

Microhardness

AND HADD DUACE

Correlation between the electrochemical behavior and mechanical properties of Ti-20Zr as a candidate for orthopedic material Nestor R. Florido Suarez¹, Pedro P. Socorro Perdomo², Amparo Verdú Vazquez³, Julia C. Mirza Rosca²

¹Processing Engineering Department, University of Las Palmas de Gran Canaria, <u>nestor.florido@ulpgc.es</u>

²Mechanical Engineering Department, University of Las Palmas de Gran Canaria,

³Mechanical Engineering Department, Polytechnic University of Madrid.

Keywords: ³ Mechanical Engineering Department, Polytechnic University of Madrid.		SOFT AND HARD PHASES - TI-20Zr			
Biomaterials, ABSTRACT	LOAD	PHASE	HARDNESS	INDENTATION	
A combination of titanium with zirconium was evaluated because it has been suggested as a condidate for human body	(gf)		(HV)	DEPTH (µm) 🗧	
controlini,	0.5	SOFT	37.3	0.712	
circulocitemical associations and aluminum in the actually used biometerial Tic A14V	0.5	HARD	50.0	0.615	
orthopedic Caused by vanadulin and autimutin in the actually used biomaterial TIGA14V.	1	SOFT	66.2	0.756	
Metallography The Ti-20Zr alloy, composed of 80% Titanium and 20% Zirconium, (from R&D CS Bucharest, Romania –	_ <u>+</u>	HARD	91.3	0.643	
ile il 2021 alloy, composed of 0075 Halinain and 2076 Encomaini, (nom Red) es Edenaresi, Romaina		SOFT	101.5	0.863	
Research & Development Consulting and Services) was obtained by vacuum melting.	2 I	HARD	145.3	0.721 💈	
From metallographical images can be observed that the sample has an alpha-beta structure. The microhardness	2	SOFT	127.7	0.942	
measurements concluded that the alloy formed a hard layer on its surface which greatly improves the wear resistance.	5	HARD	197.2	0.758	
Materials and The obtained tensile strength can be considered good in relation with other similar implant materials.	8	SOFT	149.8	1.000	
Methods x150 x300 x600 x1200 x3000	4	HARD	214.8	0.839	
	-	SOFT	163.7	1.075	
Titanio Zirconium	5	HARD	288.4	0.809	
	10	SOFT	194.6	1.394	
	10	HARD	242.4	1.249	
	- 20	SOFT	201.9	1.935	
	20	HARD	298.4	1.592	
		SOFT	212.8	2.981	
	50	HARD	255.3	2.722	
		SOFT	201.3	4.335	
	100	HARD	256.2	3.842	
		SOFT	210.5	5.990	
	200	HARD	268.8	5.305	
Potential (V)	£* ø	£. 4	5 4 E	54 64 1	
• 10 mv/s • 20 mv/s • 10 mv/s				4 4 A	
The impedance spectra were fitted with two time	consta	nts equiv	valent circuit	and the fitting	

LOAD		BRINELL	TENSILE STRENGTH		
(gf)	AVERAGE HV	HARDNESS	(psi)	(MPa)	
50	234	234	81917	564	
100	228	228	80062	552	
200	239	239	83877	578	

CONCLUSIONS

The hardness of Ti-20Zr alloy is 20% higher than that of commercially pure Ti, confirming the alloy's superior mechanical strength. The results were confirmed by mechanical approach, in terms of two-layer model of the oxide film, consisting of a thin barrier type inner layer and a porous outer layer. The pronounced porous outer layer is expected to facilitate the incorporation of mineral ions and to improve the resistance to electrochemical corrosion over the potential of relevance for human body conditions.

parameters indicate long-term stability of the passive layers in surgical implant conditions.