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Abstract. In this paper we present new ideas and applications of an innovative tetra-
hedral mesh generator which was introduced in [1, 2]. This automatic mesh generation
strategy uses no Delaunay triangulation, nor advancing front technique, and it simplifies
the geometrical discretization problem in particular cases. The main idea of the new
mesh generator is to combine a local refinement/derefinement algorithm for 3-D nested
triangulations [3] and a simultaneous untangling and smoothing procedure [4]. 3-D com-
plex domains, which surfaces can be mapped from a meccano face to object boundary,
are discretized by the mesh generator. Resulting adaptive meshes have an appropriate
quality for finite element applications. Finally, an example is showed.

1 INTRODUCTION TO THE MECCANO TECHNIQUE

The idea of the new tetrahedral mesh generator starts with the definition of a meccano
domain as connected cuboids, such that the boundary of the object is obtained by a
one-to-one projection (or mapping) from the boundary faces of the meccano. Once the
meccano decomposition into cubes is done, we build an initial coarse tetrahedral mesh by
splitting all cubes into six tetrahedra [3]. We continue with a refinement/derefinement
strategy to obtain an adapted mesh which can approximate the boundaries of the domain
within a given precision. Then, we construct a mesh (usually a tangled mesh) of the
domain by projecting boundary nodes from meccano plane faces to the object surface
and by relocating the meccano inner nodes on a reasonable position. Although this node
movement does not solve the tangle mesh problem, it normally makes it decrease. Finally,
in order to obtain a resulting valid mesh, a mesh optimization procedure (untangling and
smoothing) [4] is applied. This process is crucial in the proposed technique and could be
combined with a previous smoothing [5] of the object surface triangulation.

1



J.M. Cascón, R. Montenegro, J.M. Escobar, E. Rodŕıguez and G. Montero

At present, this idea has been implemented in ALBERTA code [6, 7]. This software
can be used for solving several types of 1-D, 2-D or 3-D problems with adaptive finite
elements. The local refinement and derefinement can be done by evaluating an error
indicator for each element of the mesh and it is based on element bisection. To be more
specific, the newest vertex bisection method is implemented for 2-D triangulations [8].
Actually, ALBERTA has implemented an efficient data structure and adaption for 3-
D domains which can be decomposed into hexahedral elements as regular as possible.
Each hexahedron is subdivided into six tetrahedra by constructing a main diagonal and
its projections on its faces. The local bisection of the resulting tetrahedra is recursively
carried out by using ideas of the longest edge [9] and the newest vertex bisection methods.
Details about the local refinement technique implemented in ALBERTA for two and three
dimensions can be analyzed in [3, 8]. This strategy works very efficiently for initial meshes
with a particular topology and high-quality elements (obtained by subdivision of regular
quadrilateral or hexahedral elements). In these cases, the degeneration of the resulting
2-D or 3-D triangulations after successive refinements is avoided. The restriction on the
initial element shapes and mesh connectivities makes necessary to develop a particular
mesh generator for ALBERTA. Obviously, the new meshing technique could be applied for
generating meshes with other types of codes. Besides, these ideas could be combined with
other type of local refinement/derefinement algorithms for tetrahedral meshes [10, 11].

2 TEST EXAMPLE

We apply our technique to construct a 3-D triangulation of the Earth including a leg-
end related to the present Conference. To define the topography we have used GTOPO30
(http://edc.usgs.gov/products/elevation/gtopo30/gtopo30.html). GTOPO30 is a global
digital elevation model (DEM) with a horizontal grid spacing of 30 arc seconds (ap-
proximately 1 kilometer).

In this case, the meccano is composed by one cube and we use a radial projection to
generate the topography of the surface of the Earth from GTOPO30. The external faces
of the meccano are projected on the surface of the Earth, see Figure 1. In this example,
we have constructed an automatic adaptive discretization to well approach the coastlines
and the boundaries of the legend.

The cube is first split into six tetrahedra forming a coarse initial mesh. Then, we
apply 21 recursive bisections on all tetrahedra which have a face placed on the meccano
boundary and 6 additional bisections on all tetrahedra with a face on the legend window.
This fine mesh contains 956901 nodes and 4026768 tetrahedra. In order to obtain a final
mesh with a good representation of coastlines and the boundaries of the letters, we have
defined the following derefinement condition: a node P could be eliminated if node P and
all nodes connected with P are of the same type (sea, land or letter). Perhaps node P can
not be finally removed due to conformity reasons. On the other hand, nodes belonging to
the coarse initial mesh are not removed from the sequence of nested meshes. The resulting
mesh has 124949 nodes and 534246 tetrahedra; see Figure 1.
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Figure 1: Resulting adaptive tetrahedral mesh of the Earth after applying the refinement/derefinement
procedure on the meccano (one cube) and radial node projection from meccano faces to Earth surface

The relocation of inner nodes is enough to obtain a untangled mesh, however its quality
is very poor. After 19 iterations, the optimization procedure improves the value of the
minimum quality to 0.264 and its average to qκ = 0.77.

The CPU time for constructing the adaptive meccano mesh is 77.5 seconds, for the
projection/relocation process is 2.1 seconds and for the smoothing procedure is 1129.7
seconds. This experiment has been done on a Dell Precision 960, with two Intel Xeon
double kernel processor, 3.2 GHz, 64 bits and 8 Gb RAM, on a Red Hat Enterprise Linux
WS v.4 system and using the compiler gcc v.3.4.6. Note that the mesh optimization
dominates the mesh generation procedure.
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mentation in ALBERTA of an automatic tetrahedral mesh generator. Proc. 15th Int.
Meshing Roundtable, 325–338, Springer, Berlin, (2006).

[2] J.M. Cascón, R. Montenegro, J.M. Escobar, E. Rodŕıguez and G. Montero. A new
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Simultaneous untangling and smoothing of tetrahedral meshes. Comput. Meth. Appl.
Mech. Eng., 192, 2775–2787, (2003).

[5] J.M. Escobar, G. Montero, R. Montenegro and E. Rodŕıguez. An algebraic method
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