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Abstract 
 

 

In this paper an alternative design for the internal 
structure of Evolutionary Algorithms is 
presented and a first implementation of such 
structure is tested. In order to improve the 
internal structure architecture of Evolutionary 
Algorithms as well as to learn which the 
adequate values of parameters and/or structure of 
operators are, a review showing the successive 
efforts made in this line is included. In this way, 
the evolution from the simplest GA to the 
present advanced structures is illustrated using 
figures which summarize their characteristics. 
Based on the analysis of such figures, a new and 
more flexible internal structure design is 
introduced maintaining the benefits of its 
predecessors but permitting a major degree of 
self-adaptation, because now the parameters, the 
operators and the structure can adapt themselves 
at each optimization step. This new structure is 
named a Flexible Evolution Agent (FEA). 
Results of a first software implementation are 
presented and compared using several well-
known test functions. 

1 INTRODUCTION 
From the beginning in the Genetic Algorithms (GAs) 
research it has been clear the necessity to choose the best 
parameters and operators that would be used during every 
optimization process. The first attempts in this line were 
aimed at the search of global parameters that could be 
used in all problems, as the accomplished by De Jong 
(1975) or more recently, by Schaffer et al (1989). 
However, almost immediately it was demonstrated that 
far away that existing parameters valid for all cases, every 
particular problem needs to have its parameters adjusted 
to its own requirements. So, GAs have had to solve this 

misadventure introducing the possibility of adapting these 
parameters (or even the operators) needed in the 
optimization process. 

Many authors have deepened in this line of research, and 
nowadays, establishing the best way of adjusting the 
parameters and/or operators and correcting the unfeasible 
solutions constitute the main present trends. Nevertheless, 
some researchers also distinguish between parameters 
adaptation and self-adaptation, as Eiben et al (1999) 
widely explain in their exhaustive state-of–the-art. As a 
sample of parameters adaptation, Davis (1989) proposed a 
schema that adjusted the operators’ rates depending on 
their success in creating good individuals. By contrast, 
self-adaptation commonly re fers to any of the 
Evolutionary Strategies (ESs) approaches, mainly 
developed by authors as Bäck and Schwefel (1991). ESs 
present an alternative for self-adapting the parameters 
during the optimization process, in such a way that no 
pre-established settings are needed. Nonetheless, in the 
specialized literature generally the terms adaptation and 
self-adaptation are equally considered. 

Regarding adaptation in general, most of the works have 
focused in parameters adaptation, and only a few, (as the 
raised by Igel et al, 2001) have been centered in adapting 
operators. Normally, adapting operators involve setting 
the parameters either. Hence, only parameters adaptation 
is usually revised. The majority of works have consisted 
in adapting simply one numerical para meter, as might be 
mutation rate (Matsui et al, 2001) or fitness adaptation 
(Wright and Agapie, 2001) whereas few studies have 
been done regarding other important aspects of the 
implementation as could be the way of representing the 
search space (Schraudolph and Belew, 1992, with their 
Dynamical Parameter Encoding). 

One of the most used approaches when self-adapting 
parameters is the model given by other big branch in the 
GA research: the use of Meta-GAs (Grefenstette, 1986). 
These algorithms were first proposed by Weinberg (1970) 
and consisted in two GA levels: the first level is a kind of 
‘training stage’ where a search of the best suited 



parameters or operators was carried out. Then, the second 
level is a simple GA where the adjusted values enter as 
preset parameters. Anyway, the algorithm’s structure is 
fixed as the preceding ones; the difference is that the 
parameter enters in an initial GA to be self-adapted to the 
specific problem. The selection of the best adapted 
solutions can be made evolving different populations 
independently, using rules or any feasible mechanism. 

One step further is the research made considering 
adaptation of both parameters and operators at the same 
time (Hinterding et al, 1996), combining for instance 
mutation rates and population sizing adjustment, or even 
more, making evolve the genetic operators in an 
independent population (Edmonds, 1998). Other authors 
(Darwen, 2000) have remarked the inevitability of 
implementing a parameterless algorithm, despite of the 
high computational costs that a mechanism to adapt ALL 
the parameters should have. 

An alternative way has been chosen by other researchers: 
to make the algorithm itself self-adaptive (Krasnogor et 
al, 2001) .This approach and similar ones are the actual 
tendencies in the GAs and ESs fields. As the use of some 
kind of memory in these algorithms has proven to be 
really fruitful, to implement mechanisms that can learn 
and memorize the previous experience gained in the 
optimization process is a benchmark problem. Among 
them, the use of several procedures such as classifier 
systems (Lanzi, 2001) or agents (Bot et al, 2001) has 
demonstrated to be very successful. 

Following these rules of thumb, a more flexible 
mechanism, able not only of self adapting the parameters 
and the operators involved in the search, but also the own 
structure of the algorithm, the Flexible Evolution Agent 
(FEA), is introduced in this work. First of all, several 
schemes showing the essential evolution from the other 
approaches to the presented implementation are depicted. 
Secondly, the FEA structure is developed, as well as an 
analysis of the reasons of its specific construction. Then, a 
section of the results attained using one first FEA 
implementation over several mathematical test functions 
is reviewed. Finally, some conclusions and the future 
lines of work are described. 

2 FROM A SIMPLE GA TO A FEA  
In order to show why a flexible algorithm such as the 
FEA is so necessary, several schemas showing the 
evolution of the different approaches from Genetic 
Algorithms to a flexible method are described. As several 
and more complicated schemes are represented next, the 
flux diagram used is not an ordinary one due to the 
necessity of including more complicated mechanisms 
afterwards hardly explained of any other way. A simple 
algorithmic implementation accompanies each figure, 
depicting basically every approach. 

As developed in the previous section, the current GAs do 
not allow the variation of their own structure of operators 
during the optimization process. For instance, a simple 

GA uses repeated trials of the Selection-Crossover-
Mutation sequence of fixed operators. Thus, they have a 
fixed structure as can be seen in Figure 1.  

 

 
 

 

Figure 1: A simple GA: Structure and implementation. 

 

In the same line than the referred Meta-GAs, but 
including the learning stage inside the algorithm, the next 
step is to consider a GA that self-adapts its mutation rates 
as the described in Figure 2 (following the Matsui (2001) 
example). The diagram is a bit more complex, but still 
does not show how the algorithm really uses the 
memorized information. Now, the solutions include 
information not only concerning the individual, but also 
about the mutation rates associated to the individuals. 

 

 
 

 

Figure 2: A GA that self-adapts its mutation rates: 
Structure and implementation. 

 

A qualitative jump is made when an Evolutionary 
Strategy is taken into account. A simple implementation 
such as the classic (µ,?)-strategy (Bäck et al , 1991) is 
described in Figure 3. Again, the learning mechanisms are 



included in the implementation, but following the ESs 
model where is in the variation step when the covariances 
matrices are considered. The solutions in this case are 
enlarged with information about the standard deviations 
and the rotation angles, but the structure of the algorithm 
is still essentially fixed. 

 

 
 

 

Figure 3: A simple ES: Structure and implementation. 

 

Analyzing all these algorithms, they only are flexible in 
the way that they increasingly store more information and 
use it in several ways, but they still depend on the 
problem to be solved. The scheme included in Figure 4 
shows the intended objective in the optimization methods 
tried to fulfill with the FEA, the new method that is 
proposed in the next section 

 

 
 

 

Figure 4: Desirable Evolution of the Global Optimization 
Methods 

 

3 DESCRIPTION OF THE PROPOSED 
FEA STRUCTURE 

The FEA alternative pretends to store up all the possible 
advantages from the last trends in the Evolutionary 
Programming field as well as introducing new options 

from other research branches. The initial premise is that, 
in principle, any mechanism that has proven to be fruitful 
in all related areas can help to develop a new and of 
growing difficulty implementation, as robust and efficient 
as it could possibly be. The intention is to generate a more 
flexible algorithm that can get the biggest benefit of the 
use of stored information, as this is one of the keys of all 
the already mentioned successful approaches, and in 
addition, to incorporate new procedures to facilitate the 
internal decisions making along the optimization process. 
This yields to that the FEA posses an Enlarged Genetic 
Code (EGC), in such a way that a solution contains 
information not only about the variables of the 
individuals, but also about the different parts that the FEA 
is divided in as it is explained later. Moreover, in order to 
obtain a higher flexibility in the implementation, FEA has 
a Dynamic Structure of Operators (DSO) allowing self-
adaptation of the operators sequence to the optimization 
conditions along the process. Finally, with the aim of 
controlling effectively all the procedures involved in the 
search, some Artificial Intelligence based methods can be 
used as members of the Decision Engine. 

 

 
 

 

Figure 5: Scheme of a Flexible Evolution Agent 

 

In order to guarantee the agent's flexibility, the algorithm 
has been implemented so that the different tasks that it 
executes can be coordinated. As a consequence, the FEA 
has been subdivided into several functions, called 
'engines'. These subroutines are designed to group the 
diverse actions that are to be executed during the 
optimization depending on their objectives. In this way, 
all the learning tasks are clustered in a 'Learning engine', 
and something similar happens with all the selection 



schemes, sampling strategies or decision mechanisms. 
The mo st important engine is the situated in the center of 
Figure 5: the Decision Engine, whose mission is to take 
all the necessary decisions in order to initiate, develop and 
finish the optimization process. Its main functions are (for 
every stage of the process) to decide about: the population 
size, each individual’s structure (its genotypic 
information), the learning mechanisms to be considered, 
the stop criteria to be used, the selection method to be 
applied, the sampling method/methods to be utilized (and 
their adequate parameters), the filtering processes (if 
necessary) and the criteria to generate new populations 
(including their sizes). It is important that the Decision 
Engine will be able of deciding if its own behavior is 
correct or not, and in this case that it could vary their 
criteria about how it manages the optimization in order to 
get a more successful process. The internal structure of 
this engine may be able of taking all the precedent 
decisions along the process, using advanced methods such 
as rule based Expert Systems, Fuzzy Logic, Probabilistic 
Methods or any other coming from the Artificial 
Intelligence area. The Decision Engine, however, must 
receive general instructions from the user to establish 
guidelines or an ordered set containing the strategies and 
tactics that it has to take into account to rule over the 
optimization process, as well as the data and constraints 
of the problem to be solved.  

Regarding the rest of engines, a short explanation is 
included. The Learning Engine stores everything that 
could be useful afterwards, such as information about the 
variables, statistics and successful stories of the rest of 
engines. The Selection Engine chooses which solutions 
are to be sampled whereas the Sampling Engine selects 
the sampling method that is used and carries out the 
variation processes over the variables as explained in the 
next section. The Filtering Engine is in charge of 
debugging the possible errors that it may detect in the 
solutions that reach that point. Then, the EGC introduced 
before might tackle with individuals with the following 
general structure P(W) = P(x, y, z, w, h , d, e , f, g, …), 
where P denotes the population of W individuals, x the 
variables and the rest are information relative to the 
engines (y about the learning, z about selection, w about 
the sampling, h about the filtering, f and g about the 
decisions) or other data as d for the new population and e 
for the objective function evaluation. As can be seen, this 
chromosome is much more complicated than the current 
utilized ones. The intention is to use this information to 
learn about the process and even to establish rules that 
could be fruitful and may be included in the Decision 
Engine. 

4 A FIRST FEA IMPLEMEN TATION  

As the proposed general structure is a lot more 
complicated algorithmically speaking than the existent 
ones, we have opted for exploring the possibilities it 
offers developing a first version whose implementation 
incorporates only some of the elements of the general 

FEA scheme. In this implementation, the Decision Engine 
consists in a simple Probabilistic Control Mechanism 
(PCM) based on the use of probabilistic frontiers for all 
decisions to be taken. The general PCM design is 1: 

o Set decvar = U(0,1) 

o If (decvar ≤ alpha) Then 

Adopt a conservative decision 

o Else 

Adopt a non-conservative decision 

Depending on which engine the PCM is deciding on, the 
probabilistic frontier alpha and the decisions to be taken 
can be different. In general a conservative decision means 
to adopt a successful one taken in the near past and non-
conservative means to choose any other available decision 
for the engine. After several tests the value 0.6 has been 
elected for alpha. 

The selected Learning Engine extracts a subset from the 
actual population containing the best individuals and 
stores information about the sampling methods used 
during the optimization, so the EGC contains two vectors 
as depicted afterwards. The Selection Engine establishes 
which solutions are to be sampled by the Sampling 
Engine by means of Tournament Selection (2:1). The 
Sampling Engine is the first function that is completely 
designed and explained in the next subsection. Any 
Filtering Engine has been incorporated yet. 

Let be ( )WtP  the population2 and ( )WtPµ
 the µ best 

individuals of ( )WtP . Then the FEA algorithm is: 

Establish population size & maximum 
number of  generations; 

t = 0; 

Generate ( )WtP ; 

While not termination criterion do 

Evaluate ( )WtP ; 

Extract best ( )[ ]WtP ; 

Extract ( ) ( )[ ]WW tt PP ←µ
; 

Set ( )WtP ′ ← selection ( )[ ]WtPµ ; 

Subject to the PCM from the Decision 
Engine: Generate ( ) sP t

new ←W , (∀s: s = 

sample (xi, yi) or s = sample W, being 
W ∈ ( )WtP ′ ); 

Set ( ) ( ) ( ){ }WWW t
new

tt PPP ∪←+
µ

1  

Set ( ) ( )WW 1+← tt PP  

Od 

                                                                 
1 U(0,1) = function that generates a random uniform number in (0,1). 
2 Let be W  = (x, y), where x = (x1, x2, … , xi, …, xnvar) and y = (y1, y2, … , 
yi, … , ynvar). W consists in nvar variables, x, and the sampling methods 
used to sample each variable, y.  
 



Print solutions & stored information; 

Under this scheme the algorithm can use any of the 
available sampling methods included in the Sampling 
Engine, being a little conservative but given it the 
possibility to explore using all the methods. Only two 
decisions can be taken by the PCM: to decide between to 
sample one or all variables and to decide between to use 
the preceding sample method or any other. The 
mechanism to correct wrong decisions is implicit because 
the Selection Engine may extract the best individuals 
from the population, any of them probably containing the 
best decisions in their genotype. The constraints are 
handled obliging to all the variables to be included in their 
feasible values. An earliest proposal of a FEA 
implementation can be found in Winter et al (2001).  

4.1  THE SAMPLING ENGINE 

Among all the functions constituting the FEA, the main 
component already developed is the 'Sampling Engine' 
which includes all the sampling methods that are to be 
used, both the Crossover ones (such as the Arithmetic 
crossover, the Geometric, the Heuristic, etc.) and the 
Mutation mechanisms (as the Uniform mutation operator, 
the non-Uniform one, etc), the majority included in the 
article by Michalewic z et al (1996) and in the INGENET 
network report by Bäck et al (1998). Furthermore, some 
new variations have been developed with the aim of 
exploring and/or exploiting the search space. The actual 
engine contains 39 sampling methods, many of which are 
detailed now. Nevertheless, and as a matter of lack of 
space, all the variations of methods are not mentioned. A 
more extended version of the components of the sampling 
engine can be found in Winter et al (2002). Let be: 

sign = random variable in {-1,1}. 

nvar = total number of variables. 

( )1
var

1
2

1
1

1 ,,, old
n

oldoldold xxx K=x  = best solution found. 

( )2
var

2
2

2
1

2 ,,, old
n

oldoldold xxx K=x  = one of the best solutions 
found. 

xold = xold1 or xold2 . 

( )new
n

newnewnew xxx var21 ,,, K=x  = new solution. 

As the sampling methods act, depending on the 
probabilistic frontier alpha, only over any of the variables 
or over all the variables of xold1 or xold2, 1old

ix  and 2old
ix  

may be used when referring to a specific component of 
those vectors. Then, the new values are designated. 

(a) Sampling methods with different Nature3: 

(i) Assign a value: old
i

new
i xx = . 

(ii) Reduce or enlarge a value (dividing a value 
by another one): 

                                                                 
3 Only 12 out of the 18 methods really implemented. See (Winter et al, 
2002) for further details.  

( ) ( )1,021 Uxxx old
i

old
i

new
i = . 

(iii) Reduce or enlarge a value (using the 
addition): 

( )1,0Uxsignxx old
i

old
i

new
i += . 

(iv) Reduce or enlarge a value (using the 
addition plus the division): 

( ) ( )1,021 Uxsignxxx old
i

old
i

old
i

new
i += . 

(v) Reduce or enlarge a value (including a 
constant parameter ϕ): 

( )1,0Uxsignsignxx old
i

old
i

new
i ϕ+= . 

(vi) Heuristic crossover:  

( ) ( )1,0212 Uxxsignxx old
i

old
i

old
i

new
i −+= . 

(vii) Geometric crossover (simplest version):  
21 old

i
old
i

new
i xxx = . 

(viii) Arithmetic crossover (simplest version):  

If auxi = U(0,1) then 

( ) 21 1 old
i

old
i

new
i xauxisignxauxix −+= . 

(ix) Guaranteed Average Crossover:  
21 5.5.0 old

i
old
i

new
i xoxx += . 

(x) Gaussian Mutation: ( )σ,0Nxx old
i

new
i += . 

(xi) Variant form of Gaussian Mutation (II):  

If q ∈ {1, 2, … , nvar}, q10 =τ  then 

( ) ( )στ ,01,00 Nexxx Nold
i

old
i

new
i += . 

(xii) Variant form of Gaussian Mutation (III):   

If q ∈ {1, 2, …  , nvar}, q21=τ , q21=′τ  

then ( ) ( )( ) ( )σττ ,01,01,0 Nexxx NNold
i

old
i

new
i

′++= . 

(b) Sampling methods with different Range : 

The rest of variations for completing the 39 sampling 
methods included in the engine have been obtained 
applying the three mechanisms described below for 
varying the range to some of the rest of the methods. For 
simplicity, only the general procedures are described and 
not the real variations4. 

(i) Multiplying for a random number (a certain 
number of times). 

(ii) Dividing by a parameter. 

(iii) Dividing by a certain value varying in an 
interval. 

In order to illustrate the use of the sampling engine, 
Figure 6 shows the typical behavior that can be observed 
from the sampling methods in a single execution of the 
algorithm for Keane’s function, one of the application 
examples used and whose expression is detailed in 
                                                                 
4 See (Winter et al, 2002) for further details. 



Section 5. In the figure, two different graphs have been 
incorporated, both showing how many times is used every 
of the sampling methods introduced in the sampling 
engine along the optimization process in a single run. The 
upper diagram bar contains a representation of the times 
that every method is used ONLY to obtain the best 
solutions -one per generation- whereas the lower 
diagrams present the times that every method is used to 
get all the solutions-for every variable of each individual 
of all the generations -, that is to say, the total number of 
times that every method is used. The pattern of the lower 
graph differs slightly from one execution to another, as 
long as the number of generations considered is alike. 
This means that the behavior of the sampling methods for 
a specific function is very similar, and this is an important 
key to be able of building adequate sampling engines.  
 

 
 

 

Figure 6: Keane’s function: use of the different sampling 
methods 

 
This is also the reason why that the use of mean graphics 
instead of the actual one containing just one execution is 
helpless for this objective. In contrast, the pattern of the 
graphic representing only the best methods used is 
invaluable at the moment of deciding which among them 
are needless or essential for the optimization process. Its 
pattern changes in the different executions of the 
algorithm, although its general shape is more or less 
constant. Hence, the way of deciding if a method is good 
or not when building a Sampling Engine can be to see if 
its bar in both graphics coincides being the higher or the 
lower. For instance, having a look at Figure 6 we can see 
that the methods 3, 6, 32 and 34 are clearly the worst 
ones, as they are the less used while the methods 12, 20 
and 29 are the best ones. The competitive and cooperative 
behavior among sampling operators is shown. A survey 
reviewing what happens among them and how to build a 
Sampling Engine is being completed at present.  

5 TEST RESULTS 

We study the Flexible Evolution Agent robustness 
utilizing some well known mathematical test functions of 
proven complexity, frequently used for test purposes and 
whose analytical expressions are included below. The 
majority of them are multimodal functions presenting 
severe difficulties hardly overcame either by classical 
optimization methods or even by evolutionary methods. 
The number of variables n is specified in every case of the 
tables of results.  

Keane’s function:  

( )
( ) ( )

∑

∑ ∏

=

= =








−

=
n

i
i

n

i

n

i
ii

xi

xx
f

1

2

1 1

24 cos2cos
x

  

Constraints: 75.0
1

≥∏
=

n

i
ix , nx

n

i
i 75.0

1

≤∑
=

 and 100 ≤≤ ix . 

Rastrigin’s function: 

( ) ( )( )∑
=

−+=
n

i
ii xxAnf

1

2 2cos2 πx  

being A = 10 and 12.512.5 ≤≤− ix . 

Griewank's function: 

( ) ∏∑
==

+





−=

n

i

i
n

i
i i

xx
d

f
11

2 1cos1x  

where d = 4000 and 0.6000.600 ≤≤− ix . 

Rosenbrock's function:  

( ) ( ) ( )[ ]∑
=

+ −+−=
n

i
ii xxxf

i
1

222
1 1100x  

where 12.512.5 ≤≤− ix . 

With the aim of illustrating the results that the method is 
able to get, two surveys have been done. The first one 
shows how efficient the FEA is by means of obtaining 
objective function values using as criterion for stopping 
the optimization process to reach at least (if it is possible) 
a fixed constant that has been called 'control value'. This 
value is different for each function and corresponds to 
some of the results found out by other researchers. The 
number of variables and individuals corresponds either to 
those utilized by these reference investigations. Tables 1 
and 2 give the average results obtained for every test 
function in 30 runs.  

From some of the attained values, it is not clear to know if 
establishing a stop criterion such as the defined above is 
enough for getting the best possible results using the FEA 
algorithm. Hence, it has been necessary to predetermine 
another control value in order to see how far it is able to 
reach. The new values have been fixed arbitrarily in the 
sense that as for any function are different and unknown 



some tests have been done with the aim of deciding which 
to choose (see Table 2). 

 

Table 1: Results for 30 runs using a predefined stop 
criterion5 .  

 

Functions  Keane  Rastrigin Griewank Rosenbrock 

Ref. 
Bäck 

(1999) 
Bäck 

(1999)  
Herrera 
(2002) 

Herrera 
(2002)  

n 20 20 25 25 

CV 0.803  4.2135 10 -11 6.77 10-13 17.2 

I 100 100 61 61 

G  >200  244 - - 

Reference 
studies 

E  >20000 24400 100000 100000  

O F 0.80329 4.2633 10 -13 1.1178 10 -16 3.3390 10 -2 

G  1344  17 29 1 
Best 

values 
E  114240 1700 1769 61 

O F 0.8031  9.9984 10 -12 1.4188 10 -14 3.32692 

SD 8 10-5 3.7915 10 -11 1.4058 10 -14 4.07644 

G 3140.33 15.97 22.74 1.2 

Mean 
values 

E 266928.33 1596.67 1387.26 73.2 

Worst 
values O F 0.803001  3.7915 10 -11 4.4983 10 -14 16.75339 

 

 

Table 2: Results obtained for 30 runs, with control values 
assigned arbitrarily5. 

 

n = 25  Keane  Rastrigin Griewank Rosenbrock 

CV > 0.80 ≤ 10-13 ≤ 10-16 ≤ 10-9 
Settings 

I 100 50 50 50 

O F 0.81026  2.8422 10 -14 5.421 10 -20 1.3713 10-9 

G 1557 25 22 779 
Best 

values 
E 132345  1250 1100 38950 

O F 0.8043  3.1264 10 -13 3.3175 10 -16 1.0199 10-5 

SD 3.14 10-3 2.591 10-13 3.2057 10 -16 2.0488 10-5 

G 1506.23 21.33 25.07 855.3 

Mean 
values 

E 128029.83 1066.67 1253.33 42765 

Worst 
values 

O F 0.80002  9.0949 10 -13 8.9609 10-16 9.6154 10-5 

                                                                 
5Tables notation: n = number  of variables, CV = control value, I = 
number  of individuals, G = generations, E = evaluations, OF = objective 
function value and SD = standard deviation. 

6 CONCLUSIONS 

Nowadays, what has been pointed out as a benchmark in 
the evolutionary methods area is the algorithms capability 
of self-adapting their parameters and operators along the 
optimization process. Seen the features of the actual 
optimization procedures, a new implementation called 
Flexible Evolution Agent (FEA) has been presented in 
this work with the intention not only of taking advantage 
of some of the actual characteristics but also developing 
new mechanisms. The flexibility of the first approach 
made is due to its principal features: the Dynamic 
Structure of Operators it owns, the Extended Individuals 
Code and the Probabilistic Control Mechanisms for the 
decisions-making. The Engines in which the FEA is 
divided allow a more dynamic execution of the agent: in 
particular, the PCM (the Decision Engine) tries to reach a 
trade-off between the exploration and the exploitation of 
the search space, what is equivalent to achieve a 
competitive and cooperative balance among the sampling 
operators. The results obtained with the first FEA 
implementation have been very positive optimizing the 
majority of the used test functions, fact that permits to be 
optimistic about the future advances when the general 
FEA potentiality will be completely developed.  

7 FUTURE WORK 

Henceforth, our efforts may be centered in the 
introduction of several additional mechanisms (that can 
coexist or not) in the Decision Engine such as Fuzzy 
Logic or Expert Rule Based Systems in order to improve 
it. The next task could be completing a survey studying 
how the Sampling Engine truly works and how to build it. 
Lastly, a Filtering Engine to decide about the goodness of 
the attained solutions is to be included. 
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