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1. Introduction 
 
Decision-making problems are –not only but 
essentially- information problems. Such information 
tells us about levels of aspiration or satisfaction, 
goals, criteria, among others. If all the right 
information is available at the right moment and the 
desired alternative is reachable, there is no decision 
to make. Otherwise the decision-making process 
comprises discovering, investigating, interpreting 
and adapting knowledge from what is envisaged until 
the moment when the right alternative to choose 
comes along. 

Likewise, robustness problems are decision-
making problems and therefore information 
problems. Searching for robustness implies coping 
with ignorance. Sometimes such ignorance could be 
reduced, sometimes not. It is important to notice that, 
even in those cases where the ignorance could be 
reduced, on occasions the high price of the additional 
knowledge could not justify the gain in information. 
Thus, the natural option is to deal with ignorance 
instead of reducing it. 

For instance, in robust design we search a 
system configuration or setting that is able to resist 
variation in its input without a significant loss of 
quality –like a major deviation from a target value- 
in its output. Why do we search such a design? 
Clearly because we consider that the resulting loss of 
quality entails regrettable consequences; otherwise 

we could change our minds and accept the output’s 
variability. In other words, Decision-Makers (DM) 
are supposed to define when the output is 
undesirable or moreover unacceptable.  

Independently of the DM’s criteria and no 
matter what the system is (a method, a decision, an 
optimal solution, a physical system –see Vincke 
2003 for a discussion-); we always can find 
situations when the usefulness of a system could be 
sensitively affected due to input’s uncertainty. For 
example, a decision could be no longer appropriate if 
the scenarios where the decision is based on change. 
The same thing might occur with, e.g., an optimal 
alternative. Once implemented, this alternative could 
experiment a considerable loss of optimality in the 
presence of uncertain values of its decision variable. 
This diversity of systems and situations explains why 
the concept of robustness meets so many realizations 
as those presented in earlier issues of the present 
forum as well as in a large number of publications in 
the field (see e.g. Sayin, 2005).  

A natural question that derives from this wide 
horizon of robustness formulations is what concept 
should an analyst use and why? The answer to this 
question logically depends on the information 
available and naturally on the kind of system into 
consideration. The labour of the analysts is, in 
consequence, a two-stage task. First the particular 
formulation of robustness should be drawn from the 
most generic idea of robustness; then the analyst has 
to decide how to solve the problem. 

As the authors have a special interest in 
optimisation and particularly in evolutionary 
optimisation, the following discussion is focused on 
robust solutions. 
 
2. Information-Based Robustness Analysis 
 
2.1. A Generic Robustness Formulation 
 
Perhaps the most common and very general 
formulation of robustness states that a system is 
robust when its output is insensitive to small 
variation of its input (Sayin, 2005). In optimisation it 
is said that a solution is robust when the value of the 
objective function does not change significantly 
when the decision vector are slightly shifted inside 
its neighbourhood. However, none of the above 
concepts define how “small” an input’s variation 
should be or what “insensitive” means. Since the size 
of these qualifiers depends on DM’s criteria, we 
argue that any analyst should investigate what 
information the DM may provide, among other 
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factors, before defining the particular formulation of 
robustness that is applicable to the problem under 
consideration. 

Let us consider a general optimisation problem: 
 
 

Opt F(x) 
s.t.: 

Gj(x) ≤ bj , j= 1,2,…,m. 
x ∈ X 

(1) 

 
Within an uncertain environment, it is commonly 
assumed that the decision vector x is exposed to a 
source of variability that could be represented as 
x+δi, where the vector δi is a particular realization of 
uncertainty phenomenon δ. Nevertheless this 
assumption could be invalid in some discrete 
domains that only allow being represented by means 
of scenarios. Another concern often presented in 
robustness analysis is the constraint satisfaction. 

For the sake of simplicity, let us focus now on 
those problems that might be represented by 
considering δ. Evidently, the DM will be interested 
in assessing the effect of the uncertainty on the 
output; thus the objective is transformed in some 
robustness indicator that has x,δ as an argument. 
Besides we know that despite the size of the 
variation, δ may be bounded yielding δmin ≤ δ ≤ δmax. 
A vector of uncertain independent variables or 
parameters pmin ≤ p ≤ pmax can be defined as well. 
Consequently we must define the new objective 
considering these additional elements and their 
ranges of variation.  

The aforementioned elements can be integrated 
to yield a general robustness formulation as: 
 

Opt R(F, x, δ, p, γ) 
s.t.: 

Gj(x, δ, p) ≤ bj (j= 1,2,…,J) 
x ∈ X 
Fmin ≤ F(x, δ, p) ≤ Fmax 
δmin ≤ δ ≤ δmax 
pmin ≤ p ≤ pmax 

(2) 

 
where the new objective function R is the robustness 
measure, which is function of the value of F in the 
presence of uncertainty (δ,p) and in accordance with 
DM’s criteria. The extra parameter γ is necessary for 
some formulation as will be explained later on. The 
bounds Fmin and Fmin are related to the maximal and 
minimal value that the original function F(x) reaches 
over x, δ. Such bounds could serve to state goals or 

levels of attainment as well as to control the size of 
the output’s variability. 
 
 
 
 
2.2. Deriving Robustness Formulations: a two-stage 
Information-based perspective 
 
1st Stage: Robustness Definition 
 
The previous formulation has the intention of being 
as generic as possible in order to unify diverse 
concepts present in the literature. Hence, according 
to this perspective the first stage is a conceptual 
stage: how can we define robustness in terms of the 
given information?  

The analyst should precisely define what is 
known and what is unknown in order to find which 
definition of robustness may be employed. Some 
questions that could be posed to help the analyst task 
are: 
• Domain: What is known about the domain and 

what can be assumed? 
o Discrete or continuous domain? 
o It is possible to define a variable 

neighbourhood? 
o Are there constraints? Should they be strictly 

satisfied? 
• Uncertainty: What is the uncertainty source? 

o Should the uncertainty be represented by 
scenarios, by a probability law, intervals…? 

o It is possible to describe δ with a probability 
distribution function (PDF)? What PDF? 
What are the parameters? Other forms? 

• Robustness criteria: What is the functional 
expression of R(F, x, δ, p, γ)? 
o Are there target values? (γ = ftarget) 
o What is the DM’s attitude? (risk-lover, risk-

adverse) 
o It is possible to define constraint and/or goals 

over the output? 
 

With the answers to these questions the analyst 
defines the particular robustness problem to be 
solved. This constitutes the first stage. Then the 
analyst must decide the proper method to solve it, 
completing the second stage. 

Now let us derive some robustness problems 
from the generic formulation in (2). For the sake of 
simplicity the only source of uncertainty considered 
from now on is δ. Nonetheless the analysis could be 
easily extended to consider vector p.  
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The following table summarizes some of the 
different cases an analyst could find.  

 
 
 

 

INFORMATION 
KNOWN  
δmin≤δ≤δ

max 

UNKNOW
N  

δmin≤δ≤δm

ax 
KNOWN  

Fmin≤F(x, δ, p)≤Fmax  Case 1 Case 3 
UNKNOWN  
Fmin≤F(x, δ, 

p)≤Fmax 
Case 2 Case 4 

 
Approach 1: uncertainty propagation 
 
Cases 1 and 2 correspond to those approaches based 
on uncertainty propagation. Here a description of δ is 
necessary. Usually δ is described by means of a PDF 
with mean zero and σ the standard deviation. 
Depending on the type of PDF, δmin, δmax takes 
different values; e.g. δmin=-∞, δmax=∞ for a normal 
law or δmin=-a, δmax=a where a is a vector of finite 
scalars, for a uniform law. 

Some typical criteria employed in these cases 
are: 
• Optimization of the expected value E(x): if no 

preference is expressed about the output (case 2) 
the first stage is completed making R(x,δ) = 
E(x,δ), and the second stage consists in 
determining how the uncertainty will be 
propagated (Sampling -Monte Carlo, Latin 
Hypercube, Importance sampling (Du & Chen, 
1999); Interval Arithmetic (Kolev, 1994), 
Probability Bounds Analysis (Ferson & Hajagos, 
2004)). Notice that a typical subproblem that 
could arise at this stage is the comparison among 
intervals. 

A pretty common example of case 2 is the so 
called Effective Function (Tsutsui & Gosh, 1997; 
Sörensen, 2003; Sevaux & Sörensen, 2004): 

∑
=

δ+==δ
n

1i
in

1
eff )x(F)x(F),x(R  

Taguchi’s robust design principle also 
belongs to case 2. Here the DM establish a target 
value around which the deviation should be 
minimized, yielding: 

R(x,δ,γ=ftarget) = max{dist(Fmin,ftarget), 
dist(Fmax,ftarget)} 

 

Case 2 comprises as well the multiple 
objective formulation R(x,δ) = (E(x,δ), Var[F(x, 
δ, p)]), where the expected value is optimized 
while the variance is minimized. This is probably 
the most frequent approach adopted by analysts. 

When the DM are able to express some 
criteria about the output (case 1), it is possible 
define more specific problems. For instance, the 
variance does not necessarily have to be 
minimized but simply bounded inside a threshold 
of acceptance. Other constraints are possible. One 
example of this in evolutionary computation is 
constituted by Deb’s multiple objective robust 
definitions 2 and 4 (Deb & Gupta, 2005), where 
the percentage of deviation between the single and 
expected values of F(x) is constrained a priori.  
 

• Optimization of the worst case: this is a less 
common but still valid criterion used in case 2, 
and corresponds to min-max or max-min 
problems. Sometimes it is considered as a 
conservative criterion, but its usefulness depends 
on the problem. This criterion is often employed 
in combinatorial problems. A well-known group 
of robustness criteria that consider worst-case (in 
discrete domain) are Kouvelis and Yu’s (1997) 
metrics. 

 
Approach 2: effective domain assessment 
 
When it is not possible to retrieve neither 
information nor suitable assumptions about δ, 
analysts may try to assess what is the effective 
domain within which the system remains valid. In 
robust design, the constraint satisfaction problem is a 
typical example of what we are talking about.  

Now consider case 3 where the DM can state 
some goals or constraints on F(x).  If Fmin and Fmax 
can be identify, then a valid approach consists of 
identifying that value of x that allows the maximal 
deviation without missing the requirements Gj(x,δ,p) 
≤ bj and Fmin ≤ F(x,δ,p) ≤ Fmax. Therefore robustness 
criterion to be maximized is R(x,δ) = dist(δmin,δmax). 
Such distance could be defined in different ways 
(Milanese et al., 1996). For example in (Rocco et al., 
2003; Rocco, 2005; Salazar & Rocco) the authors 
use the Maximal volumen Inner Box (MIB) distance 
formulated as:  

dist(δmin,δmax) = ∏|δmin,i - δmax,i| 
where δ*,i is the ith component of vector δ*,  and is 
applied to single and multiple objective robustness 
problems. Then, stage 2 is carried out with Interval 
Arithmetic and Evolutionary Computation. 
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Approach 3: minimal information approach 
 
Case 4 is the hardest situation that an analyst could 
cope with. It is characterized by an inability of 
describing δ plus ignorance about the range of 
function F(x). The consequence is that the preceding 
approaches cannot be employed successfully. To our 
best knowledge this kind of situations has not been 
studied before, perhaps because, even when this 
circumstance might arise -and in fact it does- in real 
problems, it is far away from being frequent. 
Nonetheless, a methodology based on the minimal 
information that the DM can articulate was 
introduced by Salazar et al. (2006), when dealing 
with a particular flow-shop scheduling problem. 

The idea is to assume plausible values of δmin, 
δmax and a uniform PDF, in order to apply the 
uncertainty propagation approach just to figure out 
the zone of optimality in the objective space, in such 
a way that the DM can have a better panorama of the 
behaviour of F(x), as well as obtaining some optimal 
solutions. Afterwards, since there’s no reliable 
information to suitably describe the uncertainty, the 
original assumption about δ is discarded and 
approach 2 is applied, fixing Fmin and Fmax in 
accordance with DM’s preferences. Given that an 
increment in the range of δ could reduce the level of 
optimality of the previously found solutions, the 
condition to be imposed is to allow any displacement 
interval considered indifferent by the DM. The 
solution with the MIB is the chosen one. 
 
2nd Stage: solving the problem 
 
Finally, once the robustness criteria are correctly 
identified, the 2nd stage consists in determining a 
suitable methodology to find the solution. This is 
actually an open field characterized by recent 
innovations and contributions [Jin] [Paenke] [Ong]. 
However, it is important to remark that all the 
contributions in this area are subject to a particular 
concept from those mentioned earlier on. If the 
concept is no longer applicable in a particular 
problem, the strategies developed to accomplish the 
2nd stage must be tailored in the best case. Thus we 
have two areas of research, the conceptual one and 
the implementation one. 
 
3. Final comments 
 
Even when the classification of the different 
concepts of robustness is in any case not a new idea 

(see e.g. the two families of approaches in Aloulou et 
al., 2005), we believe that the perspective presented 
here is useful to clarify where and how the different 
contributions made in this area fit and relate to each 
other. Likewise it allows identifying the difficulties 
and the actual limitations for solving the 2nd stage. 
Moreover, the generic formulation proposed is useful 
to understand why there are so many variants of the 
same concept and, at the same time, it’s a nice way 
of joining all them together. As we mentioned in the 
introduction, this information-based perspective must 
be extended to consider other sort of systems and 
their derived problems. 
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