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Abstract—Based on the Information Theory, a distance func-
tion between amino acids is induced to model the affinity
relationship between them. Tables with mapping coordinates have
been obtained by using nonlinear multidimensional scaling for
different dimensions. These mapping coordinates are meaningless
virtual data, but a high relationship with physical and chemical
properties is found. The main conclusion is that the number
of effective characteristics involved in substitution matrices is
low. The hypothesis that hydrophobicity and secondary struc-
ture propensities are very important characteristics involved in
substitution matrices is reinforced by the analysis of the results.

Index Terms—Substitution Matrices; Molecular Evolution;
Principal Component Analysis; Multidimensional Scaling; Infor-
mation Theory

I. INTRODUCTION

The main assumption of the neutral theory of evolution[1]
is that mutations at the molecular level are mainly neutral or
weakly disadvantageous. Moreover, it asserts that substitution
rates in low biologically relevant sites in proteins are greater
than the active rates. The role of physical-chemical properties
in evolutionary models has been emphasized by considering
that local mutations tend to conserve important properties of
the protein and that the knowledge implicitly contained in sub-
stitution matrices is related to the properties of protein domains
rather the amino acids themselves[2]. This approach has been
extended for the detection of protein domains in the space of
property sequence instead of the primary sequence[3][4][5].

Most models of substitution matrices are computed as log-
odds ratio of sequence probabilities. This is related to the
concept of relative entropy or mutual information between
two sequences. Intuitively, sequences with high homological
relationship have high levels of common information coming
from their ancestor, while distantly related sequences retain
low levels of common information. Formally, the relationship
between substitution matrices and information theory has been
presented by Altschul[6] and is based on the statistical proper-
ties associated with general score matrices[7]. This theoretical
approach provides a sound framework for substitution matrices
that is used to propose an amino acid distance based on the
evolutionary data.

Amino acids can be organized into physical-chemical
groups with similar relationship between their members. The

substitution matrices collected from sets of related sequences
are statistical summaries of the evolution process[8]; they show
that similar amino acids tend to replace each other more often
than dissimilar ones in accordance with the rather neutral
action of most mutations, as asserted by the neutral theory of
evolution[1]. Yang [9] determines an amino acid substitution
model from a codon substitution model at DNA level by using
a Markov model. His conclusion is that a relationship exits
between the acceptance rates of probabilities –from which
the substitution matrices are computed – and the chemical
properties, but this relationship may not be simple.

The conservational or homeostatic nature of physical-che-
mical characteristics in mutational process has also been
considered [10] by focussing on the amino acid isoelectric
point, which combines both electric and spatial information.
Those authors study the effect of co-ordinated substitution
(pairs of related amino acid substitutions) and the correlation
with protein changes in physical-chemical properties. The
study concludes that co-ordinated substitutions play a com-
pensatory role. The relationship between mutation and place
of amino acids in the protein was analyzed by Gromiha and
Oobatake[11]. They studied the correlation between stability
changes caused in buried amino acids and 48 physicochemical
and conformal properties.

The study of the relationship between physical-chemical
parameters in structure-dependent matrices[12] finds a high
correlation between the matrices and some parameters, par-
ticularly for hydrophobicity and amino acid volume. Both of
them seem to be important factors for the protein folding and
in its functionality. Volume is important due to the physical
constraints in the torsion angles of the peptide chain, while
hydrophobicity is important in the interactions of residues
with the aqueous environment. Koshi and Goldstein[12] use
the correlation between the matrix ∆Qab = |Q(a) − Q(b)|
related to a characteristic Q of amino acids, such as the
contained in the AAindex database[13], and the functional
Φab(M) where M is the substitution matrix. The matrix
∆Qab is a distance in the characteristic domain, but they
use the functional Φab(M) = ln(MabMba). Since ∆Qaa =
∆Qbb = 0 and that in the general case, Φaa 6= Φbb, some
perturbations could be introduced in the correlation values. A
more homogeneous correlation must be between ∆Q and some



functional verifying Φaa(M) = 0 which is more similar to a
distance. In this paper is suggested that some type of amino
acid distance is a more correct measure to be correlated with
∆Q, but it is proposed that this distance be obtained from
substitution matrices due to their biological richness and the
soundness of their theoretical background.

A set of orthogonal linear amino acid characteristics for
clustering purposes has been obtained[14] from the eigenvec-
tors of the PCA selection procedure from a wide characteristic
set. They are significant among the characteristic set itself,
but there are doubts about whether they are significant in the
relationship with the substitution matrices. Also, an amino acid
index was proposed to maximize its relationship to structural
properties form a Machine Learning approach [15]

Venkatarajan and Brown [16] have represented the animo
acids in a high dimensional space of 237 properties, and
by using Principal Component Analysis(PCA) have used
multidimensional scaling to generate linear mapping. Their
conclusion is that five-dimensional property space can be
constructed such that the amino acids are in a similar spatial
distribution to that in the original high-dimensional property
space, since the distances computed for pairs of amino acids
in the five-dimensional property space are highly correlated
with corresponding scores from similarity matrices

The converse approach to map the characteristic based
multidimensional representation of amino acids is to map the
evolutionary distance of amino acid. There are previous works
in mapping substitutions matrices in virtual spaces from the
Pattern Matching perspective in information retrieval[17]. An
amino acid distance can be obtained from the Information
Theory by mining the knowledge about the dimensionality of
substitution matrices. The proposed distance is a evolutionary
distance between amino acids; it is related to a biological
environment, as general/local as the substitution matrix itself.
The mapping of this distance in a multidimensional space
provides knowledge about the intrinsic dimensionality of this
information. However, the distance used by some autors[18]
is heuristic. The main goal of this paper is to propose an well
found distance based on the Information Theory and also an
attempt to identify the meaning of some coordinates provided
by the nonlinear mapping.

The remainder of this paper is organized in sections cov-
ering the methods, results and discussion. In the methods
section, the concept of distance entropy is used to generate
an amino acid distance based on the Information Theory.
The results and discussion sections discuss about the meaning
of some mapping coordinates. The virtual coordinates are
meaning-less, but some information about their semantic can
be discovered by obtaining correlations between individual
coordinates with physical-chemical and structural properties.

II. METHODS

The methodology developed to study the intrinsic dimen-
sionality of substitutions matrices is based on the use of an
entropy distance among amino acids and its multidimensional
scaling into a virtual space. Although the analytical expression

of this distance is very simple and heuristically inferible, it
can be obtained from the sound theoretical framework of
information theory.

Protein sequences can be formally represented as random
distributions of symbols contained in the set A of amino acid.
Let qab be the probability distribution on the A×A alphabet of
the alignment of pairs of homologous sequences in a defined
biological framework. Let pa be the probability distribution on
the projection of the pairwise distribution: A×A → A. This
projection destroys the information about the probabilities of
pair (a, b), so that the probability qab cannot be recovered
from pa. The choice of the set of homologous sequences used
to compute the distribution qab defines the biological context
for the computation of alignments. Different biological envi-
ronments are possible, as defined in the different BLOSUM or
PAM matrices. The product value papb 6= qab is the probability
of a pair taken from two independent random sequences, while
qab is the probability among related sequences, thus it contains
the information about these relations. The mutual information,
I(A,B), between two sequences A and B is defined as [19],
[20]:

I(A,B) = H(A) + H(B)−H(A,B) (1)

where H(A,B) is the entropy of A×A. Both, H(A) and
H(B) are the entropy of random sequences with the same
probability distribution, consequently they become identical
to the entropy of A. The mutual information is computed as:

I(A,B) =
∑

ab

qab log
qab

papb
(2)

This expression also can be interpreted as the relative
entropy – or Kullback-Leibler distance– between distributions
qab of related pairs and papb of independent pairs. A goal of
alignment statistics is to define useful tables that capture the
biological significance of a set of related sequences. A substi-
tution matrix s(a, b) is introduced as the log-odds between the
relationship probability qab and the independent probability
papb, so that the mutual information becomes the expected
value of this matrix: I(A,B) = E[s(a, b)] =

∑
ab qabs(a, b).

The substitution matrix is the additional information needed
to relate both probabilities. Thus, it can be interpreted as the
information lost in the projection A×A → A, such as[7]:

qab = papbe
λs(a,b) (3)

where λ is introduced according to the base of the logarithm.
Similarly to the the mutual information between sequence
distributions, the distance entropy between two distributions
is defined as[21]:

D(A,B) = H(A, B)− I(B, A) (4)

which is related to the no common or uncorrelated prop-
erties of both distributions –denoting difference– while the
mutual information is related to the common properties and
denotes similarity. This distance entropy function is a metric;
it verifies the basic properties of a distance: the symmetrical
property: D(A,B) = D(B,A), it has a null lower bound:



D(A,B) ≥ 0 and also verifies that D(A,A) = 0. In
addition, it is a metric because it verifies the triangular,
D(A,B)+D(B, C) ≥ D(A, C), and the if-only-if properties,
D(A,B) = 0 ↔ A ≡ B. The distance entropy can be
computed from the distributions probability as a kind of
relative entropy:

D(A,B) =
∑

ab

qab log
papb

q2
ab

(5)

This paper proposes that this distance can be considered as
the expectation of the entropy distance between amino acids
D(a, b) such as: D(A, B) = E[D(a, b)] =

∑
ab qabD(a, b). It

can be expressed as:

D(a, b) =
1
2
[D(a, a) + D(b, b)] + d(a, b) (6)

with the inclusion of an auxiliary distance d(a, b) defined
as: d(a, b) = s(a, a)+s(b, b)−2s(a, b), and where D(a, a) =
2 log pa/qaa. It is verified that pa ≥ qaa, thus D(a, a) ≥ 0.
The substitution matrix s(a, b) is not a ”perfect” similarity
value: s(a, a) 6= s(b, b). Similarly, D(a, b) is not a distance:
D(a, a) 6= D(b, b). However, the auxiliary distance d(a, b) has
the properties of a distance matrix:

d(a, b) = d(b, a) d(a, b) ≥ 0 d(a, a) = 0 (7)

but it is not a metric in the general case. The verification of
the if-only-if and triangular properties depends on the s(a, b)
values. E.g. the if-only-if metric property which requires that:
d(a, b) = 0 ↔ a = b greatly depends on whether the
inequality s(a, b) ≤ s(a, a) can be transformed to the most
restrictive condition: s(a, b) < s(a, a).

The matrix d(a, b), which is an evolutionary distance, has
an advantage over other approaches in that it can be directly
computed from the substitution matrix. However, this is not
a general purpose distance between amino acids but it is an
evolutionary distance in a defined biological environment, as
general or as specific as the substitution matrix from which it
is obtained.

This distance is a dimensionless concept. However, the
possibility of a dimensional representation is considered.
Moreover, it is used to make inferences about the intrinsic
dimensionality, this possibility can be useful for many machine
learning and data mining procedures that are mainly oriented
to coordinate based representation. A distance matrix between
amino acids is a dimensionless relationship, nothing relates it
with a multidimensional coordinates system. By using nonlin-
ear multidimensional scaling procedures, these dimensionless
relationship were mapped into a virtual coordinate system[18].
The nonlinear mapping procedure[22] is based o the minimiza-
tion of an error function between the amino acid distances
d(a, b) and their distances in a dimensional representation
δ(a, b) = ||Xa − Xb||, where Xa ∈ Rn are the coordinates
of an amino acid. This error function, G(X, n), depends on
the coordinates, X, and the dimensionality, n. An genetic
algorithm generates the optimal solutions for each n and the
minimal value of G∗(n) is shown in Figure 1. The coordinates

X ∈ Rn were modified to generate the Y ∈ Zn ones, such as
δ(a, b) = ρ||Ya−Yb||. This integer coordinates can be useful
to implement advanced linear Pattern Matching procedures
to provide fast sequence alignments. Table I contains these
coordinates for BLOSUM 62 substitution matrix and different
dimensions.

A quantitative analysis of the tentative semantics of map-
ping coordinates can be achieved by using the linear regression
of some characteristic with the coordinate values. A linear
model of the characteristic Q in the n dimensional space of
Y coordinates can be obtained by the expression:

Q = Q +
n∑

i=1

Ai(Yi − Y i) (8)

where Q = E[Q] is the mean of the characteristic, and
Y i = E[Yi]. The vector A can be computed as: A =
Σ(Y,Y)−1Σ(Q,Y), where Σ(Y,Y)−1 is the inverse ma-
trix of Σ(Y,Y) the covariance of the coordinates defined
as: Σ(Y,Y)ij = E[(Yi − Y i)(Yj − Y j)] and Σ(Q,Y) is
the covariance matrix between the characteristic Q and the
coordinates: Σ(Q,Y)i = E[(Q−Q)(Yi − Y i)]

The correlation coefficient of this multidimensional regres-
sion is computed as:

RQ,Y =

√
Σ(Q,Y)T Σ(Y,Y)−1Σ(q,Y)

Σ(Q,Q)
(9)

This coefficient is independent of rotations in the coordinate
axes. The correlation coefficients between the characteristic
and individual coordinates, which are dependent on rotations,
are computed as:

RQ,Yi =
Σ(Q,Yi)√

Σ(Yi, Yi)Σ(Q,Q)
(10)

III. RESULTS

The methodology proposed in this paper can be applied to
any substitution matrix. As an illustration, experimental results
are generated for a test case: the BLOSUM 62 substitution
matrix. Figure 1 shows the graphical representation of the
optimal value G∗ of the goal function vs the dimensionality
n. Fast convergence with monotonic decreasing in the goal
function is obtained. As the dimensionality increases, a high
decreasing of the marginal relevance is obtained. Therefore,
after some small dimensionality values, little additional gain
can be obtained with additional dimensions. This could be
interpreted as most of the information contained in the substi-
tution matrix is related with a few orthogonal –independent–
factors.

The general formulation of the data mining and pattern
analysis problem to be solved in order to discover the meaning
of virtual coordinates is as follows: how to relate the virtual
coordinates Xi(a) or Yi(a) obtained from the mapping of the
distance d(a, b) to a set of characteristic Qj(a) with previous
semantic, which are, in general, not orthogonal. This is an
open problem, therefore, rather than provide a solution for
this general problem, this paper analyses some clues about the



TABLE I
THE Y COORDINATES FROM 1 TO 5 DIMENSIONS FOR BLOSUM 62.

n 1 2 3 4 5
aa Y1 Y1 Y2 Y1 Y2 Y3 Y1 Y2 Y3 Y4 Y1 Y2 Y3 Y4 Y5

A 140 111 84 148 142 97 102 105 63 116 102 50 67 207 45
R 180 69 175 21 48 115 72 2 162 96 200 45 15 202 156
N 203 3 134 74 166 199 42 95 174 47 235 40 72 136 64
D 216 0 80 45 212 139 64 114 100 0 184 147 92 97 43
C 31 220 37 229 160 0 95 44 26 251 39 34 255 225 54
Q 164 65 131 52 93 154 134 44 149 51 178 127 85 181 158
E 190 31 112 24 138 144 104 56 123 22 190 136 62 138 123
G 228 31 34 166 209 170 0 160 92 99 127 8 7 113 0
H 239 35 219 38 61 239 115 103 252 63 187 26 47 47 181
I 97 173 99 174 57 68 182 102 95 155 40 20 86 242 126
L 89 171 125 148 30 59 170 76 116 175 41 70 92 241 144
K 173 53 153 24 92 90 89 0 120 73 173 106 0 209 117
M 115 142 137 108 34 62 162 44 142 157 87 65 88 241 180
F 59 177 181 176 1 148 150 169 158 187 12 24 65 127 184
P 255 87 0 0 156 18 129 73 0 31 86 199 65 205 16
S 154 74 99 103 149 119 59 88 103 97 147 66 94 164 59
T 131 107 57 103 139 47 63 57 83 146 171 39 137 228 86
W 0 200 255 238 22 255 38 128 241 255 0 86 170 0 180
Y 71 133 213 127 0 193 139 165 207 140 78 0 103 101 215
V 105 158 90 166 78 65 178 96 89 133 62 10 84 248 115
ρ 0.144 0.113 0.088 0.089 0.075

1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

n

G
(n

)

Blosum 30−90,62,100

Fig. 1. Optimal goal value G∗(n) for BLOSUM matrices from 30 to 90,
62 and 100.

relationship with previously established relevant characteristics
such as hydrophobicity, volume, solvent accessibility and
secondary structure propensity.

Firstly, as an illustrative contribution on the discovery
of some semantic in the virtual coordinates, a high spatial
organization of the amino acid groups can be found in the
results provided. Amino acids can be grouped according to
their physical-chemical properties. Some groups –aliphatic or
aromatic– are related to the chemical structure; others –tiny or
small– are grouped by molecular size; the polar and charged
groups are related to the electric activity, and hydrophobic
group is related to their affinity with water. It has been shown
[23] that the amino acid groups have a high level of spatial
organization when they are mapped in a two dimensional
space obtained from the reduction of the whole AAindex
database [13] to two index according to their correlations. On

Fig. 2. Spatial representation for n = 2 of the mapping for BLOSUM 62
of some amino acid and their groups.

that line, but from a different approach, Figure 2 shows the
two dimensional mapping of the amino acids using the Y
coordinates obtained from Table I.

The small group –with the exception of N amino acid– is
mapped at the bottom of the map. It forms a regular convex
region at low Y2 coordinate and extends along the whole range
of Y1 one. A subsequent quantitative analysis based on corre-
lations will show that the Y2 coordinate has a high correlation
level with physical amino acid dimensions; relationship that is
qualitatively suggested by Figure 2. The aromatic group –VIL–
comprises a well defined cluster included within the strong
hydrophobic group –WFYMVIL– located at higher values of
the Y1 coordinate. The opposite groups –charged– have the
lowest values in this coordinate. Also as in amino acid size in



relation to Y2, it is shown that the Y1 coordinate has a high
correlation with hydrophobicity.

The hydrophobic –or its opposite hydrophilic– property of
amino acids is fundamental in the dynamics and structure of
proteins[24]. Due to that the biological matter is basically
an aqueous solution, the water affinity is essential in the
relation of a protein with its environment. The mutations with
significant changes in the water affinity have a high probability
of generating disfunctions, and consequently they have a low
survival probability, therefore, there are lost in the evolution
process. There are many hydrophobicity scales for amino
acid residues in proteins [25], [26], [27], [28]. Every scale
is obtained from different experimental measurement criteria,
but all are qualitatively related to the hydrophobicity property.

Some characteristics are used for a tentative analysis to dis-
cover the meaning of some virtual coordinates. Hydrophobic
scales,such as Levitt, Hl, Kyte-Doolittle, Hkd, and Karplus,
Hk are considered. Size related characteristics, such as amino
acid volume [29], V , and active surface [30], S, are used,
as well as secondary structure properties, such as the clas-
sical Chou-Fasman parameters for α-helix, β-sheet and turn
propensity[31], Acf ,Bcf ,Tcf . One advantage of the Chou-
Fasman propensity scales is that they are averaged over all
possible environments[32]. Additional scales[33], [34], [35],
Ab,Bkb,Tm, contained in the AAindex database are also in-
cluded. Three scales,L1, L2, L3, of solvent accessibility de-
rived from Bordo-Argos[36] are included. To avoid problems
related to the different scale magnitudes, a normalization is
performed as: Q′i = (Qi − Qi)/σi, where Qi is the mean
value and σi is the standard deviation of Qi.

Ideally, a good set must contain low correlation values for
characteristics of different meaning and high values for those
with the same semantic. In practice, this is far from being
achieved. Table II shows the correlation coefficient between
these characteristics.

Table III shows the correlation coefficient Rq,Y among char-
acteristics and mapping coordinates for a dimensionality of
from 1 to 3. Also, the correlations with individual coordinates
Rq,Yi are included for n = 2. For a dimensionality of from
1 to 3, the more significant characteristics are emphasized.
The procedure to interpret this Table is as follows: for each
dimensionality n, the n characteristics with highest correlation
values but with lowest correlation values between themselves
must be selected. This can be a difficult task depending on the
correlation values between characteristics.

For n = 1 the Monne et al. turn propensity (MTP) is the
most significant, but is little different from the Chou-Fasma
sheet propensity. For n = 2 volume has the highest correlation
value(0.894). The next characteristic is surface(0.866), but this
characteristic is strongly correlated (0.953) with volume, both
are size related characteristics. Instead of surface the next
selected characteristic is KDH which is independent(0.047) of
volume. KDH and volume are the most correlated with map-
ping coordinates with the lowest inter-correlation. This means
that they can be identified with the two virtual coordinates
for this mapping. As qualitatively suggested previously in the

graphical representation of two dimensional mapping, there
is a high correlation value(0.786) between KDH and the Y1

coordinate, while the volume is better correlated (0.817) with
the Y2 coordinate. This is in line with the relevance of both
KDH and volume in substitution matrices.

In general, coordinate rotations can be used to maximize the
correlation coefficient between any coordinate of the rotated
space and any desired characteristic. This enables coordinate
axes with well defined semantic meaning to be obtained.
However, the complexity can explode at higher dimensions
because many simultaneous –or sequenced– rotations are
required for different alignments of each coordinate. Also in
high dimensions, complex rotation matrices are required.

For n = 3 the L1 solvent accessibility scale of Bordo-
Argos is the most relevant. The next characteristic in order of
relevance is the scale L3 also of the solvent accessibility kind,
but both are strongly correlated(-0.945); therefore, next one
must be selected. In this case, it is volume and the following
one is KDH. Therefore, solvent accessibility, volume and KDH
seem to be the three main characteristics but, unfortunately
KHD and L1 scale are also strongly correlated (0.881).

These illustrates the difficulty of characteristic oriented
analysis. A PCA procedure is used to facilitate this task. This
provides a set of lineal combination of characteristics that
are orthogonal. It requires the eigenvalues λ to be obtained
in the equation: (A − λI)X = 0, where the matrix A is
the characteristic covariance. The eigenvectors V are also
obtained.

Table IV shows the correlation values for every dimen-
sionality with the eigenvectors. The procedure to analyze the
results is that described previously. In this case, the problem
related to the correlations between characteristics is avoided
because they are orthogonal. The procedure becomes simple
because the eigenvector V1 is the most relevant in all cases. It
is followed by the V2, and then V6 and finally is V10 up to the
n = 4 dimensionality. The analysis for higher dimensionalities
is irrelevant, as concluded from the inference of the intrinsic
dimensionality.

Two conclusions can be obtained. The first is that the most
important eigenvectors are V1 and V2 with high correlation
values in all cases. The V6 eigenvector is relevant, but not
excessively. Also, the V10 eigenvector is weak, its correla-
tion value(0.531) is low. The second conclusion is that the
eigenvalues are not important at all, but the decreasing order
in eigenvalues is related to the decreasing order in relevance
among eigenvectors and the substitution matrix. To obtain
useful results, it is necessary to interpret the eigenvectors.
Table V shows the weights that define how to compute each of
the main eigenvectors from the normalized characteristics. A
simple analysis reveals that the main weight in the V1 vector
is the Levitt scale, but due to the negative sign (-0.729) the
eigenvector is proportional to hydrophobicity rather than to
the hydrophilicity of the Levitt scale. The highest weight in
the V2 vector are related to turn propensity while for V6 are
in sheet propensity. Finally, one vector V10 is low relevant
but is mainly related to hydrophobicity –hydrophilicity to be



TABLE II
CORRELATION COEFFICIENT BETWEEN CHARACTERISTICS.

Hkd Hk V S Acf Ab Bcf Bkb Tcf Tm L1 L2 L3

Hl -0.679 -0.577 -0.325 -0.127 0.130 0.083 -0.701 0.257 0.481 0.685 -0.725 -0.333 0.748
Hkd 1.000 0.511 0.047 -0.218 0.159 0.160 0.666 -0.305 -0.642 -0.842 0.881 0.421 -0.915
Hk 1.000 0.726 0.528 0.353 0.043 0.584 -0.463 -0.703 -0.465 0.416 0.192 -0.430
V 1.000 0.953 0.346 0.302 0.519 -0.670 -0.588 -0.177 0.092 0.017 -0.087
S 1.000 0.319 0.256 0.319 -0.615 -0.419 0.054 -0.148 -0.074 0.155

Acf 1.000 0.526 -0.006 -0.398 -0.659 -0.172 -0.010 0.229 -0.068
Ab 1.000 0.386 -0.513 -0.539 -0.366 0.165 0.182 -0.206
Bcf 1.000 -0.611 -0.683 -0.697 0.683 0.215 -0.672
Bkb 1.000 0.679 0.448 -0.216 -0.110 0.226
Tcf 1.000 0.633 -0.575 -0.328 0.614
Tm 1.000 -0.733 -0.447 0.793
L1 1.000 0.198 -0.945
L2 1.000 -0.509

TABLE III
MULTIDIMENSIONAL REGRESSION OF THE CHARACTERISTIC SET VS THE DIMENSIONALITY.

n Hl Hkd Hk V S Acf Ab Bcf Bkb Tcf Tm L1 L2 L3

1 0.624 0.606 0.489 0.549 0.382 0.189 0.447 0.761 0.618 0.683 0.787 0.675 0.181 0.654

2 0.750 0.846 0.713 0.894 0.866 0.318 0.509 0.800 0.682 0.783 0.812 0.814 0.300 0.815
Y1 -0.745 0.786 0.637 0.455 0.242 0.125 0.163 0.767 -0.523 -0.724 -0.808 0.797 0.298 -0.800
Y2 -0.166 -0.221 0.390 0.817 0.853 0.305 0.498 0.313 -0.495 -0.379 -0.012 -0.073 0.010 0.061
3 0.777 0.901 0.827 0.906 0.868 0.396 0.482 0.864 0.684 0.828 0.879 0.925 0.404 0.912

precise– and solvent accessibility.
Another significant result obtained from Table III is the low

correlation values for the two α-helix propensity scales. At
high dimensionality the value increases; this means that it is
well correlated with some coordinate axes, but its marginal
relevance at high dimensionality is low according to what is
asserted above.

IV. DISCUSSIONS

The characteristic oriented analysis shows that hydropho-
bicity and volume are very relevant. The characteristic pair
of volume and Kyte-Doolittle hydrophobicity seems to be a
statistically independent set with the highest possibilities of
being the main important characteristic. The structural propen-
sity factors are also important but they are high correlated with
hydrophobicity. An orthogonal representation based on PCA
was used in characteristic dependence analysis. The result
shows that hydrophobicity is the most important, followed by
turn and sheer propensity. However, neither volume nor solvent
accessibility seem to be directly relevant. Turn regions are
mainly in the surface of proteins where they are highly exposed
to the solvent[37]. The evolution process of insertion and
deletion of amino acids is stronger in turn regions than in helix
and sheet ones, so they are more flexible in conformational
changes but are rich in hydrophilic residues[38]. Therefore,
turn propensity, hidrophiliciy and solvent accessibility are
different experimental measures that are related to the dynamic
of the protein-water and protein-protein interaction, which
globally seems to be the main factor.

The Koshi and Goldstein assertion that α-helical propensity
is poorly conserved during evolution, and also that mutations
correlate better with β-sheet than with α-helical[41] is con-
firmed. It is not an specially important factor in modeling the

effects of biological evolution at molecular level. It shows high
levels of correlation at high dimension but the correlation are
poor at low dimensions.

V. CONCLUSIONS

An amino acid distance based on the evolutionary data
contained in the substitution matrix is useful to achieve a
characteristic independent procedure to discover its intrinsic
dimensionality. The Information Theory provides a sound the-
oretical background to induce these amino acid distances. The
entropy distance defined as a relative entropy has been used
to generate a simple but theoretically well-founded distance,
which can be obtained directly from the substitution matrix
values. In addition, a tentative analysis based on multidimen-
sional linear regression model of the contribution of physical,
chemical and structural characteristics has been used to assign
possible meaning to the virtual coordinates. The analysis was
focused on some previously referenced relevant characteristics
such as hydrophobicity, amino acid size, secondary structure
propensities and solvent accessibility.
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