
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/41392245

Mission Specification in Underwater Robotics

Article in Journal of Physical Agents · January 2010

DOI: 10.14198/JoPha.2010.4.1.05 · Source: DOAJ

CITATIONS

16
READS

562

4 authors:

Some of the authors of this publication are also working on these related projects:

Bathypelagic View project

ACUSQUAT View project

Enrique Fernández Perdomo

Clearpath Robotics

19 PUBLICATIONS 161 CITATIONS

SEE PROFILE

Jorge Cabrera

Universidad de Las Palmas de Gran Canaria

77 PUBLICATIONS 383 CITATIONS

SEE PROFILE

Antonio Carlos Domínguez Brito

Universidad de Las Palmas de Gran Canaria

63 PUBLICATIONS 338 CITATIONS

SEE PROFILE

Daniel Hernández-Sosa

Universidad de Las Palmas de Gran Canaria

92 PUBLICATIONS 645 CITATIONS

SEE PROFILE

All content following this page was uploaded by Enrique Fernández Perdomo on 22 May 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/41392245_Mission_Specification_in_Underwater_Robotics?enrichId=rgreq-9fc8951935bfc4a1820e8a70e1823396-XXX&enrichSource=Y292ZXJQYWdlOzQxMzkyMjQ1O0FTOjk5Njc2ODEyNDgwNTIxQDE0MDA3NzYyMTI2OTU%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/41392245_Mission_Specification_in_Underwater_Robotics?enrichId=rgreq-9fc8951935bfc4a1820e8a70e1823396-XXX&enrichSource=Y292ZXJQYWdlOzQxMzkyMjQ1O0FTOjk5Njc2ODEyNDgwNTIxQDE0MDA3NzYyMTI2OTU%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Bathypelagic?enrichId=rgreq-9fc8951935bfc4a1820e8a70e1823396-XXX&enrichSource=Y292ZXJQYWdlOzQxMzkyMjQ1O0FTOjk5Njc2ODEyNDgwNTIxQDE0MDA3NzYyMTI2OTU%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/ACUSQUAT?enrichId=rgreq-9fc8951935bfc4a1820e8a70e1823396-XXX&enrichSource=Y292ZXJQYWdlOzQxMzkyMjQ1O0FTOjk5Njc2ODEyNDgwNTIxQDE0MDA3NzYyMTI2OTU%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-9fc8951935bfc4a1820e8a70e1823396-XXX&enrichSource=Y292ZXJQYWdlOzQxMzkyMjQ1O0FTOjk5Njc2ODEyNDgwNTIxQDE0MDA3NzYyMTI2OTU%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Enrique-Fernandez-Perdomo?enrichId=rgreq-9fc8951935bfc4a1820e8a70e1823396-XXX&enrichSource=Y292ZXJQYWdlOzQxMzkyMjQ1O0FTOjk5Njc2ODEyNDgwNTIxQDE0MDA3NzYyMTI2OTU%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Enrique-Fernandez-Perdomo?enrichId=rgreq-9fc8951935bfc4a1820e8a70e1823396-XXX&enrichSource=Y292ZXJQYWdlOzQxMzkyMjQ1O0FTOjk5Njc2ODEyNDgwNTIxQDE0MDA3NzYyMTI2OTU%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Enrique-Fernandez-Perdomo?enrichId=rgreq-9fc8951935bfc4a1820e8a70e1823396-XXX&enrichSource=Y292ZXJQYWdlOzQxMzkyMjQ1O0FTOjk5Njc2ODEyNDgwNTIxQDE0MDA3NzYyMTI2OTU%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jorge-Cabrera-15?enrichId=rgreq-9fc8951935bfc4a1820e8a70e1823396-XXX&enrichSource=Y292ZXJQYWdlOzQxMzkyMjQ1O0FTOjk5Njc2ODEyNDgwNTIxQDE0MDA3NzYyMTI2OTU%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jorge-Cabrera-15?enrichId=rgreq-9fc8951935bfc4a1820e8a70e1823396-XXX&enrichSource=Y292ZXJQYWdlOzQxMzkyMjQ1O0FTOjk5Njc2ODEyNDgwNTIxQDE0MDA3NzYyMTI2OTU%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidad-de-Las-Palmas-de-Gran-Canaria?enrichId=rgreq-9fc8951935bfc4a1820e8a70e1823396-XXX&enrichSource=Y292ZXJQYWdlOzQxMzkyMjQ1O0FTOjk5Njc2ODEyNDgwNTIxQDE0MDA3NzYyMTI2OTU%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jorge-Cabrera-15?enrichId=rgreq-9fc8951935bfc4a1820e8a70e1823396-XXX&enrichSource=Y292ZXJQYWdlOzQxMzkyMjQ1O0FTOjk5Njc2ODEyNDgwNTIxQDE0MDA3NzYyMTI2OTU%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Antonio-Dominguez-Brito?enrichId=rgreq-9fc8951935bfc4a1820e8a70e1823396-XXX&enrichSource=Y292ZXJQYWdlOzQxMzkyMjQ1O0FTOjk5Njc2ODEyNDgwNTIxQDE0MDA3NzYyMTI2OTU%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Antonio-Dominguez-Brito?enrichId=rgreq-9fc8951935bfc4a1820e8a70e1823396-XXX&enrichSource=Y292ZXJQYWdlOzQxMzkyMjQ1O0FTOjk5Njc2ODEyNDgwNTIxQDE0MDA3NzYyMTI2OTU%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidad-de-Las-Palmas-de-Gran-Canaria?enrichId=rgreq-9fc8951935bfc4a1820e8a70e1823396-XXX&enrichSource=Y292ZXJQYWdlOzQxMzkyMjQ1O0FTOjk5Njc2ODEyNDgwNTIxQDE0MDA3NzYyMTI2OTU%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Antonio-Dominguez-Brito?enrichId=rgreq-9fc8951935bfc4a1820e8a70e1823396-XXX&enrichSource=Y292ZXJQYWdlOzQxMzkyMjQ1O0FTOjk5Njc2ODEyNDgwNTIxQDE0MDA3NzYyMTI2OTU%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Daniel-Hernandez-Sosa?enrichId=rgreq-9fc8951935bfc4a1820e8a70e1823396-XXX&enrichSource=Y292ZXJQYWdlOzQxMzkyMjQ1O0FTOjk5Njc2ODEyNDgwNTIxQDE0MDA3NzYyMTI2OTU%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Daniel-Hernandez-Sosa?enrichId=rgreq-9fc8951935bfc4a1820e8a70e1823396-XXX&enrichSource=Y292ZXJQYWdlOzQxMzkyMjQ1O0FTOjk5Njc2ODEyNDgwNTIxQDE0MDA3NzYyMTI2OTU%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidad-de-Las-Palmas-de-Gran-Canaria?enrichId=rgreq-9fc8951935bfc4a1820e8a70e1823396-XXX&enrichSource=Y292ZXJQYWdlOzQxMzkyMjQ1O0FTOjk5Njc2ODEyNDgwNTIxQDE0MDA3NzYyMTI2OTU%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Daniel-Hernandez-Sosa?enrichId=rgreq-9fc8951935bfc4a1820e8a70e1823396-XXX&enrichSource=Y292ZXJQYWdlOzQxMzkyMjQ1O0FTOjk5Njc2ODEyNDgwNTIxQDE0MDA3NzYyMTI2OTU%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Enrique-Fernandez-Perdomo?enrichId=rgreq-9fc8951935bfc4a1820e8a70e1823396-XXX&enrichSource=Y292ZXJQYWdlOzQxMzkyMjQ1O0FTOjk5Njc2ODEyNDgwNTIxQDE0MDA3NzYyMTI2OTU%3D&el=1_x_10&_esc=publicationCoverPdf

JOURNAL OF PHYSICAL AGENTS, VOL. 4, NO. 1, JANUARY 2010 25

Mission Specification in Underwater Robotics
Enrique Fernández-Perdomo, Jorge Cabrera-Gómez,

Antonio C. Domı́nguez-Brito and Daniel Hernández-Sosa

Abstract—This paper describes the utilization of software
design patterns and plan-based mission specification in the
definition of AUVs missions. Within this approach, a mission
is described in terms of a set of task-oriented plans in order to
simplify mission definition and favor reutilization of some aspects
of a mission. Each plan organizes how and when basic tasks like
measurement sampling, navigation or communication are to be
carried out. The usage of design patterns for AUVs has been
considered in order to ease system architecture design.

Index Terms—Software Engineering, control architecture, un-
derwater robotics, mission, framework.

I. INTRODUCTION

DURING the last ten years, the adaptation of Software
Engineering principles and methodologies to robotics has

caught a lot attention in this field [8]. Nowadays, it is widely
accepted that the final quality of a sensory-motor system, its
cost of development and implementation, and its ease of usage,
are highly conditioned by the software engineering methodolo-
gies and tools utilized. In this sense, concepts like design-for-
reuse or the utilization of design patterns [10], components
and programming frameworks [8] are now routinely used in
the development of complex robotic systems.

Autonomous underwater vehicles (AUV) are valuable and
highly sophisticated robotic devices and their programming
is a complex task that demands an important effort from
all the engineers, programmers and scientists involved. The
complexity of these systems increases as new mission scenar-
ios are proposed requiring —for example— larger periods of
autonomy or coordination among multiple vehicles.

A key aspect of AUVs programming is that concerned with
mission specification and control [7]. In particular, special
attention must be paid to the number of intervening actors
involved in the specification and development of a AUV mis-
sion: from system software architects and device integrators
to scientists acting as final users of the vehicle.

Mission plans are to be written by scientists, who —
probably— will not be experts in robotics, so it is important
that a mission can be easily expressed in terms of basic
activities of navigation (go to a point, achieve a depth,
...), measurement (take a measure with certain instrument),
logging data, and communication. Due to the same reason,

All authors are members of the University Institute SIANI (Intelligent
Systems and Numeric Applications in Engineering — Sistemas Inteligentes
y Aplicaciones Numéricas en Ingenierı́a) at University of Las Palmas de
Gran Canaria (ULPGC). E-mail: { efernandez, jcabrera, adominguez, dher-
nandez}@iusiani.ulpgc.es

This work has been partially supported by the following research projects:
Project PI2007/039 funded by the Autonomous Government of Canary Islands
(Gobierno de Canarias — Consejerı́a de Educación, Cultura y Deportes,
Spain) with FEDER funding; and Project TIN2008-06068 funded by the
Ministerio de Ciencia e Investigación, Gobierno de España.

mission plans should be analyzed and validated automatically
beforehand. Their expression must be concise and favor the
reuse and adaptation of basic mission plans to new contexts.
In particular, a clear separation between the software that is
in charge of the AUV’s control and navigation and the code
that contains the mission specification is highly desirable [1].
In-situ changes of mission plans should be possible.

As commented previously, AUVs must exhibit large pe-
riods of true autonomy so they must be programmed to be
reliable. The definition of procedures to detect anomalies or
possible malfunction, and to recover from unexpected errors
or exceptions is obliged. Most of the exception handling will
be integrated within the vehicle control system and should be
reusable between missions, but it should also be possible to
redefine the treatment of certain failures in the context of a
specific mission.

In this paper, the main elements of a software framework for
programming AUVs will be presented. The section II will be
devoted to present an approach for mission specification based
on a set of plans, each of them conceived to cover the different
facets of AUV’s activities (communications, navigation, mea-
surement, etc.). In section III, we describe the usage of design
patterns within a component-based framework for building the
software control architecture. Final sections include a review
of other related works and a final summary.

II. MISSION SPECIFICATION

A mission is defined as the set of tasks a vehicle must per-
form. From most common AUV tasks analysis, a basic

and proper mission specification framework can be outlined.
It is possible then to evaluate qualitatively the features of a
particular mission specification design depending on a series of
parameters such as modularity, flexibility, monitoring, ease of
definition and others, which are key features through mission
life cycle stages.

A. Typical AUV tasks

In general, typical tasks included in almost every AUV
mission can be orthogonally enumerated as:

1) Measure sampling: Sensory equipment is managed to
sample different measures, which may be saved or
transferred to surface station.

2) Path following: Given a set of waypoints, the vehicle
tries to reach them in sequence. Therefore, it follows
the path obeying some motion constraints.

3) Area exploration: The vehicle moves inside an area
describing a particular pattern —e.g. zig-zag, concentric,
spiral, etc.— to explore it.

26 JOURNAL OF PHYSICAL AGENTS, VOL. 4, NO. 1, JANUARY 2010

4) Measure tracking: The vehicle senses a particular mea-
sure and tries to track it using a predefined behavior.

5) Communication: Two main communication tasks are
noticed:

a) Data/Mission transferring: Send or receive single
or multiple measure samples or internal system
observable variables.

b) Coordination: A network of vehicles communicate
among them to achieve common goals.

Other vehicles like buoys and ships —e.g. ASVs (Au-
tonomous Surface Vehicles)— may take advantage of some
of these tasks, since AUVs capabilities cover most oceano-
graphic missions. Additionally, these elementary tasks might
be combined frequently.

B. Mission life cycle

The mission life cycle is composed of the different stages
that take place during mission specification, from creation
to execution finalization in the vehicle. Diagram in Fig. 1
represents the typical tasks involved in sequence.

1) Creation: Process of mission creation or edition. It is
common to have a planning GUI (Graphical User Inter-
face) to aid in the specification concerns. Independently
of the availability of such a planning tool, an internal tex-
tual representation is mandatory to accomplish the next
stages of the mission life cycle. Common representation
approaches are DSLs (Domain Specific Languages) and
Petri Nets coded with languages like Prolog or Lisp [1],
[19], [20], [7].

2) Validation: It is possible to apply a validation process
on a mission completely defined. This will usually be
an automatic and transparent process embedded in a
verification tool, which will manage the mission textual
representation to detect errors or incompatibilities within
mission elements.
Depending on the mission design and representation, the
validation techniques vary —e.g. Petri Nets formalism
allows network correctness verification [16], [5], [7],
a DSL designed with XML (eXtensible Markup Lan-
guage) can be automatically validated if XML Schemata
are provided, etc. Additionally, further semantic checks
can be applied.

3) Transference: The former stages take place on a com-
puting environment outside the vehicle. Once validated,
the mission is transferred to the vehicle, which will save
it. This is not trivial tough, because verbose mission
representations may consume excessive bandwidth and
power. Furthermore, mission modifications may be sent
while mission execution as part of replanning.

4) Execution: Once the mission is saved in the vehicle,
execution will begin after the starting order has been
received. In general, we can identify three internal
stages:

a) Load: When vehicle’s system is booted, mission
must be loaded into memory using a data model
that describes the mission in order to be interpreted
and managed —e.g. Petri Nets are interpreted

directly, DSL representations must be parsed and
used to build a data model, etc.

b) Interpretation: System is configured according
with mission specification while it is interpreted.
If any error or exception occurs, the system will
log it and try to act accordingly.

c) Finalization: Mission is ended when all specifica-
tions have been carried out. A deconfiguration pro-
cess leaves the vehicle idle, i.e. releases resources,
turns devices off, etc.

5) Replay/Simulation: Though not compulsory, a simulator
may load information logged while mission execution
and replay or recreate what happened, allowing offline
mission analysis. Predicted or approximate environment
conditions provided, simulation can be done before
real mission too, allowing beforehand non-predictable
incompatibilities detection.

Creation

Validation

Transference Load

Execution Interpretation

Replay
Simulation Finalization

Figure 1: Mission life cycle stages

Despite mission specification modularity, there may still
appear dependencies, so the validation stage is necessary to
detect inconsistencies or incompatibilities. An incompatibility
is an impediment to accomplish a task specified in the mission,
usually caused by dependencies within mission elements,
available vehicle equipment or vehicle’s embedded system
state. There are two types of incompatibilities:

1) Predictable: Incompatibility can be detected analyzing
mission specification. A validation engine integrated in
a planning tool usually achieves this task.

2) Non-Predictable: Incompatibility cannot be detected
with a validation process. This kind of incompatibility
arises during mission execution. Vehicle’s embedded
system is responsible for detecting them and acting ac-
cordingly —e.g. replanning, task priorization, exception
throw.

C. Plan-based missions

As Fig. 2 shows, mission is split in several plans minimiz-
ing dependencies between them and enabling plan exchange
among different missions. Anyway, integrity checks between
plans can be tackled with a mission validation process.

FERNANDEZ ET AL.: MISSION SPECIFICATION IN UNDERWATER ROBOTICS 27

Mission

LP

CP

MPNP

SP

Figure 2: Mission Plans

Furthermore, it is desirable to have a high level mission
specification independent of AUV control software.

A plan can be defined as a block that specifies a set of
similar and related tasks from a particular field. Following
plans are proposed to cover common AUV missions:

1) Logging Plan (LP): Logging system or Black Box con-
figuration that indicates data logging tasks and stock
management. Common log-able data are measures and
system observable variables.

2) Navigation Plan (NP): Details navigation tasks that state
where the vehicle must go and forbidden areas. Typical
navigation missions are allowed, such as path following,
area exploration and measure tracking, by means of
actions with maneuver semantics.

3) Communication Plan (CP): Contains communication
tasks, which are limited by vehicle’s communication
equipment. Mission validation allows premature de-
tection of incompatibilities between CP and available
equipment or other plans —e.g. NP may constraint
communication equipment coverage and bandwidth.

4) Measurement Plan (MP): Specifies measurement tasks
regarding data provided by available vehicle’s equip-
ment, with optional sensor selection.

5) Supervision Plan (SP): Declares tasks to carry out in
case of execution fault. It fires any kind of action through
commands or contingency plans.

Plan-based missions are basically inspired on sub-goals
and tasks mission specifications, but additional features are
considered:

1) Plans gather tasks from a particular typology. Modular
specification allows plan reuse and exchange.

2) Plan-based missions far from just provide modular spec-
ifications, also bring modular interpretation and manage-
ment. Vehicle’s system architecture may profit from this
fact —e.g. each plan interpretation may be accomplished
by a dedicated subsystem. Therefore, besides control
from mission specification separation, plans also allow
system to manage each plan separately in different
subsystems that may act like internal agents modeled
as software components that coordinate to perform the
mission, resolve conflicts and understand a common
control language.

3) XML is used as mission specification language, with the
following benefits:

a) Human readable, with semantic close to domain
represented.

b) Great variety of software tools. Programming time
is reduced and specification, validation and inter-
pretation portability is increased —e.g. parsers,
XML validators, etc.

c) Language formal syntax is encapsulated within
XML Schemata that allow mission validation.

4) Configurable parameters aid mission elements modifi-
cation during execution. XPath query language is em-
ployed to specify which mission elements alter. Mission
parameters are simply XPath queries shortcuts, hence
actually any mission element is accessible directly.

5) GUI tools complement mission life cycle management,
specially by means of assisted creation and automatic
validation. This relaxes vehicle’s system from further
checks during mission load and interpretation.

Plan-based mission specification is analyzed according with
the following criteria:

1) Modularity: Plans are mission specification modules,
internally described in terms of elementary mission
tasks. Depending on the plan, tasks may be taken in
sequence or parallelly —e.g. NP paths and areas are
usually specified on a sequential basis.

2) Flexibility: Tasks are designed to cover all typical AUV
missions. Mission configuration parameters allow dy-
namic mission modifications.

3) Monitoring: Task level monitoring supported by sub-
goals and tasks mission specification is extended to
plans.

4) Ease of definition: Mission definition is textually repre-
sented using XML. Although XML facilitates mission
definition, the use of assisted GUI tools are encouraged
for end users. Furthermore, tasks abstraction level is
close to AUV mission semantic.

5) Portability: Each mission plan has an XML Schema
to take advantage of validation and interpretation tools,
which are portable and widely used.

6) Reconfiguration: Mission parameters are the basic sup-
port for mission reconfiguration. XPath is used to access
mission elements directly or through configuration pa-
rameters names.

D. Plan specification

Every plan is made up of a task list, each task with name and
unique identifier within the plan. Task specification contains
the elements below:

1) Triggers list: Specifies the conditions that activate the
task. Triggers are predicates on measures or system
variables. When all triggers are activated a notification
signal is generated, forcing execution of all actions. If
empty, actions will have to run continuously.

2) Actions list: Specifies name and parameters of com-
mands to execute under system supervision and mon-
itoring while triggers are activated. Actions are system
primitives or reactive skills that represent atomic or
elemental capabilities as in RAP system [9].

3) Inhibition period: Inhibits trigger’s state checking to
ensure task execution is kept at least for a given time,

28 JOURNAL OF PHYSICAL AGENTS, VOL. 4, NO. 1, JANUARY 2010

even if triggers get immediately deactivated. Triggers
are updated asynchronously and sample-driven. Once
triggers get activated they are only checked periodically
though, until they get deactivated again.

Three types of triggers are proposed:
1) Condition: Comparison between a particular measure

sample and a given value applying a relational operator.
If comparison result is true, it is triggered.

2) Interval: Temporal interval or range of values built from
a given tuple of initial, increment/period and final values.
If a particular measure sample is inside the interval, it
is triggered.

3) Exception: System exception name. If such exception is
thrown, it is triggered.

Being predicates, triggers may be combined logically.
Triggers list is logic-and combined, while logic-or can be
expressed using several tasks with the same actions list.
Therefore, descriptive specification instead of procedural or
sequential is basically supported by means of trigger-driven
tasks. List. 1 shows an example where two tasks are defined
to indicate turbidity sampling above 100m deep, and salinity
and temperature continuously. �

<mp id ="1" name="offshore salinity-turbidity">
<ta sk id ="1" name="surface turbidity">

<c o n d i t i o n measure="depth" operator ="le"
va lue ="100" u n i t ="m"/>

<sample measure="turbidity">
<frequency va lue ="1" u n i t ="Hz"/>
<r e s o l u t i o n va lue ="0.1" u n i t ="NTU"/>

</sample>
<i n h i b i t i o n va lue ="1" u n i t ="min"/>

</ task>
<ta sk id ="2" name="salinity profile">

<sample measure="salinity">
<frequency va lue ="0.1" u n i t ="Hz"/>
<r e s o l u t i o n va lue ="0.01" u n i t ="PSU"/>

</sample>
<sample measure="temperature">

<frequency va lue ="0.1" u n i t ="Hz"/>
<r e s o l u t i o n va lue ="0.1" u n i t ="C"/>

</sample>
</ task>

</mp> �� �
Listing 1: Measurement Plan example

List. 2 shows a basic NP example that contains a forbidden
area and three navigation tasks: initial path following, area
exploration and final path following. This plan specification
may be generated automatically by a planning tool that allows
a graphical specification like depicted in Fig. 3. �

<mp id ="1" name="bay exploration">
<ta sk id ="1" name="go to bay">

<waypoint id ="1">
<p o s i t i o n x="9" y="17" z="0" u n i t ="km"/>

</waypoint>
<waypoint id ="2">

<p o s i t i o n x="10.5" y="16.5" z="0" u n i t ="km"/>
<a p t i t u d e r o l l ="0" p i t c h ="-5" yaw="90"

u n i t ="degree"/>
</waypoint>
<t r a n s e c t id ="1" s t a r t ="1" end="2">

<speed x="5" y="0" z="0" u n i t ="m*sˆ-1"/>
</ t r a n s e c t>

</ task>
<ta sk id ="2" name="bay exploration">

<area id ="1" name="bay">
<depth min="0" max="150" u n i t ="m"/>
<t ime va lue ="2" u n i t ="h" margin="10">
<path id ="1">

<t r a n s e c t s mode="zigzag" amount="10">

<t ime va lue ="10" u n i t ="min"/>
<depth va lue ="10" u n i t ="m"/>
<ang le va lue ="60" u n i t ="degree"/>

</ t r a n s e c t s>
</path>

</area>
</ task>
<ta sk id ="3" name="come back port">

<waypoint id ="1">
<p o s i t i o n x="9.5" y="14.8" z="0" u n i t ="km"/>
<u n c e r t a i n t y va lue ="1" u n i t ="m"/>

</waypoint>
</ task>
<forb idden id ="4"/>

</mp> �� �
Listing 2: Navigation Plan example

area

forbidden

t1

t2

w1 w2

w3

Figure 3: Navigation Plan example

Vehicle’s system is configured according with all task trig-
gers of all plans. Measures used by triggers are provided by
measurement actions internally and automatically requested.
This allows trigger evaluation and signaling to execute task
actions in a trigger-driven basis. Fig. 4 shows how Plan
Interpreter and Trigger Dispatcher configure the system ()
to enable task activation signaling ().

Plan
Interpreter

Trigger
Dispatcher

trigger registration

measure request

action sample
signal

Figure 4: Trigger-driven task issue

Action execution is actually a system configuration process,
while action finalization consists in reverting it, i.e. task’s
actions semantic is activation. Additionally, tasks inside a
single plan are only allowed to use a particular set of actions,
which are those related with plan semantics. On action failure
basic ignore, retry or abort behavior may be selected for each
possible action exception. More elaborated exception handlers
may be specified with tasks contained in the Supervision Plan,
which is responsible for mission state monitoring, exception
resolution and coordination of system elements.

III. ARCHITECTURAL DESIGN PATTERNS

IN order to design a consistent and integrated system, the
underlying software technology supporting the execution

FERNANDEZ ET AL.: MISSION SPECIFICATION IN UNDERWATER ROBOTICS 29

of plans and tasks has to be selected accordingly to high-
level objectives. Our election combines the use of a generic
component-based programming framework with design pat-
terns for robotic software. On one side, the framework con-
tributes to reduce the programming effort promoting modular
and robust reusable code. On the other side, design patterns
contribute to improve software quality.

A. Frameworks and Design Patterns

For developing the architecture we are introducing in this
document we will take an approach already used in other areas
of robotics, where some programming frameworks have come
out in order to provide solutions to some of the recurrent
problems faced when building control software for robotic
systems. Those frameworks have blossomed in many areas,
from service and edutainment robotics to space applications
[13], [23], [11], [17]. A good detailed survey can be found in
[8]. In particular, we will make use of a component-oriented
programming framework termed CoolBOT [6] developed at
our lab in the last years. This framework allows building
systems by integrating “off-the-shelf” software components
following a port automata model [25] that fosters controllabil-
ity and observability.

Moreover, some design patterns have been identified as
quite useful in order to apply them in robotic software control
designs [3]. Here, we will consider design patterns as they
are proposed in [10]. Thus, a design pattern can be seen as a
design solution for a specific problem which can be applied
wherever and whenever that solution is valid considering its
prerequisites, requirements, and the consequences at system
design level of its utilization. Concretely, we will use three
basic design patterns adapted from [3]:

• a Estimation Pattern,
• a Control Pattern,
• and a combination of the former two, a Reactive Closed-

Loop Control Pattern.
In next paragraphs we will explain those patterns in more

detail in order to reinterpret them in terms of CoolBOT
components.

Software

State

Variable

Physical

State

Variable
Sensor

Estimator

Client

Hardware
Adapter

consults

represents

senses

acquires
hardware
evidence

signals

consults, updates

accesses

consults

controls

Figure 5: Estimator Pattern.

In Fig. 5 we can observe the architectural structure of the
Estimator Pattern using a UML object-oriented graphical nota-
tion. The distinct entities taking part in the pattern have been

represented as objects, independently if they are physically
real entities, or just software entities of the control system.
This pattern is used for abstracting physical state variables
from their counterparts in the control system, establishing a
clear separation between the control system and the system
under control. Usually, a physical state variable has associated
an Estimator for estimating the software state variable which
represents it in the control system. The Client represents an
entity of higher level of abstraction which makes use of the
pattern. As we can observe, sensory hardware is represented
by a Sensor object which is accessed through a Hardware
Adapter which normalizes its interface.

Fig. 6 shows the UML class diagram of the Control Pattern.
This pattern puts also into practice the principle of separation
aforementioned between the control system and the system
under control. In this case, the Controller makes use of a
software state variable in order to actuate and exert actions to
control an aspect on the real system, a physical state variable
which is its counterpart in the physical system. Similarly to
the previous pattern, the Client object represents an entity of
a higher abstraction level in the control system that makes use
of the pattern.

Software

State

Variable

Physical

State

Variable

Actuator

Controller

Client

Hardware
Adapter

consults

represents

affects

commands

consultsconsults

signals

accesses

controls

Figure 6: Control Pattern.

The graphical representation of the Reactive Closed-Loop
Control Pattern is depicted in Fig. 7(a). This pattern is a
combination of the previous two, and as a consequence, it
is also based on the same principle of control and system
separation. Analogously to the previous patterns, there is a
Client which uses the pattern, and equally, accessing sensors
and actuators is normalized using interfaces represented as
Hardware Adapters. Take into account that in a real control
system these patterns are applied indistinctly for any combina-
tion of physical-software state variables which are estimated
and/or controlled, existing also the possibility of interleaving
different state variables in the same reactive closed-loop con-
trol pattern. Moreover, many control loops can be operating
at the same time in a given moment during system execution.

What is meaningful now for our discussion is how to reinter-
pret these very well established design patterns in terms of the
abstractions and resources available in the software framework
we have chosen for implementing our system. In Fig. 7(b)
we can observe a representation of the Reactive Closed-
Loop Control Pattern reinterpreted as a network of CoolBOT
components, where we can distinguish clearly the same entities

30 JOURNAL OF PHYSICAL AGENTS, VOL. 4, NO. 1, JANUARY 2010

Software

State

Variable
Controller

Physical

State

Variable
ActuatorSensor

Estimator

Client

Hardware
Adapter

represents

consults

signals

accesses

controls controls

acquires
hardware
evidence

consultsconsults

commands consults,

updates

consults

sensesaffects

Hardware

Adapter

accesses

(a) Reactive Closed-Loop Control Pattern.

configuration,
events

commandscommands

sensory
data

commands

state

variables

Client

Physical

System

Estimator Controller

ActuatorSensor

state variables,
configuration,

events

(b) Reactive Closed-Loop Control Pattern in CoolBOT .

Figure 7: Reactive Closed-Loop Control Pattern. The design pattern in (a). Translation into CoolBOT in (b).

which appears in its corresponding UML representation of
Fig. 7(a). With the translation of this design pattern we have
tried to map the pattern into CoolBOT abstractions, which are
usually more complex entities than the objects we frequently
find in UML graphical notations representing design patterns.
Also notice that entities pertaining to the physical system
has not been represented in the figure, contrarily to the
UML representations we have used for introducing the design
patterns.

In CoolBOT a system can be seem as a network of data
flow machines (components) interconnected by data paths (port
connections), as we can observe in Fig. 7(b). Port connections
among components indicate how data flows within the system,
and in this case, how data flows in the pattern, where we
can distinguish clearly the control loops present in a system.
Notice also that, at each port connection end, and depending
on the port connection typology [6], there are some memory
buffers storing the information with is under publication on
each component. Thus, for example, the Estimator component
in the figure publishes the software state variables it estimates
through its output connections. This explains why in the figure
there is no component representing software state variables. It
is important also to take into account that UML representations
of design patterns, as usually depicted, are mainly static
representations of modular designs. In contrast, a configuration
of CoolBOT components also gives information about the
dynamic behavior of the system, because each component is
implicitly an active data flow machine having its own flow of
execution, at least a thread in the underlying operating system.

It is important to emphasized here that the design pattern,
expressed as a network of CoolBOT components in Fig. 7(b),
is a simplified representation in order to clarify its design.
In a real system this pattern may be instantiated multiple
times involving multiple instances indistinctly of the different
components that integrate the pattern, and where several clients
may be sharing and using the services of distinct patterns.
Thus, we can outline a system architecture similar to the
one shown in Fig. 8 where the lower level, the Functional

Layer, is mainly composed by multiple reactive closed-loop
control patterns which may be indistinctly active/inactive along
system’s lifetime. Components in higher levels of abstraction
make use of the services provided by the system lower level in
order to carry out their own services. The intermediate level,
Executive Layer is mainly integrated by event dispatcher and
plan interpreter components. The last level, the Supervisor
Layer, is composed by several supervisors that monitor aspects
like exception management, system performance, teleopera-
tion, reconfiguration, etc.

supervisors supervisors

controllersestimators

Physical System

Functional

Level

Executive Level

Supervision Level

trigger dispatchers trigger dispatchers

plan interpretersplan interpreters

actuatorssensors

Figure 8: Layered Architecture.

IV. RELATED WORKS

MOST research papers describing AUV systems have fo-
cused on vehicle’s control architectures, and there have

been few remarks on how to structure mission specification.
However, mission specification architecture is a fundamental
aspect, since it constraints the mission spectrum the vehicle
can perform and it influences other aspects like robustness,
ease of definition, modularity, etc.

FERNANDEZ ET AL.: MISSION SPECIFICATION IN UNDERWATER ROBOTICS 31

p1 p2

p3 p4

t1 → action1

t2 → action2
(a) Petri Nets

Survey Navigation

Stroll

Tracking

Transit

(b) Sub-goals and Tasks

Behavior1

Behavior2 Coordinator

Behavior3

a1
a2

a3

ac

(c) Behaviors

Figure 9: Mission specification designs

In Fig. 9 some common mission specification designs are
depicted: (a) Petri nets, used in ProCoSa [1] and CORAL
[19], [20], [7] systems, (b) tasks, used in ITOCA [21] and
others [22], and (c) behaviors [4], [22]. Their main features
are summarized below:

1) Petri Nets: Petri Net formalism brings robustness and
reliability. Its powerful representation allows flexibility
and monitoring by means of net marking. Modularity
is achieved employing modular Petri nets [7]. Petri
net’s graphical representation and available building and
simulation tools provide portability and ease definition.
Furthermore, this representation is suitable for direct
interpretation onboard. Their main drawback is the im-
posed formalism and tools, which need some adaptation
to AUV mission domain too.

2) Tasks: Sub-goals and tasks mission specification impose
DSL development and management, reducing portabil-
ity. Modularity and monitoring are provided only at
task level, while reconfiguration is possible through task
configuration parameters.

3) Behaviors: Missions specified with behaviors are similar
to tasks based ones, but with some important differences.
Due to behavior coordination, monitoring becomes diffi-
cult, specially if cooperative coordination is needed. It is
common to embed learning mechanisms, which in fact
allow mission auto-reconfiguration.

Tasks are comparatively easier to specify and monitored
than behaviors, so the former is preferable for mission spec-
ification. Indeed, many mission specifications are based on
tasks [24], [22], [21]. Despite the lack of GUI tools to define
missions, translate them into DSL or interpret them, their
development time is short. The specification with Petri nets
comes with software tools, but they have to be adapted to

AUV mission specification. It is also common to find robotic
systems that manage behaviors and learning algorithms [4],
but their mission specification power is weaker.

Planners are usually embedded in autonomous robotic sys-
tems to allow runtime decision making when replanning under
uncertainty or failure is demanded. To a large extent, tasks
are easily integrated within planners, e.g. in RAP system
a task is described by a Reactive Action Package (RAP)
which is a context sensitive program specifying a variety
of plans for achieving the task in different situations [9].
Most modern AUV architectures as T-REX (Teleo-Reactive
EXecutive) goal-oriented system are based on this approach
[14], [15]. Embedded automated planning and adaptive execu-
tion are T-REX key features, supported by a Constraint-based
Temporal Planning approach based on EUROPA2 planning
and scheduling solver [12], [2]. Mission specification may
support some sort of planner parametrization to allow behavior
selection under certain circumstances, by means of action’s
exception handlers.

We will describe now in more detail some systems that
are more closely related to our proposal, as far as they are
concerned with mission specification.

A. T-REX (McGaan @ MBARI)

T-REX (Teleo-Reactive EXecutive) [14] is a goal-oriented
system, with embedded automated planning and adaptive
execution using agents. It encapsulates the operation of a
sense-deliberate-act cycle in what is typically considered a
hybrid architecture where sensing, planning and execution are
interleaved. In order to make embedded planning scalable the
system enables the scope of deliberation to be partitioned
functionally and temporally inside units called Teleo-Reactors.
This discretization tries to guarantee that the current state of
the agent is kept consistent and complete during execution.
The agent-state is represented as a set of timelines, which
capture the evolution of a system state-variable over time in
discrete tick units. A timeline is a sequence of tokens that are
temporally qualified assertions expressed as a predicate with
start and end time bounds defining the temporal scope over
which it holds.

Teleo-Reactors in T-REX are characterized by their func-
tional scope, temporal scope and the timing requirements.
They are selected for processing agent timelines, according
with their functional scope. This process constitutes the basis
for inter-reactor communication inside T-REX, using mecha-
nisms such as timeline ownership (internal/external), timeline
observation, goal or desired timeline value, and dispatching
and notification rules.

A timeline processing algorithm executes as the heart of a
T-REX agent at the start of every tick. There are three key
steps in the algorithm: 1) all timelines are synchronized at the
current execution frontier, 2) new goals are dispatched, and
3) the remaining CPU time can be allocated to reactors for
deliberation in incremental steps. Each of these component
algorithms operate over the entire set of reactors.

Let’s analyze an AUV architecture example proposed by the
authors in [15]. There, four Teleo-Reactors are defined to be

32 JOURNAL OF PHYSICAL AGENTS, VOL. 4, NO. 1, JANUARY 2010

responsible for the different control loops operating inside the
vehicle: Mission Manager, Navigator, Science Operator and
Executive.

The Mission Manager provides high-level directives to
satisfy the scientific and operational goals of the mission.
Its temporal scope is the whole mission, taking minutes to
deliberate if necessary.

The Navigator and Science Operator manage the execution
of sub-goals generated by the Mission Manager. The temporal
scope for both is in the order of a minute although they differ
in their functional scope. Each refines high-level directives
into executable commands depending on current system state.
The Science Operator is able to provide local directives to
the Navigator in case, for example, of detecting something
interesting to explore. Deliberation may safely occur at a
latency of 1 second for these reactors.

The Executive provides an interface to the underlying AUV
functional layer. It encapsulates access to commands and
vehicle state variables. The Executive is approximated as
having zero latency within the timing model of the application
since it will accomplish a goal received with no measurable
delay (no deliberation).

B. MOOS (Newman @ MIT)

MOOS [18] refers to a suite of libraries and executables
designed and proved to run a field robot in sub-sea and land
domains. Included in its scope are a platform-independent
communication API, sensor management, state of the art
navigation, vehicle dynamic control, concurrent mission task
execution, vehicle safety management, mission logging and
mission replay.

As far as we know, MOOS is the only programming
framework has been used by some groups in programming
AUVs. MOOS provides an inter-process communication li-
brary. MOOS’ processes never communicate directly. Instead,
all messages go through a central MOOS server that acts as
communication hub, configuring a star-like topology. Every
MOOS server together with all processes that communicate
through it form a MOOS community and there may be several
communities within a system. The communication model
proceeds through three actions: publication, performed by the
process acting as data producer; subscription, that must be
carried out by the process that will consume some data; and
notification, issued by the MOOS server to all subscribers
whenever a datum is modified.

MOOS provides driver modules to ease the integration of
some sensors widely used with AUVs (e.g. GPS, DVL, sonar,
altimeter, ...). It also provides modules for navigation, control
and data logging, tools for mission replay from log files and
communication debugging. It also offers a simple multivehicle
simulator.

In MOOS, missions can be defined in terms of tasks. Tasks
must belong to certain predefined vehicle’s basic capabilities
like “GoToWayPoint”, “GoToDepth”, “LimitDepth” or even to
perform some pattern of waypoints. Tasks can be declared and
configured statically using a text file. MOOS uses a priority-
based scheme to solve arbitration problems among tasks. A

mission in MOOS can be specified declaring the sequence of
tasks that should be executed and controlled by the mission
controller. Missions can be redefined instructing the mission
controller to load a different mission file.

Mission plans in MOOS are made up from a set of tasks
that synchronize through the exchange of messages. A task
can control any number of other tasks sending messages of
certain types. In a mission file, tasks are given a unique name,
its type is declared and they are configured using the following
fields [18]:

• StartFlags: A list of messages names that if received will
put this task into operation.

• FinishFlags: A list of messages that are emitted when the
task completes or starves because it is not receiving data.

• EventFlags: A list of messages that are emitted when
some event happens but the task is not complete.

• TimeOut: The maximum time the task should run for. If
this timeout expires before the task terminates, Finish-
Flags messages are sent and the task terminates. A task
can be declared to never timeout.

• InitialState: If the task is initially on it does not listen
for StartFlags messages. Otherwise, it needs to receive a
StartFlags message before it goes active.

• Priority: This are used to arbitrate concurrent access to
certain resources like actuators. The lower the priority the
more important the task is.

Using this combination of message names, priorities and
timeout is how a mission is built with MOOS. Functionally, it
develops a mission as a network of tasks that are coordinated
exchanging typed messages.

V. SUMMARY

IN this article we have discussed how a plan-based mission
specification may be used to configure a AUV mission. The

segmentation of a whole mission into plans simplifies its spec-
ification and fosters reutilization. A trigger-based task model
for specifying missions abstracts events that allow flexible
mission parametrization, modulation, monitoring and control.
In comparison with other common mission representations
used in AUVs —like Petri nets or behaviors— plan-based
missions come up easier to define, as they are closer to AUV
mission domain. Moreover, specifying missions using task
oriented plans avoids the necessity of onboard planners that
might require significant computational costs. In addition, the
use of established design patterns for robotic systems fostering
separation between the control system and the system under
control, have been considered as a key principle in order to
ease system architecture design. Furthermore, some of these
design patterns have been reinterpreted at design level into a
component-based programming framework specifically aimed
at developing robotic systems, considering that, in general
this kind of frameworks provide already solutions to some
of the recurrent problems faced when building robotic control
software.

REFERENCES

[1] Claude Barrouil and Jérôme Lemaire. An integrated navigation system
for a long range AUV. IEEE Oceanic Engineering Society, (1):1–5,
September 1998.

FERNANDEZ ET AL.: MISSION SPECIFICATION IN UNDERWATER ROBOTICS 33

[2] Tania Bedrax-Weiss, Jeremy Frank, Ari Jónsson, and Conor McGann.
EUROPA2: Plan Database Services for Planning and Scheduling Appli-
cations. November 2004.

[3] Matthew Bennett, Daniel Dvorak, Joseph Hutcherson, Michel Ingham,
Robert Rasmussen, and David Wagner. An Architectural Pattern for
Goal-Based Control. In Proceedings of the 2008 IEEE Aerospace
Conference, March 2008.

[4] Marc Carreras Pérez. A Proposal of a Behavior-based Control Archi-
tecture with Reinforcement Learning for an Autonomous Underwater
Robot. PhD thesis, University of Girona, Girona, Spain, May 2003.

[5] Søren Christensen and Laure Petrucci. Modular analysis of Petri Nets.
The Computer Journal, 43(3), 2000.

[6] Antonio C. Domı́nguez-Brito, Daniel Hernández-Sosa, José Isern-
Gonzalez, and Jorge Cabrera-Gámez. Coolbot: A component model and
software infrastructure for robotics. In Davide Brugali, editor, Software
Engineering for Experimental Robotics, volume 30 of Springer Tracts
in Advanced Robotics. Springer - Verlag, Berlin/Heidelberg, April 2007.

[7] R. A. Duarte Oliveira. Supervisão e Controlo da Missão de Veı́culos
Autónomos. PhD thesis, Universidade Técnica de Lisboa. Instituto Su-
perior Técnico (IST), Lisboa, Portugal, 2003. Dissertação para obtenção
do grau de mestre em engenharia electrotécnica e de computadores.

[8] D. Brugali (Editor). Software Engineering for Experimental Robotics.
Springer Tracts in Advanced Robotics, Volume 30/2007. Springer
Berlin/Heidelberg, 2007.

[9] R. James Firby, Roger E. Kahn, Peter N. Prokopowicz, and Michael J.
Swain. An Architecture for Vision and Action. In Fourteenth Interna-
tional Joint Conference on Artificial Intelligence, pages 72–79, 1995.

[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley Pro-
fessional Computing Series. Addison-Wesley, 1995.

[11] Brian P. Gerkey, Richard T. Vaughan, and Andrew Howard. The
Player/Stage Project: Tools for Multi-Robot and Distributed Sensor
Systems. In Proceedings of the 11th International Conference on
Advanced Robotics (ICAR’03), pages 317–323, Coimbra, June 2003.

[12] Ari K. Jónsson, Paul H. Morris, Nicola Muscettola, and Kanna Rajan.
Planning in Interplanetary Space: Theory and Practice. Technical report,
NASA Ames Research Center, Brekenridge, 2000. AIPS 2000.

[13] Laboratoire d’Analyse et d’Architecture des Systèmes - LAAS (CNRS).
LAAS OpenRobots Project. http://softs.laas.fr/openrobots.

[14] Conor McGann, Frederic Py, Kanna Rajan, Hans Thomas, Richard

Henthorn, and Rob McEwen. T-REX: A Model-Based Architecture for
AUV Control. In 3rd Workshop on Planning and Plan Execution for
Real-World Systems 2007, 2007.

[15] Conor McGann, Frederic Py, Kanna Rajan, Hans Thomas, Richard
Henthorn, and Rob McEwen. A Deliberative Architecture for AUV
Control. In International Conference on Robotic and Automation (ICRA)
2008, 2008.

[16] Tadao Murata. Petri Nets: Properties, Analysis and Applications. In
Proceedings of the IEEE, volume 77, 1989.

[17] Issa A. D. Nesnas, Anne Wright, Max Bajracharya, Reid Simmons, Tara
Estlin, and Won So Kim. Claraty: An architecture for reusable robotic
software. In in SPIE Aerosense Conference, 2003.

[18] P. Newman. The MOOS project homepage. [Online ; accessed May 8,
2009].

[19] P. J. C. Ramalho Oliveira, A. Pascoal, V. Silva, and C. Silvestre. Design,
development and testing of a mission control system for the marius
auv. Department of Electrical Engineering. Institute for Systems and
Robotics, Instituto Superior Técnico (IST)(1):20, 1996.

[20] P. J. C. Ramalho Oliveira, A. Pascoal, V. Silva, and C. Silvestre. The mis-
sion control system of the marius auv: System design, implementation
and tests at sea. International Journal of Systems Science, 29(10):1065–
1080, 1998. Special Issue on Underwater Robotics.

[21] P. Ridao, J. Yuh, J. Batlle, and K. Sugihara. On AUV Control Architec-
ture. In Proceedings of the 2000 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS 2000), volume 2, pages 855–860,
2005.

[22] G. N. Roberts, R. Sutton, and R. Allen. Guidance and control of un-
derwater vehicles. Elsevier Science and Technology, IFAC Proceedings
Volumes(1):1–40, 2003.

[23] C. Schlegel. Navigation and Execution for Mobile Robots in Dynamic
Environments: An Integrated Approach. PhD thesis, University of Ulm,
2004.

[24] Reid Simmons and David Apfelbaum. A Task Description Language for
Robot Control. In Proceedings of Conference on Intelligent Robotics and
Systems, pages 1–7, March 1998.

[25] D. B. Stewart, R. A. Volpe, and P. Khosla. Design of Dynami-
cally Reconfigurable Real-Time Software Using Port-Based Objects.
IEEE Transactions on Software Engineering, 23(12):759–776, Decem-
ber 1997.

View publication statsView publication stats

https://www.researchgate.net/publication/41392245

	Introduction
	Mission Specification
	Typical AUV tasks
	Mission life cycle
	Plan-based missions
	Plan specification

	Architectural Design Patterns
	Frameworks and Design Patterns

	Related Works
	T-REX
	MOOS

	Summary
	References

