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Emilio Gómez-Déniz Universidad de Las Palmas de Gran Canaria, Spain

Eduardo Gutiérrez-Peña Universidad Nacional Autónoma de Mexico

Nikolai Kolev Universidade de São Paulo, Brazil

Eduardo Lalla University of Twente, Netherlands

Shuangzhe Liu University of Canberra, Australia
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M. Dolores Ugarte Universidad Pública de Navarra, Spain



Chilean Journal of Statistics Volume 13 – Number 1 – April 2022

Contents

Carolina Marchant and Vı́ctor Leiva

Chilean Journal of Statistics: Thirty eight years generating quality knowledge 1
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Abstract

In this paper, we explore the family of arctan transformation of a distribution function.

We get some general properties such as those related to the right tail and scale trans-

formation, among others. The results obtained are used to generalize the Pareto Type

II (also known as Lomax) distribution, giving us a distribution with a long right-tail

that admits the zero value in its support. We show some properties and provide closed-

form expressions for the raw moments, the quantile function, the tail value at risk, and

other analytical forms that can be helpful in financial and actuarial settings, such as the

limited expected value, the mean excess function, and the integrated tail distribution.

We also show three numerical illustrations including health expenditure for outpatients,

automobile insurance claim size and to see how the new model works as compared to

other distributions used in the applied statistical literature.

Keywords: Actuarial · arctan function · Claim size · Income · Pareto type II

Distribution · Right tail

Mathematics Subject Classification: 62E10 · 62F10 · 62P05 · 62P25.

1. Introduction

Gómez-Déniz and Caldeŕın-Ojeda (2015a) introduced a mechanism to add a shape parame-
ter to a parent distribution by using the arctan trigonometric transformation of this parent
model. They studied the case where the parent distribution was replaced by the classical
Pareto cumulative distribution function (CDF). Due to this transformation, results for this
new model were obtained including very nice properties. The case where the parent survival
function (SF) is the exponential distribution was studied in Caldeŕın-Ojeda et al. (2016).
The discrete case was investigated in Gómez–Déniz et al. (2019), obtaining a generalization
of the geometric distribution. Furthermore, this transformation was also used in income dis-
tribution by Gómez-Déniz (2016), getting the corresponding Lorenz and Leimkhuler curves.
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After showing the general properties of this family, one of its particular cases is investi-
gated, the arctan Pareto type II distribution. We derive some essential properties, which are
simple consequences of the properties of the general family. The flexibility of this distribu-
tion is illustrated by applying it to three empirical data sets and comparing the results to
previously used distributions.

An apparent reason for generalizing a standard or parent distribution is that the general-
ized form provides greater flexibility as compared to the parent distribution. For example,
consider the problem of determining a suitable model for a population for which it is desired
to make a inference. A common way to carry out this task is to use a general model that
includes a simpler one as a particular case or limit. After fitting both models, the one that
yields the best inference is chosen. Experience indicates that the general model produces
better results than the simplest model.

The rest of the paper is structured as follows. Properties of the family of the arctan
transformation of a CDF are studied in Section 2. Section 3 is devoted to the specific subject
of dealing with the Pareto type II distribution. Numerical applications are considered in
Section 4, and finally, Section 5 concludes the work.

2. The arctan transformation and general properties

In this section we firstly illustrate the general procedure to derive the arctan family of
distributions. Next, we present some relevant properties of this family. Finally we show that
the arctan family of probability distributions can be ordered in terms of the usual stochastic
order.

2.1 General methodology

Gómez-Déniz and Caldeŕın-Ojeda (2015b) provided a method to add a scale parameter to
a distribution (parent distribution), obtaining a more flexible distribution than the parent
model. To make this paper self-contained, we reproduce here this methodology which is
based on the tan≠1 (arctan) transformation of the parent distribution.

The half-Cauchy distribution (Jacob and Jayakumar, 2012) truncated at – > 0 has prob-
ability density function (PDF) given by

f(y) = 1
tan≠1

–

1
1 + y2 , 0 < y < –. (2.1)

In the latter expression, tan≠1 is the inverse of the circular tangent function. Let us consider
now the transformation y = –F̄�(x), where F̄� is the SF of a random variable X with
support in [a, b], whereas a and b can be finite or non-finite, and � is a parameter or
vector of parameters. Then, the corresponding PDF of the random variable X obtained
from Equation (2.1) results

f�,–(x) = 1
tan≠1

–

–f�(x)
1 + [–F̄�(x)]2

, (2.2)

for a Æ x Æ b and – > 0. The SF of X, which is obtained from Equation (2.2) by integration,
is stated as

F̄�,–(x) = tan≠1(–F̄�(x))
tan≠1

–
. (2.3)
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Furthermore, it is simple to see that Equations (2.2) and (2.3) are proper PDF and SF,
respectively, when the support of the parameter – is extended to (≠Œ, Œ) except for zero.
In this case, we get that F̄�,–(x) = F̄�,≠–(x). Additionally, by taking in Equation (2.3) limit
when the parameter – tends to zero and applying the L’Hospital rule, it is straightforward
to derive that the parent SF, F̄�, is obtained as a particular case, that is, F̄�,–(x) æ
F̄�(x) when – æ 0. Thus, this methodology can be considered a mechanism to add a scale
parameter to a parent SF and, therefore, a mechanism to obtain a more flexible SF. In
particular, the case where F̄ is replaced by the CDF of the classical Pareto distribution was
considered in Gómez-Déniz and Caldeŕın-Ojeda (2015b) and Gómez-Déniz (2016) and the
case where the parent SF is the classical exponential distribution was studied in Caldeŕın-
Ojeda et al. (2016). The discrete case was studied in Gómez–Déniz et al. (2019) obtaining a
generalization of the classical geometric distribution. Also, in actuarial statistics, the arctan
transformation was first used in Gómez-Déniz and Caldeŕın-Ojeda (2015a).

2.2 Properties

The quantile function is easy to derive from Equation (2.3) and it is given by

x“ = F
≠1
�,–

1
1 ≠ –

≠1 tan(“̄ tan≠1
–)

2
, (2.4)

where “̄ = 1 ≠ “, 0 < “ < 1 and F
≠1 is the inverse of the CDF F . In particular, the median

is expressed as

x0.5 = F
≠1
�,–

1
1 ≠ –

≠1 tan((0.5) tan≠1
–)

2
,

Proposition 2.1 Suppose that the parent SF depends on a vector of parameters � =
(◊1, . . . , ◊s) satisfying F̄�(x/k) = F̄�1(x), being �1 a vector of parameters for which the
parameter j, for some j œ {1, . . . , s} is a scale or rate transformation of ◊, with rate or scale
value k > 0. Then, the arctan distribution preserves also the same transformation.

Proof By denoting Y = k X, and denoting the SF of Y as F̄
Y
�,–, we have that

F̄
Y
�,–(y) = F̄

Y
�,–(kx) = F̄�,–(x/k) = tan≠1(–F̄�(x/k))

tan≠1
–

= tan≠1(–F̄�1(x))
tan≠1

–
= F̄�1,–(x),

where in the last equality we have used the assumption that F̄�(x/k) = F̄�1(x). ⇤
To illustrate Proposition 2.1, consider the exponential distribution with mean � = 1/⁄

and ⁄ > 0. Then, it is simple to verify that

P (kX > x) = P (X > x/k) = exp(≠x/(⁄k)),

that is, the random variable kX follows an exponential distribution with parameter �1 =
1/(⁄k). Now, the arc transformation of the exponential distribution has SF given by

F̄�,–(x) = tan≠1(– exp(≠x/⁄))
tan≠1

–
,

which satisfies F�,–(x/k) = F�1,–(x) as it can be verified in a simple way.
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It is already known that any probability distribution, that is specified through
its CDF F (x) on the real line, is heavy right-tailed (Rolski et al., 1999) if
lim supxæŒ(≠ log(F̄ (x)/x)) = 0. Observe that ≠ log(F̄ (x) is the hazard function of F (x).
Next, a result shows that, under mild condition, the family of SF provided in Equation (3.8)
is a heavy-tailed distribution.

Proposition 2.2 Suppose that the PDF of the parent distribution in the family stated in
Equation (2.2) satisfies that

lim sup
xæŒ

f�(x) = 0. (2.5)

Then, the CDF F�,– of the family defined in Equation (3.8) is a heavy-tailed distribution.

Proof We have that

lim sup
xæŒ

1
x

log F̄�,–(x) = ≠ 1
tan≠1

–
lim sup

xæŒ

log(tan≠1(–F̄�(x)))
x

= –

tan≠1
–

lim sup
xæŒ

f�(x)
1 + –2[F̄�(x)]2

= 0,

after applying the L’Hospital rule. The fact that lim supxæŒ F̄�(x) = 0 and the assumption
that lim supxæŒ f�(x) = 0 conduct to the result.⇤

In this case, the distribution fails to possess any positive exponential moment, that is,s
exp(sx)dF (x) = Œ for all s > 0 (Foss et al., 2011, Ch. 1, p. 2). Distributions of this type

have moment generating function MF (s) = Œ, for all s > 0, as occurs, for example, with the
lognormal distribution. As a consequence of the last result, we have the following corollary.

Corollary 2.3 It is verified that lim supxæŒ exp(sx)F̄�,–(x) = Œ, for s > 0.

Proof This is a direct consequence of Proposition 2.2.⇤
An important issue in extreme value theory is the regular variation (Bingham, 1987 and

Konstantinides, 2018). This is, a fexible description of the variation of some function ac-
cording to the polynomial form of the type x

≠” + o(x≠”), ” > 0. This concept is formalized
in the following definition.

Definition 2.4 A CDF (measurable function) is called regular varying at infinity with
index ≠” if it holds

lim sup
xæŒ

F̄ (·x)
F̄ (x)

= ·
≠”

,

where · > 0 and the parameter ” Ø 0 is called the tail index.

The next result establishes that if the SF of the parent distribution stated in Equation
(3.8) is a regular variation Lebesgue measure, then the SF given in Equation (3.8) is also a
regular variation Lebesgue measure.

Proposition 2.5 Let F̄�(x) ibe a regular variation Lebesgue measure. Then, the SF given
in Equation (2.3) is also a SF with regularly varying tails.
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Proof Consider the SF given in Equation (2.3). Then, we have

lim sup
xæŒ

F̄�,–(·x)
F̄�,–(x)

= lim sup
xæŒ

f�(·x)
f�(x)

1 + –
2[F̄�(x)]2

1 + –2[F̄�(·x)]2
= ·

≠(�+1)
,

after applying the L’Hospital rule. The fact that lim supxæŒ F̄�,–(·x) =
lim supxæŒ F̄�,–(x) = 0 and that f�(·x)/f�(x) æ ·

� when x æ Œ, conduct to
the result.⇤

In actuarial setting and also into the individual and collective risk models the practitioner
is usually interested in the random variable Sn =

qn
i=1 Xi for n Ø 1. Although in practice,

its PDF is di�cult or impossible to calculate, we can approximate its probabilities by using
the following Corollary, which is an immediate consequence of Proposition 2.5 (Jessen and
Mikosch, 2006).

Corollary 2.6 Let X1, . . . , Xn be independent identically distributed random variables
with common SF given by Equation (2.3) and Sn =

qn
i=1 Xi, n Ø 1. Then, we get

P (Sn > x) ≥ P (X > x) as x æ Œ. (2.6)

Therefore, if Pn = maxi=1,...,n Xi, for n Ø 1, we have that

P (Sn > x) ≥ nP (X > x) ≥ P (Pn > x).

This means that, for large x, the event {Sn > x} is due to the event {Pn > x}. Therefore,
exceedences of high thresholds by the sum Sn are due to the exceedence of this threshold
by the largest value in the sample.

As Jessen and Mikosch (2006) pointed out, expression given in Equation (2.6) can be
taken as the definition of a subexponential distribution. The class of those distributions
is greater than the class of regularly varying distributions. The result given in Corollary
2.6 remains valid for subexponential distributions in the sense that subexponentiality of
Sn implies subexponentiality of X1. Usually, this property is referred to as convolution root
closure of subexponential distributions. More details can be viewed in Embrechts and Goldie
(1980) and Embrechts and Goldie (1982).

2.3 Stochastic ordering

Next, a stochastic representation of the parameters of the given family in Equation (2.3)
is studied. As it is well known, many parametric families of distributions can be stated by
means of some stochastic orders according to the value of its parameters. For the general
family of distributions given in Equation 2.3, it is di�cult to establish an order in terms of
the likelihood ratio order (Ross, 1996; Shaked and Shanthikumar, 2007). For a particular
choice of the main distribution, this is possible (Gómez-Déniz and Caldeŕın-Ojeda, 2015a).
However, a weaker but also useful result may be obtained, as shown below.

Definition 2.7 Let us consider two random variables X�1 and X�2 , with X�1 preceding
X�2 in the stochastic dominance sense or X�1 being smaller than X�2 . In this case, the
notation X�1 ÆST X�2 is used, if and only if the CDF of X�1 always exceeds X�2 , that is,

F�1(x) Ø F�2(x), ≠Œ < x < Œ,
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where F�1 and F�2 are the CDFs of X�1 and X�2 respectively. Note that this expression is
the same as

F̄�1(x) Æ F̄�2(x), ≠Œ < x < Œ.

In the following, we provide two stochastic orderings. In the first one the order is given
by fixing the shape parameter – and modifying the parameters of the parent distribution,
whereas in the second one we have fixed the parameters vector of the parent distribution
and changed the parameter –.

Proposition 2.8 Let us consider two random variables X1 and X2 with CDFs F�1(x) and
F�2(x), respectively such that X1 is stochastically smaller than X2 (X1 ÆST X2), that is,
F�1(x) Ø F�2(x) for �1 Æ �2. Then, the arctan transformation preserves this stochastic
order, that is, F�1,–(x) Ø F�2,–(x).

Proof Since the arctan function is monotone, we have that

F�1(x) Ø F�2(x) =∆ –F�1(x) Ø –F�2(x) =∆ tan≠1(–F�1(x)) Ø tan≠1(–F�2(x))

=∆ tan≠1(–F�1(x))
tan≠1

–
Ø tan≠1(–F�2(x))

tan≠1
–

=∆ F�1,–(x) Ø F�2,–(x).

Hence, the result is obtained.⇤
Theorem 2.9 Let X1 and X2 be two random variables with PDFs f�,–1(x) > 0 and
f�,–2(x) > 0 obtained from Equation (2.2), respectively. If –1 Æ –2, then X1 ÆLR X2.

Proof Note that the ratio

f�,–2(x)
f�,–1(x) = –2 tan≠1

–1
–1 tan≠1

–2
m�,–1,–2(x)

is non-decreasing if and only if m
Õ
�,–1,–2(x) Ø 0 for x in their support, where

m�,–1,–2(x) = 1 + [–1F̄�(x)]2

1 + [–2F̄�(x)]2
.

Some calculations show that

m
Õ
�,–1,–2(x) = 2f�(x)F̄�(x)(–2

2 ≠ –
2
1)m�,–1,–2(x)

(1 + [–1F̄�(x)]2)(1 + [–2F̄�(x)]2)
.

Now, taking into account that –1 Æ –2, then m�,–1,–2(x) Ø 0 and the result holds.⇤
We have now the following corollary.

Corollary 2.10 Let X1 and X2 be two random variables with PDFs f�,–1(x) > 0 and
f�,–2(x) > 0 obtained from Equation (2.2), respectively and hazard rates h�,–1(x) and
h�,–2(x), being h�,–(x) = f�,–(x)/F̄�,–(x), respectively. If –1 Æ –2 then,

(i) E(Xk
1 ) Æ E(Xk

2 ) for all k > 0,

(ii) h�,–1(x) Æ h�,–2(x) for all x in their support.
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Proof It is well-known (Shaked and Shanthikumar, 2007) that

X1 ÆLR X2 =∆ X1 ÆHR X2 =∆ X1 ÆST X2. (2.7)

Therefore, (i) follows from Theorem 2.9 and Equation (2.7) by taking into account that
X1 ÆST X2 holds if and only if

E [� (X1)] Æ E [� (X2)] for all non-decreasing function �.

Similarly, (ii) follows by combining Theorem 2.9 and Equation (2.7). Thus, in consequence,
if –1 Æ –2 we have that F̄�,–1(x) Æ F̄�,–2(x).

3. The Lomax arctan distribution

In this section, we firstly introduce the Lomax arctan distribution (LAT hereafter) and
derive some of its more relevant statistical and financial properties.

3.1 Specific model

A particular case of the Pareto Type II distribution is considered here. This distribution is
essentially a classical Pareto distribution modified to get that the support begins at zero. As
it is known, this distribution is widely employed as a model in business, economics, actuarial
science, queueing theory, and internet tra�c modeling, among others. Its SF is given by

F̄�(x) =
3

⁄

⁄ + x

4‡

, x Ø 0, (3.8)

(Fisk, 1961; Suárez-Espinosa et al., 2018) which is a particular case of the Champernowne
distribution (Champrenowne, 1952) and obviously is a scale transformation of the classi-
cal Pareto distribution (Arnold, 1983). A Lomax regression model with varying precision
parameter was recently presented in Melo et al. (2021) In the rest of the paper we use
X ≥ L(‡, –) to point out that X follows a Pareto Type II distribution with the PDF given
in Equation (3.9).

An excellent property of this distribution, apart from having a very tractable SF, is
a fascinating preservation property. That is, if X ≥ L(‡, ⁄), then the random variable
kX ≥ L(‡, k⁄), for k > 0. This property is very useful in economics and actuarial fields
when dealing with inflation. The PDF, derived from Equation (3.8), results

f�(x) = ‡⁄
‡

(x + ⁄)‡+1 , x Ø 0, ‡ > 0, ⁄ > 0. (3.9)

One of the advantages of working with the SF given in Equation (3.8) is the possibility
of dealing with data that includes the zero value, the mode of the distribution. This is
impossible for most classical continuous distributions, such as the gamma and the inverse
Gaussian distribution. Nevertheless, the distribution has limited flexibility for adapting to
empirical data whose modal value is not located at zero. To get a more flexible distribution,
we consider here the tan≠1 transformation of the Pareto Type II distribution. The resulting
distribution, Pareto Type II arctan distribution, it is obtained by applying the Equation
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(2.3) to Equation (3.8) to get the SF given by

F̄�,–(x) = tan≠1(–(1 + x/⁄)≠‡)
tan≠1

–
. (3.10)

Its PDF results

f�,–(x) = –‡

⁄ tan≠1
–

(1 + x/⁄)≠‡≠1

1 + –2(1 + x/⁄)≠2‡
. (3.11)

Figure 1 shows several graphs of the PDF given in Equation (3.11) for di�erent values of its
parameters. It is noted that when the scale parameter – < 1 or the shape parameter ‡ Æ 1,
the mode of the distribution is located at 0, and for values larger than one, the modal value
moves to the right. Observe that the larger are the value of the parameters, the greater is
the modal value.
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Figure 1. PDF the LAT distribution for selected values of parameters ‡, ⁄ and –

Since this distribution is a scale transformation of the Pareto arctan distribution studied
in Gómez-Déniz and Caldeŕın-Ojeda (2015a), we can easily obtain its row moments that are
given by

E(Xr) = –‡⁄
r

tan≠1
–

rÿ

j=0

(≠1)j

‡ ≠ r + j

A
r

j

B

2F1

3
1,

‡ ≠ r + j

2‡
; 3‡ ≠ r + j

2‡
; ≠–

2
4

,

where 2F1 is the hypergeometric function defined as

2F1(a, b; c; z) = �(c)
�(b)�(c ≠ b)

⁄ 1

0
t
b≠1(1 ≠ t)c≠b≠1(1 ≠ tz)≠adt.
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In particular, the mean takes the form

µ = E(X) = –⁄‡

(‡ ≠ 1) tan≠1
–

2F1

3
1,

‡ ≠ 1
2‡

; 3‡ ≠ 1
2‡

; ≠–
2
4

≠ ⁄, ‡ > 1. (3.12)

From Equation (2.4), the quantile function x“ is simply derived as

x“ = ⁄

I5 1
–

tan
1
“̄ tan≠1

–

26≠1/‡

≠ 1
J

, (3.13)

and from Equation (3.13), the median can be easily obtained.
The mode, which can be obtained by di�erentiating Equation (3.11) with respect to the

variable x, is expressed as

xMo = ⁄

S

U
A

–
2(‡ ≠ 1)
1 + ‡

B(2‡)≠1

≠ 1

T

V .

Then, the hazard rate function for the LAT distribution, h�,–(x) = f�,–(x)/F̄�,–(x), which
is obtained from Equations (3.10) and (3.11), has been plotted for the same values of pa-
rameters as considered in the previous Figure. This is shown in Figure 2. It can be observed
that the hazard rate function has a variety of shapes. For example, for values of – < 1, the
hazard rate function is monotonically decreasing and for values of the scale parameters –

and the shape parameter ‡ and scale parameter ⁄ the function is firstly increasing and then
decreasing.
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Figure 2. Failure rate function of LAT distribution for selected values of parameters ‡, ⁄ and –
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We now provide some properties which are consequences of the results obtained in the
previous section.

Proposition 3.1 If X ≥ LAT(‡, ⁄, –) then kX ≥ LAT(‡, k⁄, –).

Proof It is a direct consequence of Proposition 2.1.⇤

Proposition 3.2 The CDF F�,–(x) of the family stated in Equation (3.10), that is, the
LAT distribution is a heavy-tailed distribution.

Proof It is a direct consequence of applying Proposition 2.2 having into account that the
PDF given in Equation (3.9) satisfies Equation (2.5).

Proposition 3.3 The SF given in Equation (3.10) is a SF with regularly varying tails.

Proof It is a consequence of the result provided in Proposition 2.5, having into account
that the SF given in Equation (3.8) verifies

lim sup
xæŒ

F̄�(·x)
F̄�(x)

= ·
≠‡

.

Now, because ‡ > 0, we have the result.⇤

3.2 Further properties

We provide here some other properties which can be helpful in financial and actuarial fields.
Let the random variable

Z = X · Ê =
;

X, X < Ê,

Ê, X Ø Ê,

which is an amount used in excess of loss reinsurance context with excess level Ê > 0.
Insurance companies widely use this tool to reduce the amount paid on larger claims. Its
expected value, E(X · Ê), is referred to as the limited expected value in insurance context.
Obviously, it is a right-censored variable for which it is easy to see (Hogg and Klugman,
1984; Boland, 2007) that can be computed as

E(X · Ê) = E[min(X, Ê)] =
⁄ Ê

0
x f(x) dx + Ê F̄ (Ê). (3.14)

Furthermore, it represents the expected amount per claim retained by the insured on a
policy with a fixed amount deductible of Ê. Thus, defining the expected dollar (or other
monetary units) saving per incident when a deductible is imposed (Klugman et al., 2008,
Ch. 3).

For the LAT distribution, the limited expected value given by Equation (3.14) is expressed
as

E(X · Ê) = (Ê + ⁄)F̄�,–(Ê) ≠ ⁄ + H
1
�,–(Ê) ≠ H

2
�,–(Ê), (3.15)
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where

H
1
�,–(Ê) = ⁄ + Ê

F̄ (Ê) 2F1

3
1,

1 + ‡

2‡
; 1
2

3
3 + 1

‡

4
; (–F̄�,–(Ê))≠2

4
, (3.16)

H
2
�,–(Ê) = ⁄ 2F1

3
1,

1 + ‡

2‡
; 1
2

3
3 + 1

‡

4
; (–F̄�,–(Ê))≠2

4
, (3.17)

which can be obtained also by using a scale transformation of the classical Pareto distribution
(Gómez-Déniz and Caldeŕın-Ojeda, 2015a).

The value at risk (VaR) is defined as the amount of capital required to ensure that the
insurer does not become insolvent with a high degree of certainty. The VaR of a random
variable X which follows the LAT distribution is the 100qth quantile and therefore coincides
with Equation (3.13).

It is known that the use of the VaR is questionable due to the lack of subadditivity.
For that reason, the expected loss given that the loss exceeds the 100qth quantile of the
distribution of X, that is, the tail value at risk (TVaR), is considered. Then, if X follows a
LAT distribution, for any quantile q, the tail value at risk, can be obtained again by a scale
transformation of the TVaR of the classical Pareto distribution and is given by

TVaR(X; q) = 1
1 ≠ q

⁄ 1

q
VaR(x; q) dq = –⁄‡

q̄(‡ ≠ 1) tan≠1
–

C
tan(q̄ tan≠1

–)
–

D1≠1/‡

◊ 2F1

3
1,

‡ ≠ 1
2‡

; 3
2 ≠ 1

2‡
; ≠ tan2(q̄ tan≠1

–)
4

≠ ⁄.

The integrated tail distribution (also known as equilibrium distribution) is an important
distribution that often appears in insurance and many other applied probability models.

Let F̄ be the SF given in Equation (3.10). Then, the integrated tail distribution of F (for
instance, Klüppelberg, 1988 and Yang, 2004) is defined as F

I(x) = (1/E(X))
s x

0 F̄ (y) dy.
For the distribution proposed in this work, as proven in the following result, the integrated
tail distribution can be written as a closed-form expression and given by

F
I
�,–(x) = 1

µ

Ë
(x + ⁄)F̄�,–(x) ≠ ⁄

È
+ ‡

–µ(‡ + 1) tan≠1
–

Ë
H

1
�,–(x) ≠ H

2
�,–(x)

È
, (3.18)

where H
j
�,–(x), for j = 1, 2, are given in Equations (3.16) and (3.17), respectively, whereas

F̄�,– and µ are defined in Equations (3.10) and (3.12), respectively. Under the classical
model (Embrechts and Veraverbeke, 1982; Yang, 2004) and assuming a positive security
loading, fl, for the claim size distributions with regularly varying tails we have that, by
using Equation (3.18), it is possible to obtain an approximation of the probability of ruin,
�(u), when u æ Œ. In this case, the asymptotic approximation of the ruin function is
stated as �(u) ≥ (1/fl)F̄ I(u), for u æ Œ, where F̄

I(u) = 1 ≠ F
I(u).

The failure rate of the integrated tail distribution, which is expressed as “I(x) =
F̄ (x)/

s Œ
x F̄ (y) dy, is also obtained in closed-form. Furthermore, the reciprocal of “I is the

mean residual life that can be easily derived. For a claim amount random variable X, the
mean excess function (also known as the conditional mean exceedence) is the expected pay-
ment per claim for a policy with a fixed amount deductible of x > 0, where claims with
amounts less than or equal to x are wholly ignored. Then, we have that

e(x) = E(X ≠ x|X > x) = 1
F̄ (x)

⁄ Œ

x
F̄ (u) du. (3.19)



124 Gómez-Déniz et al.

This function is also essential in an actuarial setting, when we deal with reinsurance (Al-
brecher et al., 2017). If X is a lifetime, as in demography or reliability, Equation (3.19) is
recognized as the mean residual lifetime. The following result gives the mean excess function
of the LAT distribution in a closed-form expression.

Proposition 3.4 The mean excess function of the LAT distribution is given by

e�,–(x) = 1
F̄�,–(x)

C

µ + ⁄ ≠
‡(H1

�,–(x) ≠ H
2
�,–(x))

–(1 + ‡) tan≠1
–

D

≠ (x + ⁄), (3.20)

where H
j
�,–(x), for j = 1, 2, are given in Equations (3.16) and (3.17), respectively, whereas

F̄�,– and µ are given in Equations (3.10) and (3.12), respectively.

Proof Using the expression

e(x) = E(X) ≠ E(X · x)
F̄ (x)

,

which relates the mean excess function given in Equation (3.19) with the limited expected
value function (Hogg and Klugman, 1984, p. 59), the result follows by using and Equations
(3.12), (3.10), (3.15) and a some little algebra.⇤

Figure 3 shows the mean residual life function given in Equation (3.20) for special cases
of parameters. It can be seen that this function can be increasing, decreasing, unimodal or
anti-unimodal.
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Figure 3. Mean residual life function of LAT distribution for selected values of parameters
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4. Illustrative examples

In this section, we examine the practical performance of the LAT distribution in three
examples that can be found in the personal web page of Professor E. Frees Frees (2010)
(examples 1 and 3) and another one available in Klugman (1991) (example 2). All the data
used in this work are displayed in Appendix.

The parameters are estimated using WinRats (Brooks, 2009) for examples 1 and 2, while
Mathematica v.12.0 (Ruskeepaa, 2009) is used for example 3. The values of the supplied
tests and the p-values were obtained using the R software. Graphical plots have been made
employing Mathematica and R. All calculations were carried out on Windows-supported
computers with an i7-7700 CPU@3.60GHz processor with response times for all examples
standard.

4.1 Example 1

The data were obtained from the Medical Expenditure Panel Survey (MEPS), conducted
by the U.S. Agency of Health Research and Quality. MEPS is a probability survey that
provides nationally representative estimates of health care use, expenditures, sources of
payment, and insurance coverage for the U.S. civilian population. The variable of interest
consist of amounts of expenditures for outpatient (EXPENDOP) visits. In the first row of
Table 1, we report the descriptive statistics of the empirical data that seems to be unimodal
and positively skewed. In Figure 4(al), it is displayed the histogram of the empirical data
and the PDF plot corresponding to Example 1.

The log-likelihood function together with the normal equations, which provide the maxi-
mum likelihood estimates, are shown in Appendix of this article.

Table 1. Descriptive statistics of the data sets used in the indicated example.

Example n Mean Standard deviation Minimum Maximum
1 75 4.95594 9.32897 0 62.8111
2 30 9.54 14.16 0 59
3 1091 5.3262 16.1746 0.005 273.604
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Figure 4. Empirical histograms and PDF plots for examples 1 (a), 2 (b) and 3 (c).

We compare the LAT distribution introduced in this work with other competing models
proposed in the literature that have the capacity to incorporate zero observations in the
sample. As a benchmark, we consider the classical exponential distribution with mean 1/⁄,
for ⁄ > 0, the Lomax distribution and the generalized exponential distribution due to
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Marshall and Olkin (1997), with SF given by

F̄ (x) = ⁄ exp(≠‡x)
1 ≠ ⁄̄ exp(≠‡x)

, x Ø 0, ‡ > 0, ⁄ > 0,

and ⁄̄ = 1 ≠ ⁄.
In Table 2 are exhibited the parameter estimates together with their standard errors (in

brackets) for the four models considered. It can be seen that the LAT distribution provides
the best fit to data in terms of the two measures of model selection examined, negative
of the maximum of the log-likelihood function (NLL) and Akaike information criterion
(AIC). Model selection was also assessed from a practical perspective using the Kolmogorov-
Smirnov (KS) and the Crámer-von Mises (CM) goodness-of-fit tests to quantify the distance
between the empirical CDF (ECDF) constructed from the data and the ones generated from
the fitted models. Let ‚F denote the CDF of the fitted model, the original data by x1, . . . , xN

and the ordered data in increasing magnitude by x(1), . . . , x(N). Then the expressions of the
KS and CM statistics are defined as:

(i) Kolmogorov-Smirnov test statistic: D = max(D+
, D

≠), where

D
+ = max

1ÆjÆN

----
j

N
≠ ‚F (x(j))

---- , D
≠ = max

1ÆjÆN

---- ‚F (x(j)) ≠ j ≠ 1
N

---- .

(ii) Crámer-von Mises test statistic:

W
2 =

Nÿ

j=1

5
‚F (x(j)) ≠ 2j ≠ 1

2N

62
+ 1

12N
.

Results on the goodness of fit of the four parametric models considered are also presented
in last four rows of Table 2. Note that the LAT distribution yields lower values for both test
statistics and it is not rejected for both tests as judged by the corresponding p-values.

Table 2. Example 1. Parameter estimates for the exponential (E), Lomax (L), generalized exponential (GE)

and LAT distributions via maximum likelihood estimation. Standard errors are provided in parenthesis and

p-values for the KS and CM tests between brackets.

Parameter E L GE LAT
‚⁄ 0.202 0.181 0.129 4.624

(0.023) (0.085) (0.077) (0.209)
‚‡ 2.106 0.058 1.991

(0.718) (0.029) (0.048)
‚– -0.581

(0.238)
n 75 75 75 75

NLL 195.044 182.833 183.653 182.811
AIC 392.088 369.666 371.306 371.622
KS 0.157 0.747 0.107 0.077

[0.10] [< 0.001] [0.652] [0.97]
CM 0.752 0.227 0.191 0.127

[0.007] [0.237] [0.293] [0.460]
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4.2 Example 2

In the second example, we use data that can be found in Appendix of Klugman (1991).
In particular, we employ the data set 2 ,where the loss value for the first year in the 30
first classes have been taken. The second row of Table 1 shows the descriptive statistics of
this second data set and in the middle panel of Figure 4 are illustrated the ECDF and the
smooth CDF for the second example. In Table 3, we report the parameter estimates together
with their standard errors (in brackets) for four of the models previously considered. Once
again, it can be seen that the LAT distribution provides a marginal best fit data in terms
of the negative of the NLL. However, when the AIC is considered, the GE distribution
provides a slightly better fit to this dataset. Model selection was also assessed via KS and
CM goodness-of-fit tests to quantify the distance between the ECDF constructed from the
data and the ones generated from the fitted models. As judged by these tests, the LAT
distribution is not rejected at usual significance levels.

Table 5 reports empirical and theoretical limited expected values for the LAT distribution
with di�erent values of the policy limit x, using the parameter estimates calculated for the
dataset given in Example 2 and the expression defined in Equation (3.15). Note that for
large values of x, that is, when x tends to infinity, the limited lev approaches to the mean
of the distribution. Nevertheless, as in this case – < 1, the mean does not exist.

Table 3. Example 2. Parameter estimates for the exponential (E), Lomax (L), generalized exponential (GE)

and LAT distributions via maximum likelihood estimation. Standard errors are provided in parenthesis and

p-values for the KS and CM tests between brackets.

Parameter E L GE LAT
‚⁄ 0.105 0.188 0.129 3.07 ◊ 10≠6

(0.019) (0.174) (0.123) (0.003)
‚‡ 1.340 0.034 0.176

(0.751) (0.027) (0.016)
‚– -7.639

(0.116)
n 30 30 30 30

NLL 97.644 93.726 93.034 63.969
AIC 197.288 191.452 190.068 133.938
KS 0.300 0.629 0.200 0.264

[0.071] [8.2 ◊ 10≠7] [0.586] [0.134]

4.3 Example 3

The third dataset deals with automobile bodily injury claims data from the Insurance Re-
search Council (IRC), a division of the American Institute for Chartered Property Casualty
Underwriters and the Insurance Institute of America. The data, collected in 2002, contain
information on demographic information about the claimant, attorney involvement and the
economic loss (in thousands of US$). We consider a sample of 1091 losses from a single
state. The third row of Table 1 reports descriptive statistics of this third data set, and in
the bottom panel of Figure 4, the ECDF and the smooth CDF are displayed for the third
example.

In Table 5, we report the parameter estimates together with their standard errors (in
brackets) for the LAT and GE distributions and two models traditionally used to explain
income data the lognormal (LO) distribution with parameters ⁄ œ (≠Œ, Œ) and ‡ > 0 and
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Table 4. Empirical and theoretical limited expected value for the LAT distribution and di�erent values of

the policy limit x for the second example dataset.

Policy limit (x) Empirical Fitted
0 0.00 0.00
2 1.50 0.99
4 2.70 1.82
6 3.57 2.58
8 4.27 3.31

10 4.94 4.02
12 5.47 4.70
14 5.90 5.37
16 6.27 6.02
18 6.60 6.66
20 6.94 7.29
22 7.20 7.91
24 7.40 8.53
26 7.60 9.13
28 7.77 9.73
30 7.90 10.32
32 8.04 10.90
34 8.17 11.48
36 8.30 12.05
38 8.44 12.62
40 8.57 13.18
42 8.70 13.74
44 8.84 14.30
46 8.97 14.85
48 9.10 15.40
50 9.24 15.94

the Singh-Maddala (SM) distribution with SF given by

F̄ (x) =
C

1 +
3

x

‡

4⁄
D≠–

, x Ø 0, ‡ > 0, ⁄ > 0, – > 0. (4.21)

Observe that the special case ‡ = 1 reduces Equation (4.21) to the Burr type XII distribution
studied by Rezac et al. (2015). Once again, it can be seen that the LAT distribution provides
the best fit to data in terms of the two measures of model selection examined, negative of
the NLL and AIC. Model selection was also assessed via KS and CM goodness-of-fit tests to
quantify the distance between the ECDF constructed from the data and the CDFs generated
from the fitted models. As judged by the measures of model selection, the LAT distribution
provides the best fit to the data. Moreover, although the LAT distribution is rejected in
terms of the KS test and the CM test at the usual significance levels, the value of the test
statistics are the lower among all the models considered.
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Table 5. Example 3. Parameter estimates for the generalized exponential (GE), lognormal (LO), Singh-

Maddala (SM) and LAT distributions via maximum likelihood estimation. Standard errors are provided in

brackets and p-values between brackets.

Parameter GE LO SM LAT
‚⁄ 0.051 0.620 1.103 2.283

(0.013) (0.085) (0.044) (0.042)
‚‡ 0.025 1.445 3.672 1.667

(0.006) (0.045) (0.031) (0.566)
‚– 1.643 -1.709

(0.188) (0.514)
n 1091 1091 1091 1091

NLL 2637.87 2626.74 2601.69 2598.20
AIC 5279.74 5257.48 5209.38 5202.39
KS 0.089 0.093 0.062 0.052

[< 0.001] [< 0.001] [< 0.001] [0.005]
CM 2.715 2.446 1.200 1.002

[< 0.001] [< 0.001] [< 0.001] [0.004]

5. Conclusions, limitations, and future research

In this paper, we derive several properties related to the family of arctan transformation
of a survival function, mainly those connected with the right tail of the distribution. After
this, we introduced the arctan transformation of the Pareto Type II distribution, a scale
transformation of the classical Pareto distribution. This is a model for non-negative con-
tinuous random variables, including the zero value in its support. We have provided in
closed-form expression the raw moment, quantile function, the tail value at risk, and other
functions which can be helpful in the financial and actuarial field, such as the integrated
tail distribution, the limited expected value, and the mean excess function.

The performance of this new family of distributions has been illustrated by using three
di�erent data sets. The first one was associated with the expenditures for outpatients; the
second one was related to the third party automobile insurance claims; and the final exam-
ple considered automobile injury claims. Numerical results showed that the Lomax arctan
distribution is helpful to explain heavy-tailed empirical data. However, although this distri-
bution is able to capture the presence of zeros in the data, if the proportion of zeros is too
high, the model has a worse performance in relation to the other models, as it is shown in
the second example.

Further analysis of this probabilistic family remains as a topic for future studies. In this
regard, investigation of the multivariate version of the arctan transformation is a topic that
deserves to be examined in upcoming works in depth in upcoming works.
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Yang, H., (2004). Crámer-Lundberg asymptotics. In Encyclopedia of Actuarial Science,
pp. 1–6. Wiley, New York, USA.

Appendix

Let us assume that X1, . . . , Xn is a random sample selected from the distribution given in
Equation (3.11), with their observations denoted by x1, . . . , xn. The corresponding likelihood
function is given by

¸(�, –; x̃) = n(log(–) + log(‡) ≠ log(⁄) ≠ log(tan≠1(–)) ≠ (‡ + 1)
nÿ

i=1
log(1 + xi/⁄)

≠
nÿ

i=1
log

1
1 + –

2(1 + xi/⁄)≠2‡
2

. (5.22)

The normal equations obtained from Equation (5.22) are stated as

ˆ¸(�, –; x̃)
ˆ‡

= n

‡
≠

nÿ

i=1
log(1 + xi/⁄) + 2–

2
nÿ

i=1

(1 + xi/⁄)≠2‡ log(1 + xi/⁄)
1 + –2(1 + xi/⁄)≠2‡

= 0, (5.23)



132 Gómez-Déniz et al.

ˆ¸(�, –; x̃)
ˆ⁄

= ≠n

⁄
+ ‡ + 1

⁄2

nÿ

i=1

xi

1 + xi/⁄
+ 2‡–

2

⁄2

nÿ

i=1

xi(1 + xi/⁄)≠2‡≠1

1 + –2(1 + xi/⁄)≠2‡
= 0,

ˆ¸(�, –; x̃)
ˆ–

= n

5 1
–

≠ 1
(1 + –2) tan≠1

–

6
≠ 2–

nÿ

i=1

(1 + xi/⁄)≠2‡

1 + –2(1 + xi/⁄)≠2‡
= 0, (5.24)

from which we can get the maximum likelihood estimates of the parameters by a numerical
method such as Newton-Raphson. On taking the second partial derivatives of Equations
(5.23)-(5.24), the Fisher information matrix I(�, –) can be obtained by taking the expec-
tations of minus the second derivatives. The inverse of the matrix provides the variances for
the maximum likelihood estimators.
Table 6. Data for example 1.

1.4683 35.9342 0 0 7.24614 4.62498 3.80673 1.95896
4.62158 3.72445 0.87823 0.28698 1.80114 6.73978 3.69576 0.06081
3.56721 24.2046 5.82075 6.46576 2.53495 0.69315 1.68874 0.82613
5.32987 3.46299 1.68822 0.03755 6.47876 2.58618 9.5353 0.54148
1.95018 1.18143 3.74168 0.77534 2.88031 2.40923 3.00777 0.36825
0.59158 0.05376 5.8413 0.17115 1.78891 0.47681 0.68236
62.8111 0.12816 4.18265 5.37448 1.99109 3.76849 0.31383
1.45670 3.44599 1.19869 2.56363 2.01848 2.56077 5.63908
5.99927 3.08074 29.1859 5.20015 4.06117 2.13937 2.85663
26.0717 0.11700 1.83426 0 10.8975 0.19800 4.37083

Table 7. Data for example 2.

1 3 5 0 15 27 0 3 0 11
6 20 0 13 11 4 22 0 3 50
10 4 7 1 59 2 1 3 5 0
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