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Copyright © 2022 Enrique Caldeŕın–Ojeda et al.  is is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the original work is
properly cited.

Continuous advancements in biotechnology are generating new knowledge and data sources that might be of interest for the
insurance industry. A paradigmatic example of these advancements is genetic information which can reliably notify about future
appearance of certain diseases making it an element of great interest for insurers. However, this information is considered by
regulators in the highest con�dentiality level and protected from disclosure. Recent investigations have shown that the
microbiome can be correlated with several health conditions. In this paper, we examine the potential use of microbiome in-
formation as a potential tool for cardiovascular diagnosis. By using a recent dataset, we analyze the relation of some variables
associated to coronary illnesses and several components of the microbiome in the organism by using a new copula-based
multivariate regression model for compositional data in the predictor. Our �ndings show that the coabundance group associated
to Ruminococcaceae-Bi�dobacteriaceae has a negative impact on the age for nonsedentary individuals. However, one should be
cautious with this conclusion since environmental conditions also in�uence the baseline microbiome.

1. Introduction

In recent years, the advances in biomedical sciences and
biotechnology have enabled an unprecedented leap forward
in the amounts and variety of data and information available
for research and other purposes.  is has translated in new
applications and the development of new approaches such as
a personalised or precision medicine where the aim is to use
these new data and information sources (mostly related with
genetic/genomic information) for diagnostic and thera-
peutic purposes and tailoring them to individuals or groups
of patients (see Ginsburg and Phillips [1]). However, ge-
nomic information is considered in the highest level of
con�dentiality and protected from disclosure. For these
reasons, the use of genomic data sparked a debate around the
ethics and limits associated with the use of this knowledge
and information in di�erent sectors how it could be

eventually regulated. In an attempt to overcome this po-
tential limitation, in this paper, we propose to explore new
avenues and information sources and the use of microbiome
as a potential tool for disease diagnosis.

 e microbiome is de�ned as the set of microorganisms
that live inside or on the organism and its analysis has
attracted a great interest in the biomedical domain, par-
ticularly since the development of new technologies that
have facilitated and reduced the costs of accessing this in-
formation. Microbiome is an extremely dynamic element,
and it changes with time and environmental conditions and
other external factors, such as diet, geographical location, or
physical activity and even with interaction betweenmicrobes
and microbes and the host.  e advances in biotechnology
allow researchers to measure dynamic behaviors of the
microbiota at a large scale (see [2]). Recent studies have
shown that di�erences in the microbiome composition are
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correlated with an increasing number of conditions ranging
from cardiovascular diseases, autoimmune diseases, meta-
bolic diseases, or neurological disorders and mental health
aspects [3–7]. Another interesting reference linking a well-
established cohort in the biomedical domain (the Fra-
mingham Study) with changes in the microbiome for
multiple relevant health parameters such as cardiovascular
risk, metabolic syndrome, and diabetes is Walker et al. [8].
BMI and physical activity have been also studied in the
context of the microbiome finding relationships with dif-
ferent microbiome compositions [9–12]. Quite often, these
relationships have been studied under the umbrella of either
different ages or other health conditions. For a recent review
highlighting that physical activity has an impact in gut
microbiota and that physical exercise could be used to
control obesity and health (see [13]). Both BMI and physical
activity are important factors considered in insurance un-
derwriting. For example, a higher BMI was predominantly
related to blood pressure and lipids, which is consistent with
results found in the literature (see [14] or [15]). ,ere also
exists an association between obesity and higher BMI with
all-cause mortality (see [16]). Besides, BMI is connected to
increased cancer risk as was recently described by Bhaskaran
et al. [17] in a recent paper. On the other hand, microbiome
data present a singular challenge due to its inherently high-
dimensional and sparse structure. To handle the high di-
mensionality and compositional nature of the data, Wang
et al. [18] proposed a sparse microbial causal mediation
model specifically; also, Zhang et al. [19] used an isometric
log-ratio transformation of the relative abundances as the
mediator variables between treatment and outcome. A
statistical approach that enables the inclusion of all daily
activity behaviors, based on the principles of compositional
data analysis was described by Dumuid et al. [20].

In our cross-sectional analysis, using a sample of eligible
individuals with unique microorganisms across the Indian
microbiome population, due to the large number of oper-
ational taxonomic units available in the gut microbiome
across the sample, a clustering analysis to reduce the di-
mensionality of the dataset was initially carried out. ,en,
the resulting proportions of each of the groups of bacterial
coabundance are combined in compositional data predictors
that will be used to jointly explain the relationship of age,
BMI, and level of physical activity by using a new bivariate
regression model for compositional data in the predictor. In
this paper, the margins are a beta regression and mixture of
logistic regression models. As the age in years of the indi-
viduals is restricted to the interval 18–65, a beta regression
model indexed by mean and dispersion parameters is
considered. ,is regression family is useful in situations
where the dependent variable is continuous and restricted to
a bounded interval. On the other hand, regardless of the
gender and physical activity level, the empirical distribution
of BMI in humans is bimodal. ,erefore, choosing suitable
parametric models that can capture this feature is crucial; for
that reason, a mixture of logistic regression model has been
chosen due to its flexibility and simplicity.,ese margins are
linked via a t-copula. ,is is an elliptical copula that is
particularly well suited for this purpose as they not only

allow for separate modeling of the univariate marginal
distributions from the dependency structure but also for
covariate adjustment in the margins and uncertainty
quantification of their dependence estimates. In addition,
they can specify different levels of correlation between the
marginals. ,e compositional data included in the linear
predictor are rewritten as logarithms of ratios. ,en, we
perform estimation via inference for margins method to
explain the age, BMI, and level of physical activity using as
margins a beta regression and mixture of regression models.
Although copula models have been widely applied to model
the joint distributions with mixed margins, copula models
with the margins proposed in this work with compositional
data in the predictor have not been extensively studied in the
literature.

,e rest of the paper is structured as follows: in Section 2,
an examination of a human microbiome dataset is carried
out. Here, a cluster analysis to classify the proportion of the
most significant bacterial coabundance groups in the sample
is completed. Furthermore, an approach to deal with the
implementation of microbiome data as compositional data
in the predictor is presented. ,e relationship of age, body
mass index, and physical activity level with microbiome is
analyzed in Section 3. Here, we firstly consider the marginal
relation of age given a level of physical activity with
microbiome through a beta regression model. Next, we
examine the connection of BMI with the microbiome given
the level of physical activeness by using a mixture of logistics
regression model. Later, the joint relationship of these
variables is examined by using a t-copula. Finally, discussion
and extensions conclude the paper.

2. Analysis of a Human Microbiome Dataset

In our analyses we use a dataset available in Dubey et al.’s
[21] LogMPIE study. ,is dataset is freely accessible, and it
may be downloaded from the European Nucleotide Archive
(ENA) portal of the European Bioinformatics Institute
(https://www.ebi.ac.uk/ena/data/view/PRJEB25642). In this
study, as it was portrayed in the original description of the
dataset, they identify and map the Indian gut microbiome. It
was carried out in fourteen geographical locations. Indi-
viduals were uniformly selected across geographical regions
and some variables associated with changes in the structure
of microbiome such as BMI, age in years of the individual,
restricted to the interval 18–65 and level of physical activity
(sedentary-nonsedentary) and gender (male-female) were
also considered in their study design. In addition, a subject is
classified as an obese if his/her BMI is greater than 30. ,is
study recorded data from 1004 eligible individuals and re-
ported 993 unique microorganisms across the Indian
microbiome population. Unfortunately, in this dataset
neither a longitudinal analysis across time of individuals nor
changes in the composition of microbiome in old subjects
are available.

2.1. Cluster Analysis. In general, microbiome empirical
distribution includes a high proportion of zero observation
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and a truncation point mass to account for high values that
are too sparse to model; for that reason, models that gives an
accurate estimates of the true proportion of zeros have been
considered in the literature (see [22] and [23]). In addition,
given the dynamic character of the microbiome other
techniques such as functional response regression on cor-
related longitudinal microbiome sequencing data has been
recently considered in the literature [24]. In this work, in
order to facilitate further analyses and reduce the dimen-
sionality of our data set, we started carrying out a cluster
analysis. A main task of exploratory data mining, to group a
set of bacterial coabundance collections in such a way that
objects in the same group or cluster are more similar to each
other than to those in other clusters. We performed our
clustering based on the coabundance of genus-like groups at
a taxonomic level of species within a sample of 1004 subjects.
A total of 993 bacterial genera were identified. ,e core
microbiota analysis was completed by using theHierarchical
Ordered Partitioning and Collapsing Hybrid (HOPACH)
package in R that can be downloaded from the Bioconductor
website http://www.bioconductor.org/. ,is package in-
cludes the HOPACH clustering algorithm that assembles a
hierarchical tree of clusters by recursively portioning the
whole dataset while ordering and collapsing clusters at each
level. In our analysis, we have discarded redgenus that
contain at least a minimum relative abundance of 30%, i.e.,
70% of zeros in the sample of 1004 individuals. ,e algo-
rithm uses the MSS (Mean/Median Split Silhouette) criteria
to identify the level of the tree with maximally homogeneous
clusters. ,e correlation distance (cor) was the metric se-
lected for clustering the microbiome species by calculating
dissimilarities between variables. We have also used a
nonparametric bootstrap to estimate the probability that
each species belongs to each cluster and to better understand
the variability of each cluster. For that reason, we employed
the “boothopach” function by taking 1000 bootstrap
resample datasets to obtain a suitable balance between
precision and speed. As a result of this, we were able to group
the microbiome in five groups containing different numbers
of genera (see supplementary tables in Table 1). ,e five
different group of bacteria (classes) identified from the
cluster analyses could be associated with different taxonomic
groups according to the most abundant or representative
genus for each of the identified clusters. Groups 1 and 4 are
the two largest groups in terms of number of taxonomic
elements. Also, as in Group 1, a majority of members comes
from the Bacteroidales-Bacteroidaceae group that represents
almost 2/3 of the species contained in this cluster (17 out of
27 members), it could be related to Bacteroidales-Bacter-
oidaceae cluster. Group 4 is associated with Lachnospiraceae
which represent almost 1/3 of the total in this group (7 out of
23 members). ,e other three groups (2, 3, and 5) were
assigned to the Ruminococcaceae-Bifidobacteriaceae group
(5 out of 19 members), Negativicutes group (4 out of 19
members), and Pasteurellaceae group (3 out of 15 members),
respectively. ,e results and relationships between the
different elements on each of the clusters are presented in
Figure 1. Here, species close to each other in the tree are
shown in a similar way. ,e ordered distance matrix shows

the clustering structure. Similar clusters appear as blocks on
the diagonal of this heatmap. Darker colours represent small
distances whereas the lighter colours represent large dis-
tances. ,e identified clusters have different sizes and
compositions, with two large coabundance clusters,
grouping the majority of the genus analyzed. It is important
to note that we have combined under the name Group 0 all
the discarded operational taxonomic units, that is, all the
species with more that 70% of zeroes in the sample.

Table 2 displays the mean, median, and standard devi-
ation for each one of the coabundance groups. It is noticeable
that the proportion of bacteria that belongs to Group 1 is
higher in average than the proportion in the other groups.
,e variability is also larger for the first coabundance group.

In Figure 2, some ternary plots for different combina-
tions of the bacterial groups are displayed. In particular we
have compared the coabundance Group 1, with Group 2
(top left), Group 3 (top right), Group 4 (bottom left), and
Group 5 (bottom right). In order to ensure that the total sum
is one, we have combined the coabundance proportion for
the rest of the groups in each graph as Others. Group 1 is
always located at the top of each triangle. ,e proportion of
coabundance of Group 1 is measured in terms of the hor-
izontal lines, i.e., 0% of coabundance is measured in terms of
base of the triangle (farthest from the vertex Group 1). In the
lower left apex of each triangle is represented the groups
compared to Group 1. ,e right side of the triangle now
becomes the baseline for the percentage of the groups lo-
cated in this vertex. Finally, the combined groups are located
at the lower right apex of the triangle.

,e rate of coabundance for the combined groups is
calculated from the left side of the triangle (0% abundance)
to the lower right corner (100% abundance). It is observable
that the data lie from a high amount of coabundance of
Group 1 and Group 2 with a low coabundance of third,
fourth, and fifth groups (top left graph). From the rest of the
graphs, it can be inferred that when Group 1 is compared to
the other groups, the coabundance of these groups is lower
than in the former graph. Also, as Group 2 has been included
in the lot Others, the corresponding coabundance of the
combined group is higher than in the top left graph.

2.1.1. Compositional Data Predictor. Compositional data
can be defined as arrays of strictly positive numbers for
which ratios between them are important without any
further requirement [25]. Microbiome data are composi-
tional, that is, the distance between component values is only
meaningful proportionally (see [26]). ,e elements of the
composition are non-negative and sum to unity. An im-
portant issue in microbiome data is the large presence of
zeros; however, the issue of zero values in some components
is not addressed in most papers and especially in the task of
regression. In general, in compositional research problems,
most of the basic statistical analysis tools are incorrect unless
the variables are rewritten in terms of logarithms of ratios as
proposed in the log-ratio methodology for compositional
data. After computing these log-ratios, standard regression
methods can be used since the relative character of the
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Table 1: Composition of the five clusters identified in the analysis of the Indian dataset (Dubey et al., [21]).
Group 1
Bacteroidetes-Bacteroidia-Bacteroidales-Rikenellaceae-Alistipes-onderdonkii
Bacteroidetes-Bacteroidia-Bacteroidales-Rikenellaceae-Alistipes-putredinis
Bacteroidetes-Bacteroidia-Bacteroidales-Bacteroidaceae-Bacteroides-coprocola
Bacteroidetes-Bacteroidia-Bacteroidales-Bacteroidaceae-Bacteroides-coprophilus
Bacteroidetes-Bacteroidia-Bacteroidales-Bacteroidaceae-Bacteroides-dorei
Bacteroidetes-Bacteroidia-Bacteroidales-Bacteroidaceae-Bacteroides-fragilis
Bacteroidetes-Bacteroidia-Bacteroidales-Bacteroidaceae-Bacteroides-intestinalis
Bacteroidetes-Bacteroidia-Bacteroidales-Bacteroidaceae-Bacteroides-plebeius
Bacteroidetes-Bacteroidia-Bacteroidales-Bacteroidaceae-Bacteroides-thetaiotaomicron
Bacteroidetes-Bacteroidia-Bacteroidales-Bacteroidaceae-Bacteroides-uniformis
Bacteroidetes-Bacteroidia-Bacteroidales-Bacteroidaceae-Bacteroides-vulgatus
Bacteroidetes-Bacteroidia-Bacteroidales-Bacteroidaceae-Bacteroides-xylanisolvens
Bacteroidetes-Bacteroidia-Bacteroidales-Porphyromonadaceae-Barnesiella-intestinihominis
Firmicutes-Clostridia-Clostridiales-Eubacteriaceae-Eubacterium-biforme
Firmicutes-Clostridia-Clostridiales-Eubacteriaceae-Eubacterium-ventriosum
Firmicutes-Clostridia-Clostridiales-Clostridiales-Flavonifractor-plautii
Proteobacteria-Gammaproteobacteria-Enterobacteriales-Enterobacteriaceae-Klebsiella-variicola
Firmicutes-Bacilli-Lactobacillales-Lactobacillaceae-Lactobacillus-rogosae
Firmicutes-Negativicutes-Veillonellales-Veillonellaceae-Megasphaera-sp.
Bacteroidetes-Bacteroidia-Bacteroidales-Porphyromonadaceae-Odoribacter-splanchnicus
Bacteroidetes-Bacteroidia-Bacteroidales-Porphyromonadaceae-Parabacteroides-distasonis
Bacteroidetes-Bacteroidia-Bacteroidales-Porphyromonadaceae-Parabacteroides-merdae
Bacteroidetes-Bacteroidia-Bacteroidales-Prevotellaceae-Prevotella-copri
Firmicutes-Clostridia-Clostridiales-Lachnospiraceae-Roseburia-sp.
Firmicutes-Clostridia-Clostridiales-Ruminococcaceae-Ruminococcus-bromii
Firmicutes-Clostridia-Clostridiales-Ruminococcaceae-Ruminococcus-callidus
Proteobacteria-Betaproteobacteria-Burkholderiales-Sutterellaceae-Sutterella-wadsworthensis
Group 2
Actinobacteria-Actinomycetales-Actinomycineae-Actinomycetaceae-Actinomyces-odontolyticus
Bacteroidetes-Bacteroidia-Bacteroidales-Bacteroidaceae-Bacteroides-massiliensis
Actinobacteria-Actinobacteria-Bifidobacteriales-Bifidobacteriaceae-Bifidobacterium-adolescentis
Actinobacteria-Actinobacteria-Bifidobacteriales-Bifidobacteriaceae-Bifidobacterium-bifidum
Firmicutes-Clostridia-Clostridiales-Ruminococcaceae-Blautia-luti
Firmicutes-Clostridia-Clostridiales-Ruminococcaceae-Blautia-wexlerae
Firmicutes-Clostridia-Clostridiales-Lachnospiraceae-Butyrivibrio-crossotus
Actinobacteria-Coriobacteriia-Coriobacteriales-Coriobacteriaceae-Collinsella-aerofaciens
Firmicutes-Clostridia-Clostridiales-Eubacteriaceae-Eubacterium-eligens
Firmicutes-Clostridia-Clostridiales-Ruminococcaceae-Faecalibacterium-prausnitzii
Firmicutes-Clostridia-Clostridiales-Clostridiales-Howardella-ureilytica
Proteobacteria-Gammaproteobacteria-Enterobacteriales-Enterobacteriaceae-Klebsiella-pneumoniae
Firmicutes-Negativicutes-Veillonellales-Veillonellaceae-Megasphaera-micronuciformis
Proteobacteria-Betaproteobacteria-Burkholderiales-Sutterellaceae-Parasutterella-excrementihominis
Firmicutes-Clostridia-Clostridiales-Peptostreptococcaceae-Peptostreptococcus-stomatis
Firmicutes-Negativicutes-Acidaminococcales-Acidaminococcaceae-Phascolarctobacterium-faecium
Spirochaetes-Spirochaetes-Spirochaetales-Spirochaetaceae-Treponema-succinifaciens
Firmicutes-Erysipelotrichia-Erysipelotrichales-Erysipelotrichaceae-Turicibacter-sanguinis
Lentisphaerae-Lentisphaeria-Victivallales-Victivallaceae-Victivallis-vadensis
Group 3
Proteobacteria-Alphaproteobacteria-Rhodospirillales-Acetobacteraceae-Acidiphilium-sp.
Verrucomicrobia-Verrucomicrobiae-Verrucomicrobiales-Akkermansiaceae-Akkermansia-muciniphila
Proteobacteria-Gammaproteobacteria-Aeromonadales-Succinivibrionaceae-Anaerobiospirillum-
succiniciproducens
Actinobacteria-Actinobacteria-Bifidobacteriales-Bifidobacteriaceae-Bifidobacterium-longum
Proteobacteria-Deltaproteobacteria-Desulfovibrionales-Desulfovibrionaceae-Bilophila-wadsworthia
Firmicutes-Clostridia-Clostridiales-Ruminococcaceae-Blautia-obeum
Firmicutes-Erysipelotrichia-Erysipelotrichales-Erysipelotrichaceae-Bulleidia-p-1630-c5
Firmicutes-Clostridia-Clostridiales-Lachnospiraceae-Coprococcus-catus
Proteobacteria-Deltaproteobacteria-Desulfovibrionales-Desulfovibrionaceae-Desulfovibrio-piger
Firmicutes-Negativicutes-Veillonellales-Veillonellaceae-Dialister-succinatiphilus
Firmicutes-Clostridia-Clostridiales-Eubacteriaceae-Eubacterium-siraeum
Firmicutes-Negativicutes-Veillonellales-Veillonellaceae-Megasphaera-elsdenii
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information is considered when analyzing the results, as one
group or variable can only increase in relative terms if some
other group or groups reduce. In this work we focus on the
case of compositional data being included in the predictor
variables. ,e effect of increasing one of the variables in
relative terms in the predictor therefore depends on which
other variables are decreased when this occur. In log-ratio
parlance, the effect of increasing one log-ratio is interpreted
while keeping all other log-ratios constant as the same log-
ratio may have different meaning depending on the way that
the other log-ratios in the model are assembled. ,us, the
interpretation of log-ratios as explanatory variables is usually
different from other approaches. Several different

approaches of building and interpreting the log-ratios have
been considered in the literature, often leading to the same
predictions and residuals [27]. Among the different pa-
rametrizations, in this work, we have chosen centred log-
ratios [28]. In our analysis, we consider a vector of 6-di-
mensional real space that carries information on the relative
importance of its components,

xi � xi0, xi1, . . . , xi5(  ∈ R6
+,withxij > 0,

j � 0, 1, 2, . . . , 5, 
5

j�0
xij � 1,

(1)

Table 1: Continued.
Firmicutes-Negativicutes-Selenomonadales-Selenomonadaceae-Mitsuokella-jalaludinii
Firmicutes-Negativicutes-Selenomonadales-Selenomonadaceae-Mitsuokella-multacida
Bacteroidetes-Bacteroidia-Bacteroidales-Prevotellaceae-Prevotella-stercorea
Firmicutes-Clostridia-Clostridiales-Clostridiaceae-Romboutsia-ilealis
Firmicutes-Clostridia-Clostridiales-Ruminococcaceae-Ruminiclostridium-siraeum
Actinobacteria-Coriobacteriia-Eggerthellales-Eggerthellaceae-Slackia-isoflavoniconvertens
Proteobacteria-Betaproteobacteria-Burkholderiales-Sutterellaceae-Sutterella-sp.
Group 4
Bacteroidetes-Bacteroidia-Bacteroidales-Bacteroidaceae-Bacteroides-caccae
Bacteroidetes-Bacteroidia-Bacteroidales-Bacteroidaceae-Bacteroides-ovatus
Firmicutes-Erysipelotrichia-Erysipelotrichales-Erysipelotrichaceae-Catenibacterium-mitsuokai
Firmicutes-Clostridia-Clostridiales-Clostridiaceae-Clostridium-bartlettii
Firmicutes-Clostridia-Clostridiales-Lachnospiraceae-Coprococcus-comes
Firmicutes-Clostridia-Clostridiales-Lachnospiraceae-Coprococcus-eutactus
Firmicutes-Clostridia-Clostridiales-Lachnospiraceae-Dorea-formicigenerans
Firmicutes-Clostridia-Clostridiales-Lachnospiraceae-Dorea-longicatena
Firmicutes-Clostridia-Clostridiales-Eubacteriaceae-Eubacterium-hadrum
Firmicutes-Clostridia-Clostridiales-Eubacteriaceae-Eubacterium-hallii
Firmicutes-Clostridia-Clostridiales-Eubacteriaceae-Eubacterium-ramulus
Proteobacteria-Alphaproteobacteria-Rhizobiales-Hyphomicrobiaceae-Gemmiger-formicilis
Firmicutes-Clostridia-Clostridiales-Lachnospiraceae-Lachnoclostridium-clostridioforme
Firmicutes-Clostridia-Clostridiales-Oscillospiraceae-Oscillibacter-sp.
Firmicutes-Negativicutes-Acidaminococcales-Acidaminococcaceae-Phascolarctobacterium-succinatutens
Firmicutes-Clostridia-Clostridiales-Lachnospiraceae-Roseburia-faecis
Firmicutes-Clostridia-Clostridiales-Lachnospiraceae-Roseburia-inulinivorans
Firmicutes-Clostridia-Clostridiales-Ruminococcaceae-Ruminococcus-faecis
Firmicutes-Clostridia-Clostridiales-Ruminococcaceae-Ruminococcus-gnavus
Firmicutes-Clostridia-Clostridiales-Ruminococcaceae-Ruminococcus-sp.
Firmicutes-Clostridia-Clostridiales-Ruminococcaceae-Ruminococcus-torques
Firmicutes-Negativicutes-Selenomonadales-Selenomonadaceae-Selenomonas-bovis
Proteobacteria-Betaproteobacteria-Burkholderiales-Sutterellaceae-Sutterella-stercoricanis
Group 5
Proteobacteria-Gammaproteobacteria-Pasteurellales-Pasteurellaceae-Actinobacillus-minor
Firmicutes-Clostridia-Clostridiales-Ruminococcaceae-Blautia-faecis
Firmicutes-Clostridia-Clostridiales-Ruminococcaceae-Blautia-producta
Firmicutes-Clostridia-Clostridiales-Clostridiaceae-Clostridium-disporicum
Firmicutes-Clostridia-Clostridiales-Clostridiaceae-Clostridium-perfringens
Firmicutes-Clostridia-Clostridiales-Clostridiaceae-Clostridium-sp.
Proteobacteria-Deltaproteobacteria-Desulfovibrionales-Desulfovibrionaceae-Desulfovibrio-D168
Proteobacteria-Gammaproteobacteria-Enterobacteriales-Enterobacteriaceae-Escherichia-coli
Proteobacteria-Gammaproteobacteria-Pasteurellales-Pasteurellaceae-Haemophilus-parainfluenzae
Proteobacteria-Gammaproteobacteria-Pasteurellales-Pasteurellaceae-Haemophilus-pittmaniae
Firmicutes-Bacilli-Lactobacillales-Lactobacillaceae-Lactobacillus-ruminis
Proteobacteria-Gammaproteobacteria-Pseudomonadales-Pseudomonadaceae-Pseudomonas-lini
Firmicutes-Clostridia-Clostridiales-Lachnospiraceae-Roseburia-intestinalis
Firmicutes-Clostridia-Clostridiales-Ruminococcaceae-Ruminococcus-gauvreauii
Firmicutes-Negativicutes-Veillonellales-Veillonellaceae-Veillonella-dispar
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where i � 1, . . . , 1004. Note that the explanatory variables xij

represent the proportion of the bacterial coabundance
proportion of Group j in individual i. Centred log-ratios are
calculated by using a quotient between each variable and the
geometric mean of all components (see [28]),

log2
xj

�������


5
j�0 xj

6
⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠, with j � 0, 1, 2, . . . , 5. (2)

,e fact that we are using logarithms to base 2 means
that a unit increase in this logarithm leads to a double in-
crease in the original magnitude. In order to avoid perfect
collinearity one centred log-ratio must be deleted from the
regression equation. Since all six centred log-ratios add-up
to zero, by increasing a fixed centred log-ratio while keeping
the other four remaining log-ratios in the regression
equation (with regressors βj with j � 0, 1, 2, . . . , 5) constant
implies increasing the given centred log-ratio whilst re-
ducing the omitted centred log-ratio by the same amount. In
this regard, a positive statistically significant regression βj

coefficient indicates an increasing value of the covariate xj at
the expense of decreasing the amount of the omitted
component has a significant positive effect on expected value
of the response variable. ,is is equivalent to say that in
terms of logarithm of base 2, βj is interpreted as the expected

change in the response variable when the ratio between xj

and the omitted explanatory variable is multiplied by six.
Finally, in order to obtain the estimates and their corre-
sponding p values for all possible pair combinations, the
model needs to be repeated six different times by ignoring
each time a different centred log-ratio.

3. Relation of Age, BMI, and Level of Physical
Activity with Microbiome

In this section, we firstly consider the marginal relation of
age given a level of physical activity with microbiome
through a beta regression model. Next, we examine the
connection of BMI with the microbiome given the level of
physical activeness by using a mixture of logistics regression
model. Finally, the joint relationship of these variables is
examined via a t-copula.

3.1. Relation of Age and Level of Physical Activity with
Microbiome. It is our interest to model the relationship
between the age of the subject and the proportion of each
coabundance genus-like groups at taxonomic level of species
via a beta regression model (see Ferrari and Cribari-Neto
[29]). ,is model assumes that the response variable is beta
distributed using a parametrization of the beta law that is
indexed by mean and dispersion parameters. ,is regression
family is useful for modeling rates and proportions, that is,
in situations where the dependent variable of interest is
continuous and restricted to a bounded interval (a, b) where
a and b are known scalars with a< b. ,is model is related to
other variables through a regression structure. Our goal is to
explain a continuous response variable Y1 with a<y1 < b.
,e density of Y1 is defined as follows:

f1 y1i|ωi, ϕ(  �
Γ(ϕ)(b − a)

1−ϕ

Γ ωiϕ( Γ 1 − ωi( ϕ( 

y1i − a

b − a
 

ωiϕ− 1 b − y1i

b − a
 

1−ωi( )ϕ− 1

,

(3)

with 0<ωi < 1 and ϕ> 0 with i � 1, . . . , n. ,is parametri-
zation allows us to obtain a regression structure for the mean
of the response along with a dispersion parameter ϕ. Here, n

is the sample size and E(Y1i) � ωi(b − a) + a. ,e variance
of the response variable can be easily explained in terms of its
mean by the following expression Var(Y1i) � (b − a)2

ωi(1 − ωi)/1 + ϕ.,e variance decreases with the value of the
dispersion parameter.

Let us now consider that a random variable Y1i denoting
age of the individual i in the sample is related to a com-
positional data predictor related to each one the coabun-
dance groups, xi � (1, ui1, . . . , ui5)

⊤ where (ui1, . . . , ui5) are
chosen among all combinations without repetition from the
vector (xi0/

�������


5
j�0 xj

6


, . . . , xi5/
�������


5
j�0 xj

6


)⊤ taking 5 compo-
nents at a time. ,en, by using the logit link (i.e.,
h(ωi) � logω1/1 − ωi), we have that
ωi � exp(x⊤i β)/1 + exp(x⊤i β), where β � (β0, β1, . . . , β5)

⊤ is

Figure 1: Heatmap of coabundance groups. ,is figure represents
the distance among the abundances of the different genus of
bacteria characterised in the sequencing analyses. ,e dashed lines
depict the boundaries between the five different clusters. Darker
colours represent closer distances (coabundance) between genus
whereas lighter colours displays larger distances.

Table 2: Mean, median, and standard deviation for each
coabundance group.

Coabundance group Mean Median Standard deviation
Group 1 0.5548 0.5669 0.1542
Group 2 0.1899 0.1670 0.1024
Group 3 0.0816 0.0624 0.0688
Group 4 0.0899 0.0813 0.0517
Group 5 0.0603 0.0239 0.0859
Group 0 0.0235 0.0120 0.0632
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a vector of regressors. Other choices for the link function
link functions for the response model are feasible.

We have fitted this beta regression model to this dataset
to explain the response variable Age by considering two
levels of physical activity: sedentary and nonsedentary by

assuming a � 17.5 and b � 65.5. Below in Table 3, the es-
timates and p values associated with the six predictors for
individuals classified as sedentary for each microbiome
coabundance group’s proportion obtained under the re-
gression model (1). Similarly, in Table 4 estimates and p
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Figure 2: Ternary plots associated to different coabundance groups. (a) Group1/Group 2/Other groups. (b) Group 1/Group 3/Other groups.
(c) Group 1/Group 4/Other groups. (d) Group 1/Group 5/Other groups.

Table 3: Parameter estimates (first row) and p values (second row) for the regressors associated with the six predictors for individuals
classified as sedentary. ,e response variable is age.

Predictor 1 Predictor 2 Predictor 3 Predictor 4 Predictor 5 Predictor 6

Group 1 −0.0341 — 0.1369 0.0047 −0.0050 0.0921
0.6026 — 0.1388 0.9593 0.9473 0.1262

Group 2 −0.1708 −0.1368 — −0.1313 −0.1500 −0.0448
0.0117 0.1388 — 0.0861 0.0686 0.4267

Group 3 −0.0404 −0.0064 0.1305 — −0.0076 0.0857
0.49404 0.9439 0.0880 — 0.7957 0.0956

Group 4 −0.0448 −0.0112 0.1253 −0.0046 — 0.0809
0.4992 0.9017 0.1923 0.9515 — 0.2157

Group 5 −0.1260 −0.0921 0.0446 −0.0863 −0.1023 —
0.0044 0.1261 0.4286 0.0931 0.0284 —

Group 0 — 0.0341 0.1708 0.0397 0.0145 0.1261
— 0.6025 0.0117 0.5010 0.6334 0.0044

Intercept −0.1209 −0.1210 −0.1214 −0.1178 −0.1088 −0.1210
0.5175 0.5173 0.5157 0.5285 0.5659 0.5173

ϕ 2.9797 2.9795 2.9796 2.9789 2.9807 2.9795
<0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

AIC 3481.07 3481.07 3481.07 3481.07 3480.86 3481.07
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values results for each predictor are shown for nonsedentary
subjects. From these tables, it is discernible that for the first
predictor the regressor associated to Group 5 for sedentary
individuals is statistically significant at the 5% level whereas
it is not for nonsedentary subjects. Its value, −0.1260, is
interpreted as the decrease in the covariate x5 (i.e., Pas-
teurellaceae) at the expense of increasing the amount of x0
has a significant negative effect on h(ωi) while keeping the
remaining four log-ratios in the equation constant. In a
similar fashion for the third predictor for the nonsedentary
subjects the explanatory variables, x1, x3, x4, and x5 are
significant at the same level while they are not for the
sedentary individuals. For all these covariates, the sign of
their regressors is positive; therefore, an increase in these
regressors at the expense of decreasing the value of x2 has a
significant effect on the transformation of the expected value
of the mean of the model. For the fourth predictor, the
regression coefficient associated to the second group is only
significant for the nonsedentary party. Similarly for the fifth
predictor, x5 is significant for the sedentary individuals
whereas the regressor associated to Group 2, i.e., Rumino-
coccaceae-Bifidobacteriaceae is significant for the non-
sedentary individuals. Similar situation is also verified for
the sixth predictor. On the other hand, for the sedentary
subjects, the variable x0 is a positive significant variable.

In Figure 3, we have plotted the histograms of the
empirical distribution of the response variable Age for the
nonsedentary (top left panel) and sedentary (bottom left
panel) subjects. For both histograms, we have superimposed
the probability density function of the beta distribution. It is
observable that this distribution provides a better fit to
empirical data for the nonsedentary group than for the
sedentary party. Furthermore, we have performed a diag-
nostic analysis to check the goodness-of-fit of the estimated
model by providing a global measure of explained variation
and graphical tools based on QQ-plots, to detect departures
from the given model and influential observations. Residuals
are used to check the appropriateness of a chosen model and

to identify outliers. For that reason, randomized quantile
residuals (Dunn and Smyth [30]) are used since other type of
residuals, i.e., Pearson’s and deviance residuals are far from
normality when the parameters of the model are known and
they fail to provide useful information of the inadequacy of
the model. ,e ith randomized quantile residuals for a dis-
crete response variable is defined as rq,i

� Φ−1(F(y1i; ωi,
ϕ))

where Φ−1(·) is the quantile function of the standard normal
distribution and F(y1i; ωi,

ϕ) is the cumulative distribution
function associated to the beta regression model evaluated at
the estimated parameters for i � 1, . . . , n. In the right panels
of Figure 3, the QQ-plots of the randomized quantile re-
siduals of the beta regression models when the predictor 1 is
considered for the nonsedentary (top right) and sedentary
(bottom right) subjects. Each dot on the plots represents an
empirical residual. A perfect alignment with the 45° line
implies that the residuals are normally distributed. In general,
it is observable that the residuals for the nonsedentary group
adhere closer to the line in the whole distribution.

3.2. Relation of BMI and Level of Physical Activity with
Microbiome. Regardless of the gender, the empirical distri-
bution of BMI in humans is bimodal. ,en, finding appro-
priate statistical models that have the capacity to explain
bimodal datasets is an issue of vital importance. In this work,
we use a mixture of two logistic distributions with different
locations and scale parameters.Wehave chosen this family for
its flexibility and simplicity. It is nowour interest to explain the
BMI in the population in terms of a random variable Y2 ∈ R.
,e probability density function of this random variable is

f2 y2i|wi, μ1, σ1, μ2, σ2(  �
wi

4σ1
sech2

y2i − μ1
2σ1

 , (4)

+
1 − wi

4σ2
sech2

y2i − μ2
2σ2

 , (5)

Table 4: Parameter estimates (first row) and p values (second row) for the regressors associated with the six predictors for individuals
classified as nonsedentary. ,e response variable is age.

Predictor 1 Predictor 2 Predictor 3 Predictor 4 Predictor 5 Predictor 6

Group 1 −0.0465 — 0.1209 −0.0105 −0.0745 0.0159
0.4022 — 0.0283 0.8851 0.3583 0.7459

Group 2 −0.1673 −0.1209 — −0.1328 −0.1954 −0.1052
0.0063 0.1151 — 0.0461 0.0344 0.0459

Group 3 −0.0358 0.0108 0.1318 — −0.0637 0.0265
0.4957 0.8814 0.0477 — 0.4014 0.5497

Group 4 0.0277 0.0745 0.1954 0.0641 — 0.0899
0.6623 0.3583 0.0344 0.3983 — 0.1771

Group 5 −0.0623 −0.0157 0.1052 −0.0263 −0.0902 —
0.1196 0.7484 0.0458 0.5522 0.1753 —

Group 0 — 0.0465 0.1674 0.0349 −0.0280 0.0622
— 0.4021 0.0063 0.5069 0.6589 0.1206

Intercept −0.1641 −0.1642 −0.1641 −0.1667 −0.1643 −0.1649
0.2890 0.2888 0.2892 0.2820 0.2887 0.2869

ϕ 2.9002 2.8999 2.9000 2.8981 2.8999 2.8999
<0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

AIC 4155.08 4155.08 4155.08 4155.08 4155.08 4155.08
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where μ1, μ2 ∈ R are location parameters and σ1, σ2 > 0 are
scale parameters. In thismodel, itwill alsobe assumed that the
weight parameter for each individual in the sample is again
expressed as a function of the same group of covariates,
wi � exp(x⊤i α)/1 + exp(x⊤i α), where α � (α0, α1, . . . , α5)

⊤ is
a vector of regressors. Other choices for the link function link
functions for the response model are also possible. ,is
parametrization enable us to obtain a regression structure for
the mean of the response in the following way, E(Y2i) �

wiμ1+ (1 − wi)μ2. ,e variance of the response variable is
written in terms of the following linear combination of the
scale parameters:

Var Y2i(  �
π2

3
wiσ1( 

2
+ 1 − wi( σ2( 

2
 . (6)

We have now fitted the mixture of logistics regression
model given by (5) to this dataset to explain the dependent
variable BMI by again considering two levels of physical
activity: sedentary and nonsedentary. In Table 5, the esti-
mates and p values associated with the six predictors for
individuals classified as sedentary for each microbiome
coabundance groups proportion obtained under this mix-
ture of logistics regression model (5). In a similar way, in
Table 6, estimates and p values results for each predictor are
shown for nonsedentary subjects. From these tables, it is
apparent that for the first predictor the regressor associated
toGroup 1 for sedentary individuals is statistically significant
at the 5% level whereas it is not for non-sedentary subjects.

,e estimated value is −0.3631, that it is interpreted as the
decrease in the covariate x1 (i.e., Bacteroidales-Bacter-
oidaceae) at the expense of increasing the amount of x0 has a
significant negative effect on h(ωi) while keeping the
remaining four log-ratios in the equation of the predictor
constant. Similarly, for the second predictor and the sed-
entary subjects, the explanatory variables, x0 is statistically
significant at the 10% significance level while it is not for the
nonsedentary individuals. ,e sign of this regression coef-
ficient is positive; therefore, an increase in this regressor at
the expense of decreasing the value of x1, while keeping the
other four log-ratios in the equation constant has a sig-
nificant effect on the transformation of the expected value of
the mean of the model. Finally, for predictor 3, the re-
gression coefficient associated to the first group is only
significant at the 10% significance level for the sedentary
individuals. ,e sign of this regressor is negative.

In Figure 4, we have plotted the histograms of the
empirical distribution of the response variable BMI for the
nonsedentary (top left panel) and sedentary (bottom left
panel) individuals. For both histograms, we have super-
imposed the density function of the mixture of logistics
distributions. It can be seen that this distribution is able to
reproduce the two modes of the empirical distribution for
both cohorts. Note that for the group of sedentary indi-
viduals, the second modal value located around the BMI
value of 31 is clearly more predominant. Once again, we have
plotted the QQ-plots of the randomized quantile residuals of
this mixture of logistics regression when the first predictor 1
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Figure 3: Histograms of theAge distributions and the beta density superimposed and QQplots of the randomized quantile residuals (RQRs)
for each regressionmodel by using Predictor 1. (a) Histogram of age and nonsedentary. (b) RQR of age and nonsedentary against Predictor 1
regression model. (c) Histogram of age and sedentary. (d) RQR of age and sedentary against Predictor 1 regression model.
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is considered for the nonsedentary (top right) and sedentary
(bottom right) individuals. In general, it is observable that
the residuals for the nonsedentary group adhere closer to the
line in the whole distribution but it underestimates the top
part of the distribution of residuals.

3.3. Joint Relation of Age, BMI, and Level of Physical Activity
withMicrobiome. ,e degree of association between the two
variables age and BMI in the sample for the different levels of
physical activity can be summarized in terms of some
measures of correlation for bivariate data. In Table 7,

Table 5: Parameter estimates (first row) and p values (second row) for the regressors associated with the six predictors for individuals
classified as sedentary. ,e response variable is BMI.

Predictor 1 Predictor 2 Predictor 3 Predictor 4 Predictor 5 Predictor 6

Group 1 −0.3631 — −0.5055 −0.2915 −0.1853 −0.1829
0.0492 — 0.0534 0.2393 0.4711 0.2635

Group 2 0.2200 0.3914 — 0.2154 0.3215 0.1421
0.2429 0.1217 — 0.3117 0.2173 0.3455

Group 3 −0.0267 0.2575 −0.2111 — 0.1062 −0.0071
0.8716 0.2966 0.3209 — 0.6199 0.9604

Group 4 −0.1777 0.0996 −0.3113 −0.1064 — −0.1145
0.3450 0.6939 0.2281 0.6195 — 0.5254

Group 5 −0.0527 0.2175 −0.2280 −0.0181 0.0881 —
0.6648 0.1641 0.1379 0.9004 0.6246 —

Group 0 — 0.3143 −0.1292 0.0849 0.1911 0.1057
— 0.0819 0.4838 0.6061 0.3049 0.3826

Intercept 0.3101 0.3894 0.3626 0.3633 0.3634 0.3374
0.5688 0.4873 0.4983 0.4989 0.4989 0.5406

μ1
24.4923 24.70000 24.4250 24.4537 24.4532 24.6451
<0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

μ2
31.3471 31.4683 31.3505 31.3616 31.3613 31.4405
<0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

s1
2.1269 2.1761 2.0905 2.0984 2.0984 2.1679
<0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

s2
1.6660 1.6123 1.6664 1.6643 1.6644 1.6371
<0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

AIC 2717.15 2717.25 2716.83 2716.83 2716.83 2717.54

Table 6: Parameter estimates (first row) and p values (second row) for the regressors associated with the six predictors for individuals
classified as nonsedentary. ,e response variable is BMI.

Predictor 1 Predictor 2 Predictor 3 Predictor 4 Predictor 5 Predictor 6

Group 1 0.0419 — 0.1453 0.0264 0.2168 0.0526
0.6145 — 0.4500 0.8847 0.2696 0.6742

Group 2 −0.1095 −0.1466 — −0.1185 0.0662 −0.1277
0.4624 0.4459 — 0.4661 0.7654 0.3291

Group 3 0.0164 −0.0282 0.1186 — 0.1793 0.0202
0.8980 0.8769 0.4660 — 0.3258 0.8540

Group 4 −0.1438 −0.1902 −0.0425 −0.1618 — −0.1669
0.3464 0.3322 0.8481 0.3746 — 0.2921

Group 5 0.0084 −0.0252 0.1204 0.0022 0.1827 —
0.9295 0.8366 0.3558 0.9843 0.2488 —

Group 0 — −0.0328 0.1126 −0.0056 0.1725 −0.0027
— 0.8068 0.4497 0.9650 0.2594 0.9771

Intercept 0.2075 0.2282 0.2308 0.2307 0.1902 0.1731
0.6145 0.5798 0.5754 0.5754 0.6438 0.6438

μ1
23.9065 23.8923 23.8953 23.8921 23.8906 23.8869
<0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

μ2
31.2608 31.2582 31.2606 31.2576 31.2563 31.2567
<0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

s1
1.9478 1.9444 1.9434 1.9417 1.9408 1.9418
<0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

s2
1.4769 1.4785 1.4779 1.4788 1.4790 1.4803
<0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

AIC 3264.49 3264.45 3264.45 3264.45 3264.47 3264.58

10 Mathematical Problems in Engineering



Pearson’s, Spearman’s, and Kendall’s measures of correla-
tion for these continuous random variables are displayed. It
is noticeable that there exists weak positive correlation
between these two variables. ,e degree of association is less
intense for the nonsedentary individuals.

We model the joint dependence of age and BMI for
different level of physical activity and their relationship with
the proportion of each coabundance genus-like groups at
taxonomic level of species via a t-copula with degrees of
freedom (df) parameter ]> 1 with marginal distributions

given by the beta regression model given in (1) and the
mixture of logistics distributions provided in (5).,e density
of this of this multivariate distribution is defined as

g y
i
|Θ1,Θ2,Θ3  �

Γ(] + 1/2)Γ(]/2) 1 + zΣ− 1
z
⊤
/] 

−]+2/2

Γ(] + 1/2)
2
|Σ|1/2 

2
j�1 1 + z

2
j/] 

−]+1/2

× f1 yi1|Θ1(  × f2 yi2|Θ2( ,

(7)

where y
i
: � (yi1, yi2)

⊤, Θ1 � (β, ϕ), Θ2 � (α, μ1, σ1, μ2, σ2),
and Θ3 � (],Σ). Here, Σ: � (ρij)1≤ i,j≤ 2 is a symmetric and
positive definite scatter matrix with dimension 2 × 2 with
unit diagonal entries and −1< ρij < 1, | · | denotes the de-
terminant of a matrix, and Γ(·) is the complete gamma
function. Also, z : � (z1, z2)

⊤ with zj � t−1
] (Fj(yj|Θj))

with j � 1, 2, where t−1
] (·) is the quantile function of uni-

variate t-distribution with ] df and Fj(yij|Θj) is the cdf
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Figure 4: Histograms of the BMI distributions and the mixture of logistic density superimposed and QQplots of the randomized quantile
residuals (RQR) for each regressionmodel by using Predictor 1. (a) Histogram of BMI and nonsedentary. (b) RQR of BMI and nonsedentary
against Predictor 1 regression model. (c) Histogram of BMI and sedentary. (d) RQR of BMI and sedentary against Predictor 1 regression
model.

Table 7: Pearson’s, Spearman’s, and Kendall’s measures of cor-
relation for the variables age and BMI and different levels of
physical activity.

Measure of correlation
Physical activeness level

Sedentary Nonsedentary
Pearson’s 0.2238 0.1738
Spearman’s 0.2060 0.1828
Kendall’s 0.1421 0.1242
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associated to the regression models presented above with
i � 1, . . . , n.

,e corresponding log-likelihood function, given a
sample y: � y1, . . . , y

n
is provided by

ℓ Θ1,Θ2,Θ3|y(  � ℓC Θ1,Θ2,Θ3|y(  + ℓM Θ1,Θ2|y( 

� n log Γ
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  − 2n log Γ
] + 1
2
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i�1
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i�1
log
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4σ1
sech2

y2i − μ1
2σ1

  +
1 − wi

4σ2
sech2

y2i − μ2
2σ2

  ,

(8)

where ℓC(·) and ℓM(·) are the log-likelihood functions of the
copula and marginal model, respectively. Maximum likeli-
hood estimation can be used to estimate the parameters of
expression (8) via an adaptive maximization by parts (MBP)
algorithm as described in [31], by using initial estimates
( Θ(0)

1 , Θ(0)

2 , Θ(0)

3 ) generated by inference for margins algo-
rithm. In the step k of this algorithm for k � 1, 2, . . ., we find,

Θ(k)

1 , Θ(k)

2  � argmax ℓM Θ1,Θ2|y(  + ℓC Θ1,Θ2|y, Θ(k−1)

3  ,

Θ(k)
3 � argmax ℓC Θ3|y, Θ(k)

1 , Θ(k)

2 .

(9)

,e algorithm stops when a terminating condition be-
tween two consecutive iterations is reached, i.e.,

ℓ Θ(k)

1 , Θ(k)

2 , Θ(k)

3 |y −ℓ Θ(k−1)

1 , Θ(k−1)

2 , Θ(k−1)

3 |y 

������

������1
<10−3

.

(10)

Finally, we have fitted the bivariate distribution given in
(5) to the bivariate data set. Once again, the two levels of
physical activeness have been considered. Results are shown
in Table 8 for the sedentary case and Table 9 for the non-
sedentary situation. When using the first predictor, i.e., the
omitted covariate is x0, the variable x5 and x1 are statistically
significant at the 5% level of significance for the variables age
and BMI, respectively, for sedentary individuals while they
are not for the nonsedentary group. Also, the regressor
associated with the covariates x2 and x0 for the BMI are
significant at the same level of significance for the sedentary
individuals whereas they are not for the nonsedentary group.

,e sign of these regression coefficients is negative. Con-
versely, for the third predictor and the variable Age, the
regressors for the variables x3 and x5 are positive significant
only for the nonsedentary subjects. In addition, the variable
x3 is positive significant for the variable BMI for the same
level of physical activeness. Regression coefficients associated
to x2 in the fourth and fifth predictors (omitted variables x3
and x4, respectively) are negative significant for the response
variable age. Finally, when the explanatory variable x5 is
deleted, the regressor linked to x0 is positive significant at the
5% level for the sedentary subjects and response variable Age.
Similarly, for this sixth predictor, the regressor associated to
the variable x2 for the same response variable is negative
significant for individuals classified as nonsedentary.

4. Discussion and Extensions

Although genetic information can reliably inform about the
future appearance of certain diseases and it is an element of
great interest for different stakeholders, this genomic in-
formation is considered in the highest level of confidentiality
and protected from disclosure. In this sense, in the insurance
industry, a particularity of genomic information in this
context is that it does not only provide information and
knowledge about the individual taking the insurance but also
in respect to their ancestors and descendants. As a conse-
quence of these limitations, international regulators, e.g., the
Council of Europe encourages insurers to update their ac-
tuarial bases according to relevant and new scientific
knowledge and this may open the gates to explore new
avenues and data types and information sources. As part of
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this new vision, we have examined the potential use of
microbiome information in some variables associated with
the insurance underwriting. Recent investigations have
shown that changes in the gut microbiome are associated to
certain risk of pathologies could be a potential proximal
predictor of disease onset.

Recently, in an unpublished work by using text mining
techniques in life insurance literature and microbiome re-
search, a significant overlap between certain diseases and
health conditions and other elements that are considered in
insurance underwriting. One of these elements is the body
mass index (BMI). ,is is one of the variables considered in
the standard health declaration. Traditionally, this decla-
ration is the first step in the risk assessment in health in-
surance underwriting practice. Certainly, depending on the

level of insured capital and age of the policyholder, extra
medical examination will be the obligatory required guar-
antee regardless of the outcome of the standard health
declaration. However, medical examinations are expensive,
disturbing for the applicant and time-consuming in the
underwriting process (see [32]). ,e importance of BMI is
linked to obesity that will lead to large number of chronic
diseases, and consequently increase health expenditures and
claims costs. ,erefore, an early detection of obesity is
crucial to safeguard the financial structure of the health
insurance provider. Similar conclusions can be drawn about
the early detection of cardiovascular, mental metabolic or
immune diseases. ,en, it is extremely important for the
private health insurers to monitor their policyholders’ health
status in order to reduce future claims costs.

Table 8: Parameter estimates (first row) and p values (second row) for the regressors associated with the six predictors for individuals
classified as sedentary (bivariate regression model).

Predictor 1 Predictor 2 Predictor 3 Predictor 4 Predictor 5 Predictor 6

Age

Group 1 −0.0051 — 0.0603 −0.0000 0.0346 0.0857
0.9316 — 0.5081 0.9997 0.6975 0.1475

Group 2 −0.1580 −0.1524 — −0.1233 −0.0983 −0.0437
0.0178 0.0944 — 0.1011 0.2985 0.4303

Group 3 −0.0462 −0.0293 0.1203 — 0.0167 0.0824
0.4265 0.7436 0.1103 — 0.8232 0.1031

Group 4 −0.0430 −0.0371 0.0880 −0.0065 — 0.0765
0.5101 0.6761 0.0116 0.0745 — 0.2339

Group 5 −0.1125 −0.1045 0.0161 −0.0825 −0.0603 —
0.0099 0.0779 0.7711 0.1027 0.3485 —

Group 0 — 0.0126 0.1463 0.0440 0.0645 0.1257
— 0.8448 0.0282 0.4480 0.3238 0.0039

Intercept −0.2183 −0.1924 −0.0095 −0.1094 −0.1543 −0.1174
0.2361 0.2958 0.9587 0.5517 0.4014 0.5226

ϕ 3.1241 3.1261 3.1143 3.1354 3.1258 3.1411
<0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

BMI

Group 1 −0.3887 — −0.4573 −0.2960 −0.1711 −0.2530
0.0292 — 0.0642 0.2154 0.4850 0.1132

Group 2 0.1077 0.4876 — 0.1827 0.3142 0.2227
0.5429 0.0500 — 0.3680 0.2120 0.1314

Group 3 −0.0647 0.3060 −0.1777 — 0.1355 0.0421
0.6835 0.2018 0.3813 — 0.5090 0.7622

Group 4 −0.2022 0.1727 −0.3104 −0.1363 — −0.0920
0.2598 0.4813 0.2169 0.5057 — 0.5961

Group 5 −0.1169 0.2616 −0.2148 −0.0417 0.0902 —
0.3182 0.1023 0.1444 0.7640 0.6033 —

Group 0 — 0.3713 −0.1111 0.0640 0.1979 0.1079
— 0.0362 0.5286 0.6857 0.2685 0.3546

Intercept 0.4546 0.3999 0.3452 0.3700 0.3962 0.3764
0.3794 0.4365 0.4995 0.4692 0.4403 0.4631

μ1
24.5370 24.5337 24.5521 24.5309 24.5345 24.5355
<0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

μ2
31.4511 31.4477 31.4557 31.4509 31.4486 31.4552
<0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

s1
1.9793 1.9764 1.9786 1.9708 1.9752 1.9791
<0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

s2
1.5562 1.5576 1.5530 1.5526 1.5572 1.5599
<0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

ρ12
0.2554 0.2550 0.2571 0.2557 0.2558 0.2557
<0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

] 17.1151 17.1042 16.9295 16.8143 17.0653 16.9971
0.0050 0.0050 0.0046 0.0043 0.0049 0.0047
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,e main findings of our analysis show that the second
bacterial coabundance group associated to Ruminococca-
ceae-Bifidobacteriaceae has a significant negative effect on
the expected value of the response variable Age for the
nonsedentary individuals. ,is issue is verified not only for
the marginal model associated with the response variable age
but also for the joint regression model. Concerning the fifth
coabundance group related to Pasteurellaceae, it was ob-
served a positive impact on the expected value of age for the
sedentary individuals in the marginal model; in contrast, for
some predictors, a negative impact in the mean of the re-
sponse variable age is noticed under the bivariate regression
model. ,is fact is somehow consistent with the recent work
of Jollet et al. [33], where it is described a randomized clinical
trial that shows in two of the bacterial groups of the

Pasteurellaceae group are related to the level of physical
activity. However, the degree that this conclusion is valid is
arguable since, in general it appears that the majority of
people have a unique baseline microbiome that is influenced
by environmental conditions. ,e standard microbiome
composition is affected not only by the level of physical
activity but also for other factors such as age, diet, and
medication. In addition, we have only analyzed a single
observation of the gut microbiome per individual limited to
the age interval 18–65. It should be highly recommended to
perform a longitudinal analysis to relate microbiome in-
formation to risk mortality factors and probability of de-
veloping certain pathologies. For example, to deal with the
high proportion of zeroes in the operational taxonomic units
observed, a two part zero-inflated regression model with

Table 9: Parameter estimates (first row) and p values (second row) for the regressors associated with the six predictors for individuals
classified as nonsedentary (bivariate regression model).

Predictor 1 Predictor 2 Predictor 3 Predictor 4 Predictor 5 Predictor 6

Age

Group 1 −0.0256 — 0.1122 −0.0160 −0.0783 0.0123
0.6443 — 0.1419 0.8252 0.3330 0.8009

Group 2 −0.1632 −0.1279 — −0.1313 −0.1980 −0.1032
0.0076 0.0952 — 0.0478 0.0317 0.0493

Group 3 −0.0324 0.0075 0.1344 — −0.0650 0.0283
0.5360 0.9174 0.0425 — 0.3906 0.5205

Group 4 0.0353 0.0749 0.1917 0.0617 — 0.0913
0.5767 0.3550 0.0371 0.4146 — 0.1690

Group 5 −0.0546 −0.0205 0.1022 −0.0299 −0.0950 —
0.1714 0.6748 0.0513 0.4980 0.1527 —

Group 0 — 0.0420 0.1640 0.0323 −0.0328 0.0622
— 0.4480 0.0072 0.5383 0.6037 0.1197

Intercept −0.2207 −0.1789 −0.1543 −0.1667 −0.1726 −0.1595
0.1532 0.2471 0.3170 0.2802 0.2636 0.3015

ϕ 2.9231 2.9215 2.9357 2.9269 2.9234 2.9294
<0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

BMI

Group 1 0.0183 — 0.1122 0.0182 0.1886 0.0139
0.8906 — 0.1419 0.9198 0.3338 0.9090

Group 2 −0.1063 −0.1419 — −0.1120 0.0545 −0.1103
0.4730 0.4582 — 0.4883 0.8052 0.3944

Group 3 0.0070 −0.0286 0.1344 — 0.1682 0.0003
0.9561 0.8746 0.0426 — 0.3537 0.9933

Group 4 −0.1635 −0.1953 −0.0549 −0.1703 — −0.1644
0.2825 0.3168 0.8036 0.3474 — 0.2959

Group 5 0.0037 −0.0281 0.1133 −0.0023 0.1680 —
0.9687 0.8168 0.3815 0.9831 0.2856 —

Group 0 — −0.0344 0.1074 −0.0067 0.1623 −0.0054
— 0.7963 0.4682 0.9576 0.2860 0.9546

Intercept 0.2518 0.2081 0.2263 0.2352 0.2327 0.2471
0.5380 0.6100 0.5790 0.5641 0.5689 0.5455

μ1
23.8809 23.8742 23.8818 23.8866 23.8793 23.8795
<0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

μ2
31.2662 31.2593 31.2647 31.2716 31.2667 31.2640
<0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

s1
1.9226 1.9203 0.9188 1.9169 1.9224 1.9238
<0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

s2
1.4653 1.4656 1.4624 1.4634 1.4665 1.4655
<0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

ρ12
0.1970 0.1968 0.1965 0.1968 0.1970 0.1967
<0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

] 114.9900 110.6990 98.4523 103.0250 110.6760 106.2180
0.5978 0.5840 0.5393 0.5879 0.5816 0.5676
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random effects could be used [26]. In this regard, the
American Gut Project (a citizen science project containing
more than 10,000 samples not only from the USA but also
from several other countries around the world including
Australia, UK, or Spain) represents an opportunity to access
microbiome data for a variety of age group. ,is source of
information together with the Human Mortality Database
available in https://www.mortality.org could be used to
analyze how changes in the gut microbiome are related to
human longevity in different countries.

Data Availability

In our analyses, we use a dataset available in Dubey et al.’s
[21] LogMPIE study. ,is dataset is freely accessible, and it
may be downloaded from the European Nucleotide Archive
(ENA) portal of the European Bioinformatics Institute
(https://www.ebi.ac.uk/ena/data/view/PRJEB25642). Data-
sets are also included in the submission (Abundance.txt and
Metadata.txt).
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