructions
renamed, dispatched, issued

and retired per cycle
Fetch Queue: 16

instructions
Branch Predictor: perfect

Issue Queue: 48 instructions
Reorder Buffer: 256

instructions
Operation latencies like

Pentium 4
Load/Store Queue: 64/32

instructions
Perfect memory
disambiguation

Store to Load forwarding
I-Cache: perfect, 2-cycle

load-use latency
L2-Cache: 4.6 ns access
time (load-use latency
depends on operating

frequency, f), 1.83 nJ/access
L1-L2 Interface Bandwidth:

16GB/s

Main Memory: 70 ns access

time, 5 nJ/access

Size: 1KB, 2KB, 4KB, ...,
32KB

Set-Associativity: 2-way,
4-way, 8-way

Line Size: 8, 16, 32, 64
Bytes

Load-use Latency (n): 1, 2,
3, 4 clock cycles, (depends
on cache organization and

operating frequency)
2 read/write ports

Penalizations with
respect to the same
cache configuration

built with fixed
hardware:

CPU stall time during
cache reconfiguration (0.14
µs and cache flush), energy
consumption during cache

reconfiguration (5 µJ),
cache content is lost after

reconfiguration.

subsequently calculate for each tuneable L1 data cache con-
figuration the execution time, product time-energy, and en-
ergy consumption. Table 2 lists the parameters used for
the simulated processor. Benchmarks were simulated using
intervals of 100,000 instructions per 1 billion instructions
executed, after a warming-up of 1 billion instructions. The
whole analysis interval was divided into two equal intervals
of 0.5 billion instructions. The first one was used for learn-
ing, and the second one for recognition and actuation.

The standard SimPoint-1.1 Toolkit [20] was used to ex-
tract basic block vectors (BBV) from the dynamic execution
of benchmarks during the analysis interval. Each instruction
interval provides one BBV vector, which was transformed
to a three-dimensional vector (3-D BBV) as previously de-
scribed in Section 3.2.1. The 3-D BBVs provided by the exe-
cution of the learning interval were analyzed by SimPoint for
classifying instruction intervals into SimPoint (SP) classes.
The resulting clusters partition the 3-D representation space
and determine the content of the Representation Space Ta-
ble. Given a preferred architectural metric and using the
above described Cache Matching Algorithm, our CPU sim-
ulator takes 3-D BBV vectors obtained from the recognition
interval and assign them to one of the learned SP classes.

We used a modified version of CACTI 3.2 [17] to estimate
the access time, energy consumed in each memory access,
and chip area of each L1 field-programmable data cache or-
ganization, for a CMOS technology with λ = 100 nm (see
Section 2.1). Our experiments used the original CACTI tool
to characterize the reference configurations, which are de-

scribed below. With the history of the last three SP classes,
the CMA algorithm also determines for the next instruction
interval whether the L1 data cache must be reconfigured.

This paper reports results for three architectural metrics:
execution time, static and dynamic energy consumption of
the L1 data cache and unified L2 cache, and time-energy
product. As CACTI only provides estimates of dynamic en-
ergy, we calculate static energy as described in [25], with
k-static = 50%, i.e. static energy is 50% of the total energy.
In the experiments, we have supposed that in each recon-
figuration of the field-programmable cache, the instruction
flow is stalled, the contents of the L1 data cache is dis-
carded, and L2 is updated as described in Section 2.1. The
energy consumed by sensors was not considered since they
are physically very small. In each cache reconfiguration,
the additional energy consumed by FPCA and coprocessor
including tables is 5 µJ. When reconfiguration is not acti-
vated, the energy consumed by coprocessor is negligible be-
cause the activated hardware is also small: Representation
Space Table (256 bytes), Pattern Table (8 bytes), Configu-
ration Table (50 bytes), and glue logic (four 8-bit registers
and three 8-bit comparators).

4.1 Reference Configurations
A group of conventional non-adaptive cache microarchi-

tectures called Configurations A, B and C was used as base-
line designs. Table 3 summarizes the parameters of these
non-adaptive L1 data caches considering a 100 nm CMOS
technology and the advantage of being fixed hardware. The
processor core is as described in Table 2. The baseline Con-
figuration A is similar to that used by Balasubramonian et
al. to evaluate their proposal of adaptive memory hierarchy
[2]. This large L1 data cache was used because we tried to re-
peat the experiments made in [2]. The baseline configuration
B is adopted by the 90 nm version of the high-performance
Intel Pentium 4 processor [4], and CACTI predicts a chip
area of 1.5 mm2 for λ CMOS=100 nm. Taking a chip area of
1.5 mm2 into account, Configuration C has a L1 data cache
organization that is most similar to that of the low-power
Intel PXA255 processor [12].

We also evaluated a second type of reference configuration
called Adaptive-Base. It consists of an adaptive L1 data
cache with fixed clock frequency (f=1.51 GHz), and varying
cache latency and energy consumption that resemble the
proposal of Balasubramonian et al. [2]. The differences
are that we simulate inclusive L1 and L2 caches, instead of
exclusive caches, that our design has an 8-way superscalar
core instead of a 4-way core, and that we consider perfect
branch prediction. CACTI predicts a chip area between 67.5
mm2 and 8.4 mm2 for the data cache (λ CMOS= 100 nm),
as its capacity can adapt from 2 MB to 256 KB respectively.

Our adaptive system was guided by results obtained from
an oracle model called Ideal Dynamic Adaptation. This
model is an ideal mechanism that for each instruction in-
terval always knows in advance and selects the cache config-
uration that provides the best result for one of the following
architectural measures: execution time, time-energy or en-
ergy consumption. In these cases, we say that the data cache
adaptation is driven either by performance, time-energy, or
energy consumption (static and dynamic). This mechanism
is used to determine the upper bound of the real adaptive
caches and allows evaluating the respective efficiencies.
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Table 3: Non-Adaptive baseline configurations considering a 100 nm CMOS technology and the advantage
of being fixed hardware

Name Prioritized
Metric

Capacity
Set As-
socia-
tivity

Bytes/
line

R/W
Ports

Hit La-
tency(n)

Operating
Frequency

(f)

Energy
(nJ/

access)

Chip
Area
(A)

A All 256 KB 1-way 128 2 2 cycles 1.51 GHz 0.65 8.4 mm2

B Execution Time,
Time-Energy

16 KB 8-way 64 2 4 cycles 4.20 GHz 0.70 1.5 mm2

C Energy 32 KB 8-way 32 2 1 cycle 1.00 GHz 0.72 1.5 mm2

4.2 Maximum Improvements
Next, the potential of Ideal Dynamic Adaptation is esti-

mated and compared with results obtained by baseline con-
figurations A and Adaptive-Base. In a first experiment, we
considered the tuneable cache configurations shown in Ta-
ble 2, with different access times (Taccess), different load-use
latencies (n), and requiring a variable amount of chip area
(A). We suppose that the access time determines the oper-
ating frequency of processor (f ) in all cases: f = n/Taccess.
Benchmark traces were analyzed from simulations of 1 bil-
lion instructions after a warming-up of 1 billion instructions
and using 105 instruction intervals. The maximum operat-
ing frequency of the Ideal Dynamic Adaptation was set to
flimit= 1.51 GHz, and the maximum chip area of the field-
programmable data cache was limited to Alimit= 1.5 mm2,
i.e. f=flimit and A=Alimit. We supposed that there are
no temporal and energy overheads in the tuning and recon-
figuration stage of neither Ideal Dynamic Adaptation nor
Adaptive-Base baseline system. For a selection of bench-
marks, Fig. 4 compares the speedup over Configuration A,
time-energy per instruction and energy per instruction of
five systems: Configuration A, Adaptive-Base, and Ideal
Dynamic Adaptation driven by each one of the three ar-
chitectural metrics. As can be observed in Fig. 4a, Ideal
Dynamic Adaptation driven by performance achieves an av-
erage speedup of 16% (range from 55.2% to 1%) with re-
spect to Configuration A (84% reduction in data cache area),
and 12.4% with respect to Adaptive-Base (85% reduction in
data cache area). Additionally, the ideal adaptation reduces
on average the time-energy per instruction by 84% (range
from 93% to 67%; see Fig. 4b), and the energy consump-
tion by 82% (range from 94% to 69%; see Fig. 4c) with
respect to Configuration A, when time-energy and energy
consumption are prioritized respectively. Therefore, there is
a margin for proposing new adaptive cache memories, since
Adaptive-Base, for the benchmarks above considered, only
reaches 23% of the performance improvement due to Ideal
Dynamic Adaptation and reduces energy and time-energy
by 1%.

5. EVALUATION OF THE FIELD-
PROGRAMMABLE DATA CACHE

This section evaluates the potential of our Real Adaptive
System (i.e., the Field-Programmable Data Cache with run-
time adaptation) in three different design scenarios, which
prioritize performance, energy consumption, and time-energy
respectively. The experiments consider the same tuneable
cache configurations shown in Table 2. For the first and

third design scenarios, the maximum operating frequency
and maximum chip area of the tuneable cache configura-
tions are flimit= 4.2 GHz and Alimit= 1.5 mm2 respec-
tively. These initial conditions restrict the number of tune-
able cache organizations to 188. In these two design scenar-
ios, the high-performance non-adaptive baseline configura-
tion is B. For the low-power design scenario, the maximum
operating frequency and maximum chip area of the tune-
able cache configurations are flimit= 1.0 GHz and Alimit=
1.5 mm2 respectively. With these restrictions, the number
of tuneable cache configurations is 8. The low-power non-
adaptive baseline configuration is C.

The pipeline of the processor with field-programmable L1
data cache is supposed to be designed for the maximum
frequency flimit. A reduction of the clock speed determined
by some cache configurations is practically possible with no
change of pipeline design.

The evaluation of our adaptive data cache was made after
applying the Cache Matching Algorithm to all benchmarks.
Three algorithmic stages were established: Learning, Recog-
nition, and Actuation. Each of them requires additional ex-
perimental conditions, which are described next, along with
the evaluation results.

5.1 Results of the Learning Phase
In this stage, four tasks were performed by software in the

following sequence: feature extraction, identification of the
Representation Space, and setting of contents of the Pattern
Table and Configuration Table. All of them were applied to
each benchmark in simulations of 5,000 intervals of 100,000
instructions (0.5 billion instructions) just after warning-up.

A BBV vector was associated to each instruction inter-
val. With the feature extraction, the upper and lower limits
of the three ranges of BB sizes were determined. These
ranges determine a linear transformation with equal coeffi-
cients, which allows a three-dimensional BBV to be created
for each instruction interval. The representation space was
determined after the 3-D BBV vectors had been clustered
with the K-means algorithm, which was implemented by
the SimPoint toolset. The Representation Space Table of
each benchmark stores for every 3-D BBV a SP class code
that identifies the cluster in which the BBV was classified.
The number of SimPoint classes varied from 14 (gzip) to
1 (crafty, equake). On average, 6 classes per benchmark
were observed.

Next, the Pattern Table was generated. In each table
entry, a Cache-ID identifying the preferred cache configura-
tion of a SP class is stored. For this task, the following steps
were done: (a) the prioritized architectural metric (perfor-
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Figure 4: (a) Performance improvement over baseline Configuration A of Adaptive-Base and Ideal Dynamic
Adaptation driven by Performance. (b) Time-Energy per Instruction for: baseline Configuration A, Adaptive-
Base, and Ideal Dynamic Adaptation driven by Time-Energy. (c) Energy per Instruction for: baseline
Configuration A, Adaptive-Base, and Ideal Dynamic Adaptation driven by Energy.

mance, energy, time-energy) was set, (b) the preferred met-
ric was monitored during a complete learning interval after
each cache configuration had been picked, and (c) the most
frequent cache configuration that was selected with the best
value of the preferred metric in the instruction intervals as-
signed to each SP class was identified. When adaptation
was driven by performance, energy, or time-energy, the to-
tal number of cache configurations that were assigned to at
least one SP class was 16, 3, and 20 respectively (see the first
five columns in Table 4). As can be seen, the parameters of
the selected cache configurations are very different from one
preferred metric to another. This means that the adaptive
cache must provide the possibility of picking at least these
configurations in order to exploit program phases with high
efficiency. When adaptation was driven either by perfor-
mance, energy, or time-energy, the average number of cache
configurations contained in the Pattern and Configuration
tables of each benchmark was 3, 2 and 3 respectively (see
Table 5). This means that for each program, not many
cache configurations are required to provide an efficient use
of the L1 data cache. Additionally, it can be observed that
the most efficient configurations that are selected in Real
Adaptation depend on the program.

We observed that the number of cache configurations in
the Pattern Table for Real Dynamic Adaptation is signifi-
cantly reduced with respect to the number of configurations
picked in Ideal Adaptation (described in Section 4.1). This
result is due to the existence of two effects associated to the
lack of precision of the K-means clustering algorithm and
lack of information of the BBV vectors. On the one hand,
several SP classes are assigned to the same cache configu-
ration. In this case, the SP classes are grouped together to
form a single SP class. On the other hand, the cache con-
figurations that exhibit the highest performance or lowest
energy consumption in the instruction intervals of a same
SP class are frequently different. Since an SP class must be
matched with a single cache configuration, only one config-
uration is not discarded. Thus, the efficiency provided by
Real Adaptation is lower than the ideal mechanism.

Finally, the Configuration Table should be loaded with
the bitstreams of the cache configurations that appear in
the Pattern Table. These bitstreams implement the change
of cache configuration and are determined in design time,
after establishing the internal organization of the field pro-
grammable cache.

5.2 Results of the Recognition and
Actuation Phases

Once all the tables had been initialized, the behaviour of
Real Adaptation was simulated in 5,000 intervals of 100,000
instructions (0.5 billion instructions) just after the learning
interval. The execution time and energy consumption of
the learning intervals are not accounted for because they
are supposed to be amortized during the overall program
execution. For benchmarks gcc and gzip, we simulated the
recognition and actuation stages using two different inputs
and a single learning stage with one of the respective inputs.

After the execution of each instruction interval, the three-
dimensional BBV vector provided by the processor core and
the contents of the Representation Space and Pattern tables
are used to find the corresponding cache configuration. A
reconfiguration is fired only when three consecutive instruc-
tion intervals are assigned to the same cache configuration,
and this is different from the currently activated. We assume
that each cache reconfiguration additionally introduces a 1.0
µs delay overhead and a 5.0 µJ energy overhead. These pe-
nalizations are necessary to take into account the reconfig-
uration process of the field-programmable data cache and
the update of L2. When such reconfiguration occurs, the
unused portion of the cache is power-down and the cache
content is lost.

When performance, energy, or time-energy was priori-
tized, the average number of reconfigurations performed dur-
ing the recognition and actuation phase was 52, 24 and
65 respectively, i.e. less than 1.5% of all instruction inter-
vals simulated for the recognition stage. This is equivalent
to observe average phase lengths of 9.6, 20.8 and 7.7 mil-
lion instructions respectively. These results indicate that
the program patterns/phases exhibit high temporal local-
ity, which reduces the overheads due to hardware reconfig-
uration. Note that, after finalizing the learning phase, the
runtime selection of a cache configuration does not require
previous tuning of all available microarchitectures before the
selection of one with the highest performance, as proposed in
other adaptive methodologies [2, 19]. Therefore, our on-line
control method requires lower overhead for the determina-
tion of the stable state of the microarchitecture than prior
reported studies.

5.3 Performance and Energy Consumption
Fig. 5 shows the performance results for Real Adaptation

driven by the three metrics and Ideal Adaptation driven by
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Table 4: Cache Configurations selected in the learn-
ing stage of the Real Dynamic Adaptation when is
driven either by performance, time-energy, or en-
ergy. The column % Total Intervals shows the per-
centage of instruction intervals with respect to the
overall simulated instruction intervals (26 bench-
marks × 5,000 intervals) that a cache configuration
was selected in the recognition phase. Legends: K=
KBytes of capacity, w= ways of set-associativity,
B=bytes/line, c= hit latency (cycles).

Cache
ID

Configuration of
the L1 Data Cache

% Total
Intervals

Adaptation driven by Performance
158 32K 2w 64B 3c 1.40%
174 32K 4w 64B 3c 9.50%
178 32K 8w 8B 3c 0.81%
186 32K 8w 32B 3c 7.69%
226 16K 4w 8B 3c 0.31%
230 16K 4w 16B 3c 1.08%
242 16K 8w 8B 3c 0.77%
246 16K 8w 16B 3c 22.13%
250 16K 8w 32B 3c 11.13%
254 16K 8w 64B 3c 3.23%
261 8K 1w 16B 2c 0.38%
265 8K 1w 32B 2c 0.88%
269 8K 1w 64B 2c 0.46%
314 8K 8w 32B 3c 31.00%
318 8K 8w 64B 3c 1.56%
321 4K 1w 8B 2c 7.65%
Adaptation driven by Time-Energy
129 32K 1w 8B 2c 0.81%
133 32K 1w 16B 2c 0.12%
137 32K 1w 32B 2c 0.58%
141 32K 1w 64B 2c 0.35%
154 32K 2w 32B 3c 9.00%
158 32K 2w 64B 3c 20.54%
174 32K 4w 64B 3c 3.73%
193 16K 1w 8B 2c 0.08%
197 16K 1w 16B 2c 12.77%
201 16K 1w 32B 2c 6.19%
205 16K 1w 64B 2c 4.06%
210 16K 2w 8B 3c 4.04%
214 16K 2w 16B 3c 10.35%
246 16K 8w 16B 3c 0.58%
261 8K 1w 16B 2c 2.98%
265 8K 1w 32B 2c 7.02%
269 8K 1w 64B 2c 7.44%
318 8K 8w 64B 3c 0.18%
321 4K 1w 8B 2c 9.17%
409 2K 2w 32B 2c 0.04%

Adaptation driven by Energy
152 32K 2w 32B 1c 62.94%
208 16K 2w 8B 1c 36.71%
252 16K 8w 64B 1c 0.35%

Table 5: For every benchmark, cache configurations
that are selected in the learning phase of each type
of real adaptation (driven either by performance,
time-energy or energy). Every configuration is iden-
tified by its Cache ID, which is shown in Table
4. The percentage of instruction intervals executed
with each cache configuration and type of dynamic
adaptation during the recognition stage (5,000 inter-
vals/benchmark for each adaptation type) is shown
in brackets.

Bench Performance Time-Energy Energy
ammp 314(12%),

321(88%)
321(100%) 208(100%)

applu 314(100%) 158(100%) 152(100%)
apsi 246(98%), 318(2%) 154(18%),

197(80%), 318(2%)
152(98%),
252(2%)

art 242(7%), 246(2%),
250(45%),
321(46%)

261(11%),
265(38%), 269(2%),
321(49%)

152(98%),
208(2%)

bzip 174(15%),
246(1%), 246(28%),
314(56%)

197(1%), 205(15%),
214(34%),261(7%),
265(42%)

152(20%),
208(80%)

crafty 246(100%) 210(100%) 208(100%)
eon 250(91%), 314(3%),

321(6%)
214(91%), 265(9%) 152(9%),

208(91%)
equake 314(100%) 201(100%) 208(100%)
facerec 158(10%), 226(8%),

230(28%),
246(20%),
250(26%), 314(9%)

158(71%), 193(2%),
269(24%), 321(3%)

152(80%),
208(14%),
252(5%)

fma3d 314(100%) 197(62%),
201(38%)

208(100%)

galgel 186(97%), 246(3%) 133(3%), 174(97%) 152(100%)
gcc 158(1%), 186(33%),

250(41%),
314(27%)

137(8%), 154(49%),
158(26%), 205(1%),
261(6%), 265(11%)

152(96%),
208(5%)

gzip 174(13%),
186(24%),
246(42%), 265(5%),
269(11%), 314(2%),
318(2%), 321(2%)

154(23%),
261(13%),
265(5%), 269(20%),
321(41%)

152(87%),
208(13%)

ijpeg 158(13%),
174(54%),
186(23%), 314(9%)

141(4%), 158(10%),
201(23%),
205(45%), 265(9%),
269(9%)

152(100%)

lucas 158(13%),
242(13%),
246(15%),
261(10%),
265(18%),
314(21%),
318(10%)

158(22%),
246(15%),
269(63%)

152(85%),
208(15%)

mcf 178(21%),
314(36%),
321(43%)

129(21%),
261(36%),
321(43%)

152(58%),
208(42%)

mesa 186(9%), 314(91%) 141(5%), 158(5%),
197(89%), 261(1%)

152(11%),
208(89%)

mgrid 250(10%),
254(84%), 318(5%)

158(95%), 205(5%) 152(100%)

parser 174(20%),
186(11%),
246(45%),
250(20%), 314(4%)

154(45%),
158(40%),
205(11%), 261(1%),
321(3%)

152(96%),
208(4%)

perlmbk 314(100%) 210(5%), 214(95%) 208(100%)
sixtrack 174(99%), 246(1%) 158(100%) 152(100%)
swim 250(29%),

314(71%)
137(7%), 205(29%),
61(3%), 265(19%),
269(41%)

152(100%)

twolf 246(100%) 154(100%) 152(100%)
vortex 246(100%) 197(100%) 208(100%)
vpr 174(46%), 186(4%),

246(49%), 269(1%)
158(36%),
214(49%),
265(14%), 269(1%)

152(99%),
252(1%)

wupwise 314(66%),
318(20%),
321(14%)

158(29%),
265(36%),
269(34%), 409(1%)

152(100%)
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performance. This figure depicts the speedup over the ex-
ecution time for the respective baseline configurations (B
when adaptation is driven by performance and time-energy,
and C when adaptation is driven by energy). On aver-
age, the performance improvement achieved by our adaptive
cache memory with on-line control is 15.2% and 3.9% with
respect to the high-performance baseline configuration B
when adaptation is driven by performance and time-energy
respectively (depicted in Fig. 5 as Real(performance) and
Real(time-energy)). The maximum improvement was 64.6%
and 61.2% for galgel.

In spite of the limitations on the operating frequency and
energy consumption of the field-programmable cache, the
efficiency achieved by the Cache Matching Algorithm and
the reconfiguration overhead, the Real Adaptation driven
by performance can achieve 78.8% of the average improve-
ment provided by Ideal Adaptation driven by performance
(depicted in Fig. 5 as Ideal(performance)). Note that the
Real Adaptation driven by energy provides 9.4% perfor-
mance improvement with respect to the low-power baseline
configuration C. This means that it is not necessary to re-
duce performance in order to save energy. This is due to
the selection of tuneable cache configurations that provide
lower execution times and consume lower energy than the
baseline configuration C.

Fig. 6 shows the time-energy results for Real Adaptation
driven by the three metrics and Ideal Adaptation driven by
time-energy. As can be observed, Real Adaptation driven by
time-energy demonstrated a mean reduction of time-energy
by 53.9% with respect to baseline B. This is equivalent to
achieve 96% of the maximum reduction achieved by Ideal
Adaptation driven by time-energy (depicted in Fig. 6 as
Ideal(time-energy)). Fig. 7 shows the energy consumption
results for Real Adaptation driven by the three metrics and
Ideal Adaptation driven by energy. When Real Adaptation
is driven by energy (depicted in Fig. 7 as Real(energy)),
this metric is reduced on average by 46.7% with respect to
baseline configuration C, which corresponds to 99% of the
maximum reduction achieved by ideal adaptation driven by
energy (depicted in Fig. 7 as Ideal(energy)).

Table 6 summarizes the average performance improve-
ments and reductions of time-energy and energy consump-
tion when each one of the three architectural metrics is pri-
oritized. As can be observed, there is no degradation of per-
formance and energy consumption when each architectural
metric is prioritized. This phenomenon is mainly due to the
frequent selection of caches with smaller sizes and lower en-
ergy cost per memory access than the non-adaptive baseline
configurations. Real Adaptation enables us to increase fre-
quency when the size is reduced, while not increasing both
the number of hit cycles and CPI. Some benchmarks exhibit
a reduction in the execution time and an increase in the
energy consumption. See for example the results for Real
Adaptation driven by performance of applu, apsi or gcc

in Fig. 5 and 7 (depicted as Real(performance)). In these
cases, the selection of larger caches causes the access time
and energy per memory access to increase. The number of
hit cycles is allowed to increase provided that the operat-
ing frequency (f ) is lower than the maximum flimit. Then,
the operating frequency can be higher, but the CPI and en-
ergy consumption are also higher. However, these are not
common cases.

6. RELATED WORK
Two aspects of the reconfigurable systems that are inte-

grated into a processor are needed to be determined in the
design process: the hardware organization, and its control
methodology. Both aspects are reviewed next.

Some sections of a general-purpose processor have been
proposed to be reconfigurable: the ALU functional unit [9,
22, 24], the clock generator and power supply [19], the cache
memory [2, 13, 18, 23, 25]. Our proposal of adaptive cache
memory differentiates from these systems in the following
ways: (1) The number of possible cache configurations is
two orders of magnitude higher than other adaptive caches,
with approximately a 10% increase in chip area. Depending
on each application, some configurations are used to pro-
vide the highest performance and other configurations are
used to provide the lowest energy consumption. (2) The op-
erating frequency of the processor/cache system and cache
hit latency can be independently varied. A wide range of
frequencies and chip areas can be used in different scenar-
ios, from low-cost processors to high-performance proces-
sors. (3) The configuration bitstream is sufficiently small
to not significantly impact performance improvement and
energy consumption.

The control methodology is used to determine the hard-
ware configuration that best suits the characteristics of a
given program or execution phase. Depending on the dy-
namic or static system behaviour, two groups of control
methodologies can be identified: on-line and off-line con-
trol. Methodologies for on-line control take clues from the
processor hardware to infer characteristics of programs. Dif-
ferent hardware events have been used: branch frequency [2],
number of cache misses [13, 23], number of cache hits [13],
utilization of the issue queues [19], and the invocation of
the major subroutines of the applications [11]. Work on this
subject has explored three basic properties of algorithms [2,
6]: (a) efficiency on detecting a phase boundary during ex-
ecution of a process, (b) the tuning overhead, and (c) the
reconfiguration overhead. Additionally, we have observed
that a fourth property, the set of tuneable configurations, is
required to be analyzed.

Our on-line control methodology differentiates from the
above mentioned in the following ways: (1) We do not use
the same tuneable cache configurations for all programs.
This is one of the keys of our work. (2) We propose a
methodology based on basic block vectors to know the most
efficient configurations for each program. (3) The tuning
and reconfiguration overheads are relatively low and inde-
pendent of the number of tuneable configurations, as we do
not prove all the possible cache configurations each time a
program phase change is detected. (4) Most of the adap-
tive techniques that have been proposed for energy saving
in cache memory reduce the energy or the time-energy prod-
uct but also reduce performance [1, 2, 10, 14]. On the other
hand, prior adaptive systems proposed for performance im-
provement increase energy consumption [2, 19]. Our pro-
posal improves processor performance and reduces energy
consumption at the same time. (5) And finally, we show that
using the same reconfigurable hardware, cache adaptation
can be driven either by performance, energy or time-energy.
So, cache efficiency can be also tuned to one of these prior-
itized architectural metrics in run-time. This was pointed
out in [11] but neither analysed nor applied to any processor
hardware.
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Figure 5: Execution time reduction (Speed-Up) of the processor with a field-programmable data cache
managed by either our proposal of on-line control (Real) or with future knowledge (Ideal). Legends: x(y) vs.
z, x represents the type of cache adaptation (Real,Ideal), y represents the prioritized metric that drives the
cache adaptation (performance,energy,time-energy), and z represents the baseline configuration (B,C).
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Figure 6: Time-Energy per instruction for the processor with field-programmable data cache, the baseline
configurations B and C, and Ideal Adaptation driven by time-energy. The legends are the same as used in
Fig. 5.
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Figure 7: Energy per instruction for the processor with field-programmable data cache, the baseline config-
urations B and C, and Ideal Adaptation driven by energy consumption. The legends are the same as used in
Fig. 5 and 6.

Table 6: Results of Real Adaptation. Reconfiguration overhead, clock speed penalization and energy con-
sumption overhead for the field-programmable data cache were taken into account.

Real
Adaptation
driven by. . .

flimit

Execution
Time

Reduction

Time-
Energy

Reduction

Energy
Reduction

Baseline Configuration
(operating frequency)

Performance 4.0 GHz 15.2% 14.8% 9.9% B: High-Performance (4.2 GHz)
Time-Energy 4.0 GHz 3.9% 53.9% 53.8% B: High-Performance (4.2 GHz)

Energy 1.25 GHz 9.4% 51.9% 46.7% C: Low-Power (1.0 GHz)

371



Off-line compiling, profiling and instrumentation of the
application can be used to alternatively implement the adap-
tation control [11, 24]. It can provide a more global view
of the program than with a hardware solution and in some
cases achieves better results [16]. Our FPCA cache can be
exclusively managed by a software procedure. We have ob-
served that a high percentage of the performance improve-
ment and energy saving demonstrated by Real Adaptation
is achieved (more than 65%). This approach decreases the
chip area by avoiding the use of the hardware coprocessor
and adaptive tables [3].

7. CONCLUSIONS AND FUTURE WORK
We have proposed and evaluated the performance and en-

ergy consumption of an adaptive L1 data cache, which is
based on field-programmable technology and managed by a
human-like control system. With this proposal, a high effi-
ciency of use of the data cache can be achieved by using a
specialized reconfigurable circuit.

The main contributions of the paper are the followings.
The field-programmable data cache (1) provides a change
mechanism with low reconfiguration overhead, (2) is char-
acterized by access times only slightly larger (20%) than
similar non-adaptive circuits, (3) uses the SimPoint learning
mechanism, but applied to a different goal: to reduce tuning
overhead, (4) can be tuned to performance improvement or
energy saving using the same hardware, (5) improves per-
formance and energy consumption at the same time, (6)
achieves a high percentage of the performance improvement
that a ideally adaptive cache with future knowledge would
achieve, with independence of the design-time constraints on
operating frequency and chip area, and (7) is superior to pre-
vious and similar approaches. We additionally (8) proposed
a predictor mechanism of the data working-set of a program,
and discovered that (9) higher performance and energy sav-
ing can be achieved when for each benchmark and prioritized
metric (execution time, energy consumption, etc.), the set
of preferred cache configurations is accurately determined,
which justifies the existence of a field-programmable cache.
One of the goals of the proposed control methodology con-
sists in efficiently doing the cache matching operation.

The efficiency provided by the field-programmable cache
that is presented in this paper could be exploited in other
cache levels. This is one of our research goals in the near
future.
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