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Abstract

The continuous development of thermographic technology
has led to the overall improvement of instruments used in
medicine, surveillance, or military systems. However, ther-
mographic imaging cameras still have a high cost com-
pared to other alternatives on the market, such as visible
light cameras and a much lower spatial resolution. Super-
resolution is a technique that improves the visual quality of
an image through software processing. This work studies
three neural networks architectures based on deep learn-
ing capable of performing super-resolution of RGB im-
ages at x2 and x4 scales: Photo-Realistic Single Image
Super-Resolution Using a Generative Adversarial Network
(SRGAN), Enhanced Deep Residual Networks for Single
Image Super-Resolution (EDSR), and Wide Activation for
Efficient and Accurate Image Super-Resolution (WDSR).
These architectures, in this work, have been trained as a
super-resolution system using thermographic images as in-
put data. The evaluation was carried out using thermo-
graphic images from different thermographic cameras. The
performance assessment was carried out using the Peak Sig-
nal to Noise Ratio (PSNR) and the Structural Similarity In-
dex Measure (SSIM). In addition, low-resolution images
from a low-cost thermographic camera were used as in-
put to the neural networks to study the feasibility of this
method.

1 Introduction

Thermographic technology is used in a wide range of ap-
plications in fields such as astrophysics, medicine, materi-
als science, chemistry, meteorology, and military systems,
among others [1]. A thermographic camera detects the ther-
mal radiation from a scene by concentrating it on a sensor
to produce a physical effect. More than 95% of thermo-
graphic camera sensors are microbolometers [2] since they
do not require active cooling and their reduced size.

Given the complexity of the manufacturing processes for
microbolometer arrays and the relatively low demand for
these systems, the price of thermographic cameras is gener-
ally high [1, 2]. In addition, despite the current technologi-
cal innovation in thermography, the most standard available
resolutions are 640x480, 320x240, and 160x120 [3, 4].

A novel approach to improve the spatial resolution of
these cameras is to apply super-resolution (SR) techniques.

These techniques aim to increase the level of pixels and de-
tails that characterize an image, increasing the visual qual-
ity of the image [5]. However, from a practical point of
view, SR techniques have been limited by computing power

[6].

This technique has been developed and implemented for
images generated in the visible range. Recently, different
approaches to this technique have been made to the field of
thermography. On the one hand, Wigcek et al. proposed
a residual neural network (NN) with a reduced number of
layers using a transfer learning strategy through RGB im-
ages [7]. On the other hand, V. Chudasama et al. proposed
a NN for thermographic images with better computational
efficiency compared to other state-of-the-art techniques [8].
Finally, P. Cascarano et al. proposed a NN architecture that
introduces different regularization terms to improve train-
ing efficiency, in addition to an automated choice of net-
work parameters without the need for a priori knowledge of
the training dataset used [9].

This work proposes to use three new NN architectures
for thermal SR: Photo-Realistic Single Image Super-
Resolution Using a Generative Adversarial Network (SR-
GAN) [10], Enhanced Deep Residual Networks for Sin-
gle Image Super-Resolution (EDSR) [11] and Wide Acti-
vation for Efficient and Accurate Image Super-Resolution
(WDSR) [12]. To evaluate their performance, we have cre-
ated a thermal dataset and used the Peak Signal to Noise
Ratio (PSNR) and the Structural Similarity Index Measure
(SSIM) as performance metrics, which are widely used to
evaluate the different SR techniques in the state of the art
[5, 6].

The remainder of this paper is organized as follows: Sec-
tion 2 describes the database and the thermographic cam-
eras used in the experiments. Section 3 describes the types
of NN-based architectures used. Section 4 details the ex-
periments and the results obtained. Finally, the conclusions
derived from the results are presented in Section 5.

2 Materials

Two datasets of thermographic images were used in this
work. The first one is the “ADAS” dataset provided by the
thermographic imaging camera manufacturer FLIR [13].
This dataset has 10228 images divided into 8862 training



images and 1366 validation images. The formats available
are: RGB format (1800x1200), 8-bit thermographic format
(640x512) and 16-bit thermographic format (640x512).

The second dataset was generated from three different ther-
mographic cameras, named Database for the Assessment
of Spatial Super-Resolution (DASSR), and has 160 ther-
mographic images per camera from different measurement
scenarios. Figure 1 illustrates the integration of these cam-
eras. The general characteristics of the cameras used are
described in Table 1.

Figure 1. FLIR cameras used for the creation of the
DASSR dataset

Table 1. General characteristics of the cameras used

General characteristics

Cameras Resolution | Focal length (mm) | HFOV (°) | VFOV (°)
FLIR A615 640 x 480 24.6 25 18.8

FLIR A35 320 x 256 19 24 19.2
FLIR Lepton | 160 x 120 2 57 42

3 Architectures for thermal super-resolution

The super-resolution NN architectures have a learning
model capable of mapping the relationship between a low-
resolution (LR) image and its high-resolution (HR) equiva-
lent through a specific training and evaluation process.

In this work three different SR architectures have been
implemented: the NN architecture presented in “Photo-
Realistic Single Image Super-Resolution Using a Genera-
tive Adversarial Network™ [10], the NN architecture pre-
sented in “Enhanced Deep Residual Networks for Single
Image Super-Resolution” [11] and the NN architecture pre-
sented in “Wide Activation for Efficient and Accurate Im-
age Super-Resolution” [12]. All details corresponding to
the number of layers and the learning strategy designed by
the respective authors can be found in the original articles
[10, 11, 12].

3.1 SRGAN

The architecture proposed in SRGAN is based on using
Generative Adversarial Networks (GAN). In this type of
network, a generator is responsible for creating an SR im-
age from an LR image and a discriminator responsible for
verifying whether the SR image is similar to the original im-
age. The confrontation between these two networks allows
the generator to learn how to create an SR image. Further-
more, the same premise is used during the training phase,
achieving a series of results not seen before the implemen-
tation of GAN networks.

3.2 EDSR

The EDSR architecture uses the innovations made by SR-
GAN but without using a GAN network. Instead, this
NN uses a residual block called SRResNET, which is very
present in the learning process when extracting features in
an image. EDSR leverages and adapts SRResNET by elim-
inating batch normalization, which improves the training
process concerning other NN architectures.

3.3 WDSR

The WDSR architecture uses the changes established by
EDSR, eliminating batch normalization in the training
stage. In addition, introduce a feature expansion using con-
volutional layers before reaching the ReLu activation func-
tion. This modification allows more information to pass
through while maintaining the high nonlinearity of deep
NN. In this work, the WDSR-B architecture proposed by
the authors has been studied.

4 Experiments and results

The implementation of the NN architectures found in [14]
for SRGAN and the implementation found in [15] for
EDSR and WDSR-B have been used. Training and valida-
tion were performed using the ADAS dataset, specifically
the images in 8-bit format. Finally, to evaluate the final per-
formance, the DASSR dataset was used.

The performance metrics are PSNR defined as:

L2
PSNR = 10-log, [ ~———r (1)
N i (1 =1)?

Where L is equal to 255 in the general cases using 8-bit
representations and 65535 in 16-bit representations, / is the
original image and [ is the processed image.

The SSIM is defined as:

Cuip;+C) (0 +C2)
(uf +u,?+C1) (6,2+ o,2+Cz)

SSIM(1,1) = 2



Where (1, represents the image mean, o, represents the im-
age standard deviation, o;; represents the covariance be-
tween two images and Cj, C, are constants set to avoid in-
stability.

In order to apply the proposed SR architectures to the ther-
mographic images of the DASSR dataset, it has been nec-
essary to convert the 16-bit thermographic images into 8-
bit images (normalization), storing reference data that are
equivalent to the object temperature. Then, after apply-
ing the SR, these references are used to return to the 16-bit
range (denormalization).

The DASSR dataset has been segmented into 4 sets:
DASSR-I (40 images), DASSR-II (60 images), DASSR-III
(30 images) and DASSR-IV (30 images). The images found
in each of these sets present similar scenarios, so the results
obtained from PSNR and SSIM will be an average of all
these images providing the standard deviation of each set.

Two experiments are proposed from this dataset. The first
one consists of using the A615 camera samples of each sub-
set. The LR images were generated through a bicubic inter-
polation, downscaling the images by a factor of x2 and x4.
After applying SR on these LR images, SR images have
been obtained for further comparison with the original im-
ages. It should be taken into account that the PSNR has
been studied concerning a 16-bit thermographic image, so
the theoretical values that can be obtained in the optimal
case are close to 96 dB (PSNR = 20log(2'®)). The results
of this experiment can be seen in Table 2 and Table 3.

Table 2. First results with x2 scale

SR with x2 scale
Architecture used PSNR SSIM PSNR SSIM
SRGAN 7485+ 191 | 1.0+£0.0 | 79.77 + 1.63 1.0+ 0.0
EDSR 78.45 £1.66 | 1.0+ 0.0 | 81.12 £ 0.94 1.0+ 0.0
WDSR-B 76.79 £2.61 | 1.0£0.0 | 80.68 £+ 1.22 1.0+ 0.0
DASSR-I DASSR-II
Set
DASSR-III DASSR-IV
SRGAN 78.28 £2.30 | 1.0£0.0 | 65.70 £ 1.03 | 0.9997 £ 0.0001
EDSR 80.97 +£1.04 | 1.0+ 0.0 | 66.93 £ 1.25 | 0.9998 + 0.0001
WDSR-B 80.30 £1.52 | 1.0£0.0 | 66.35 = 1.12 | 0.9998 + 0.0001
Architecture used PSNR SSIM PSNR SSIM
SR with x2 scale
Table 3. First results with x4 scale
SR with x4 scale
Architecture used PSNR SSIM PSNR SSIM
SRGAN 7243 +3.19 0.9999 + 0.0 78.57 +1.93 1.0+ 0.0
EDSR 72.59 +£3.31 0.9999 + 0.0 78.62 + 1.8 1.0+ 0.0
WDSR-B 72.05 +3.58 | 0.9999 + 0.0001 | 78.51 £+ 1.86 1.0 £ 0.0
DASSR-1 DASSR-1I
Set
DASSR-IIT DASSR-1V
SRGAN 77.30 £2.74 1.0 £ 0.0003 59.01 &£ 1.05 | 0.9987 + 0.0
EDSR 77.98 +2.36 1.0 £ 0.0004 58.19 + 1.09 | 0.9984 + 0.0
WDSR-B 77.90 +2.41 1.0 £ 0.0004 5775+ 1.13 | 0.9983 £ 0.0
Architecture used PSNR SSIM PSNR SSIM
SR with x4 scale

The second experiment consisted of applying SR to images
from the Lepton camera. The results of this experiment,
applying an x4 scaling factor, are shown in Figure 3, Figure

4 and Figure 5, where a specific sample has been extracted
from the DASSR database and presented after applying the
SR. In addition, the original image is shown in Figure 2.
These images show the improvement in spatial resolution
offered by this type of technique when applied to a low-cost
thermographic imaging camera.
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Figure 5. WDSR-B results on the Lepton image



5 Conclusions

This article presents three NN architectures capable of im-
proving the spatial resolution of an image through deep
learning. In the current state of the art, these architectures
have been used to apply SR to RGB images, training and
evaluating the models through datasets containing images
in the visible spectrum. However, this article proposes its
use for SR thermographic imaging.

During the development of the work, the NN architectures
have been trained with a public dataset of 8-bit thermo-
graphic images and evaluated through a dataset generated
by different thermographic cameras in realistic environ-
ments. The results show a visual perceptual improvement
in the samples used to evaluate the architectures, demon-
strating that it is possible to improve some of the limita-
tions in the spatial resolution that low-cost thermographic
cameras have. The objective analysis of these images has
been carried out in the 16-bit range, so that raw radiomet-
ric data from the thermographic cameras have been taken
into account. The PSNR and SSIM results show what loss
exists in the thermographic range when applying these SR
techniques. Therefore, in future work, it will be possible
to study what has been the actual temperature loss when
applying these techniques.
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