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Abstract

Complex human-computer interfaces are more and more making use of high-level concepts
extracted from sensory data for detecting aspects related to emotional states like fatigue,
surprise, boredom, etc. Repetitive sensory patterns, for example, almost always will mean
that the robot or agent will switch to a ”bored” state, or that it will turn its attention
to other entity. Novel structures in sensory data will normally cause surprise, increase
of attention or even defensive reactions. The aim of this work is to introduce a simple
mechanism for detecting such repetitive patterns in sensory data. Basically, sensory data
can present two types of monotonous patterns: constant frequency (be it zero or greater
than zero, be it a unique frequency or a wide spectrum) and repetitive frequency spectrum
changes. Both types are considered by the proposed method in a conceptually and compu-
tationally simple framework. Experiments carried out using sensory data extracted both
from the visual and auditory domains show the validity of the approach.

1 Introduction

Living beings possess habituation mechanisms that allow them to ignore repetitive stimuli.
If such stimuli were not gradually ignored, the continuous response would lead the living
being to complete exhaustion. A large amount of information is continually received
from the environment, and it has to be somehow filtered so that the agent can focus
on interesting data. Marsland [8] defines habituation as ”a way of defocusing attention
from features that are seen often”. Many animals have mechanisms to filter uninteresting
stimuli.

Habituation is a filtering mechanism that has received a lot of attention in the physiolog-
ical and psychological areas. In the physiological area, some researchers have investigated
the mechanisms of habituation in animals, being one of the most known works the study of
the Aplysia’s gill-withdrawal reflex [2]. When the animal’s siphon is touched, its gill con-
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tracts for a few seconds. If the siphon is stimulated repeatedly, the gill-withdrawal effect
tends to disappear. Crook and Hayes [4] comment on a study carried out on two monkeys
by Xiang and Brown who identified neurons that exhibit a habituation mechanism since
their activity decreases as the stimulus is shown repeatedly.

Stanley’s model [12] of habituation, proposed to simulate habituation data obtained
from the cat spinal cord, has been widely used in the literature. This model describes the
decrease efficacy y of a synapsis by the first-order differential equation:

τ
dy(t)

dt
= α(y0 − y(t)) − S(t), (1)

where y0 is the normal, initial value of y, S(t) represents the external stimulation, τ is a
time constant that governs the rate of habituation and α regulates the rate of recovery.
Equation (1) ensures that the synaptic efficacy decreases when the input signal S(t)
increases and returns to its maximum y0 in the absence of an input signal.

The model given by (1) can only explain short-term habituation, so Wang [14] intro-
duced a model to incorporate both short-term and long-term habituation using an inverse
S-shaped curve,

τ
dy(t)

dt
= αz(t)(y0 − y(t)) − βy(t)S(t) (2)

dz(t)

dt
= γz(t)(z(t) − l)S(t), (3)

where α, y0 and γ have the same meaning than in (1), β regulates the habituation and z(t)
decreases monotonically with each activation of the external stimulation S(t), and models
the long-term habituation. Due to this effect of z(t) after a large number of activations,
the recovery rate is slower.

Novelty detection is a concept related to habituation. Novelty detection is the discovery
of stimuli not perceived before and so habituation serves as a novelty filter. The rest of
this paper is organized as follows. In Section 2 we briefly describe some applications of
habituation mechanisms.

In Section 3 the proposed method is described in detail. Experimental results are
evaluated in Section 4. A brief discussion appears in Section 5. Finally in Section 6 we
outline the main conclusions and future work.

2 Motivation and Related Work

From a engineering viewpoint, perceptual user interfaces, like human-like robots, should
be endowed with a habituation mechanism. The interest is twofold. First, it would be a
filtering mechanism, discarding (or minimizing the importance of) repetitive information
while paying attention to new experiences. This is in part motivated by the desire to
distinguish between artificial and human signals. Artificial signals are often static or
repeat with a fixed frequency. We do not want our robot to pay much attention to the
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hands of a wall-mounted clock. Instead, it would be more interesting to detect non-
repetitive stimuli, such as a conversation or a sudden loud noise. Note that we generally
consider monotonous signals as those having a fixed frequency or frequencies (which can
be zero, that is, the signal does not change) but signals whose frequency changes in a
periodic pattern could also be considered monotonous. Higher scales are also possible but
we do not consider them in this work because they are very hard to visualize and real
examples of them are not so common.

Second, habituation would lead to a more human behaviour, as perceived by users of the
interface. As an example of this, consider the multimodal interface Kismet [1]. Someone
can catch the eye of the system while waving a hand in its visual field of view, but if
the stimulus is repetitive for a long time the system can show a lack of interest in it.
Many aspects of Kismet’s mental architecture are directly or indirectly influenced by the
detection of monotonous sensory signals: stimulation and fatigue drives and the arousal
dimension of its affect space (and in turn some emotional states, like surprise, boredom
or interest).

Although we focus our work on the abilities described above, many other applications
are also imaginable. In the robotics field, habituation mechanisms have been used to
reduce oscillations caused by collision-avoidance behaviours when navigating through a
narrow corridor [3]. Marsland [9] uses a SOM neural network as a memory for novelty
detection. To add short-term habituation to the original network, each neuron of the
SOM is connected to an output neuron with habituable synapses based on the model (1).
Habituation is also used in [13] for controlling reactivity strength, visual attention [11, 1],
and general learning [5]. On the other hand, there is considerable interest in the field of
musicology in Beat Tracking Systems (BTS) [6]. BTS systems aim to find the tempo of
an audio signal, which is basically the rate of repetitions. The main applications of BTS
systems are audio/video editing, synchronization of computer graphics with music, stage
lighting control and audio content searching.

3 Proposed Method

If we use the model of Equation (1) we can obtain undesired effects with certain stimuli.
A periodic input signal (with frequency greater than zero) can produce a response that
does not exhibit habituation. This is due to the fact that the model does not account
for changing stimuli, but for continuous ones. In order to include this fact in the model,
we propose to use an auxiliary signal which will be zero when the stimulus is stationary
or with a fixed frequency, and one otherwise, and use this signal as an input to the
habituation model (1).

The auxiliary signal, which basically detects monotonous stimuli, is obtained from the
spectrogram of the stimulus itself. The spectrogram is a time-frequency distribution of a
signal, and it is based on the Fourier Transform with a sliding window [7]. The equation

Φ(t, f) =

∣∣∣∣∣
∫ inf

− inf
x(τ) exp(t−τ)2/T 2

exp−j2πfτ dτ

∣∣∣∣∣
2

(4)
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gives the definition of a spectrogram with a Gaussian window function of half-width T ,
and it is the power spectrum of a signal which corresponds to the squared magnitude of the
Fourier transform of the windowed signal. The window can have others forms apart from
the Gaussian one. In Figure 1 we show an audio signal and its corresponding spectrogram,
where brighter areas correspond to higher power. Two well defined frequency spectra can
be distinguished, for there is a change in the input signal at time 0.5 s. Temporal patterns
of the stimulus signal have a specific pattern in the spectrogram. A fixed frequency signal
corresponds to a straight line parallel to the time axis in the spectrogram, and the length
of this line indicates how long has been the stimulus present.
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Figure 1: Audio signal (left) and its corresponding spectrogram (right).

Spectrograms are computed from windows of the input signal. These windows, of length
l, overlap by l− 1 samples. Let each spectrogram be represented as a matrix M , in which
rows represent frequencies and columns represent time. We calculate the variance of each
row of M , which produces a column vector v. The norm of this vector v is a measure of
how monotonous the input signal is. The norm will be high when the signal is changing,
and low otherwise. Thus, the auxiliary signal needed is simply the thresholded norm of
v. The amplitude of the input signal affects the power content of the spectrograms, and
in turn the norm of v. Thus, prior to calculating the FFT the input signal must be
normalized dividing each input window by the sum of its absolute values. A value of 1 for
the auxiliary signal will mean that there are changes in the input signal, while a value of
0 indicates that the input signal is monotonous. Once the auxiliary signal is available, the
model (1) is used to get the desired habituation behaviour, as controlled by parameters τ
and α.

With this method both static an fixed frequency stimuli can be detected. However, there
are stimuli that change their frequency according to a periodic pattern. These stimuli
should also be considered as monotonous. The hissing sound of a siren, for example, is
a signal whose frequency changes in a repeated pattern. After few repetitions the signal
will be considered monotonous. One way to detect these kind of stimuli is to use the
same method with the auxiliary signal. If the input signal changes its frequency content
in a repeated pattern, the auxiliary signal will be periodic with a fixed frequency, and
that can be detected as explained in the previous paragraph. Thus, two thresholds will
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be needed, one for the ”first level” and one for the ”second level”. Higher levels could
conceivably be used, but we have not considered them because they are very difficult to
visualize and encounter in the physical world. Note that the second-level auxiliary signal
will be 1 when there are changes in the first-level auxiliary signal, and thus when there
are changes in the input signal, and 0 otherwise. Thus, the final input to the habituation
model (1) will be the second-level auxiliary signal. Note that this second level introduces
additional computation, and in some cases we could consider it unnecessary, if we decide
to detect only simple monotonous signals.

There is only one detail left. If the first-level auxiliary signal is 1 (meaning that the input
signal is changing), and this remains for a while, the second-level auxiliary signal will be
0 (because the second-level norm of the variance vector will be 0) which is not the correct
value. In order to correct this, the second level must detect when the norm is 0 and, if so,
use the value of the first-level auxiliary signal, instead of the second-level auxiliary signal.
Note that if the first-level auxiliary signal is periodic the second-level variances obtained
should theoretically be 0, which would prevent the use of this correction. However, in all
the experiments carried out this never happened, because there is always an unavoidable
amount of fluctuations in the input signal, which makes the variances larger than 0.

4 Experiments

The algorithm described in Section 3 was implemented to test it with different input
signals. The first experiments that we present use only the first level mentioned in Section
3. In order to gather signals from the visual domain, we recorded video containing a yellow
bright stimulus (a yellow card) that was moved in a repetitive fashion, see Figure 2-a).
Using simple segmentation techniques we extracted the centroid of the card on each frame
(384x288) and summed the x and y pixel coordinates to form the one-dimensional signal
of Figure 2-b). The sequence of card movements throughout the recording was: horizontal
movement, random (aperiodic) movement, vertical movement and vertical movement at
a different frequency than the previous one.

The results appear in Figure 3. Windows of 128 samples were used, and the variance
threshold was set at 1000.

As for the audio domain, we recorded signals with a standard PC microphone, at a
22050 Hz sample rate, 8 bits. Figure 4 shows the results obtained for an audio signal
that contains three sequential parts: silence (0-0.5s), people speaking (0.5-1s) and a tone
played from an electric piano (1-1.4s). Note that there is an initial delay due to the need
to fill the input window, here of length l = 5120. The habituation level, obtained using
the model of (1), shows a satisfactory response.

Figure 5 shows the results obtained for an audio signal that contains another three
sequential parts: a tone played from an electric piano (0-0.5s), silence (0.5-1s) and another
tone (1-1.4s). The same window length l = 5120 was used, and again the habituation
level shows a satisfactory behaviour.

In order to test both the first and second levels of the method, we built an audio signal
containing three sequential parts: a beep repetitive sound from a mobile phone, people
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Figure 2: a) Video recording used for the visual habituation experiment, b) one-
dimensional signal extracted from it.

speaking and a tone played from an electric piano. This signal was accelerated to reduce
computation time, which does not alter the qualitative results of the experiments. Results
are shown in Figure 6. The window length was l = 5120 for the first level and l = 2148 for
the second. In this case the repetitive beeps (clearly observed as a repetitive pattern in
the first part of the spectrogram) are correctly considered as monotonous. This would not
have occurred if we had used the first-level auxiliary signal alone, for numerous changes
are detected (see Figure 6-d).

5 Discussion

In this section we discuss a few aspects of practical interest. Particularly, we will comment
on the effect of the values of the different parameters to use:

• Length of the input window, l: It should be the largest possible, ir order to detect
stimuli with large period. However it cannot be too large because that would intro-
duce an unacceptable delay in the response to stimuli with smaller period. Thus, it
depends on the type of stimuli. A flexible solution would be to implement multiple
instances of the problem, each one with a different size for this parameter, in a
multiscale fashion.

• Tau, τ : It controls the rate of habituation.

• Alpha, α: It controls the rate or recovery.

• Number of discrete frequency levels, N : Dependent on the type of input stimulus,
it should normally be the largest possible. For the case of auditive signals, the
minimum noticeable difference that people can distinguish is as low as 1.3Hz [10].
Other input stimuli could be sonar data, blob positions, pressure readings, etc.
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Figure 3: a) Evolution of the (l2) norm of the variance vector v, b) habituation level,
using τ = 5, α = 1.

• Variance thresholds: They refer to the minimum change in the frequency spectrum
to detect a change in the signal. If set too high, we run the risk of ignoring signal
changes. If set too low, ”hypersensitive” responses could be obtained. The appro-
priate values depend both on the type of input signal and the number of discrete
frequency levels. These thresholds could be changed depending on the amount of
available resources. If available resources are high, a lower threshold could be ap-
propriate (producing more sensitivity or attention). Otherwise, a higher threshold
would produce a more believable response.

The computational cost of the proposed method is basically dependent on the calculus
of the spectrogram. This, in turn, basically depends on the FFT. Thus, the total cost,
for a window of length l is l log2 l (for the first-level alone). This is therefore the cost
of producing a new value of the auxiliary signal for each input sample. If a multiscale
(multiple values for l) approach is used, the multiple instances of the problem can use
parallel computation. Also, the second-level part of the problem can be solved in parallel
with the first-level.

6 Conclusions and Future Work

Habituation is the decrease in the strength of an agent’s response when it receives repet-
itive stimuli. This ability is present in almost any living being, and it is of capital impor-
tance, if we consider the effect that a lack of it would have. In this work we propose a
simple spectrogram-based algorithm for detecting monotonous input signals, independent
of their sensory origin (auditive, visual, ...). Signals that repeat with constant frequency
or frequencies are considered monotonous. Signals that present a periodic changing pat-
tern in their frequency content can also be considered monotonous. The usefulness of the
algorithm is evaluated in experiments with signals gathered both from the visual and the
auditive domains.
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Figure 4: a) Spectrogram of the audio signal, b) evolution of the (l2) norm of the variance
vector v, c) auxiliary signal, obtained using a threshold of 600, d) habituation level, using
τ = 1, α = 0.002.

Future work will include the integration of this mechanism in an agent’s action selection
module. The habituation mechanism described here is currently being implemented for
an anthropomorphic robotic head currently being built at our laboratory. The robotic
head is intended as a multimodal interface with human-like abilities, such as expressive
facial movements, voice generation and recognition, face detection and tracking, etc. The
habituation mechanism will be first used to make the head adopt a boredom appearance
when receiving monotonous audio o video (repetitive movements) stimuli.
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Figure 5: a) Spectrogram of the audio signal, b) evolution of the (l2) norm of the variance
vector v, c) auxiliary signal, obtained using a threshold of 600, d) habituation level, using
τ = 1, α = 0.002.
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Figure 6: a) Spectrogram of the audio signal, b) evolution of the first-level (l2) norm
of the variance vector, c) evolution of the second-level (l2) norm of the variance vector,
d) first-level auxiliary signal, obtained using a threshold of 600, e) second-level auxiliary
signal, obtained using a threshold of 1000, f) habituation level, using τ = 1, α = 0.002.
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