This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2022.3169330, IEEE Journal

of Selected Topics in Applied Earth Observations and Remote Sensing
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 1

FPGA-based implementation of a CNN architecture
for the on-board processing of very high resolution
remote sensing images

Romén Neris, Adridn Rodriguez, Ratil Guerra, Sebastian Lopez, Roberto Sarmiento
University of Las Palmas de Gran Canaria
Institute for Applied Microelectronic (IUMA), Gran Canaria, Spain
Email: rneris@iuma.ulpgc.es, armolina@iuma.ulpgc.es, rguerra@iuma.ulpgc.es, seblopez@iuma.ulpgc.es,
roberto@iuma.ulpgc.es

Abstract—Over the last years, Convolutional Neural Networks
(CNNs) have been widely used in remote sensing applications,
such as marine surveillance, traffic management or road net-
works detection. However, since CNNs have extremely high com-
putational, bandwith and memory requirements, the hardware
implementation of a CNN on space-grade devices like FPGAs
for the on-board processing of the acquired images has brought
many challenges, since the computational capabilities of the on-
board hardware devices are limited. Hence, implementations
have to be carefully planned. In this paper, the authors present
their work towards the implementation of an efficient CNN
onto a space-grade FPGA in order to achieve the on-board
processing of very-high resolution remotely sensed images as soon
as the data are provided by the sensor. All this work has been
conducted within the EU-funded VIDEO project. As it will be
presented in this paper, the work includes the introduction of
a methodology based on the project constraints, the evaluation
of different state-of-the-art CNN architectures by means of a
new efficiency measurement also proposed in this work, the
introduction of a new efficient CNN architecture, and finally,
its optimized hardware implementation by means of high-level
synthesis tools. The results obtained following the proposed
methodology demonstrate that the uncovered architecture is able
to detect targets of interest in RGB images with a much higher
efficiency than state-of-the-art solutions, while requiring a much
smaller amount of computing and memory resources.

Index Terms—Machine learning, deep learning, convolutional
neural networks, target detection, remote sensing, FPGA.

I. INTRODUCTION

OWADAYS, there is a rapid surge of interest in deep

learning for remote sensing. These algorithms have
rapidly become a hot-topic in the machine learning field, and
are currently part of the remote sensing big data analysis
paradigm [1]. In particular, there has been a lot of progress
made in the deep learning models, particularly Convolutional
Neural Networks (CNNs), which have significantly improved
the performance of remote sensing image processing tasks
[2]. Nevertheless, the large number of model parameters and
the high computational cost of CNN algorithms make their
implementation on resource-limited devices like FPGAs a dif-
ficult task. Issues like resource utilization, minimal precision
arithmetic using fixed-point representations, hardware-friendly
descriptions or real-time processing requirements are to be
faced. Obviously, these challenges are magnified when these

implementations are considered for space-grade FPGAs, since
space presents an additional set of constraints such as power
consumption, restricted computational capabilities and limited
storage availability [3].

Hence, in order to select the right architecture, a wide evalu-
ation of existing CNN models has to be carried out. Parameters
such as the number of trainable parameters (to be stored in
memory), the image size and resolution, or the number of
Floating Point Operations (FLOPs) are especially relevant for
the high level implementation of such architectures, as these
parameters will guide the designer in the decision of the final
architecture to be implemented.

The work presented in this manuscript has been conducted
within the Video Imaging Demonstrator for Earth Observation
(VIDEO) project [4], in which the aforementioned restrictions
are of the utmost relevance. As it is shown in Section [II} this
project presents specific constraints that have to be taken into
account, such as the large size of the images captured by the
sensor, which impacts the amount of memory needed, or the
encoding method used by the sensor, which will determinate
the availability of the data. Within this context, the main
contributions of this work are summarized as follows. First,
the scanning algorithm used to process the entire image as
independent blocks as soon as they are sensed has been
evaluated according to different parameters, such as the sliding
window size and stride. Secondly, different CNN architectures
have been analysed measuring both the detection performance
and the computational cost, selecting the proposed-by-the-
authors MobileNetv1Lite architecture as the most suitable
option for this work according to a new figure of merit also
uncovered in this manuscript. This architecture is presented
in more detail in Section Thirdly, different approaches
have been followed to adapt the data types and to optimize the
CNN operations for the FPGA computing capabilities. Finally,
two implementations of the MobileNetvl architecture have
been synthesized making use of Vitis HLS, with a data type
precision of 32-bit floating point and 16-bit fixed point and
targeting a Xilinx Kintex Ultrascale XCKUO040-2FFVA1156E.

The rest of the manuscript is structured as follows: Section
presents the VIDEO project, Section briefly describes
the main features of CNNs and proposes a selection of the
architectures that will be evaluated for this project. Also,

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2022.3169330, IEEE Journal

of Selected Topics in Applied Earth Observations and Remote Sensing
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 2

different experiments and results obtained from the different
high level implementations are discussed. Section shows
the results of the FPGA implementation and finally, Section
[Vlsummarises the conclusions extracted from this work as well
as further research directions.

II. VIDEO PROJECT OVERVIEW

The EU-funded VIDEO project has received funding from
the European Union’s Horizon 2020 research and innovation
program. The goal of this project is to develop the next instru-
ment generation for Earth observation. It’s a novel architecture
based on state-of-the-art technologies for mirrors, structures
(additive manufacturing), and detection (new generation detec-
tor and processing chain). The VIDEO instrument will have
the capability to perform high-resolution video monitoring on
an extremely wide scene. During the project, this instrument
will have the capacity to detect and track the selected target
in a wide video scene. Additionally, the system will have a
compression stage able to compress the sub-block of the image
where the target has been detected in order to minimize the
downloaded data to the ground. Accordingly, all the decisions
made during this work are oriented to satisfy the requirements
and restrictions imposed by the project.

Within this context, this work is focused on providing
solutions for the detection of targets using high resolution
RGB images and video data acquired from Earth Observation
satellites. In particular, the proposed solution is based on the
use of a CNN executed on a FPGA device on-board a satellite
to carry out the detection of human-made targets, such as ships
or planes. To reach this goal, this work includes different
development stages that go from the network architecture
development and training to the final FPGA implementation.

In the following subsections we present the target applica-
tion workflow, the proposed high-level design and implementa-
tion methodology and, finally, an overview of how the system
is expected to work and how that affects the CNN selection.

A. Target application workflow and constraints

CNNs are quite flexible in the sense that one architecture
can be trained for different use-case applications. In the case of
human-made objects, such as ships or airplanes, one single ar-
chitecture could be trained using different data sets depending
on the use-case and then the weights uploaded to the on-board
device without having to modify the implemented architecture.
This is possible thanks to the fact that convolutional layers
located at the early stages of the CNN start looking for low-
level features, such as edges and curves and then building up to
more abstract concepts through the convolutional layers placed
at the end of the network. The CNN uses low-level features
obtained at the initial levels to generate high-level features
such as paws or eyes to identify the object. Therefore, early
stages of the network could be trained with a single or a mixed
data set leaving the last stages of the architecture to be trained
with the real use-case data set.

All these advantages are used in the VIDEO project. The
selected architecture is trained on ground using as much data
as possible and then the weights loaded via the uplink. As soon

3. Downlink:
+ New data available.

@)

High Level tools:
Python - Keras,
Tensorflow

2. Uplink:
* Weights loaded at runtime.

1. CNN trained on ground station.
« Different weights depending on use-case.

4. CNN re-trained with downloaded data.
* Repeat steps2 and 3.

Fig. 1. Target application workflow.

as the satellite starts receiving new data, new images will be
sent to ground and added to the data set so that new and more
realistic data starts helping to fine-tune the performance of the
CNN. Figure || illustrates this workflow.

B. Proposed methodology

Generally speaking, when a target detection or image
classification application using CNNs is being developed, a
large data set and its corresponding ground truth is required.
Additionally, it is important that the data set used for the
development of the algorithms is representative of the real case
scenario. Sometimes this is not really possible since the device
that is supposed to capture the data is not available before the
development of the algorithm, so public and commercial data
sets have to be used for the training stage of the CNN.

It is also important to consider that for several years,
Register-Transfer Level (RTL) has been the most important
and used method to describe hardware systems. However,
High-Level Synthesis (HLS) provides the designer with tools
to describe these systems on a behavioural level, omitting
several implementation details and reducing the design effort
by raising the abstraction level. HLS also helps to accelerate
the verification process, as the design can often be verified
using software verification tools that are faster and simpler
to use than RTL simulation tools. Finally, whereas RTL de-
sign requires previous knowledge about hardware description
languages such as VHDL or Verilog, HLS tools usually use
languages like C/C++ [3]).

Consequently, a methodology that allows the development,
training and validation of the CNN from a high-level per-
spective needs to be planned. Figure [2| shows a flowchart
to illustrate the methodology proposed in this paper. Such
methodology can be divided in two main periods. The first
one corresponds to the development period, where the network
architecture is first designed, trained and validated using
existing data sets. Once the appropriate architecture is selected,
it is then implemented on the FPGA device. This period
corresponds to Stages 1 and 2 shown in the flow diagram
displayed in Figure [2] and it is executed just once prior to
the satellite launching date. The second period covers the
entire satellite mission duration and corresponds to Stages
3, 4 and 5 shown in the flow diagram displayed in Figure
During this period, the device is constantly acquiring new
data. This data is processed using the implemented architecture

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2022.3169330, IEEE Journal

of Selected Topics in Applied Earth Observations and Remote Sensing
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 3

o Neural Network architecture development. « Neural Network training and validation

e Ground level (unlimited resources). with previously existing data set.

o Python - Keras, Tensorflow, Pytorch, etc. Ground level (unlimited resources).

« Python - Keras, Tensorflow, Pytorch, etc.

e

|
o Neural Network architecture Stage
implementation (FPGA).
e Ground level (unlimited resources).
e C, Vitis, Vivado HLS.

e Upload trained

weights.
e — |

Network in
operation

« New real data capturing and processing.
* Target detection and tracking using the
programmed network and the trained

weights.
e On-board (limited resources).

Fig. 2. Proposed methodology.

with the pre-loaded weights on-board. In parallel, part of the
acquired data is sent to the ground station and can be used to
increase the data set used for the training and validation stages.
This way, fine-tuning can be applied [6] and the network
can be re-trained without having to change its architecture.
That allows the CNN to increase its detection performance
as more representative data is added to the existing data
set. Then, these new weights can be uploaded to the on-
board electronics. Additionally, this methodology makes also
possible the selection of a new detection target, for example
the application could switch from ship to airplane detection,
simply by training the network on ground with a different
data set, a mixture of data sets or applying transfer learning
[7] from another pre-trained architecture. Again, those new
weights can be uploaded via the uplink as it is shown in Figure
[I} The results presented in this work correspond to stages I
and 2 of Figure [2|

C. System functionality overview

This subsection provides an overview of how the VIDEO
project detection system works. The sensor to be used in this
project provides the system with a considerably large image
in terms of resolution (48 megapixels), so it is not a feasible
idea to store the entire image in memory and start feeding the
CNN with the complete image so that the CNN can process
it in one shot. Also, the image encoding method used by the
sensor is Band-Interleaved by Line (BIL), so waiting for the
whole image to arrive and not taking advantage of the fact that
the CNN could start processing smaller patches of the image
as soon as the needed lines have arrived, does not represent
the optimal implementation either. Therefore, to avoid the first
scenario and to take advantage of the second one, a different
approach is proposed in this work.

Each video frame is independently processed as an RGB
image by the network. As previously discussed, the encoding
method in which the video will be received is BIL, so the CNN
could start processing the first line of smaller patches without
having to wait until the full frame is received following a
pipeline strategy. Each image will be processed applying a

Fig. 3. Overview of the target detection process

sliding window that will move from left to right and from
top to bottom with a certain stride and overlap according
to the network input layer size and parameters. This overlap
will avoid missing targets when they are not totally contained
within the current window. It is important to mention that
this overlap needs to be carefully chosen. Figure [3] presents a
graphical explanation of this process.

The network result will indicate if there is at least one target
present within the current window area or not. The window
will have to be small enough to locate the targets within the
image but also, it will have to be large enough to be able to
contain most of a target so it can be correctly detected by the
CNN. Finally, as soon as the result of the current window is
positive, this is, one or more targets are located within the
window, the process will stop firing a trigger signal that will
let the system know that a target has been detected. In that
case, the detection mode will stop. This approach endorses
the use of the methodology previously presented, since in
many cases it will not be necessary to process the whole 48
megapixels image captured by the sensor. Figure [] illustrates
this methodology.

Newer CNN architectures such as YOLO [8] are based on
single shot object detection methodologies. These architectures
work really well and are extremely fast. However, as presented
in [9], there are some unique aspects of satellite imagery that
present a whole set of different challenges. These aspects such
as the enormous size of the input image and the small spatial
extent of the targets within the image, rotation invariance
since targets can have any orientation, make single shot object
detection methodologies not suitable for object detection on
satellite imagery.

D. System constraints

In order to select the right window size and stride so that
a complete ship or airplane can be located within the image,

Fig. 4. Switching from detection mode to tracking mode.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2022.3169330, IEEE Journal

of Selected Topics in Applied Earth Observations and Remote Sensing
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 4

some calculations are needed. The sensor has a Field of View
(FOV) of 2.5 degrees and the image captured by the sensor
will have a size of 48 megapixels, this is 6000 x 8000 pixels.
Also, the satellite will be orbiting at around 500 km. So in
order to calculate the pixel size Equations [I] and [2] must be
applied.

F
d=h-tan OV

(D

In Equation [I} d is the real distance in meters from the
middle of the image to one end and # is the satellite orbit
height in meters. Once d gets calculated, the pixel size can be
calculated using Equation [2]

2-d
nPixels @

In Equation 2] nPixels is the distance in pixels of one side
of the image (in this work’s case either 6000 or 8000).

With all the above, and taking the specific values presented
earlier, the pixel size in the vertical dimension of the image
acquired by the sensor of the VIDEO project would be
equivalent to 3.636 m and the pixel size in the horizontal
dimension would be equivalent to 2.727 m. If the Seawise
Giant [10] is taken as the longest ship ever built, with a
length of 458.45 m, it would cover a minimum of 169 pixels
according to the previous calculations. Accordingly, it can be
concluded that a window size larger than 200 pixels should
be enough. Therefore, two different window sizes have been
used for the experiments: 512x512 pixels and 256x256 pixels.
This should give enough margin for the target detection. In
order to cover scenarios where the target has one half within
the current window and the other half in the next one, or the
target has a tiny portion in one window and the rest in the
next one, a stride of 249 pixels for the 512x512 pixels input
size case and a stride of 125 pixels for the 256x256 pixels
input size case have been selected. Given that the longest ship
would need 169 pixels, this makes sure that targets are never
missed, since the overlap between images is big enough.

pixelSize =

III. CNN ARCHITECTURES
A. Convolutional Neural Networks

For the past few years, Convolutional Neural Networks
(CNNs) have been one of the most extensively used type of
neural networks. In a general sense, CNNs are primarily used
in the field of pattern recognition within images [[L1], since
they are able to process multiple arrays of data, for example
RGB images, which are a composition of 2D arrays of pixels
in the three colour channels [12]. That makes them a good
choice for image processing and in particular, for multiband
remote-sensing image processing [13].

Diving into details, CNNs are mainly designed using four
layers: convolutional layers, non-linear activation layers, pool-
ing layers and fully-connected layers. Convolutional layers
convolve the input pixels with a set of filters, also called
kernels, to create a feature map that summarizes the pres-
ence of detected features in the input. The output of the
convolutional layers is then processed using an element-
wise non-linear transform by the non-linear activation layers.

Pooling layers aggregate neighbour pixels using a permutation
invariant function, normally a max or mean operation. Finally,
in the fully-connected layer each node is directly connected
to every node in the previous and next layers.

CNNs benefit a lot from the fact that many natural signals
are compositional hierarchies, this is, the aggregation of lower-
level features produce higher-level ones. Taking an image as
an example, local combinations of edges form motifs, motifs
assemble into parts and parts finally assemble into objects [12].
This is one of the main reasons why CNNs are a well-suited
choice for object detection.

B. Analysis of CNN architectures detection efficiency

In this work five different architectures have been evaluated.
The idea behind the selection of the architectures is to have an
option as simple and light as possible, able to rapidly process
small windows of a much larger image. The starting point
of this work was the evaluation of the ResNet50, AlexNet
and VGG19 architectures, as these are CNNs that are proven
to give a good accuracy so they can be used as a golden
reference. Then, we started to reduce the complexity of the
architectures trying to avoid a reduction in the performance
of the CNN. Obviously, these initial architectures turned out
to be too heavy for the target FPGA device, so we started
using lighter versions of the ResNet architecture and, as it
will be described next, some modifications were made to the
original AlexNet network to reduce the number of trainable
parameters. Additionally, some newer and lighter architectures
- MobileNet and DenseNet - were also introduced for the
experiments. All these architectures are generally described
in the following lines.

1) AlexNet: AlexNet was released in 2012 by Alex
Krizhevsky in collaboration with Ilya Sutskever and Geoffrey
Hinto. It consists of eight trainable layers: the first five are
convolutional layers and the last three are fully connected
layers. AlexNet uses the ReLU activation function, which
showed improved training performance over tanh and sigmoid
[14]]. The main goal of this work is target detection, so the
final fully connected layer is connected to a 2-way softmax
layer. Figure [5] shows the architecture of this CNN.

2) VGG Network: The VGG Network was developed by
the Visual Geometry Group of the University of Oxford. It
consists of multiple connected convolutional layers and fully-
connected layers. The size of the convolutional kernel is 3x3
with a stride of 1 [15]]. In this work the 19-layer version of the
architecture was used thinking that this very heavy architecture
would get great accuracy results.

. IQII:>II:>II:>ISIS nh
Inputimage convi convz conva Conva convs FC1 FC2 FC3  Softmax

Fig. 5. AlexNet architecture.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2022.3169330, IEEE Journal

of Selected Topics in Applied Earth Observations and Remote Sensing
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 5

3) ResNet: As technology evolves networks are becoming
deeper. However, really deep networks are not easy to train,
since there are issues like the vanishing gradient problem
[16]. As a result of this issue, as the network goes deeper
its performance starts degrading rapidly. In order to resolve
this, a new architecture was presented in [17] which explored
the addition of an “identity shortcut connection”, skipping
one or more layers. These shortcut connections basically
perform identity mapping, i.e. their outputs are added to
the outputs of the stacked layers. These connections do not
add extra parameters or computational complexity. In this
work three different variants of the ResNet architecture were
investigated: ResNet18, ResNet34 and ResNet50. As explained
at the beginning of this section, ResNet50 often gives really
good accuracy results so this architecture is one of our golden
references. However, it is way too heavy, so lighter versions
of this architecture were also tested.

4) MobileNet: MobileNets were originally designed by
Google for mobile and embedded vision applications [18].
One of the main features of the MobileNet architecture is that
it uses depthwise separable convolutions. This significantly
decreases the number of trainable parameters when compared
to networks with regular convolutions with the same depth.
MobileNetv?2 introduced the concept of linear bottlenecks and
inverted residuals [19]. Therefore, this results in lightweight
deep neural networks which is why this type of architecture is
really attractive for the kind of scenario this work is targeting.
The architecture of the MobileNetvl CNN can be seen in
Figure [6]

5) DenseNet: The DenseNet architecture [20] was designed
to ensure the maximum flow of information between the layers
in the network. All layers with matching feature-map sizes are
directly connected with each other. In order to keep the feed-
forward nature, each of the layers gets additional inputs from
all the preceding layers and passes on its own feature-maps to
all the subsequent layers.

C. Data sets

One of the main applications of the VIDEO project is
ship and airplane detection using CNNs. This is why two
public ship and airplane data sets have been used to train
the architectures presented in Section [[IlI-B] and Section [II-D]
These data sets are described in the next section.

1) Ship data set: The Ship data set was created using the
MASATI data set and a subset of the HRSC2016 data set
[22]. The MASATI data set provides colour images in dynamic
marine environments, and it can be used to evaluate ship

x5
.| E> E> E> E> ED

Inputimage Convi DWC1 DWC2 DWC3 DWC4 DWC5 DWC6 DWC7-11 DWC12 DWC13 FC1 Softmax

PWC1 PWC2 PWC3  PWC4 PWC5 PWC6 PWC7-11 PWC12 PWC13
DWC: Deplh -Wise Conv

ch Point-Wise Conv

Fig. 6. MobileNet architecture.

Fig. 8. Airplane data set.

detection methods. The HRSC2016 (High Resolution Ship
Collections 2016) is a data set used for scientific research
and contains a large number of images collected from Google
Earth with different ship types. The Ship data set consists of
8,558 RGB images, each of them with a size of 512x512
pixels. Each image may contain one or multiple targets in
different conditions (location, weather, illumination, etc.). The
labels are distributed in two categories: ’ship” and “no-ship”.
The distribution of the training, validation and test sets is 80%,
10% and 10% respectively and the inclusion of the images
within each category has been executed in a random manner.
Figure [7] shows some of the images in this data set.

2) Airplane data set: The Airplane data set was created
using a combination of images from the UC Merced Land Use
data set and the Aerial Image Data set (AID) [24]. The
images from the UC Merced Land Use data set were manually
extracted from large images from the USGS National Map
Urban Area Imagery collection. This is a 21-class land use
image data set meant for research purposes, containing 100
images with airplanes. The AID data set is a large-scale aerial
image data set, obtained by collecting sample images from
Google Earth imagery. This data set is made up of 30 aerial
scene types, being “airport” one of the scene types included,
making it a good choice for our work. Each image has a size
of 256x256 pixels. In this work, this data set contains 2,695
RGB images divided as follows: 80% for the training set, 10%
images for the validation set and finally 10% images for the
test set. The labels are: “airplane” and “no-airplane”. Again,
the inclusion of the images within each category has been
executed randomly. Figure [§]shows some of the images present
in this data set.

3) Mixed data set: The mixed data set has been built using
a mixture of images from the Ship data set and the Airplane
data set. Since one of the main applications of the VIDEO
project is ship and airplane detection, we considered that
having a mixed data set made up of a mixture of the Ship and
Airplane data sets would be useful to test the methodology

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2022.3169330, IEEE Journal

of Selected Topics in Applied Earth Observations and Remote Sensing
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 6

discussed in sub-section [[I-A] This data set has 8,235 images
with the same sets distribution as explained before, this is,
80% for the training set, 10% for the validation set and 10%
for the test set.

D. Modified architectures

As discussed in Section [, the large number of trainable
parameters and the considerable complexity of the involved
calculations, make the implementation of a CNN architecture
on an FPGA quite challenging. In order to reduce these
requirements, two of the architectures that provide better
results in the literature and are lighter in terms of FLOPs have
been modified: AlexNet and MobileNetvl.

The original AlexNet architecture presents three dense lay-
ers at the end of the processing chain. This type of layer
generates a huge amount of trainable parameters that adds an
extra overhead in the memory footprint. Therefore, we propose
a new architecture called AlexNetLite that removes two of the
final three dense layers, achieving a reduction of 98.32% in
the number of trainable parameters.

A similar reasoning has been followed with the original
MobileNetvl architecture. In this case, a reduction in the
number of filters by a factor of 4 plus the activation of
the shallow option which removes 5 stages of the network
has been applied. This modified architecture, named Mo-
bileNetvl1Lite, gives a reduction of 96.15% in the number of
trainable parameters.

Both architectures are introduced in Figure [9] and Figure
[T0] Additionally Table [l] presents a detailed description of the
MobileNetv1Lite architecture.

E. Metrics

A reasonable performance metric for CNN evaluation is the
ratio between the amount of correctly classified samples and
the total number of samples. This measure is named accuracy
and can be defined as follows:

Inputimage Convl Conv2 Conv3 Conv4 Convs FC1  Softmax

Fig. 9. AlexNetLite.

.| TRl

Inputimage DWC4 DWC5 DWC6 DWC7 DWC8 FC1 Softmax

PWC4 PWCS PWC6 PWC7 PWCS

Convi DWC1 DWC2 DWC3

PWC1 PWC2  PWC3
DWC: Depm Wise Conv

ch Point-Wise Conv

Fig. 10. MobileNetv1Lite

TABLE I
MOBILENETV ILITE ARCHITECTURE

Stage Layer Kernel size Strides Filters
1 conv2D 3x3 2,2 8
2 dwconv2D 3x3 1,1 N/A
2 pwconv2D 1x1 1,1 16
3 dwconv2D 3x3 2,2 N/A
3 pwconv2D 1x1 1,1 32
4 dwconv2D 3x3 1,1 N/A
4 pwconv2D 1x1 1,1 32
5 dwconv2D 3x3 2,2 N/A
5 pwconv2D 1x1 1,1 64
6 dwconv2D 3x3 1,1 N/A
6 pwconv2D 1x1 1,1 64
7 dwconv2D 3x3 2,2 N/A
7 pwconv2D 1x1 1,1 128
8 dwconv2D 3x3 2,2 N/A
8 pwconv2D 1x1 1,1 256
9 dwconv2D 3x3 1,1 N/A
9 pwconv2D 1x1 1,1 256
10 globalAvgPool N/A N/A N/A
10 dense N/A N/A N/A
Ace — TruePos + TrueNeg 3)

TruePos + FalsePos + TrueNeg + FalseNeg

However, if the data set is unbalanced, accuracy is not a
reliable measure as it can give an overoptimistic estimation
on the majority class [23]]. In this situation, F1Score gives a
much more reliable measure. F1Score can be calculated as:

Precision - Recall
F1 =2 4
Score Precision + Recall “)

where Precision is the amount of True Positives divided by
the number of True Positives + False Positives and Recall is
the number of True Positives divided by the number of True
Positives + False Negatives.

As discussed in subsection the data sets used in this
work are unbalanced and thus F1Score is a better metric to
quantify the performance of the models.

At this point, it is important to define which metrics will be
considered to measure the suitability of the different network
architectures to carry out an efficient hardware implementation
that matches the VIDEO project goals and restrictions. In this
sense, we consider that a trade-off between the F1Score and
WF's obtained by each network provides a good measure of the
suitability of the architecture for this particular problem, where
WFs is a function that gets the FLOPs per window based on
the sliding window width (sw,,) and height (swy). Hence, in
order to facilitate the selection of the right architecture, we
define the efficiency factor of the CNN detection process as
follows:

F1Score

WFs(sWy, W) ®)

efficiency =

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2022.3169330, IEEE Journal

of Selected Topics in Applied Earth Observations and Remote Sensing

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 7
TABLE II NN Performance
SUMMARY OF TRAINABLE PARAMETERS AND FLOPS - SHIP DATA SET
(512x512x3) 0957 o d
0.90 A
Architecture Trainable params (Millions) GFLOPs 0.85 |
ResNet50 23.79 20.34
ResNet34 2.55 2.85 20809 o mobilenetv2
ResNetl8 1.42 1.74 ﬁ e mobilenetvllite
AlexNet 230.17 6.17 0751) ¢ resnetis
AlexNetLite 3.85 5.71 vgg19
. 0.70 resnet50
MobileNetv1 3.21 3.04 .
alexnetlite
MobileNetv1Lite 0.12 0.05 0.65 - densenet
MobileNetv2 2.24 0.33 alexnet
mobilenetvl
DenseNet 1.52 3.39 0.60 - . . . ; . " :
VGG19 57370 103.26 8.0 8.5 9.0 9.5 10.0 10.5 11.0

Once the window size and stride are selected, the total
number of FLOPs needed to process the entire high resolution
image can be defined as:

TFs = WFs(swy, swy) - WpR(S, i) - WpC(S,in), (6)

where windows per row (WpR) is a function dependent on
the applied stride (S) and the width of the input image (i,);
and windows per column (WpC) is a function dependent on
the applied stride (S) and the height of the input image ().

F. Experiments and results

Each of the considered network architectures has been
implemented using Python and Keras [26]]. Once the high
level implementation was done, each network was trained.
As presented in Section [[II-C} all the results obtained from
the different implementations were collected using the Ship,
Airplane and Mixed data sets. Each architecture was trained
running 25 epochs.

1) Ship and Airplane data sets results: Table |ll] and Table
M show the number of trainable parameters and FLOPs
corresponding to each architecture for both the Ship and the

TABLE III
SUMMARY OF TRAINABLE PARAMETERS AND FLOPS - AIRPLANE DATA
SET (256X256X3)

Architecture Trainable params (Millions) GFLOPs
ResNet50 23.60 5.08
ResNet34 2.55 0.71
ResNet18 1.42 0.43
AlexNet 62.40 1.41
AlexNetLite 3.76 1.29
MobileNetv1 3.21 0.76
MobileNetv1Lite 0.12 0.012
MobileNetv2 2.24 0.43
DenseNet 1.49 0.81
VGG19 171.04 25.82

Computational cost (log 10) - FLOPs

Fig. 11. Ship data set - F1Score vs. FLOPs.

NN Performance

0951 o °
0.90
0.85
2 0.80 i
] e mobilenetv2
ﬁ e mobilenetvllite
“0.75] e resnet34
resnet18
vggl9
0.70 1 resnet50
alexnetlite
0.65 - densenet
alexnet
mobilenetvl
0.60 1 T T : : : : :
5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5

Computational cost (log 10) - Trainable parameters

Fig. 12. Ship data set - F1Score vs. Trainable parameters.

Airplane data sets. It is important to highlight that the input
size of each data set is different as explained in Section |lII-C
and Section Also, it is worth mentioning that the input
size used for both data sets accomplishes the calculations made
in Section

The obtained results can be seen in Figures [[T{14] where the
F1Score is compared with the number of trainable parameters
(equivalent to the number of trained weights to be stored in
memory) and the number of FLOPs. Having a look at Figures
and [12] which correspond to the Ship data set results, it can
be concluded that all the flavours of the MobileNet architecture
get the best F1Score. However, MobileNetv1Lite not only gets
the third best F1Score but it is also the lightest architecture
which is a critical requirement for the FPGA implementation.
Taking a look now at Figures [13] and [T4] this is the Airplane
data set results, MobileNetviLite gets the third best result
being also the lightest architecture.

Additionally, Equation [5| can be applied to get the efficiency
numbers for each CNN. These results can be seen in Table [V]
Having a look at these results, it is very clear, particularly in
the case of the Airplane data set, that MobileNetv1Lite gets
the best efficiency result, being MobileNetv2 the second option

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2022.3169330, IEEE Journal

of Selected Topics in Applied Earth Observations and Remote Sensing
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 8

NN Performance

L]
0.95 -
0904 °
0.85 A
g 0-807 & mobilenetv2
§ o mobilenetvllite
Y- 0.75 A > resnet34
resnetl8
0.70 4 vggl9
resnet50
0.65 4 alexnetlite
: densenet
alexnet
0.60 1 mobilenetvl
7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5

Computational cost (log 10) - FLOPs

Fig. 13. Airplane data set - F1Score vs. FLOPs.

NN Performance

L]
0.95 A
0904 °
0.85
Q 4
S 0.80 e mobilenetv2
E e mobilenetvllite
Y0751 e resnet34
> resnetl8
0.70 1 vgg19
resnet50
0.65 - alexnetlite
' densenet
alexnet
0601 mobilenetvl
5.0 5.5 6.0 6.5 7.0 7.5 8.0

Computational cost (log 10) - Trainable parameters

Fig. 14. Airplane data set - F1Score vs. Trainable parameters.

but with a much lower efficiency factor. MobileNetv1Lite gets
a 557% efficiency increase in the Ship data set and a 3,469%
increase in the Airplane data set compared with MobileNetv2.

According to these results, it is concluded that this archi-
tecture is the best candidate for the FPGA implementation of
the project, since ship detection is the main use case of the
VIDEO project. Also, architecturally speaking, MobileNetv2
is slightly more complex in terms of number of layers needed,
which may cause an increase in the resources consumption
when implemented in hardware. Finally, as the data path is
longer in the case of MobileNetv2, the critical path may affect
the speed of the implementation. This is why MobileNetvl
was considered as a good candidate for the optimization as it
has a better trade-off between implementation simplicity and
accuracy. However, MobileNetv2 will be definitely considered
for future implementations.

Finally, after applying Equation [f] to the MobileNetv1Lite
architecture, it can be estimated that, for an input size of
512x512 and a stride of 249 pixels, which means 30 horizontal
strides and 22 vertical strides, TFs, as already defined in
Equation [6] is 33.37 GFLOPs. For an input size of 256x256
and a stride of 125 pixels, which means 62 horizontal strides

TABLE IV
ARCHITECTURE EFFICIENCY

Architecture Ship data set Airplane data set
ResNet50 0.043 0.171
ResNet34 0.282 1.139
ResNet18 0.465 1.797
AlexNet 0.152 0.609
AlexNetLite 0.156 0.643
MobileNetv1 0.313 1.217
MobileNetv1Lite 18.716 76.526
MobileNetv2 2.845 2.144
DenseNet 0.223 0.995
VGGI19 0.006 0.023

and 46 vertical strides, TFs is 34.22 GFLOPs. Therefore,
512x512 seems like a reasonable size for ship detection given
that it needs 2.48% less FLOPs compared to the results
obtained with a size of 256x256. Also, that size gives enough
margin considering the numbers presented in Section [[I-D
In the case of airplane detection, 256x256 seems like a fair
size too, since generally airplanes are smaller than ships and
therefore the window size can be smaller.

2) Addressing the bandwidth limitation: One of the main
constraints of the VIDEO project application is the bandwidth
of the up-link and the down-link. Also, the target of the
application can change over time. In order to solve this, we
propose a transfer learning methodology to reduce the required
bandwidth in case new weights need to be uploaded onto the
on-board electronics. For this reason, the architecture that pro-
vided the best results in terms of efficiency, MobileNetv1Lite
(please refer to Table for more details), was trained with
the Mixed data set.

After a first training was done, the weights corresponding
to the trainable layers of stages 1-7 were stored. After that,
the model was loaded with those weights and re-trained using
the Ship and Airplane data sets, but only the layers of stages
8-10 were allowed to re-train. The obtained results are shown
in Table [V1

As it can be seen, there is a slight decrease in the efficiency
factor achieved by this approach for both the Ship and the
Airplane data sets, 10.043% and 5.342% respectively, but
still the efficiency factor is much higher compared to the ones
obtained by the other architectures.

The main advantage this approach offers is that the on-

TABLE V
MIXED DATA SET RESULTS

Ship data set Airplane data set

F1Score 0.951 0.917
FLOPs 0.05 0.012
Efficiency 18.809 72.438

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2022.3169330, IEEE Journal

of Selected Topics in Applied Earth Observations and Remote Sensing
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 9

board device can be loaded with the Mixed data set weights
corresponding to the trainable layers of stages 1-7 of the
architecture and then, depending on the target of the appli-
cation, only the weights corresponding to the trainable layers
of stages 8-10 of the architecture have to be uploaded via
the up-link, saving a considerable amount of bandwidth and
reconfiguration time.

IV. FPGA IMPLEMENTATION

In the previous section the obtained results for each ar-
chitecture were presented, reaching the conclusion that Mo-
bileNetvl1Lite is the best candidate for the FPGA implemen-
tation, based on the size of the network in terms of trainable
parameters and the efficiency factor presented in Equation [3]

The increasing computational complexity has also brought
an increase in the performance of the state-of-the-art CNNs.
However, the extra cost in terms of computational resources
and memory requirements makes these networks non-viable
for applications that involve real time processing or their de-
ployment on embedded hardware with limited resources such
as FPGA devices [27]. That makes the research of solutions
that reduce this complexity and requirements a critical step
in the FPGA implementation. Some of these strategies can
be performed before deploying the design on the board. In
this work, two main optimizations have been implemented
and are presented next. In particular, the target FPGA device
that is used in the VIDEO project is the Xilinx Kintex
Ultrascale XCKUO040-2FFVA1156E, a commercial equivalent
of the space-grade Xilinx Kintex Ultrascale XQRKUO060 with
less capacity, which ensures the feasibility of the design since
if the available resources of the targeted FPGA are enough,
then the implementation on the XQRKUO060 device should be
fine as well in terms of capacity. This device is integrated
in the Xilinx Kintex UltraScale FPGA KCU105 Evaluation
Kit board. Also, we make use of the Xilinx Vivado Design
Suite, which includes Vitis HLS and Vivado for the hardware
implementation.

A. Data type conversion

The initial Keras implementation of the different archi-
tectures made use of 32-bit single-precision floating point.
Although this precision gave really good results, we propose a
floating point to fixed point conversion for the CNN hardware
implementation. As a first step, the weights from the Keras
model were obtained using 16-bit single precision floating
point. The Keras API provides the user with tools so that
this conversion can be done in a few steps. Next, the input
and weights were read by the C model using the half data
type included in hls_half.h. A floating point to fixed point
conversion was then performed using the ap_fixed data type
provided by Vitis HLS. A reduction in both the memory
footprint and the computational cost was achieved with this
conversion, as it is presented in Section

B. Batch Normalization layer optimization

The Batch Normalization layer is used to reduce Covariate
Shift. That is the change in distribution of activation of a

component. It also helps to reduce the effects of exploding and
vanishing gradients [28]]. This layer optimization gets applied
for inference only. As it is explained next, all the trainable
parameters are obtained at high level during the training phase.
Considering the input has C channels, the output of this layer
gets calculated by applying the following formula:

y = gamma, - X + betac, @)

where £ is the normalized input value and gamma,. and
beta. are trainable parameters. £ is calculated as follows:

. x—mean(x¢)
e ——"

; ®)
var(xe) + €

where x is the layer input, mean(z.) is the mean value
of the input within a batch and wvar(z.) is its variance
also within a batch. As it can be observed, there are many
operations that are costly in terms of hardware resources and
latency, particularly the square root and the division. This
work proposes a change in the way the output of this layer is
calculated based on the execution of most of these operations
in the high level Keras implementation. In order to do this,

new formulas have been developed. These are presented in
Equation [9] and Equation

X — mean(x.)

%= = (x — mean(x.)) - varl,, 9)

var(x.) + €

where var’ is defined as follows:

1

_ 10
var(xe) + € (10

var, =

If £ is substituted in Equation [/, a new formula for the

output with just one multiplication and one subtraction can be
obtained. This is shown in Equation [TT}

(In

where gv. is gamma, - varl, and gbmuv. is (gamma, -
mean(z.) - varl, — betac).

Hence, the Python code now provides the hardware imple-
mentation with values for gv. and gbmu,, saving a consid-
erable amount of hardware resources and also reducing the
latency. Additionally, given that most of the calculations are
executed at high level using 32-bit floating point, there is no
reduction in the data precision when executing this. Finally,
with this approach the number of parameters to be used by
this layer gets reduced by a factor of two. This also causes
a positive impact in the memory requirements since now it
is only required to store gv. and gbmuv. in memory, instead
of having to store gamma,, beta., mean(z.) and var(z.)
(needed for Equations [7] and [g).

y =X gvc — gbmve,

C. Implementation results

After selecting the most suitable architecture for the project
based on the results shown in Section the next step is
the hardware implementation. As discussed in Section
the precision of the data type for this implementation must be

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2022.3169330, IEEE Journal

of Selected Topics in Applied Earth Observations and Remote Sensing
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 10

External RAM

- MicroBlaze

!

| AXI Interconnect

AXl4-Lite
(configuration)

AXI4-Stream

AXid-Lite
(data flow)

(configuration)

PL

Fig. 15. FPGA implementation setup.

changed from floating point to fixed point. In order to evaluate
the improvements that can be achieved with this modification,
two different FPGA implementations are presented next.

The fixed point precision format used in these experiments
was ap_fixed<16,6,AP_RND,AP_WRAP>, where 16 is the
word length in bits, 6 is the number of bits used to represent
the integer value, AP_RND is the quantization mode (rounding
to plus infinity) and AP_WRAP is the number of saturation
bits in wrap modes (wrap around) [29]. Figure [T5] shows the
hardware implementation setup used.

As it can be seen in Table [VI] the frequency achieved in
both cases is 200 MHz. Also, resources consumption of the
32-bit floating point implementation is higher than the 16-bit
fixed point implementation, which is expected. Diving into
details, the percentage of CLBs, LUTs, BRAMs, DSPs and
FFs needed in the case of the 16-bit fixed point implementation
is 41%, 25%, 39%, 31% and 15% respectively, versus a 66%,
38%, 68%, 13% and 27% in the case of the 32-bit floating
point implementation. The number of DSPs is bigger for the
16-bit fixed point implementation as this precision type makes
a better usage of these resources.

Figure [I6] show the post-implementation results in a more
graphical way.

V. CONCLUSIONS AND FURTHER RESEARCH.

In this manuscript, eight different state-of-the-art CNNs
have been evaluated for their hardware implementation on
an FPGA. The selected CNN will have to perform object
detection on HRRS images, therefore, several application con-
straints such as the image size or the easiness of the hardware
implementation of the architecture have to be considered.
In order to evaluate all the different candidates, memory

TABLE VI
FPGA IMPLEMENTATION RESULTS

FPGA Post-Implementation results

® Floating Point  m Fixed 16bits

Fr I 7%
DsPs [ s 310

BRAM

LUT as Memory
LUT as Logic
CLB

CLB Registers

CLB LUTs

!
G
®
w
@

20% 40% 50% 60% 70% 80%

Fig. 16. FPGA post-implementation results.

footprint (in the form of number of parameters to be stored)
and FLOPs were calculated, comparing the results with the
F1Score of each model, as well as uncovering an efficiency
factor that allows the right selection of the architecture. After
getting the results and selecting the proposed-by-the-authors
MobileNetv1Lite architecture as the best fit for the hardware
implementation, a new experiment using transfer learning was
run. This shows how the selected CNN can be trained for
different applications by simply re-training the final layers of
the network using pre-trained weights for the previous layers.
Also, two hardware implementations using different data type
precision have been done, showing how the conversion from
a 32-bit floating point to a 16-bit fixed point implementation
improves the resources utilization.

Since we are working towards a space-grade FPGA imple-
mentation and considering all the different issues that radiation
in space could cause to the hardware device, we think that an
ablation study needs to be done in order to measure the contri-
bution of the different components to the overall system. Also,
and thanks to the flexibility of the methodology presented,
new modified architectures will be selected and implemented,
giving priority to MobileNetv2, since this architecture gave
really good results and its easiness of implementation makes it
a good candidate. The automation of the implementation from
high level to hardware is another key goal that fits within the
scope of this team’s interests, so works have already started
in that direction.

ACKNOWLEDGMENTS

This work has been conducted within the Video Imaging
Demonstrator for Earth Observation (VIDEO) project, that has
received funding from the European Union’s Horizon 2020
research and innovation program under grant agreement No
870485. This publications reflects only the authors’ view.
The Agency is not responsible for any use that may be

Precision CLB LUTs BRAM DSP FF Freq
Float 32bits 19,964 91,809 407 252 131,265 200 MHz
Fixed 16bits 12,338 59,862 233 603 71,917 200 MHz

made of the information it contains. This work has also been
supported by the Spanish Government and European Union
(FEDER funds) as part of support program in the context of
TALENT-HEXPERIA (HypErsPEctRal Imaging for Artificial
intelligence applications) project, under contract PID2020-

116417RB-C42

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2022.3169330, IEEE Journal

[1]

[2

—

[3]

[4

=

[5]

[6

=

[7

—

[8]

[91

[10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

of Selected Topics in Applied Earth Observations and Remote Sensing
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 11

REFERENCES

L. Zhang, L. Zhang, and B. Du, “Deep learning for remote sensing
data: A technical tutorial on the state of the art,” IEEE Geoscience and
Remote Sensing Magazine, vol. 4, no. 2, pp. 22-40, 2016.

G. Cheng, C. Yang, X. Yao, L. Guo, and J. Han, “When deep learning
meets metric learning: Remote sensing image scene classification via
learning discriminative cnns,” IEEE Transactions on Geoscience and
Remote Sensing, vol. 56, no. 5, pp. 2811-2821, 2018.

M. Wirthlin, “High-reliability fpga-based systems: Space, high-energy
physics, and beyond,” Proceedings of the IEEE, vol. 103, no. 3, pp.
379-389, 2015.

Video Imaging Demonstrator for Earth Observation (VIDEO), [Online]
.Available:https://video-h2020.eu/, (Accessed October 2021).

S. Lahti, P. Sjovall, J. Vanne, and T. D. Hiamailédinen, “Are we there
yet? a study on the state of high-level synthesis,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 38,
no. 5, pp. 898-911, 2019.

N. Tajbakhsh, J. Y. Shin, S. R. Gurudu, R. T. Hurst, C. B. Kendall, M. B.
Gotway, and J. Liang, “Convolutional neural networks for medical image
analysis: Full training or fine tuning?” IEEE Transactions on Medical
Imaging, vol. 35, no. 5, pp. 1299-1312, 2016.

C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu, “A survey
on deep transfer learning,” in Artificial Neural Networks and Machine
Learning — ICANN 2018, V. Kuarkové, Y. Manolopoulos, B. Hammer,
L. Iliadis, and I. Maglogiannis, Eds. = Cham: Springer International
Publishing, 2018, pp. 270-279.

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June
2016.

A. V. Etten, “You only look twice: Rapid multi-scale object detection
in satellite imagery,” 2018.

P. Stott, “The use of benchmarks in the popular reporting of commercial
shipping: Is the titanic an appropriate measure to convey the size of a
modern ship?” The Mariner’s Mirror, vol. 100, no. 1, pp. 76-83, 2014.
[Online]. Available: https://doi.org/10.1080/00253359.2014.866378

K. O’Shea and R. Nash, “An introduction to convolutional neural
networks,” 2015.

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, pp. 436-444, 2015.

L. Ma, Y. Liu, X. Zhang, Y. Ye, G. Yin, and B. A. Johnson, “Deep
learning in remote sensing applications: A meta-analysis and review,”
ISPRS Journal of Photogrammetry and Remote Sensing, vol. 152,
pp. 166-177, 2019. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0924271619301108

A. Krizhevsky, 1. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural Infor-
mation Processing Systems, F. Pereira, C. J. C. Burges, L. Bottou, and
K. Q. Weinberger, Eds., vol. 25. Curran Associates, Inc., 2012.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 2015.

S. Hochreiter, “The vanishing gradient problem during learning recurrent
neural nets and problem solutions,” International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems, vol. 6, no. 02, pp. 107-116,
1998.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” 2015.

A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural
networks for mobile vision applications,” 2017.

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” 2019.

G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in 2017 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2017, pp. 2261-2269.
A. P. Antonio-Javier Gallego and P. Gil, “Automatic ship classification
from optical aerial images with convolutional neural networks,” Remote
Sensing, vol. 10, no. 4, 2018.

Z. Liu., L. Yuan., L. Weng., and Y. Yang., “A high resolution optical
satellite image dataset for ship recognition and some new baselines,” in
Proceedings of the 6th International Conference on Pattern Recognition
Applications and Methods - ICPRAM,, INSTICC. SciTePress, 2017,
pp. 324-331.

Y. Yang and S. Newsam, “Bag-of-visual-words and spatial extensions
for land-use classification,” 01 2010, pp. 270-279.

[24]

[25]

[26]

(27]

[28]

[29]

G.-S. Xia, J. Hu, F. Hu, B. Shi, X. Bai, Y. Zhong, L. Zhang, and
X. Lu, “Aid: A benchmark data set for performance evaluation of aerial
scene classification,” IEEE Transactions on Geoscience and Remote
Sensing, vol. 55, no. 7, p. 3965-3981, Jul 2017. [Online]. Available:
http://dx.doi.org/10.1109/TGRS.2017.2685945

D. Chicco and G. Jurman, “The advantages of the matthews correlation
coefficient (mcc) over fl score and accuracy in binary classification
evaluation,” BMC Genomics, vol. 21, 2020.

A. Gulli and S. Pal, Deep learning with Keras.
2017.

D. Lin, S. Talathi, and S. Annapureddy, “Fixed point quantization of
deep convolutional networks,” in Proceedings of The 33rd International
Conference on Machine Learning, ser. Proceedings of Machine
Learning Research, M. F. Balcan and K. Q. Weinberger, Eds., vol. 48.
New York, New York, USA: PMLR, 20-22 Jun 2016, pp. 2849-2858.
[Online]. Available: https://proceedings.mlr.press/v48/linb16.html

S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in Proceedings
of the 32nd International Conference on Machine Learning, ser.
Proceedings of Machine Learning Research, F. Bach and D. Blei, Eds.,
vol. 37. Lille, France: PMLR, 07-09 Jul 2015, pp. 448-456. [Online].
Available: https://proceedings.mlr.press/v37/ioffe15.html

Xilinx Vivado Design Suite User Guide, [Online].Available:https://www.
xilinx.com/support.htmlsupport.html#documentation, pp. 76-77, (Ac-
cessed October 2021).

Packt Publishing Ltd,

Romén Neris was born in Tenerife, Spain, in 1983.
He received the degree in telecommunication engi-
neering from the University of Las Palmas de Gran
Canaria in 2012, and the M.Sc in telecommunication
technologies in 2012. After working in the UK as
Hardware Emulation Engineer for more than 6 years,
he joined the Integrated Systems Design Division at
the Institute for Applied Microelectronics ITUMA) in
2020, where he started his Ph.D. thesis in the field of
deep learning and neural network implementations
on FPGAs, in parallel with his job as deep learning

researcher in the VIDEO project. His current research interests include

neural network architectures, hardware/software co-design strategies, design
verification, hardware emulation and automation methodologies.

Adridn Rodriguez was born in Las Palmas de Gran
Canaria, Spain, in 1998. He received the Industrial
Electronics and Automatic Engeneering degree from
the University of Las Palmas de Gran Canaria in
2020. Later, he received the master’s degree in Ap-
plied Electronics and Telecommunications imparted
from the Institute for Applied Microelectronics,
IUMA, in 2021. Currently, he is doing a PhD related
with image and video processing in UAV.

Rail Guerra was born in Las Palmas de Gran
Canaria, Spain, in 1988. He received the Electrical
Engineering degree from the University of Las Pal-
mas de Gran Canaria, Las Palmas de Gran Canaria,
Spain, in 2012, the master’s degree in telecommu-
nications technologies from the Institute of Applied
Microelectronics, University of Las Palmas de Gran
Canaria, and the Ph.D. degree in telecommunications
technologies from the University of Las Palmas
de Gran Canaria, in 2017. He was funded by the
University of Las Palmas de Gran Canaria to do his

Ph.D. research in the Integrated System Design Division. In 2016, he was a
Researcher with the Configurable Computing Lab, Virginia Tech University.
His research interests include the parallelization of algorithms for multispec-

tral and hyperspectral images processing and hardware implementation.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/


[Online]. Available: https://video-h2020.eu/
[Online]. Available: https://video-h2020.eu/
https://doi.org/10.1080/00253359.2014.866378
https://www.sciencedirect.com/science/article/pii/S0924271619301108
https://www.sciencedirect.com/science/article/pii/S0924271619301108
http://dx.doi.org/10.1109/TGRS.2017.2685945
https://proceedings.mlr.press/v48/linb16.html
https://proceedings.mlr.press/v37/ioffe15.html
[Online]. Available: https://www.xilinx.com/support.htmlsupport.html#documentation
[Online]. Available: https://www.xilinx.com/support.htmlsupport.html#documentation

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2022.3169330, IEEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 12

Sebastian Lépez (M’08-SM’15) was born in Las
Palmas de Gran Canaria, Spain, in 1978. He re-
ceived the degree in electronic engineering from the
University of La Laguna in 2001, and the Ph.D.
degree in electronic engineering from the University
of Las Palmas de Gran Canaria, Las Palmas de Gran
Canaria, Spain, in 2006. He is currently an Associate
Professor with the University of Las Palmas de Gran
Canaria, where he is currently involved in research
activities with the Integrated Systems Design Divi-
sion, Institute for Applied Microelectronics. He has
coauthored more than 120 papers in international journals and conferences.
His research interests include real-time hyperspectral imaging, reconfigurable
architectures, high-performance computing systems, and image and video
processing. Dr. Lopez was a recipient of regional and national awards during
the electronic engineering degree. Furthermore, he has acted as one of the
program chairs of the IEEE Workshop on Hyperspectral Image and Signal
Processing: Evolution in Remote Sensing (WHISPERS), in 2014, and the
SPIE Conference of High Performance Computing in Remote Sensing, from
2015 to 2018. He was an Associate Editor for the IEEE TRANSACTIONS
ON CONSUMER ELECTRONICS, from 2008 to 2013. He is currently
an Associate Editor for the IEEE JOURNAL OF SELECTED TOPICS IN
APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, Remote
Sensing (MDPI), and the Mathematical Problems in Engineering journal. In
addition, he has been the Guest Editor of different special issues in JCR
journals related with the research interests. He is also an active Reviewer for
different JCR journals and a Program Committee Member of a variety of
reputed international conferences.

Roberto Sarmiento received the Ph.D. degree in
electronic engineering from the University of Las
Palmas de Gran Canaria, in 1991. He is currently
a Full Professor in Electronic Engineering with the
Faculty of Telecommunication Engineering, Univer-
sity of Las Palmas de Gran Canaria. He contributed
to the birth of this center in 1989. He was the Dean
of the Faculty from 1994 to 1998 and the Vice-
Chancellor for academic affairs and staff from 1998
to 2003. In 1993, he was a Visiting Professor with
the University of Adelaide, Adelaide, SA, Australia,
and later with the Edith Cowan University, Joondalup, WA, Australia. He
was the Co-Founder of the Institute for Applied Microelectronics, University
of Las Palmas de Gran Canaria, and the Director of the Integrated Systems
Design Division of this Institute. Since 1990, he has published more than 40
journal papers and book chapters and more than 120 conference papers. He
has participated in more than 35 projects and research programmes funded by
public and private organizations, from which he has been leader researcher
in 16 of them. He has conducted several agreements with companies for the
design of high performance integrated circuits, being the most remarkable the
collaboration with Vitesse Semiconductor Corporation, Camarillo, CA, USA,
and Thales Alenia Space, Spain. His research interests include multimedia
processing and video coding standard systems, reconfigurable architectures,
and real-time processing and compression of hyperspectral imaging. Dr.
Sarmiento has been awarded with four six-years research periods by the
National Agency for the Research Activity Evaluation in Spain.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



