
Evolving From Genetic Algorithms to Flexible Evolution Agents

Gabriel Winter

Institute of Intelligent Systems
& Numerical Applications in

Engineering (IUSIANI).
Evolutionary Computation

Division (CEANI).
Las Palmas de G. C. University

Canary Islands, Spain
gabw@step.es

Blas Galván

IUSIANI-CEANI
bgalvan@step.es

Silvia Alonso

IUSIANI-CEANI
oraami@yahoo.es

Begoña González

IUSIANI-CEANI
bgonzalez@iusiani.ulpgc.es

Abstract

In this paper an alternative design for the internal
structure of Evolutionary Algorithms is
presented and a first implementation of such
structure is tested. In order to improve the
internal structure architecture of Evolutionary
Algorithms as well as to learn which the
adequate values of parameters and/or structure of
operators are, a review showing the successive
efforts made in this line is included. In this way,
the evolution from the simplest GA to the
present advanced structures is illustrated using
figures which summarize their characteristics.
Based on the analysis of such figures, a new and
more flexible internal structure design is
introduced maintaining the benefits of its
predecessors but permitting a major degree of
self-adaptation, because now the parameters, the
operators and the structure can adapt themselves
at each optimization step. This new structure is
named a Flexible Evolution Agent (FEA).
Results of a first software implementation are
presented and compared using several well-
known test functions.

1 INTRODUCTION
From the beginning in the Genetic Algorithms (GAs)
research it has been clear the necessity to choose the best
parameters and operators that would be used during every
optimization process. The first attempts in this line were
aimed at the search of global parameters that could be
used in all problems, as the accomplished by De Jong
(1975) or more recently, by Schaffer et al (1989).
However, almost immediately it was demonstrated that
far away that existing parameters valid for all cases, every
particular problem needs to have its parameters adjusted
to its own requirements. So, GAs have had to solve this

misadventure introducing the possibility of adapting these
parameters (or even the operators) needed in the
optimization process.

Many authors have deepened in this line of research, and
nowadays, establishing the best way of adjusting the
parameters and/or operators and correcting the unfeasible
solutions constitute the main present trends. Nevertheless,
some researchers also distinguish between parameters
adaptation and self-adaptation, as Eiben et al (1999)
widely explain in their exhaustive state-of–the-art. As a
sample of parameters adaptation, Davis (1989) proposed a
schema that adjusted the operators’ rates depending on
their success in creating good individuals. By contrast,
self-adaptation commonly re fers to any of the
Evolutionary Strategies (ESs) approaches, mainly
developed by authors as Bäck and Schwefel (1991). ESs
present an alternative for self-adapting the parameters
during the optimization process, in such a way that no
pre-established settings are needed. Nonetheless, in the
specialized literature generally the terms adaptation and
self-adaptation are equally considered.

Regarding adaptation in general, most of the works have
focused in parameters adaptation, and only a few, (as the
raised by Igel et al, 2001) have been centered in adapting
operators. Normally, adapting operators involve setting
the parameters either. Hence, only parameters adaptation
is usually revised. The majority of works have consisted
in adapting simply one numerical para meter, as might be
mutation rate (Matsui et al, 2001) or fitness adaptation
(Wright and Agapie, 2001) whereas few studies have
been done regarding other important aspects of the
implementation as could be the way of representing the
search space (Schraudolph and Belew, 1992, with their
Dynamical Parameter Encoding).

One of the most used approaches when self-adapting
parameters is the model given by other big branch in the
GA research: the use of Meta-GAs (Grefenstette, 1986).
These algorithms were first proposed by Weinberg (1970)
and consisted in two GA levels: the first level is a kind of
‘training stage’ where a search of the best suited

parameters or operators was carried out. Then, the second
level is a simple GA where the adjusted values enter as
preset parameters. Anyway, the algorithm’s structure is
fixed as the preceding ones; the difference is that the
parameter enters in an initial GA to be self-adapted to the
specific problem. The selection of the best adapted
solutions can be made evolving different populations
independently, using rules or any feasible mechanism.

One step further is the research made considering
adaptation of both parameters and operators at the same
time (Hinterding et al, 1996), combining for instance
mutation rates and population sizing adjustment, or even
more, making evolve the genetic operators in an
independent population (Edmonds, 1998). Other authors
(Darwen, 2000) have remarked the inevitability of
implementing a parameterless algorithm, despite of the
high computational costs that a mechanism to adapt ALL
the parameters should have.

An alternative way has been chosen by other researchers:
to make the algorithm itself self-adaptive (Krasnogor et
al, 2001) .This approach and similar ones are the actual
tendencies in the GAs and ESs fields. As the use of some
kind of memory in these algorithms has proven to be
really fruitful, to implement mechanisms that can learn
and memorize the previous experience gained in the
optimization process is a benchmark problem. Among
them, the use of several procedures such as classifier
systems (Lanzi, 2001) or agents (Bot et al, 2001) has
demonstrated to be very successful.

Following these rules of thumb, a more flexible
mechanism, able not only of self adapting the parameters
and the operators involved in the search, but also the own
structure of the algorithm, the Flexible Evolution Agent
(FEA), is introduced in this work. First of all, several
schemes showing the essential evolution from the other
approaches to the presented implementation are depicted.
Secondly, the FEA structure is developed, as well as an
analysis of the reasons of its specific construction. Then, a
section of the results attained using one first FEA
implementation over several mathematical test functions
is reviewed. Finally, some conclusions and the future
lines of work are described.

2 FROM A SIMPLE GA TO A FEA
In order to show why a flexible algorithm such as the
FEA is so necessary, several schemas showing the
evolution of the different approaches from Genetic
Algorithms to a flexible method are described. As several
and more complicated schemes are represented next, the
flux diagram used is not an ordinary one due to the
necessity of including more complicated mechanisms
afterwards hardly explained of any other way. A simple
algorithmic implementation accompanies each figure,
depicting basically every approach.

As developed in the previous section, the current GAs do
not allow the variation of their own structure of operators
during the optimization process. For instance, a simple

GA uses repeated trials of the Selection-Crossover-
Mutation sequence of fixed operators. Thus, they have a
fixed structure as can be seen in Figure 1.

Figure 1: A simple GA: Structure and implementation.

In the same line than the referred Meta-GAs, but
including the learning stage inside the algorithm, the next
step is to consider a GA that self-adapts its mutation rates
as the described in Figure 2 (following the Matsui (2001)
example). The diagram is a bit more complex, but still
does not show how the algorithm really uses the
memorized information. Now, the solutions include
information not only concerning the individual, but also
about the mutation rates associated to the individuals.

Figure 2: A GA that self-adapts its mutation rates:
Structure and implementation.

A qualitative jump is made when an Evolutionary
Strategy is taken into account. A simple implementation
such as the classic (µ,?)-strategy (Bäck et al , 1991) is
described in Figure 3. Again, the learning mechanisms are

included in the implementation, but following the ESs
model where is in the variation step when the covariances
matrices are considered. The solutions in this case are
enlarged with information about the standard deviations
and the rotation angles, but the structure of the algorithm
is still essentially fixed.

Figure 3: A simple ES: Structure and implementation.

Analyzing all these algorithms, they only are flexible in
the way that they increasingly store more information and
use it in several ways, but they still depend on the
problem to be solved. The scheme included in Figure 4
shows the intended objective in the optimization methods
tried to fulfill with the FEA, the new method that is
proposed in the next section

Figure 4: Desirable Evolution of the Global Optimization
Methods

3 DESCRIPTION OF THE PROPOSED
FEA STRUCTURE

The FEA alternative pretends to store up all the possible
advantages from the last trends in the Evolutionary
Programming field as well as introducing new options

from other research branches. The initial premise is that,
in principle, any mechanism that has proven to be fruitful
in all related areas can help to develop a new and of
growing difficulty implementation, as robust and efficient
as it could possibly be. The intention is to generate a more
flexible algorithm that can get the biggest benefit of the
use of stored information, as this is one of the keys of all
the already mentioned successful approaches, and in
addition, to incorporate new procedures to facilitate the
internal decisions making along the optimization process.
This yields to that the FEA posses an Enlarged Genetic
Code (EGC), in such a way that a solution contains
information not only about the variables of the
individuals, but also about the different parts that the FEA
is divided in as it is explained later. Moreover, in order to
obtain a higher flexibility in the implementation, FEA has
a Dynamic Structure of Operators (DSO) allowing self-
adaptation of the operators sequence to the optimization
conditions along the process. Finally, with the aim of
controlling effectively all the procedures involved in the
search, some Artificial Intelligence based methods can be
used as members of the Decision Engine.

Figure 5: Scheme of a Flexible Evolution Agent

In order to guarantee the agent's flexibility, the algorithm
has been implemented so that the different tasks that it
executes can be coordinated. As a consequence, the FEA
has been subdivided into several functions, called
'engines'. These subroutines are designed to group the
diverse actions that are to be executed during the
optimization depending on their objectives. In this way,
all the learning tasks are clustered in a 'Learning engine',
and something similar happens with all the selection

schemes, sampling strategies or decision mechanisms.
The mo st important engine is the situated in the center of
Figure 5: the Decision Engine, whose mission is to take
all the necessary decisions in order to initiate, develop and
finish the optimization process. Its main functions are (for
every stage of the process) to decide about: the population
size, each individual’s structure (its genotypic
information), the learning mechanisms to be considered,
the stop criteria to be used, the selection method to be
applied, the sampling method/methods to be utilized (and
their adequate parameters), the filtering processes (if
necessary) and the criteria to generate new populations
(including their sizes). It is important that the Decision
Engine will be able of deciding if its own behavior is
correct or not, and in this case that it could vary their
criteria about how it manages the optimization in order to
get a more successful process. The internal structure of
this engine may be able of taking all the precedent
decisions along the process, using advanced methods such
as rule based Expert Systems, Fuzzy Logic, Probabilistic
Methods or any other coming from the Artificial
Intelligence area. The Decision Engine, however, must
receive general instructions from the user to establish
guidelines or an ordered set containing the strategies and
tactics that it has to take into account to rule over the
optimization process, as well as the data and constraints
of the problem to be solved.

Regarding the rest of engines, a short explanation is
included. The Learning Engine stores everything that
could be useful afterwards, such as information about the
variables, statistics and successful stories of the rest of
engines. The Selection Engine chooses which solutions
are to be sampled whereas the Sampling Engine selects
the sampling method that is used and carries out the
variation processes over the variables as explained in the
next section. The Filtering Engine is in charge of
debugging the possible errors that it may detect in the
solutions that reach that point. Then, the EGC introduced
before might tackle with individuals with the following
general structure P(W) = P(x, y, z, w, h , d, e , f, g, …),
where P denotes the population of W individuals, x the
variables and the rest are information relative to the
engines (y about the learning, z about selection, w about
the sampling, h about the filtering, f and g about the
decisions) or other data as d for the new population and e
for the objective function evaluation. As can be seen, this
chromosome is much more complicated than the current
utilized ones. The intention is to use this information to
learn about the process and even to establish rules that
could be fruitful and may be included in the Decision
Engine.

4 A FIRST FEA IMPLEMEN TATION

As the proposed general structure is a lot more
complicated algorithmically speaking than the existent
ones, we have opted for exploring the possibilities it
offers developing a first version whose implementation
incorporates only some of the elements of the general

FEA scheme. In this implementation, the Decision Engine
consists in a simple Probabilistic Control Mechanism
(PCM) based on the use of probabilistic frontiers for all
decisions to be taken. The general PCM design is 1:

o Set decvar = U(0,1)

o If (decvar ≤ alpha) Then

Adopt a conservative decision

o Else

Adopt a non-conservative decision

Depending on which engine the PCM is deciding on, the
probabilistic frontier alpha and the decisions to be taken
can be different. In general a conservative decision means
to adopt a successful one taken in the near past and non-
conservative means to choose any other available decision
for the engine. After several tests the value 0.6 has been
elected for alpha.

The selected Learning Engine extracts a subset from the
actual population containing the best individuals and
stores information about the sampling methods used
during the optimization, so the EGC contains two vectors
as depicted afterwards. The Selection Engine establishes
which solutions are to be sampled by the Sampling
Engine by means of Tournament Selection (2:1). The
Sampling Engine is the first function that is completely
designed and explained in the next subsection. Any
Filtering Engine has been incorporated yet.

Let be ()WtP the population2 and ()WtPµ
 the µ best

individuals of ()WtP . Then the FEA algorithm is:

Establish population size & maximum
number of generations;

t = 0;

Generate ()WtP ;

While not termination criterion do

Evaluate ()WtP ;

Extract best ()[]WtP ;

Extract () ()[]WW tt PP ←µ
;

Set ()WtP ′ ← selection ()[]WtPµ ;

Subject to the PCM from the Decision
Engine: Generate () sP t

new ←W , (∀s: s =

sample (xi, yi) or s = sample W, being
W ∈ ()WtP ′);

Set () () (){ }WWW t
new

tt PPP ∪←+
µ

1

Set () ()WW 1+← tt PP

Od

1 U(0,1) = function that generates a random uniform number in (0,1).
2 Let be W = (x, y), where x = (x1, x2, … , xi, …, xnvar) and y = (y1, y2, … ,
yi, … , ynvar). W consists in nvar variables, x, and the sampling methods
used to sample each variable, y.

Print solutions & stored information;

Under this scheme the algorithm can use any of the
available sampling methods included in the Sampling
Engine, being a little conservative but given it the
possibility to explore using all the methods. Only two
decisions can be taken by the PCM: to decide between to
sample one or all variables and to decide between to use
the preceding sample method or any other. The
mechanism to correct wrong decisions is implicit because
the Selection Engine may extract the best individuals
from the population, any of them probably containing the
best decisions in their genotype. The constraints are
handled obliging to all the variables to be included in their
feasible values. An earliest proposal of a FEA
implementation can be found in Winter et al (2001).

4.1 THE SAMPLING ENGINE

Among all the functions constituting the FEA, the main
component already developed is the 'Sampling Engine'
which includes all the sampling methods that are to be
used, both the Crossover ones (such as the Arithmetic
crossover, the Geometric, the Heuristic, etc.) and the
Mutation mechanisms (as the Uniform mutation operator,
the non-Uniform one, etc), the majority included in the
article by Michalewic z et al (1996) and in the INGENET
network report by Bäck et al (1998). Furthermore, some
new variations have been developed with the aim of
exploring and/or exploiting the search space. The actual
engine contains 39 sampling methods, many of which are
detailed now. Nevertheless, and as a matter of lack of
space, all the variations of methods are not mentioned. A
more extended version of the components of the sampling
engine can be found in Winter et al (2002). Let be:

sign = random variable in {-1,1}.

nvar = total number of variables.

()1
var

1
2

1
1

1 ,,, old
n

oldoldold xxx K=x = best solution found.

()2
var

2
2

2
1

2 ,,, old
n

oldoldold xxx K=x = one of the best solutions
found.

xold = xold1 or xold2 .

()new
n

newnewnew xxx var21 ,,, K=x = new solution.

As the sampling methods act, depending on the
probabilistic frontier alpha, only over any of the variables
or over all the variables of xold1 or xold2, 1old

ix and 2old
ix

may be used when referring to a specific component of
those vectors. Then, the new values are designated.

(a) Sampling methods with different Nature3:

(i) Assign a value: old
i

new
i xx = .

(ii) Reduce or enlarge a value (dividing a value
by another one):

3 Only 12 out of the 18 methods really implemented. See (Winter et al,
2002) for further details.

() ()1,021 Uxxx old
i

old
i

new
i = .

(iii) Reduce or enlarge a value (using the
addition):

()1,0Uxsignxx old
i

old
i

new
i += .

(iv) Reduce or enlarge a value (using the
addition plus the division):

() ()1,021 Uxsignxxx old
i

old
i

old
i

new
i += .

(v) Reduce or enlarge a value (including a
constant parameter ϕ):

()1,0Uxsignsignxx old
i

old
i

new
i ϕ+= .

(vi) Heuristic crossover:

() ()1,0212 Uxxsignxx old
i

old
i

old
i

new
i −+= .

(vii) Geometric crossover (simplest version):
21 old

i
old
i

new
i xxx = .

(viii) Arithmetic crossover (simplest version):

If auxi = U(0,1) then

() 21 1 old
i

old
i

new
i xauxisignxauxix −+= .

(ix) Guaranteed Average Crossover:
21 5.5.0 old

i
old
i

new
i xoxx += .

(x) Gaussian Mutation: ()σ,0Nxx old
i

new
i += .

(xi) Variant form of Gaussian Mutation (II):

If q ∈ {1, 2, … , nvar}, q10 =τ then

() ()στ ,01,00 Nexxx Nold
i

old
i

new
i += .

(xii) Variant form of Gaussian Mutation (III):

If q ∈ {1, 2, … , nvar}, q21=τ , q21=′τ

then () ()() ()σττ ,01,01,0 Nexxx NNold
i

old
i

new
i

′++= .

(b) Sampling methods with different Range :

The rest of variations for completing the 39 sampling
methods included in the engine have been obtained
applying the three mechanisms described below for
varying the range to some of the rest of the methods. For
simplicity, only the general procedures are described and
not the real variations4.

(i) Multiplying for a random number (a certain
number of times).

(ii) Dividing by a parameter.

(iii) Dividing by a certain value varying in an
interval.

In order to illustrate the use of the sampling engine,
Figure 6 shows the typical behavior that can be observed
from the sampling methods in a single execution of the
algorithm for Keane’s function, one of the application
examples used and whose expression is detailed in

4 See (Winter et al, 2002) for further details.

Section 5. In the figure, two different graphs have been
incorporated, both showing how many times is used every
of the sampling methods introduced in the sampling
engine along the optimization process in a single run. The
upper diagram bar contains a representation of the times
that every method is used ONLY to obtain the best
solutions -one per generation- whereas the lower
diagrams present the times that every method is used to
get all the solutions-for every variable of each individual
of all the generations -, that is to say, the total number of
times that every method is used. The pattern of the lower
graph differs slightly from one execution to another, as
long as the number of generations considered is alike.
This means that the behavior of the sampling methods for
a specific function is very similar, and this is an important
key to be able of building adequate sampling engines.

Figure 6: Keane’s function: use of the different sampling
methods

This is also the reason why that the use of mean graphics
instead of the actual one containing just one execution is
helpless for this objective. In contrast, the pattern of the
graphic representing only the best methods used is
invaluable at the moment of deciding which among them
are needless or essential for the optimization process. Its
pattern changes in the different executions of the
algorithm, although its general shape is more or less
constant. Hence, the way of deciding if a method is good
or not when building a Sampling Engine can be to see if
its bar in both graphics coincides being the higher or the
lower. For instance, having a look at Figure 6 we can see
that the methods 3, 6, 32 and 34 are clearly the worst
ones, as they are the less used while the methods 12, 20
and 29 are the best ones. The competitive and cooperative
behavior among sampling operators is shown. A survey
reviewing what happens among them and how to build a
Sampling Engine is being completed at present.

5 TEST RESULTS

We study the Flexible Evolution Agent robustness
utilizing some well known mathematical test functions of
proven complexity, frequently used for test purposes and
whose analytical expressions are included below. The
majority of them are multimodal functions presenting
severe difficulties hardly overcame either by classical
optimization methods or even by evolutionary methods.
The number of variables n is specified in every case of the
tables of results.

Keane’s function:

()
() ()

∑

∑ ∏

=

= =

−

=
n

i
i

n

i

n

i
ii

xi

xx
f

1

2

1 1

24 cos2cos
x

Constraints: 75.0
1

≥∏
=

n

i
ix , nx

n

i
i 75.0

1

≤∑
=

 and 100 ≤≤ ix .

Rastrigin’s function:

() ()()∑
=

−+=
n

i
ii xxAnf

1

2 2cos2 πx

being A = 10 and 12.512.5 ≤≤− ix .

Griewank's function:

() ∏∑
==

+

−=

n

i

i
n

i
i i

xx
d

f
11

2 1cos1x

where d = 4000 and 0.6000.600 ≤≤− ix .

Rosenbrock's function:

() () ()[]∑
=

+ −+−=
n

i
ii xxxf

i
1

222
1 1100x

where 12.512.5 ≤≤− ix .

With the aim of illustrating the results that the method is
able to get, two surveys have been done. The first one
shows how efficient the FEA is by means of obtaining
objective function values using as criterion for stopping
the optimization process to reach at least (if it is possible)
a fixed constant that has been called 'control value'. This
value is different for each function and corresponds to
some of the results found out by other researchers. The
number of variables and individuals corresponds either to
those utilized by these reference investigations. Tables 1
and 2 give the average results obtained for every test
function in 30 runs.

From some of the attained values, it is not clear to know if
establishing a stop criterion such as the defined above is
enough for getting the best possible results using the FEA
algorithm. Hence, it has been necessary to predetermine
another control value in order to see how far it is able to
reach. The new values have been fixed arbitrarily in the
sense that as for any function are different and unknown

some tests have been done with the aim of deciding which
to choose (see Table 2).

Table 1: Results for 30 runs using a predefined stop
criterion5 .

Functions Keane Rastrigin Griewank Rosenbrock

Ref.
Bäck

(1999)
Bäck

(1999)
Herrera
(2002)

Herrera
(2002)

n 20 20 25 25

CV 0.803 4.2135 10 -11 6.77 10-13 17.2

I 100 100 61 61

G >200 244 - -

Reference
studies

E >20000 24400 100000 100000

O F 0.80329 4.2633 10 -13 1.1178 10 -16 3.3390 10 -2

G 1344 17 29 1
Best

values
E 114240 1700 1769 61

O F 0.8031 9.9984 10 -12 1.4188 10 -14 3.32692

SD 8 10-5 3.7915 10 -11 1.4058 10 -14 4.07644

G 3140.33 15.97 22.74 1.2

Mean
values

E 266928.33 1596.67 1387.26 73.2

Worst
values O F 0.803001 3.7915 10 -11 4.4983 10 -14 16.75339

Table 2: Results obtained for 30 runs, with control values
assigned arbitrarily5.

n = 25 Keane Rastrigin Griewank Rosenbrock

CV > 0.80 ≤ 10-13 ≤ 10-16 ≤ 10-9
Settings

I 100 50 50 50

O F 0.81026 2.8422 10 -14 5.421 10 -20 1.3713 10-9

G 1557 25 22 779
Best

values
E 132345 1250 1100 38950

O F 0.8043 3.1264 10 -13 3.3175 10 -16 1.0199 10-5

SD 3.14 10-3 2.591 10-13 3.2057 10 -16 2.0488 10-5

G 1506.23 21.33 25.07 855.3

Mean
values

E 128029.83 1066.67 1253.33 42765

Worst
values

O F 0.80002 9.0949 10 -13 8.9609 10-16 9.6154 10-5

5Tables notation: n = number of variables, CV = control value, I =
number of individuals, G = generations, E = evaluations, OF = objective
function value and SD = standard deviation.

6 CONCLUSIONS

Nowadays, what has been pointed out as a benchmark in
the evolutionary methods area is the algorithms capability
of self-adapting their parameters and operators along the
optimization process. Seen the features of the actual
optimization procedures, a new implementation called
Flexible Evolution Agent (FEA) has been presented in
this work with the intention not only of taking advantage
of some of the actual characteristics but also developing
new mechanisms. The flexibility of the first approach
made is due to its principal features: the Dynamic
Structure of Operators it owns, the Extended Individuals
Code and the Probabilistic Control Mechanisms for the
decisions-making. The Engines in which the FEA is
divided allow a more dynamic execution of the agent: in
particular, the PCM (the Decision Engine) tries to reach a
trade-off between the exploration and the exploitation of
the search space, what is equivalent to achieve a
competitive and cooperative balance among the sampling
operators. The results obtained with the first FEA
implementation have been very positive optimizing the
majority of the used test functions, fact that permits to be
optimistic about the future advances when the general
FEA potentiality will be completely developed.

7 FUTURE WORK

Henceforth, our efforts may be centered in the
introduction of several additional mechanisms (that can
coexist or not) in the Decision Engine such as Fuzzy
Logic or Expert Rule Based Systems in order to improve
it. The next task could be completing a survey studying
how the Sampling Engine truly works and how to build it.
Lastly, a Filtering Engine to decide about the goodness of
the attained solutions is to be included.

References

Th. Bäck, F. Hoffmeister and H. P. Schwefel (1991). A
survey of Evolution Strategies. In Lashon B. Belew and
Richard K. Booker (eds.), Proceedings of the 4th
International Conference on Genetic Algorithms , 2-9. San
Diego, CA. Morgan Kaufmann.

Th. Bäck and B. Naujoks (June 1998). Innovative Metho-
dologies in Evolution Strategies. Report D2.2 from
INGENET Networks. http://ingenet.ulpgc.es/

Th. Bäck, W. Haase, B. Naujoks, L. Onesti and A.Turchet
(1999). Evolutionary algorithms for academic and
industrial cases. In K. Miettinen, M. M. Mäkelä, P. Neit-
taanmäki and J. Périaux (eds.), Evolutionary Algorithms
in Engineering and Computer Science, 383-398. John
Wiley & Sons, td, England.

M. C. J. Bot, N. Urquhart and K. Chisholm (2001). Agent
Motion Planning with GAs Enhanced by Memory
Models. In Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO 2001, 227-234.
Morgan Kaufmann Publishers, San Francisco, California.

P.J. Darwen (2000). Black Magic: Interdependence
Prevents Principled Parameter Setting, Self-adapting costs
too much computation. In Applied Complexity: From
Neural Nets to Managed Landscapes , 227-237. Institute
for Food and Crop Research, Christchurch, New Zealand.

L. Davis (1989). Adapting Operator Probabilities In
Genetic Algorithms. In J.D. Schaffer (ed.), Proceedings of
the 3rd International Conference on Genetic Algorithms ,
61-69. Morgan Kaufmann Publishers, San Mateo, CA.

K. A. De Jong (1975). An analysis of the behaviour of a
class of genetic adaptive systems. Doctoral Dissertation,
University of Michigan, Ann Arbor, (University
Microfilms Nº 76-9381), USA.

B. Edmonds (1998). Meta-Genetic Programming: Co-
evolving the Operators of Variation . CPM Report Nº: 98-
32. Centre for Policy Modelling, Manchester Metropo-
litan University.

A. E. Eiben, R. Hinterding and Z. Michalewicz (July
1999). Parameter Control in Evolutionary Algorithms.
IEEE Transactions on Evolutionary Computation, III(2):
124-141.

J.J. Grefenstette (1986). Optimization of control
parameters for genetic algorithms. IEEE Trans. Systems,
Man, and Cybernetics, SMC-16(1): 122-128.

F. Herrera, M. Lozano, E. Pérez and A. M. Sánchez
(2002). Una propuesta de generación de múltiples
descendientes y Selección de los dos mejores para
Algoritmos Genéticos con codificación Real con el
Operador de Cruce BLX-a. In E. Alba, F. Fernández, J. A.
Gómez, F. Herrera, J. I. Hidalgo, J. Lanchares, J. J.
Merelo and J. M. Sánchez (eds.), Actas del Primer
Congreso Español de Algoritmos Evolutivos y
Bioinspirados (AEB'02), 15-22. Mérida, Spain.

R. Hinterding, Z. Michalewicz and T.C. Peachey (1996).
Self-Adaptive Genetic Algorithm for Numeric Functions.
In Proceedings of the Fourth International Conference on
Parallel Problem Solving from Nature, Berlin.

C. Igel and M. Kreutz (2001). Operator Adaptation in
Evolutionary Computation and its Application to
Structure Optimization of Neural Network. In Technical
Report IRINI 2001-3. Institut für Neuroinformatik, Rurh -
Universität Bochum, 44780, Bochum, Germany.

N. Krasnogor and J. Smith (2001). Emergence of
Profitable Search Strategies based on a Simple
Inheritance Mechanism. In Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO),
432-439. Morgan Kaufmann Publishers, San Francisco,
California.

P.L. Lanzi (2001). Mining Interesting Knowledge from
Data with the XCS Classifier System. In Proceedings of
the Genetic and Evolutionary Computation Conference,
GECCO 2001, 958-965. Morgan Kaufmann Publishers,
San Francisco, California.

S. Matsui and K-I Tokoro (2001). Improving the
Performance of a GA for Minimum span Frequency

Assignment Problem with and Adaptive Mutation Rate
and a New Initialization Method. In Proceedings of the
Genetic and Evolutionary Computation Conference,
GECCO 2001, 1359-1366. Morgan Kaufmann Publishers,
San Francisco, California.

Z. Michalewicz, G. Nazhiyath, M. Michalewicz, (1996).
A Note on Usefulness of Geometrical Crossover for
Numerical Optimization Problems. In L. J. Fogel, P. J.
Angeline and Th. Bäck, (eds.), Proceedings of the Fifth
Annual Conference on Evolutionary Programming, 305-
312. The MIT Press, Cambridge, MA.

J.D. Schaffer, R. Caruana, L. Eshelman and R. Das,
(1989). A Study Of Control Parameters Affecting Online
Performance Of genetic Algorithms For Function
Optimization, In Proceedings of the 3rd International
Conference on Genetic Algorithms, 51-60, edited by J.D.
Schaffer, Morgan Kaufmann Publishers, San Mateo, CA.

N. N. Schraudolph and R. K. Belew (1992). Dynamic
Parameter Encoding for Genetic Algorithms. Machine
Learning, IX(1): 9-21.

R. Weinberg (1970). Computer simulation of a living cell.
Unpublished Doctoral Dissertation. 31(9), 5312B.
University of Michigan, Ann Arbor ,MI. (University
Microfilms Nº 71-4766),USA.

G. Winter, B. Galván, P. D. Cuesta and S. Alonso (2001).
Flexible Evolution. EUROGEN 2001, Evolutionary Me-
thods for Design, Optimization and Control with
Applications to Industrial Problems . Athens, Greece.

G. Winter, B. Galván, S. Alonso and B. González (2002).
Una propuesta de evolución flexible en el diseño de
algoritmos evolutivos. In E. Alba, F. Fernández, J. A.
Gómez, F. Herrera, J. I. Hidalgo, J. Lanchares, J. J.
Merelo and J. M. Sánchez (eds.), Actas del Primer
Congreso Español de Algoritmos Evolutivos y
Bioinspirados (AEB'02), 246-252. Mérida, Spain.

A. H. Wright and A. Agapie (2001). Cyclic and Chaotic
Behavior in Genetic Algorithms. In Proceedings of the
Genetic and Evolutionary Computation Conference,
GECCO 2001, 718-724. Morgan Kaufmann Publishers,
San Francisco, California.

View publication statsView publication stats

https://www.researchgate.net/publication/2568494

