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Complex conformal submersions with total space
a locally conformal Kähler manifold

By J. C. MARRERO (Tenerife) and J. ROCHA (Gran Canaria)

Abstract. In this paper we study almost complex conformal submersions with
total space a locally conformal Kähler (l.c.K.) manifold, which we call l.c.K. τ -conformal
submersions. We derive necessary and sufficient conditions for the horizontal distribu-
tion of a l.c.K. τ -conformal submersion to be completely integrable. We also obtain
necessary and sufficient conditions for the base space to be a Kähler manifold and for
the fibers to be minimal. Finally, we give some examples.

Introduction

Locally conformal Kähler (l.c.K.) manifolds have been studied by
many authors (see [2], [8], [9], [15], [16] and [17]). Examples of l.c.K.
manifolds are provided by the generalized Hopf manifolds which are l.c.K.
manifolds with parallel Lee form (see [2], [16] and [17]).

On the other hand, a smooth surjective mapping π between almost
Hermitian manifolds is said to be an almost Hermitian submersion if π is a
Riemannian submersion which is, moreover, an almost complex mapping
([18]). An almost Hermitian submersion is a particular case of almost
complex conformal submersion between almost Hermitian manifolds (see
Preliminaries and Definition 2.1).

In [9], the author claims that the horizontal distribution of an almost
complex conformal submersion with total space a l.c.K. manifold is com-
pletely integrable and that the maximal integral submanifolds are totally
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Supported by the “Consejeŕıa de Educación del Gobierno de Canarias”.



336 J. C. Marrero and J. Rocha

umbilical. This result is not true (see Section 2). In fact, in [8], we de-
rive necessary and sufficient conditions for the horizontal distribution of
an almost Hermitian submersion with total space a l.c.K. manifold to be
completely integrable (see Proposition 1.1) and we obtain all the almost
Hermitian submersions with totally geodesic fibers and total space a par-
ticular class of generalized Hopf manifolds (the horizontal distribution of
these submersions is not completely integrable, see Section 3).

In this paper, we study almost complex conformal submersions with
total space a l.c.K. manifold, which we call l.c.K. τ -conformal submersions.
We derive necessary and sufficient conditions for the horizontal distribution
of a l.c.K. τ -conformal submersion to be completely integrable and, we
prove that if the horizontal distribution is completely integrable then the
maximal integral submanifolds are totally umbilical (see Proposition 2.1).
We also obtain necessary and sufficient conditions for the base space of a
l.c.K. τ -conformal submersion to be a Kähler manifold and for the fibers to
be minimal (see Proposition 2.2 and Corollary 2.2). Finally, we give some
examples of l.c.K. τ -conformal submersions. The horizontal distribution of
the first example is completely integrable and its base space is a globally
conformal Kähler manifold. However, the horizontal distribution of the
remaining examples is not completely integrable. Moreover, the base space
of these examples is a Kähler manifold and the fibers are totally umbilical
submanifolds.

We wish to express our thanks to the Prof. L. Vanhecke for many
helpful comments concerning this paper.

1. Preliminaries

All the manifolds considered in this paper are assumed to be connected
and of class C∞.

Let M be an almost Hermitian manifold with metric g and almost
complex structure J . Denote by X(M) the Lie algebra of C∞ vector
fields on M and by NJ the Nijenhuis tensor of M , that is, NJ (X, Y ) =
[JX, JY ] − J [JX, Y ] − J [X,JY ] − [X,Y ] for all X, Y ∈ X(M). The
Kähler 2-form Ω is given by Ω(X,Y ) = g(X, JY ) and the Lee 1-form ω

is defined by ω(X) =
1

(m− 1)
δΩ(JX), where δ denotes the codifferential

and dim M = 2m. The vector field B on M given by ω(X) = g(X, B), for
all X ∈ X(M), is called the Lee vector field of M .

An almost Hermitian manifold (M, J, g) is said to be (see [6] and
[15]): Hermitian if NJ = 0; Kähler if it is Hermitian and dΩ = 0; Locally
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(globally) conformal Kähler (l.(g.)c.K.) if it is Hermitian, ω is closed (exact)
and

(1.1) dΩ = ω ∧ Ω.

A l.c.K. manifold (M, J, g) with Lee 1-form ω 6= 0 at every point is
called a generalized Hopf manifold if ω is parallel (see [16] and [17]).

If (M, J, g) is a generalized Hopf manifold with Lee 1-form ω then
l = ‖ω‖ is constant and

(1.2) dv = c(Ω + 2v ∧ u),

where Ω is the Kähler 2-form of (M,J, g), c =
l

2
, u =

ω

l
and v = −u ◦ J

(see [16]).
Now, let N be an almost contact metric manifold with metric h

and almost contact structure (ϕ, ξ, η). The Nijenhuis tensor Nϕ of N
is given by Nϕ(X, Y ) = [ϕX,ϕY ] − ϕ[ϕX, Y ] − ϕ[X, ϕY ] + ϕ2[X,Y ],
for all X, Y ∈ X(N). The fundamental 2-form Φ of N is defined by
Φ(X, Y ) = h(X,ϕY ). The sectional curvatures in N of the ϕ-invariant
planes are called ϕ-sectional curvatures.

An almost contact metric manifold (N, ϕ, ξ, η, h) is said to be c-
sasakian (see [5]), with c ∈ R, c 6= 0 if Nϕ + 2dη ⊗ ξ = 0 and dη = cΦ. If
c = 1 then the manifold (N,ϕ, ξ, η, h) is called sasakian.

Let (N, ϕ, ξ, η, h) be a c-sasakian manifold. Consider on the product
manifold M = N × R the almost Hermitian structure (J, g) defined by

(1.3)
J(X, a

∂

∂t
) = (ϕX + aξ,−η(X)

∂

∂t
),

g((X, a
∂

∂t
), (Y, b

∂

∂t
)) = h(X, Y ) + ab,

for all X, Y ∈ X(N) and a, b differentiable functions on M . Then we have
that (M,J, g) is a generalized Hopf manifold (see [16]) with Lee 1-form ω
and Lee vector field B given by

(1.4) ω = 2cdt, B = 2c
∂

∂t
.

On the other hand, a surjective submersion π : (M,J, g)−→(M ′, J ′, g′)
with total space and base space the almost Hermitian manifolds (M, J, g)
and (M ′, J ′, g′) respectively, is said to be an almost Hermitian submersion
if π∗◦J = J ′◦π∗ and π is a Riemannian submersion, i.e., for all x ∈ M and
for all u, v ∈ (Ker πx

∗ )
⊥, gx(u, v) = g′π(x)(π

x
∗u, πx

∗v) (see [18]). Vectors on
M which are in the Kernel of πx

∗ are tangent to the fiber π−1(π(x)) over x
and are called vertical vectors at x. Vectors which are in (Ker πx

∗ )⊥ are said
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to be horizontal. A vector field X on M is said to be vertical (respectively
horizontal) if Xx is vertical (respectively horizontal) for all x ∈ M . If the
total space (M, J, g) of the submersion π is a Kähler (respectively l.c.K.)
manifold then π is called a Kähler (respectively l.c.K.) submersion.

In [8], we have proved

Proposition1.1. Let π : (M, J, g) −→ (M ′, J ′, g′) be a l.c.K. submer-
sion and B the Lee vector field of (M,J, g). Then B is a horizontal vector
field on M if and only if the horizontal distribution determined by π is
completely integrable.

Proposition 1.2. If π : M −→ M ′ is a l.c.K. submersion then the
following are equivalent:

1. The Lee vector field of M is vertical.

2. The fibers of π are minimal submanifolds of M .

3. M ′ is a Kähler manifold.

2. Complex conformal submersions with total space
a locally conformal Kähler manifold

Let (M,J, g) and (M ′, J ′, g′) be almost Hermitian manifolds.

Definition 2.1. A smooth surjective mapping π : (M, J, g) −→
(M ′, J ′, g′) is called an almost complex τ -conformal submersion, where τ
is a real differentiable function on M , if π is a submersion, π∗ ◦J = J ′ ◦π∗
and for all x ∈ M and for all u, v ∈ TxM orthogonal to the vertical space
at x,

eτ(x)gx(u, v) = g′π(x)(π
x
∗u, πx

∗v).

If the total space (M,J, g) is a l.c.K. manifold then π is called a l.c.K.
τ -conformal submersion.

Let π : (M,J, g) −→ (M ′, J ′, g′) be an almost complex τ -conformal
submersion. In a similar way that for an almost Hermitian submersion
we say that a vector u ∈ TxM , x ∈ M , is horizontal if it is orthogonal to
the vertical space at x. The horizontal distribution of π assigns to each
point x of M the subspace of the horizontal vectors at x. A vector field
X on M is said to be vertical (respectively horizontal) if Xx is vertical
(respectively horizontal) for all x ∈ M . If X is a vector field on M then it
may be written uniquely as a sum X = Xv + Xh, where Xv is a vertical
vector field and Xh is a horizontal vector field.

In what follows we shall denote by A the gradient of the function τ ,
i.e., A is the vector field on M given by X(τ) = g(A,X) for all X ∈ X(M).
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Let π : (M, J, g) −→ (M ′, J ′, g′) be a l.c.K. τ -conformal submersion.
In [9], Musso claims that the horizontal distribution of π is completely
integrable and that the maximal integral submanifolds of the horizontal
distribution are totally umbilical.

To prove this result, he proceeds as follows.
If x is a point of M then x has an open neighbourhood U such that

er(eτg) is a Kähler metric on U , where r : U −→ R is a real differentiable
function. Since π is a submersion, then he deduces that π(U) is an open
subset of M ′ and that there exists a Hermitian metric ğ′ on π(U) such
that

π|U : (U, J, er(eτg)) −→ (π(U), J ′, ğ′)

is a Kähler submersion. Consequently, using a result of Watson [18] (see
also Proposition 1.4 of [9]), he concludes that the horizontal distribution
of π is completely integrable and that the maximal integral submanifolds
are totally umbilical submanifolds of the Riemannian manifold (M, g) (for
more details, see [9]).

The above argument is not right. In general, it is not true that there
exists a Hermitian metric ğ′ on π(U) such that π|U : (U, er(eτg)) −→
(π(U), ğ′) is a Riemannian submersion. In fact, if the function r is not
constant on the fibers of π|U then we cannot obtain the metric ğ′ (see the
following Proposition 2.1).

Now, we shall study the integrability of the horizontal distribution of
π and we shall obtain the correct version of the Musso’s results.

Proposition 2.1. Let π : (M, J, g) −→ (M ′, J ′, g′) be a l.c.K. τ -
conformal submersion and B the Lee vector field of M . Then the hor-
izontal distribution determined by π is completely integrable if and only if
the vector field A+B is horizontal. In this case, if P is a maximal integral
submanifold of the horizontal distribution of π then P is a totally umbilical
submanifold with normal curvature vector field 1

2 (Av)|P = − 1
2 (Bv)|P .

Proof. Denote by ω the Lee 1-form of (M, J, g) and by Ω and Ω
the Kähler 2-forms of the Hermitian manifolds (M,J, g) and (M,J, eτg)
respectively. Then, we have that Ω = eτΩ. Thus, we deduce that dΩ =
ω ∧Ω, where ω is the 1-form on M given by ω = ω + dτ . Therefore, since
ω is a closed 1-form, we obtain that (M,J, eτg) is a l.c.K. manifold with
Lee 1-form ω and Lee vector field B defined by

(2.1) B = e−τ (A + B).

On the other hand, the submersion π defines a l.c.K. submersion,
which we shall denote by πτ , between the l.c.K. manifold (M, J, eτg) and
the almost Hermitian manifold (M ′, J ′, g′). Moreover, it is clear that the
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horizontal distribution of π coincides with the horizontal distribution of πτ .
Consequently, using (2.1) and Proposition 1.1, we have that the horizontal
distribution of π is completely integrable if and only if the vector field
A + B is horizontal.

Next, we shall suppose that the horizontal distribution determined by
π is completely integrable.

Let ∇ and ∇ be the Riemannian connections of the metrics g and
g = eτg respectively. Then, for all X, Y ∈ X(M) (see, for instance, [3]
pag. 115),

(2.2) ∇XY = ∇XY +
1
2
X(τ)Y +

1
2
Y (τ)X − 1

2
g(X, Y )A.

Thus, if P is a submanifold of M and σ (respectively σ) is the second
fundamental form of P with respect to∇ (respectively∇) then, from (2.2),
we deduce that

(2.3) σ(X, Y ) = σ(X,Y )− 1
2
g(X,Y )(An)|P

for all X, Y ∈ X(P ), where (An)|P is the normal component to P of A.
Now, if P is a maximal integral submanifold of the horizontal distri-

bution of π then, since πτ is a Riemannian submersion, we obtain that
P is a totally geodesic submanifold of (M, eτg) (see [11]). This, by (2.3),
implies that P is a totally umbilical submanifold of (M, g) with normal
curvature vector field 1

2 (Av)|P = − 1
2 (Bv)|P .

Using Proposition 2.1 we have

Corollary 2.1. Let π : M −→ M ′ be a l.c.K. τ -conformal submersion
and B the Lee vector field of M . Then, the vector fields A and B are
horizontal if and only if the horizontal distribution of π is completely
integrable and the maximal integral submanifolds are totally geodesic.

We remark that if π : (M,J, g) −→ (M ′, J ′, g′) is a l.c.K. τ -conformal
submersion then, since the map πτ : (M,J, eτg) −→ (M ′, J ′, g′) is a l.c.K.
submersion, we deduce that the base space (M ′, J ′, g′) is a l.c.K. manifold
(see [8]).

Next, we obtain necessary and sufficient conditions for the base space
of a l.c.K. τ -conformal submersion to be a Kähler manifold.

Proposition 2.2. If π : (M, J, g)−→(M ′, J ′, g′) is a l.c.K. τ -conformal
submersion and B is the Lee vector field of M then, are equivalent:

1. The vector field A + B is vertical.

2. The l.c.K. manifold (M ′, J ′, g′) is Kähler.
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3. If F is a fiber of the submersion π then the mean curvature vector
field of F is 1

2 (Ah)|F .

Proof. Let ∇ and ∇ be the Riemannian connections of the metrics
g and g = eτg respectively, F a submanifold of M , H (respectively H) the
mean curvature vector field of F with respect to ∇ (respectively ∇) and
(An)|F the normal component to F of A. Then, from (2.3), we have that
H = e−τ (H − 1

2 (An)|F ). Therefore, using (2.1), Proposition 1.2 and the
fact that the map πτ : (M,J, eτg) −→ (M ′, J ′, g′) is a l.c.K. submersion,
we obtain that 1, 2 and 3 are equivalent.

Finally, from Proposition 2.2, we deduce

Corollary 2.2. Let π : (M,J, g)−→(M ′, J ′, g′) be a l.c.K. τ -conformal
submersion and B the Lee vector field of M . Then, the vector fields A
and B are vertical if and only if the fibers of π are minimal submanifolds
of M and (M ′, J ′, g′) is a Kähler manifold.

3. Examples

In this Section, we shall obtain some examples of l.c.K. τ -conformal
submersions.

We remark that if π : M −→ M ′ is a l.c.K. τ -conformal submersion
then, as in Section 2, we shall denote by A the gradient of the function τ .

1. Let (M1, J1, g1) be a g.c.K. manifold and (M2, J2, g2) a Kähler
manifold. Suppose that f1 is a positive real differentiable function on M1

such that d(ln(f1)) = ω1, where ω1 is the Lee 1-form of M1. Consider
the warped product M = M1 ×f1 M2, i.e., the product manifold M1 ×M2

furnished with metric tensor g given by g = π∗1g1 + (π∗1f1)π∗2g2, where
π1 and π2 are the canonical projections of M1 × M2 onto M1 and M2,
respectively.

Denote by J the product complex structure of J1 and J2 on the prod-
uct manifold M = M1 ×M2.

Proposition 3.1. Let τ be a real differentiable function on M . Then,

1. The almost Hermitian manifold (M, J, g = e−τg) is a g.c.K.
manifold with Lee 1-form π∗1ω1 − dτ .

2. The projection π1 is a l.c.K. τ -conformal submersion between
the g.c.K. manifolds (M, J, g) and (M1, J1, g1).

3. The horizontal distribution of the submersion π1 : (M, J, g)
−→ (M1J1, g1) is completely integrable and the maximal
integral submanifolds are totally umbilical.
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4. The maximal integral submanifolds of the horizontal distri-
bution of π1 are totally geodesic if and only if there exists a
real differentiable function τ1 on M1 such that τ = τ1 ◦ π1.

Proof. It is well known that the product of Hermitian manifolds is
a Hermitian manifold (see, for instance, [6]). Now, let Ω be the Kähler
2-form of the Hermitian manifold (M, J, g). Then,

(3.1) Ω = e−τ (π∗1Ω1 + (π∗1f1)π∗2Ω2),

where Ω1 and Ω2 are the Kähler 2-forms of (M1, J1, g1) and (M2, J2, g2),
respectively.

Thus, from (1.1) and (3.1), we obtain that dΩ = (π∗1ω1 − dτ) ∧ Ω.
Therefore, if B1 is the Lee vector field of the g.c.K. manifold (M1, J1, g1)
then (M,J, g) is a g.c.K. manifold with Lee 1-form ω = π∗1ω1−dτ and Lee
vector field B given by

(3.2) B = eτB1 −A.

On the other hand, it is easy to prove that π1 is a l.c.K. τ -conformal
submersion between the g.c.K. manifolds (M,J, g) and (M1, J1, g1). Con-
sequently, using (3.2) and Proposition 2.1, we deduce 3. Finally, 4 follows
from (3.2) and Corollary 2.1.

Remark. The projection π2 of (M, J, g) onto (M2, J2, g2) is a l.c.K.
τ -conformal submersion with base space a Kähler manifold, where τ =
− ln(π∗1f1). Moreover, by a well known result of warped products (see
[12]), we have that the fibers of π2 are totally geodesic submanifolds of
(M, g).

2. Let S2m−1 be the (2m− 1)-dimensional unit sphere in R2m ' Cm

and k, c be real numbers such that c 6= 0 and k > −3c2. Denote by (J̃ , g̃)
the flat Kähler structure on Cm and put

ϕ = J̃ − v ⊗ U, ξ = − c

α
J̃U, η = −α

c
v, h =

α

c2
h′ +

(α2 − α)
c2

η ⊗ η,

where α is the positive constant
4c2

k + 3c2
, h′ is the induced metric on S2m−1

by g̃, U is the unit normal of S2m−1 in R2m given by

U=
m∑

i=1

(
xi ∂

∂xi
+yi ∂

∂yi

)
, v is the 1-form defined by v =

m∑
i=1

(yidxi−xidyi)

and (x1, ..., xm, y1, ..., ym) are the usual coordinates on R2m. Then
(S2m−1, ϕ, ξ, η, h) is a c-sasakian manifold of constant ϕ-sectional curva-
ture k ([13] and [14]). We denote by S2m−1(c, k) the c-sasakian manifold
with this structure.
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Now, let π : S2m−1(c, k) × R −→ S2m−1(c, k) be the natural projec-
tion, Pm−1(Cm)(k+3c2) the (m−1)-dimensional complex projective space
with the usual Kähler structure of positive constant holomorphic sectional
curvature k + 3c2 and π1 : S2m−1 −→ Pm−1(Cm) the Hopf fibration (see,
for instance, [6]). Then, the map π1(c, k, m) defined by

π1(c, k, m) = π1 ◦ π : S2m−1(c, k)× R −→ Pm−1(Cm)(k + 3c2),

is an almost Hermitian submersion with totally geodesic fibers of the gen-
eralized Hopf manifold (S2m−1(c, k) × R, J, g) onto the Kähler manifold
Pm−1(Cm)(k + 3c2), where (J, g) is the almost Hermitian structure on
S2m−1(c, k)×R given by (1.3) (see [8]). The horizontal distribution of this
submersion is not completely integrable (see [8]).

Proposition 3.2. Let τ be a real differentiable function on
S2m−1(c, k) ×R (c 6= 0 and k > −3c2) and g the Riemannian metric given
by g = e−τg. Then,

1. The map π1(c, k, m) defines a l.c.K. τ -conformal submersion
π1(c, k,m, τ) of the g.c.K. manifold (S2m−1(c, k) × R, J, g) onto the
Kähler manifold Pm−1(Cm)(k + 3c2).

2. If F is a fiber of the submersion π1(c, k,m, τ) then F is a totally
umbilical submanifold of the Riemannian manifold (S2m−1(c, k)×R, g)
and the normal curvature vector field of F is 1

2 (Ah)|F .

3. The horizontal distribution determined by π1(c, k, m, τ) is not com-
pletely integrable.

4. The fibers of the submersion π1(c, k, m, τ) are totally geodesic sub-
manifolds of the Riemannian manifold (S2m−1(c, k) × R, g) if and
only if there exists a real differentiable function τ ′ : R −→ R such
that τ = π∗Rτ

′, where πR : S2m−1(c, k) × R −→ R is the canonical
projection.

Proof. It is clear that the map π1(c, k, m) defines a l.c.K. τ -confor-
mal submersion π1(c, k, m, τ). In fact, the l.c.K. submersion π1(c, k,m, τ)τ

associated with π1(c, k,m, τ) is just the map π1(c, k, m). Thus, using (2.3),
we prove 1, 2 and 3.

On the other hand, if B is the Lee vector field of the generalized Hopf
manifold (S2m−1(c, k) × R, J, g) then the vertical distribution of the sub-
mersion π1(c, k, m, τ) is generated by the vector fields B and JB (see [8]).

Therefore, if there exists a real differentiable function τ ′ : R −→ R
such that τ = π∗Rτ

′ then, from (1.4), we have that the vector field A is
vertical which, using 2, implies that the fibers of π1(c, k, m, τ) are totally
geodesic submanifolds of (S2m−1(c, k)× R, g).
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Conversely, if the fibers of π1(c, k, m, τ) are totally geodesic subman-
ifolds of (S2m−1(c, k)×R, g) then, by 2, we deduce that the vector field A
is vertical or equivalently

(3.3) dτ = fu + jv,

with f and j real differentiable functions on S2m−1(c, k) × R, u the unit
Lee 1-form of (S2m−1(c, k)× R, J, g) and v = −u ◦ J .

Now, let Ω be the Kähler 2-form of (S2m−1(c, k)×R, J, g). From (1.2)
and (3.3), we obtain that

(3.4) 0 = df ∧ u + dj ∧ v + cj(Ω + 2v ∧ u),

where c =
‖B‖
2

=

√
g(B,B)

2
. Thus, using (3.4), we deduce that

0 = jΩ ∧ u ∧ v.

Since Ω∧u∧ v 6= 0 at every point, we have that j ≡ 0, i. e., dτ = fu.
Consequently, from (1.4), we conclude that there exists a real differentiable
function τ ′ : R −→ R such that τ = π∗Rτ

′.

3. Let c be a real number, c 6= 0.
A basis for the vector fields on R2m−1 is given by

Xi =
∂

∂xi
, Yi =

∂

∂yi
+ 2cxi ∂

∂z
, Z =

∂

∂z
(1 ≤ i ≤ m− 1),

and its dual basis of 1-forms on R2m−1 is defined by

αi = dxi, βi = dyi, γ = dz − 2c

m−1∑

j=1

xjdyj (1 ≤ i ≤ m− 1),

where (x1, . . . , xm−1, y1, . . . , ym−1, z) are the usual coordinates in R2m−1.
Consider on R2m−1 the almost contact metric structure (ϕ, ξ, η, h)

given by

ϕXi = Yi, ϕYi = −Xi, ξ = Z, η = γ (1 ≤ i ≤ m− 1),

h =
m−1∑

j=1

{αj ⊗ αj + βj ⊗ βj}+ γ ⊗ γ.

Then (R2m−1, ϕ, ξ, η, h) is a c-sasakian manifold of constant ϕ-sec-
tional curvature −3c2 (see [1] and [10]). We denote by R2m−1(c) the c-
sasakian manifold with this structure.
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Now, let (J, g) be the almost Hermitian structure on the product
manifold R2m−1(c) × R defined by (1.3) and π2(c, m,m′) the submersion
of R2m−1(c)× R onto R2m′

, with m′ ≤ m− 1, given by

π2(c,m, m′)(x1, . . . , xm−1, y1, . . . , ym−1, z, t) = (x1, . . . , xm′
, y1, . . . , ym′

).

If we consider on R2m′
the usual Kähler structure then π2(c,m,m′)

is a l.c.K. submersion with totally geodesic fibers of the generalized Hopf
manifold (R2m−1(c)×R, J, g) onto the Kähler manifold R2m′

(see [8]). The
horizontal distribution of this submersion is generated by the vector fields
Xi, Yi with 1 ≤ i ≤ m′. Then, it is clear that such a distribution is not
completely integrable (see [8]).

Using the above results and (2.3), we deduce

Proposition 3.3. Let τ be a real differentiable function on R2m−1(c)
×R (c 6= 0) and g the Riemannian metric given by g = e−τg. Then,

1. The map π2(c,m, m′) defines a l.c.K. τ -conformal submersion
π2(c,m, m′, τ) of the g.c.K. manifold (R2m−1(c) × R, J, g) onto the

Kähler manifold R2m′
, with m′ ≤ m− 1.

2. If F is a fiber of the submersion π2(c, m,m′, τ) then F is a totally
umbilical submanifold of the Riemannian manifold (R2m−1(c)×R, g)
and the normal curvature vector field of F is 1

2 (Ah)|F .

3. The horizontal distribution determined by π2(c,m, m′, τ) is not com-
pletely integrable.

4. The fibers of the submersion π2(c,m, m′, τ) are totally geodesic sub-
manifolds of the Riemannian manifold (R2m−1(c) × R, g) if and only
if for all i ∈ {1, . . . , m′},

∂τ

∂xi
=

∂τ

∂yi
= 0,

∂τ

∂z
= 0.

4. Let (M, J̃, g̃) be a Kähler manifold of constant holomorphic sec-
tional curvature l with Kähler 2-form Ω̃ such that dω = cΩ̃, where ω is
a 1-form on M and c a real number, c 6= 0. Denote by N the product
manifold R×M and by π : R×M −→ M the canonical projection. Put

ϕ = J̃ ◦ π∗ − π∗(ω ◦ J̃)⊗ ∂

∂t
, ξ =

∂

∂t
, η = dt + π∗ω, h = g̃ + η ⊗ η.

Then (N,ϕ, ξ, η, h) is a c-sasakian manifold of constant ϕ-sectional
curvature k = l − 3c2 (see [7] and [10]). We denote by (R ×M)(c, k) the
c-sasakian manifold with this structure.
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Thus, if CDm−1(l), l < 0, is the open unit ball in Cm−1 with the
Kähler structure of constant holomorphic sectional curvature l (see [6],
pag. 169) then the manifold (R×CDm−1)(c, k) is a c-sasakian manifold of
constant ϕ-sectional curvature k = l − 3c2 < −3c2.

Now, consider on the product manifold (R × CDm−1)(c, k) × R the
almost Hermitian structure (J, g) given by (1.3). Then, the natural pro-
jection

π3(c, k, m) : (R× CDm−1)(c, k)× R −→ CDm−1(k + 3c2),

is an almost Hermitian submersion with totally geodesic fibers of the gener-
alized Hopf manifold ((R×CDm−1)(c, k)×R, J, g) onto the Kähler manifold
CDm−1(k + 3c2) (see [8]). The horizontal distribution of this submersion
is not completely integrable (see also [8]).

Using the above facts and proceeding as in the proof of Proposi-
tion 3.2, we deduce

Proposition 3.4. Let τ be a real differentiable function on (R×
CDm−1)(c, k) × R (c 6= 0 and k < −3c2) and g the Riemannian metric
given by g = e−τg. Then,

1. The map π3(c, k, m) defines a l.c.K. τ -conformal submersion
π3(c, k,m, τ) of the g.c.K. manifold ((R×CDm−1)(c, k)×R, J, g) onto
the Kähler manifold CDm−1(k + 3c2).

2. If F is a fiber of the submersion π3(c, k,m, τ) then F is a totally
umbilical submanifold of the Riemannian manifold
((R × CDm−1)(c, k) × R, g) and the normal curvature vector field of
F is 1

2 (Ah)|F .

3. The horizontal distribution determined by π3(c, k, m, τ) is not com-
pletely integrable.

4. The fibers of the submersion π3(c, k, m, τ) are totally geodesic sub-
manifolds of the Riemannian manifold ((R × CDm−1)(c, k) × R, g) if
and only if there exists a real differentiable function τ ′ : R −→ R
such that τ = π∗Rτ

′, where πR : (R × CDm−1)(c, k) × R −→ R is the
canonical projection.

Remarks. 1. If (M, J, g) is a generalized Hopf manifold with Lee 1-
form ω then every leaf N of the foliation F has an induced c-sasakian

structure (ϕN , ξN , ηN , hN ), where c =
‖ω‖
2

and F is the foliation on M

given by ω = 0 (see [16]). The generalized Hopf manifold (M, J, g) is said to
be a k-generalized Hopf manifold, with k ∈ R, if every leaf N of the foliation
F is of constant ϕN -sectional curvature k (see [8]). In particular, if c is a
real number, c 6= 0, then the generalized Hopf manifolds S2m−1(c, k) × R
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(k > −3c2), R2m−1(c) × R and (R × CDm−1)(c, k) × R (k < −3c2) are
k-generalized Hopf manifolds.

2. Let π : M −→ M ′ be an almost Hermitian submersion with totally
geodesic fibers and total space a complete simply connected k-generalized

Hopf manifold M . Suppose that ω is the Lee 1-form of M and c =
‖ω‖
2

.

(a) If k > −3c2 then π is equivalent to π1(c, k, m),

(b) If k = −3c2 then π is equivalent to π2(c,m, m′),

(c) If k < −3c2 then π is equivalent to π3(c, k, m),

where dim M = 2m and dim M ′ = 2m′ (see [8]).
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