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Abstract

Sound localization plays a crucial role in the perceptive function of living beings, being vital for the
survival of many animal species. It can also play an important role in human-machine interaction and
robot interaction with its environment. In the typical setting two audio signals gathered by a pair of
microphones mounted on both sides of a head are processed to extract meaningful cues for deriving
the approximate azimuthal localization of the sound source. In this paper a new method of feature
extraction for sound localization is described. It has been developed for a robot head currently under
construction. The proposed method is compared in off-line experiments with another feature extraction
scheme developed for the Cog humanoid robot, showing superior performance with all the signals tested.
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1 Introduction

Sound localization plays a crucial role in the
perceptive function of living beings, being vital
for the survival of many animal species. Barn
owls, for example, can hunt in total darkness,
thanks to their extraordinary sound localiza-
tion abilities [6]. Humans are no exception.
Our ability to localize where a sound comes
from warns us of potential danger. Sound lo-
calization is also an important attention fixing
mechanism, especially in a verbal communica-

tion setting.

Our sound localization abilities stem from the
fact that we have two ears. Although we could
distinguish different sounds with one ear alone,
pinpointing where the sounds are coming from
requires at least two ears. Reliably localizing a
sound source in 3-D space requires even more
hearing sensors. Sound differences between the
signals gathered in our two ears account for
much of our sound localization abilities. In par-
ticular, the most important cues used are Inter-
aural Level Difference (ILD) and Interaural
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Time Difference (ITD). ILD cues are based on
the intensity difference between the two signals.
This intensity difference, which can be of up
to 20dB, is caused mostly by the shading ef-
fect of the head. ITD cues are based on the
fact that sound coming from a source will be
picked up earlier by the ear nearest to the sound
source. This difference will be maximum when
the sound source is directly from one side, and
minimum when it is in front of the head. Both
ILD and ITD cues are dependent on the sound
frequency. ITD cues are reliable for relatively
low frequencies (up to 1 Khz, approximately),
while ILD cues are better for higher frequencies
(see [3] for an explanation of this).

Humans use additional cues for sound local-
ization. The shape of our head and outer
ears affect received sounds in a manner depen-
dent on arrival angle and frequency. A model
of this process referred to in the literature is
the Head Related Transfer Function (HRTF).
HRTF-based cues allows us to obtain an esti-
mate of the sound source elevation and also to
distinguish between sound originating in front
of and behind the listener. A more detailed de-
scription of sound localization mechanisms can
be found in [2, 12, 5, 3].

These and other physiological findings have
been emulated in computer-microphone sys-
tems with relative success. Sound localization
can play an important role in human-machine
interaction and robot interaction with its en-
vironment. This paper is organized as follows.
In Section 2 we briefly describe previous ap-
proaches to sound localization that use com-
puter-microphone systems. In Section 3 we in-
troduce new feature (cue) extraction techniques
that improve upon those used in previous sys-
tems. The advantages of using these new fea-
tures are analyzed in Section 4. Finally, in Sec-
tion 5 the most important conclusions are de-
scribed.

2 Previous work

The first important work on a computer sound
localization system is [7]. With a combination
of hardware and software the system aims to
learn to localize sounds in complex environ-
ments. The output of the system can be one

three values: frontal, right and left. Both ILD
and ITD cues are extracted from signals gath-
ered from two microphones and a pre-amplifier
circuit. Signals were previously high-pass fil-
tered to remove background noise and then they
were divided into segments. For each segment,
the cues extracted are: difference of the two
maximum positive values, difference in the po-
sitions of these maxima, delay between signals
(computed by performing a cross-correlation of
both signals), difference in the sum of magni-
tudes of the signals and filterbank-based cues.
Filterbank-based cues are computed by divid-
ing the spectrum of the signals in a number
of equally spaced banks, computing the sum of
magnitudes in each bank. The cue itself is the
difference between the sums of the two signals.
4 banks were used, so the complete feature set
used had 8 cues. These cues were fed into a
feedforward multi-layer perceptron with three
outputs. This network was trained and tested
using three sounds (hand clap, spoken "ahh"
and door slam). This system is currently work-
ing on the Cog humanoid robot at MIT !.

In [1] a similar system is introduced. The in-
put signals were divided into segments. The
extracted cues were: difference between maxi-
mum values, difference in the positions of the
maxima, correlation and difference in the sum
of magnitudes. A classifier was not used, the
output of the system was programmed (basi-
cally by means of comparing values). This can
be a disadvantage in certain settings, because
many thresholds have to be manually found
(think for example that the difference in in-
tensities could not be exactly zero for a per-
fectly frontal source, because the two micro-
phones and /or pre-amplifier circuits could have
different gains).

A work that used only one ITD cue is described
in [10]. After performing high-pass and low-
pass filtering, a signal level test was performed
to discriminate between sound and silence. Af-
ter that, correlation was performed to obtain
the ITD estimate and another threshold test
was performed on its result (based on the ra-
tio peak/average correlation values). Finally,
in order to discard outliers, many estimates
were gathered before giving their median value
as a response. Correlation was only computed
for the possible range of temporal displacement
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values (as the sound speed is finite, there is a
maximum delay possible in the ITD cue, and it
depends on the distance between microphones),
and this in turn allowed for a faster response.
The output of the system was an angle, and it
was tested with two types of sound (impulsive
sound and speech).

In this paper we are mainly interested in study-
ing practical approaches to the problem, as our
goal is to integrate a sound localization sys-
tem in a robot. For examples of simulated au-
ditory models or systems that use more than
two microphones or special-purpose hardware
see [9, 4]. For the use of sound localization for
robot positioning see [8, 11].

3 Feature Extraction

In this work we have used the system in [7] as
a base line for comparison, as it uses both ITD
and ILD cues and has found practical use. We
describe here a new cue extraction procedure
that can eliminate some minor errors. The ex-
tracted cues for a computer sound localization
system are always subject to error because of
background noise, electrical equipment noise,
and specially echoes and reverberation. Echoes
originate when sound signals reflect off planar
surfaces. Often the effect of multiple reflec-
tive sound paths can be as loud or even louder
than the sound travelling a direct path from the
source.

An important fact to consider is the effect of us-
ing segments of the input signals. All systems
described in Section 2 divide the input signal
in segments, and extract features from these.
However, none of the systems described con-
sider problems that could arise at boundaries.
If we consider for example the first extracted
cue, difference of maximum positive values, the
maximum of signal L (left) could be just at the
beginning of the segment. If the source is on the
right side, signal L will be delayed with respect
to signal R (right). Thus the maximum of signal
R is not associated with the maximum in sig-
nal L. This in turn affects the second extracted
cue, the difference in maximum positions. We
propose to extract the first cue as follows. The
maximum of signal L is found, be it MI. Then
we search in signal R for the maximum in a

zone around the position of MI. The zone has
a length of 2W, where W is the maximum pos-
sible interaural delay. The value of W depends
on the distance between microphones and the
sound speed. Any (correct) ITD estimate must
be equal or lower than W (in absolute value).
If M1 falls in the initial zone of the segment, of
length W, or in the final zone of the segment,
also of length W, it is discarded and we repeat
the procedure beginning with signal R. If the
maximum of signal R, Mr, also falls in one of
these "dangerous" zones, and the zone in which
it falls is different from that of M, the seg-
ment is discarded (no cues are extracted from
it). Figure 1 shows the three possible cases.
This way, some segments are not used for lo-
calization, though the first (and second) cues
extracted for other segments should be more
reliable.

As for the third cue (temporal displacement
as extracted from the maximum of the cross-
correlation), we propose to use the option al-
ready described in [10], of considering only the
maximum in the zone of possible temporal dis-
placement, defined again by W.

Another characteristic of the proposed proce-
dure is related to changes in the volume of
the signals. Let us suppose that we want our
system to give one of three possible outputs:
frontal, left or right. We could fix by hand
thresholds for the cue values that define the
three regions. Alternatively, these regions could
be inferred by training a classifier. In any case,
what happens when the input signal has a dif-
ferent intensity (volume) than that used for
training/fixing the thresholds? or, what hap-
pens when the source gets closer to or farther
from the hearing system?. Figures 2 and 3 show
that the value of the extracted ILD cues depend
on the volume of the sound signal and the dis-
tance of the source.

If we consider for example the first cue ex-
tracted, difference between maximum values,
the obtained value could be incorrectly discrim-
inated by the fixed thresholds/classifier, be-
cause the difference is dependent on the inten-
sity of the input signal. Thus, ILD cues (cues
1 and 4) should be normalized. Let SI and Sr
be the sum of magnitudes for the left signal
segment and right signal segment, respectively.
Then the two ILD cues should be:
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Figure 1: a) M! does not fall in the initial or final "dangerous" zones, b) MI falls in the "dangerous"
zone, c) both M1 and Mr fall in "dangerous" zones. In the last case the sample is discarded.
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Figure 2: Effect of changes in the intensity of the sound signal. The sound source (a mobile phone) is
located on the left side of the head at a constant distance (see Section 4). On the left: mean values
obtained for cue 1. On the right: mean values obtained for cue 4. The upper and lower lines are the
mean values plus and minus one standard deviation.
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However, normalization can be of advantage
only if the differences in volumes are predomi-
nant over the error present in the signals. Oth-
erwise it could be worse for the cues extracted.
Let x be the difference between signals L and
R. Any extracted ILD cue can be denoted as
C = f(x) + €¢(x), the error in the extracted
cue being e = |e¢(x)|. The normalized cue can
be expressed as:

The error is, proportionally, "amplified" if ey >

—Ig?i)l' From (2), it can be shown that this oc-

curs when:

[F(x) = K(x) f(x) = K(x)ef(x)| = [ef(x)] >0,

where
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Figure 3: Effect of changes in the distance of the sound source. The sound source (a mobile phone)
is located at distances such that Di>Di-1. The sound intensity is constant. On the left: mean values
obtained for cue 1. On the right: mean values obtained for cue 4. The upper and lower lines are the

mean values plus and minus one standard deviation.

€7(x) and g4(x) can have any value and, sup-
posing any volume is possible, so do f(x) and
g(x). Thus there exists a possibility that the
error be "amplified" after normalization. From
(3) it can be seen that this possibility is smaller
as €7(x) and €,(x) tend to zero. Also note that
part of the error is caused by the use of sig-
nal segments in which the sound is beginning
or ending.

With regard to spectral cues, the frequency
banks used in [7] can be useful for modelling
the frequency dependence of ILD cues. In any
case, they should also be normalized. On the
other hand, there exists a strong dependence
between the reliability of ITD cues and the fre-
quency of the sound signal, which can produce
bad estimates. As explained in Section 2, an
additional test was used in [10] in order to re-
duce such (and other) errors in the ITD esti-
mate. If the ratio between peak and average
values of the correlation result was lower than
a threshold, the sample was rejected. In our
system that test is used too, though the sample
is never rejected. If the obtained ratio is lower
than the threshold, the value of the ITD cue
for the sample is substituted by the last higher-
than-the-ratio value obtained. As the sample is
not discarded, this allow us to take advantage
of the useful ILD information in the sample.

The same mechanism was used for the second
cue (difference in the positions of the maxima):
if the correlation ratio is lower than the thresh-
old, the value of the second cue is substituted by
the last second cue value obtained in which the
correlation ratio was higher than the threshold.

4 Experimental Results

In order to carry out experiments, sounds were
recorded using two Philips Lavalier omnidirec-
tional microphones, pre-amplifier circuits and
a professional sound card (Terratec EWS88).
A DirectX application was developed to inte-
grate all the processing stages: low-pass filter-
ing, sound source detection, feature extraction,
data recording and playing (for off-line analy-
sis), and classifying (see Figure 4).

This application was developed for a robot head
currently under construction. For these experi-
ments, the two microphones were placed 28 cm
apart on both sides of a custom-made plastic
head (see Figure 5).

Four different sounds were used in the exper-
iments: hand claps, a call tone from a mo-
bile phone, a maraca and a whistle, see Fig-
ure 6. The objective was to detect if the sound
was coming from the left, right or frontal side.
Sounds were recorded in front of the head and
at between 35 and 45 degrees on the left and
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Figure 4: Steps performed by the developed
sound localization module. The work described
in this paper focuses on the cue extraction
stage.

right sides, at a distance of at least one meter
to the head. As indicated before, we have com-
pared our feature extraction method with that
used in [7], which will be referred to as *Cog’.

In order to study the reliability of the extracted
cues, the ratio between inter-class to intra-class
variances will be used as a measure of overlap
between samples:
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This is actually the Fisher criterion for feature
evaluation. A classifier was not used because
our interest is only in the error present in the
individual extracted features. The larger the
ratio the better the separation of the samples
for a given feature. On the other hand, a num-
ber F of consecutive cue vectors was extracted
and the mean of them was given as features.
The results obtained for F=250 are shown in
Table 1.

The results obtained with the proposed method
achieve in general a higher separation ratio for

Figure 5: Left: Robot head the sound local-
ization system is being developed for, currently
under construction. Right: Plastic head used
in the experiments, next to the sound card ex-
ternal rack and preamplifiers.

|Sound | Cuel | Cue2 | Cue3 | Cued |
phone 6.986 | 0.561 | 0.418 | 4.016
claps 2.286 | 0.195 | 1.034 | 0.396

maraca 6.297 | 0.163 | 0.076 | 3.689
whistling | 5.820 | 2.000 | 1.368 | 5.812
phone 8.187 | 1.374 | 0.100 | 5.920
claps 3.546 | 0.687 | 1.175 | 0.409
maraca 5.074 | 0.890 | 1.884 | 4.093
whistling | 16.71 | 1.762 | 2.347 | 17.09

Table 1: Results obtained for F=250. The top
half of the table shows the results obtained us-
ing Cog’s system, while the bottom half shows
the results obtained with the proposed method.
Improved ratios appear in bold.

the four features used. Note that this results
are achieved with a high value for F. In Table 2
the same values are shown, for F=0 (cue values
are not averaged). In this case, the ratio values
for the normalized cues (1 and 4) are worse in
the first and second sounds. As F is low, the
error is higher and, as indicated in Section 3, it
could be amplified. This reflects negatively in
the two first sounds because these sounds con-
tain no significative changes in volume. The
other two sounds still give a better ratio be-
cause they contain significative changes in vol-
ume, as can be seen in Figure 6.

The results using the four sounds together ap-
pear in Table 3, for both F=0 and F=250.
Again, there is a significant improvement with
the proposed method.
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Figure 6: Sounds used in the experiments: a) mobile phone, b) hand claps, ¢) maraca, d) whistling.

|Sound | Cuel | Cue2 | Cue3 | Cued |

F=0 0.053 2e-4 4e-4 0.071
F=250 | 0.458 | 0.097 | 0.059 | 0.429
F=0 0.119 | 0.001 | 0.002 | 0.129
F=250 | 1.059 | 0.099 | 0.166 | 0.607

|Sound | Cuel | Cue2 | Cue3 | Cue4
phone 0.431 | 0.001 | 0.001 | 0.359
claps 0.015 Te-4 le-4 0.004
maraca 0.078 | 0.002 | 0.004 | 0.116
whistling | 0.141 Te-4 0.006 | 0.137
phone 0.300 | 0.004 | 0.002 | 0.296
claps 0.002 | 0.004 | 0.001 | 2e-4
maraca 0.119 | 0.015 | 0.014 | 0.239
whistling | 0.251 | 0.007 | 0.030 | 0.247

Table 2: Results obtained for F=0.

5 Conclusions and Future
Work

This paper describes a new method for feature
extraction in the context of sound localization.
The method has been implemented and will be
used in a robot head currently under construc-
tion. Using the proposed procedure, extracted

Table 3: Results obtained considering the four
sounds together.

cues are more reliable, though a reject possibil-
ity is introduced. Our robot head is expected to
work on a highly dynamic environment, where
changes in the volume of the sound signals are
commonplace. Such changes are due to vari-
ations in the volume of the signal itself and
changes in the distance to the sound source. In
the proposed procedure ILD cues are normal-
ized, which allows for changes in the intensity
of the sound signals. As sound intensity de-
creases with the square of the distance, moving
sources are also addressed. Experiments con-



firm that the method is specially useful when
the error in the signals is not too high. For
all the sounds used in the experiments the ex-
tracted cues show a separation higher than the
system used for comparison.

Future work will include the use of a pan/tilt
(neck) unit to complete an active sound local-
ization system. A higher localization precision
would then be achievable through successive
neck movements, though motor sounds would
have to be considered and somehow eliminated
from the sound signals.
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