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Abstract. Systems for monitoring of Parkinson’s disease (PD) patients, able to complement clinical 

assessment, are needed. These solutions should be objective, based on technology that captures physical 

characteristics of the pathology, and capable of providing frequent measures conducted both on-site and 

remotely. Since one of the most typical clinical hallmarks of PD is handwriting deterioration, we devised an 

innovative smart ink pen for quantitative and reliable handwriting monitoring, without altering the natural 

writing conditions. 30 PD patients and 30 age-matched controls performed two unconstrained writing tasks 

(free text and grocery list) with the smart ink pen. A series of 47 writing and tremor indicators were computed 

and used to classify patients from age-matched controls. Catboost and Logistic Regression classifiers were 

used, and the SHAP model explanation technique was applied to explore the contribution of the features in the 

classification. Very good performances were obtained through the Catboost classifier when combining features 

extracted from both tasks (Accuracy: 93%, Precision: 96%, Recall: 90%; F1: 93%; AUC: 98.9%). We achieved 

a classification performance in line with previous work, with two main advantages: writing data acquisition 

through an ink pen used on common paper, and proposition of an unconstrained protocol mimicking daily-life 

writing. 

 
1. Introduction  
Parkinson’s disease is the second most common neurodegenerative disease. It affects 7 million people and cases 

are expected to double in the next 20 years (Dorsey et al., 2018). In its most typical phenotype,  PD cardinal motor 

symptoms are tremor at rest, bradykinesia, rigidity, and postural instability (Jankovic, 2008). As first observed by 

J. Parkinson (Parkinson, 1817), when motor symptoms affect the dominant limb, patients may report worsening 

of handwriting as one of the initial signs. Furthermore, changes in handwriting, such as writing akinesia, may even 

precede the appearance of gait akinesia. Thus, handwriting analysis might be a critical tool in PD monitoring. 
Today, disease assessment is mainly clinical, inferential, and based on rating scales. In addition, pen-and-

paper handwriting examinations are commonly performed during clinical assessments (Alty & al., 2017). 

Notwithstanding the importance of clinical judgement, this approach suffers some limitations since it is subjective, 

dependent on patients’ memories, and infrequent, providing only a snapshot of the patient’s condition (AlMahadin 

et al., 2020). These aspects explain the importance of developing support systems for the monitoring of PD patients 

able to complement the clinical assessment. In turn, these tools should be objective, and capable of providing 

frequent measures conducted both on-site and remotely. Against this background, the use of technologies such as 

digitizers and tablets has been introduced to objectively study handwriting characteristics, thus enriching the 

qualitative clinical examination based on the classic pen-and-paper approach. The use of such technology has 

made possible the quantitative study of pressure and kinematic features of the writing tasks, resulting in a surge of 

research work successfully investigating graphomotor impairment in patients with PD (Drotár &  al., 2015, 2016). 

However, some limitations hampered their adoption both at clinical premises and remotely at the patient’s 

home. These limits include the undermined naturalness of the writing gesture performed on the small and 

frictionless surface of a tablet. Moreover, its use may not be straightforward - particularly when dealing with 

patients and elder users - often requiring technical support of an operator. To combine the advantages of the 

digitizer technology with the natural “feel” and simplicity of the traditional pen-and-paper approach, we devised 

a novel smart ink pen instrumented with force and motion sensors (Lunardini & al., 2021). The smart ink pen was 
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designed to achieve quantitative and reliable monitoring without altering the natural writing conditions. For this 

reason, it completely replaces a daily-life object: i) it looks like a common pen; ii) allows writing on plain paper; 

iii) activation is automated upon use; iv) no supervision is required. These factors are key to facilitate its adoption 

both in clinical practice - where ease and speed are essential for the strict time constraints - and in home monitoring 

- where transparency and intuitiveness are crucial for technology acceptance. To adapt to both scenarios, the data 

analysis software is implemented to analyse standard writing tests performed during clinical assessment, like 

Archimedes’ Spiral (Toffoli et al., 2021), and free handwriting typically executed during daily-life.  

In this work, 30 PD patients and 30 age-matched healthy subjects performed two types of free writing tasks 

with the smart ink pen. From the raw data, a series of handwriting and tremor indicators were computed and used 

to classify patients (class 1) from age-matched controls (class 0).  

 
2. Materials and Methods 
2.1 The Smart Ink Pen 

Tasks were performed using the smart ink pen (Lunardini & al., 2021). The signals (3D acceleration, 3D angular 

velocity, force) are sampled at 50Hz, saved on the pen on-board memory, and downloaded offline for analysis. 

 

2.2 Participants and Protocol 

Patients affected by PD and age-matched healthy subjects were included in the study, after the signing of an 

informed consent. Patients were recruited and evaluated (Unified Parkinson’s Disease Rating Scale (UPDRS) and 

Mini Mental State Examination (MMSE)) by the IRCCS Istituti Clinici Scientifici (ICS) Maugeri (Milan, Italy). 

Exclusion criteria: MMSE < 24; presence of disorder (other than PD) affecting handwriting skills. Politecnico di 

Milano (Milan, Italy) enrolled the control group. The same exclusion criterium for MMSE was considered, coupled 

with the absence of diseases. The protocol, approved by the Ethical Boards (2457 CE  06/07/2020 ICS Maugeri; 

n. 10/2018 Politecnico di Milano), consisted in writing a 7-element grocery list and a 6-line free text on a sheet of 

paper, with the dominant hand. The content was left free to the subject, to resemble daily handwriting one can 

perform in the home setting. Being this the first work employing the pen with patients, the acquisition was managed 

by an operator through an iOS application in a supervised scenario. 

 

2.3 Feature extraction 

In MATLAB® 2020b, writing and tremor features extraction was performed. 32 writing indicators – divided into 

4 categories - were computed: i) Time. As for pauses, we retained the total and relative numbers, the duration mean 

and coefficient of variation (CV). We computed the mean in-air time and on-sheet time, and their CVs. The air-

sheet ratio (in-air time divided by on-sheet time) and the on-sheet ratio (time spent on-sheet normalized by the task 

duration) were extracted. The number of strokes per second was also computed. ii) Force. We retained the mean 

force exerted on the writing surface. Then, indicators related to force variability were computed: force CV, mean 

and CV of the difference between consecutive force extrema. iii) Tilt. We computed mean and CV of the pen tilt 

angle during writing. iv) Smoothness. The number of inversions was extracted for force, acceleration (NCA), and 

angular velocity. Irregular oscillations were measured by the logarithmic dimensionless jerk (LDLJ) for 

acceleration (LDLJ_A), the LDLJ and Spectral Arc Length (Balasubramanian & al., 2012) for angular velocity. 

Fifteen tremor indicators (2 categories) were computed from the acceleration and angular velocity signals: 

v) Tremor amplitude was quantified in the time domain through the root mean square of the signal for acceleration 

(RMS_A) and angular velocity, also including the RMS for the signal filtered around the spectral peak for angular 

velocity (RMS_G_Peak), and mean (Cons_Peak_Diff_G_Mean) and CV of the difference between consecutive 

angular velocity extrema. As for the frequency domain, after estimating the power spectral density, the peak 

frequency was retained and the relative power distribution was evaluated in the following frequency bands for 

acceleration: 0-2Hz, 4-7Hz and 8-12Hz (RPW_f1-f2). For angular velocity, the relative power was evaluated in a 

window of 1Hz around the peak. vi) Tremor regularity. Acceleration tremor was inspected by means of entropy, 

stability index (TSI_DB and TSI_Luft) (Di Biase & al., 2017; Luft & al., 2019), mean harmonic power (MHP) 

(Muthuraman, & al., 2011). Following the approach in (Oung & al., 2018), Shannon Entropy was applied to the 

decomposition coefficients and the instantaneous amplitude of the angular velocity tremor. Its variability over time 

was also estimated. 

 

2.4 Classification 

We investigated the ability of unconstrained handwriting to discriminate subjects belonging to the patient (class 

1) or to the control (class 0) groups through machine learning (ML) classification techniques. 

We define DT the Text dataset, and DL the List dataset, both composed of 60 samples and 48 attributes (47 

indicators and the group label). Merging DT and DL, we built the DTL dataset composed of 60 samples and 95 

attributes (94 indicators - 47 for each task - and the group label). Two ML algorithms were used to compare 

different classification logics: i) logistic regression, to set a baseline performance measure since it is one of the 



simplest and most used linear classifiers; ii) a more recent boosting algorithm, Catboost, since it is known to 

achieve notable performance while avoiding data overfitting even with small datasets (Prokhorenkova & al., 2018). 

After data standardization, for each dataset, we evaluated the models through Accuracy, Precision, Recall, F1, and 

Area Under the ROC Curve (ROC-AUC). For both models, we used scikit-learn default parameters (Leave-One-

Out Cross Validation (LooCV) and early stopping set at 100 epochs). The LooCV technique returns an estimate 

of performance on unlearned data and the best number of learning iterations for each model.  

 

2.5 Model explanation 

We used a model explanation technique to overcome the limitations of the black-box nature of the Catboost 

algorithm and gain insights into model decisions. We used SHAP (Lundberg & al., 2017) a model explanation 

library that computes the Shapley Values (Roth, 1988) of the features according to their impact on its predictions. 

If a feature has a positive impact, it influences the prediction favouring class 1, and vice versa. This step was useful 

to understand how much each indicator has an effect of the prediction to class 0 or 1. 

 
3. Results and Discussion 
A total of 30 PD patients (14 Males; 30 Right-handed; Age = 72.8 (mean) ± 7.40 (SD) yo; MMSE = 27.67 ± 1.68; 

Years since Diagnosis = 7.3 ± 4.86; UPDRS III score = 19.50 ± 7.75) and 30 age-matched healthy controls (11 

Males; 30 Right-handed; Age = 72.7 ± 8.48 yo; MMSE = 28.07 ± 1.56) participated in the study. 
 

Table 1: Performance Metrics for Logistic Regression and Catboost Classifier 

Table 1 reports the performance metrics for each dataset (DT, DL, DTL) for the Logistic Regression and the 

Catboost Classifier, evaluated through LooCV for the binary classification between the patient and the control 

groups. For each model, the best scores are highlighted in bold. As expected, the Catboost algorithm achieved the 

best performance for all datasets. In addition, we can notice that the best scores were obtained when merging the 

indicators extracted from the two writing tasks (DTL dataset). 

Since the best scores were obtained from the Catboost algorithm applied to the DTL dataset, a closer look to 

the classification performance achieved by combining the two tasks is presented in Figure 1. Panel (a) reports the 

confusion matrix; (b) presents the SHAP feature ranking. Panel (b) lists features in decreasing order of importance 

and explains how the learned samples were predicted according to the values of their features. Each dot represents 

the Shapely Value of the indicator for a particular sample: negative Shapley values push the prediction towards 

class 0 (control group), while positive values push toward class 1 (PD group). The value of the indicator is 

represented in a blue-red colour scale (low: blue; high: red). 

Figure 1: Classification performances and model explanation plots for the Catboost algorithm applied to DTL. 

 
As can be noted from Table 1 and Figure 1 - (a), the classification achieves a notable performance, with  

only 1 FP and 3 FN. The result is interesting if compared to other ML classification studies, which typically employ 

standardized, content-constrained tests, performed on a digitizer. In (Drotár & al., 2015, 2016) features derived 

from pre-defined loops, bi-grams, tri-grams, words and sentences were combined to solve the classification 

 Accuracy [%] Precision [%] Recall [%] F1 [%] ROC-AUC [%] 

 DT DL DTL DT DL DTL DT DL DTL DT DL DTL DT DL DTL 

Logistic 

Regression 
78.3 75 78.3 79.3 75.9 79.3 76.7 73.3 76.7 78 74.6 78 87 79.3 84.1 

Catboost  83 88 93 86 93 96 80 83 90 83 88 93 96.3 97.2 98.9 

 



problem, achieving accuracy from 82 to 88%. From the SHAP feature ranking (Figure 1 - (b)), we can notice that 

both list (“_L”) and text (“_T”) indicators contribute to the classification. As for the types of indicators, we can 

see how tremor indicators play a more important role. A possible explanation may be found in the nature of the 

protocol. The Tremor Stability Index (TSI) during text writing emerged as the most important feature; it captures 

the regularity of the tremor frequency over time and, in line with literature, lower values (higher tremor regularity) 

pushed the classification toward the PD group. For both tasks, the Tremor Relative Power in the 4-7Hz Band 

(RPW_4-7) emerges in the feature ranking: higher values favour the classification toward the PD group; indeed, 

PD tremor frequency is reported in this band (Elble, 1996). On the other hand, the greater Relative Power in the 

band associated with voluntary motion (RPW_0-2) was associated with the classification in class 0. As for writing 

indicators, the presence of the Number of Changes in Acceleration (NCA) suggests that a reduced smoothness 

pushed the prediction toward the PD group.  

To sum up, this is the first classification work based on indicators derived exclusively from unconstrained 

handwriting, acquired with an innovative smart ink pen. We achieved a classification performance in line with 

previous work, with the undoubtable advantages of 1) acquiring writing data through an ink pen writing on 

common paper – thus ensuring the naturalness of the gesture – and 2) proposing an unconstrained protocol 

mimicking daily-life writing. These aspects pave the way toward remote daily-life handwriting monitoring in 

patients with PD.     
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