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Abstract—Over the last years, Convolutional Neural Networks
(CNNs) have been widely used in remote sensing applications,
such as marine surveillance, traffic management or road net-
works detection. However, since CNNs have extremely high com-
putational, bandwith and memory requirements, the hardware
implementation of a CNN on space-grade devices like FPGAs
for the on-board processing of the acquired images has brought
many challenges, since the computational capabilities of the on-
board hardware devices are limited. Hence, implementations
have to be carefully planned. In this paper, the authors present
their work towards the implementation of an efficient CNN
onto a space-grade FPGA in order to achieve the on-board
processing of very-high resolution remotely sensed images as soon
as the data are provided by the sensor. All this work has been
conducted within the EU-funded VIDEO project. As it will be
presented in this paper, the work includes the introduction of
a methodology based on the project constraints, the evaluation
of different state-of-the-art CNN architectures by means of a
new efficiency measurement also proposed in this work, the
introduction of a new efficient CNN architecture, and finally,
its optimized hardware implementation by means of high-level
synthesis tools. The results obtained following the proposed
methodology demonstrate that the uncovered architecture is able
to detect targets of interest in RGB images with a much higher
efficiency than state-of-the-art solutions, while requiring a much
smaller amount of computing and memory resources.

Index Terms—Machine learning, deep learning, convolutional
neural networks, target detection, remote sensing, FPGA.

I. INTRODUCTION

NOWADAYS, there is a rapid surge of interest in deep
learning for remote sensing. These algorithms have

rapidly become a hot-topic in the machine learning field, and
are currently part of the remote sensing big data analysis
paradigm [1]. In particular, there has been a lot of progress
made in the deep learning models, particularly Convolutional
Neural Networks (CNNs), which have significantly improved
the performance of remote sensing image processing tasks
[2]. Nevertheless, the large number of model parameters and
the high computational cost of CNN algorithms make their
implementation on resource-limited devices like FPGAs a dif-
ficult task. Issues like resource utilization, minimal precision
arithmetic using fixed-point representations, hardware-friendly
descriptions or real-time processing requirements are to be
faced. Obviously, these challenges are magnified when these

implementations are considered for space-grade FPGAs, since
space presents an additional set of constraints such as power
consumption, restricted computational capabilities and limited
storage availability [3].

Hence, in order to select the right architecture, a wide evalu-
ation of existing CNN models has to be carried out. Parameters
such as the number of trainable parameters (to be stored in
memory), the image size and resolution, or the number of
Floating Point Operations (FLOPs) are especially relevant for
the high level implementation of such architectures, as these
parameters will guide the designer in the decision of the final
architecture to be implemented.

The work presented in this manuscript has been conducted
within the Video Imaging Demonstrator for Earth Observation
(VIDEO) project [4], in which the aforementioned restrictions
are of the utmost relevance. As it is shown in Section II, this
project presents specific constraints that have to be taken into
account, such as the large size of the images captured by the
sensor, which impacts the amount of memory needed, or the
encoding method used by the sensor, which will determinate
the availability of the data. Within this context, the main
contributions of this work are summarized as follows. First,
the scanning algorithm used to process the entire image as
independent blocks as soon as they are sensed has been
evaluated according to different parameters, such as the sliding
window size and stride. Secondly, different CNN architectures
have been analysed measuring both the detection performance
and the computational cost, selecting the proposed-by-the-
authors MobileNetv1Lite architecture as the most suitable
option for this work according to a new figure of merit also
uncovered in this manuscript. This architecture is presented
in more detail in Section III-D. Thirdly, different approaches
have been followed to adapt the data types and to optimize the
CNN operations for the FPGA computing capabilities. Finally,
two implementations of the MobileNetv1 architecture have
been synthesized making use of Vitis HLS, with a data type
precision of 32-bit floating point and 16-bit fixed point and
targeting a Xilinx Kintex Ultrascale XCKU040-2FFVA1156E.

The rest of the manuscript is structured as follows: Section
II presents the VIDEO project, Section III briefly describes
the main features of CNNs and proposes a selection of the
architectures that will be evaluated for this project. Also,
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different experiments and results obtained from the different
high level implementations are discussed. Section IV shows
the results of the FPGA implementation and finally, Section
V summarises the conclusions extracted from this work as well
as further research directions.

II. VIDEO PROJECT OVERVIEW

The EU-funded VIDEO project has received funding from
the European Union’s Horizon 2020 research and innovation
program. The goal of this project is to develop the next instru-
ment generation for Earth observation. It’s a novel architecture
based on state-of-the-art technologies for mirrors, structures
(additive manufacturing), and detection (new generation detec-
tor and processing chain). The VIDEO instrument will have
the capability to perform high-resolution video monitoring on
an extremely wide scene. During the project, this instrument
will have the capacity to detect and track the selected target
in a wide video scene. Additionally, the system will have a
compression stage able to compress the sub-block of the image
where the target has been detected in order to minimize the
downloaded data to the ground. Accordingly, all the decisions
made during this work are oriented to satisfy the requirements
and restrictions imposed by the project.

Within this context, this work is focused on providing
solutions for the detection of targets using high resolution
RGB images and video data acquired from Earth Observation
satellites. In particular, the proposed solution is based on the
use of a CNN executed on a FPGA device on-board a satellite
to carry out the detection of human-made targets, such as ships
or planes. To reach this goal, this work includes different
development stages that go from the network architecture
development and training to the final FPGA implementation.

In the following subsections we present the target applica-
tion workflow, the proposed high-level design and implementa-
tion methodology and, finally, an overview of how the system
is expected to work and how that affects the CNN selection.

A. Target application workflow and constraints

CNNs are quite flexible in the sense that one architecture
can be trained for different use-case applications. In the case of
human-made objects, such as ships or airplanes, one single ar-
chitecture could be trained using different data sets depending
on the use-case and then the weights uploaded to the on-board
device without having to modify the implemented architecture.
This is possible thanks to the fact that convolutional layers
located at the early stages of the CNN start looking for low-
level features, such as edges and curves and then building up to
more abstract concepts through the convolutional layers placed
at the end of the network. The CNN uses low-level features
obtained at the initial levels to generate high-level features
such as paws or eyes to identify the object. Therefore, early
stages of the network could be trained with a single or a mixed
data set leaving the last stages of the architecture to be trained
with the real use-case data set.

All these advantages are used in the VIDEO project. The
selected architecture is trained on ground using as much data
as possible and then the weights loaded via the uplink. As soon

Fig. 1. Target application workflow.

as the satellite starts receiving new data, new images will be
sent to ground and added to the data set so that new and more
realistic data starts helping to fine-tune the performance of the
CNN. Figure 1 illustrates this workflow.

B. Proposed methodology

Generally speaking, when a target detection or image
classification application using CNNs is being developed, a
large data set and its corresponding ground truth is required.
Additionally, it is important that the data set used for the
development of the algorithms is representative of the real case
scenario. Sometimes this is not really possible since the device
that is supposed to capture the data is not available before the
development of the algorithm, so public and commercial data
sets have to be used for the training stage of the CNN.

It is also important to consider that for several years,
Register-Transfer Level (RTL) has been the most important
and used method to describe hardware systems. However,
High-Level Synthesis (HLS) provides the designer with tools
to describe these systems on a behavioural level, omitting
several implementation details and reducing the design effort
by raising the abstraction level. HLS also helps to accelerate
the verification process, as the design can often be verified
using software verification tools that are faster and simpler
to use than RTL simulation tools. Finally, whereas RTL de-
sign requires previous knowledge about hardware description
languages such as VHDL or Verilog, HLS tools usually use
languages like C/C++ [5].

Consequently, a methodology that allows the development,
training and validation of the CNN from a high-level per-
spective needs to be planned. Figure 2 shows a flowchart
to illustrate the methodology proposed in this paper. Such
methodology can be divided in two main periods. The first
one corresponds to the development period, where the network
architecture is first designed, trained and validated using
existing data sets. Once the appropriate architecture is selected,
it is then implemented on the FPGA device. This period
corresponds to Stages 1 and 2 shown in the flow diagram
displayed in Figure 2, and it is executed just once prior to
the satellite launching date. The second period covers the
entire satellite mission duration and corresponds to Stages
3, 4 and 5 shown in the flow diagram displayed in Figure
2. During this period, the device is constantly acquiring new
data. This data is processed using the implemented architecture
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Fig. 2. Proposed methodology.

with the pre-loaded weights on-board. In parallel, part of the
acquired data is sent to the ground station and can be used to
increase the data set used for the training and validation stages.
This way, fine-tuning can be applied [6] and the network
can be re-trained without having to change its architecture.
That allows the CNN to increase its detection performance
as more representative data is added to the existing data
set. Then, these new weights can be uploaded to the on-
board electronics. Additionally, this methodology makes also
possible the selection of a new detection target, for example
the application could switch from ship to airplane detection,
simply by training the network on ground with a different
data set, a mixture of data sets or applying transfer learning
[7] from another pre-trained architecture. Again, those new
weights can be uploaded via the uplink as it is shown in Figure
1. The results presented in this work correspond to stages 1
and 2 of Figure 2.

C. System functionality overview

This subsection provides an overview of how the VIDEO
project detection system works. The sensor to be used in this
project provides the system with a considerably large image
in terms of resolution (48 megapixels), so it is not a feasible
idea to store the entire image in memory and start feeding the
CNN with the complete image so that the CNN can process
it in one shot. Also, the image encoding method used by the
sensor is Band-Interleaved by Line (BIL), so waiting for the
whole image to arrive and not taking advantage of the fact that
the CNN could start processing smaller patches of the image
as soon as the needed lines have arrived, does not represent
the optimal implementation either. Therefore, to avoid the first
scenario and to take advantage of the second one, a different
approach is proposed in this work.

Each video frame is independently processed as an RGB
image by the network. As previously discussed, the encoding
method in which the video will be received is BIL, so the CNN
could start processing the first line of smaller patches without
having to wait until the full frame is received following a
pipeline strategy. Each image will be processed applying a

Fig. 3. Overview of the target detection process

sliding window that will move from left to right and from
top to bottom with a certain stride and overlap according
to the network input layer size and parameters. This overlap
will avoid missing targets when they are not totally contained
within the current window. It is important to mention that
this overlap needs to be carefully chosen. Figure 3 presents a
graphical explanation of this process.

The network result will indicate if there is at least one target
present within the current window area or not. The window
will have to be small enough to locate the targets within the
image but also, it will have to be large enough to be able to
contain most of a target so it can be correctly detected by the
CNN. Finally, as soon as the result of the current window is
positive, this is, one or more targets are located within the
window, the process will stop firing a trigger signal that will
let the system know that a target has been detected. In that
case, the detection mode will stop. This approach endorses
the use of the methodology previously presented, since in
many cases it will not be necessary to process the whole 48
megapixels image captured by the sensor. Figure 4 illustrates
this methodology.

Newer CNN architectures such as YOLO [8] are based on
single shot object detection methodologies. These architectures
work really well and are extremely fast. However, as presented
in [9], there are some unique aspects of satellite imagery that
present a whole set of different challenges. These aspects such
as the enormous size of the input image and the small spatial
extent of the targets within the image, rotation invariance
since targets can have any orientation, make single shot object
detection methodologies not suitable for object detection on
satellite imagery.

D. System constraints

In order to select the right window size and stride so that
a complete ship or airplane can be located within the image,

Fig. 4. Switching from detection mode to tracking mode.
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some calculations are needed. The sensor has a Field of View
(FOV) of 2.5 degrees and the image captured by the sensor
will have a size of 48 megapixels, this is 6000 x 8000 pixels.
Also, the satellite will be orbiting at around 500 km. So in
order to calculate the pixel size Equations 1 and 2 must be
applied.

d = h · tan FOV

2
(1)

In Equation 1, d is the real distance in meters from the
middle of the image to one end and h is the satellite orbit
height in meters. Once d gets calculated, the pixel size can be
calculated using Equation 2.

pixelSize =
2 · d

nPixels
(2)

In Equation 2, nPixels is the distance in pixels of one side
of the image (in this work’s case either 6000 or 8000).

With all the above, and taking the specific values presented
earlier, the pixel size in the vertical dimension of the image
acquired by the sensor of the VIDEO project would be
equivalent to 3.636 m and the pixel size in the horizontal
dimension would be equivalent to 2.727 m. If the Seawise
Giant [10] is taken as the longest ship ever built, with a
length of 458.45 m, it would cover a minimum of 169 pixels
according to the previous calculations. Accordingly, it can be
concluded that a window size larger than 200 pixels should
be enough. Therefore, two different window sizes have been
used for the experiments: 512x512 pixels and 256x256 pixels.
This should give enough margin for the target detection. In
order to cover scenarios where the target has one half within
the current window and the other half in the next one, or the
target has a tiny portion in one window and the rest in the
next one, a stride of 249 pixels for the 512x512 pixels input
size case and a stride of 125 pixels for the 256x256 pixels
input size case have been selected. Given that the longest ship
would need 169 pixels, this makes sure that targets are never
missed, since the overlap between images is big enough.

III. CNN ARCHITECTURES

A. Convolutional Neural Networks

For the past few years, Convolutional Neural Networks
(CNNs) have been one of the most extensively used type of
neural networks. In a general sense, CNNs are primarily used
in the field of pattern recognition within images [11], since
they are able to process multiple arrays of data, for example
RGB images, which are a composition of 2D arrays of pixels
in the three colour channels [12]. That makes them a good
choice for image processing and in particular, for multiband
remote-sensing image processing [13].

Diving into details, CNNs are mainly designed using four
layers: convolutional layers, non-linear activation layers, pool-
ing layers and fully-connected layers. Convolutional layers
convolve the input pixels with a set of filters, also called
kernels, to create a feature map that summarizes the pres-
ence of detected features in the input. The output of the
convolutional layers is then processed using an element-
wise non-linear transform by the non-linear activation layers.

Pooling layers aggregate neighbour pixels using a permutation
invariant function, normally a max or mean operation. Finally,
in the fully-connected layer each node is directly connected
to every node in the previous and next layers.

CNNs benefit a lot from the fact that many natural signals
are compositional hierarchies, this is, the aggregation of lower-
level features produce higher-level ones. Taking an image as
an example, local combinations of edges form motifs, motifs
assemble into parts and parts finally assemble into objects [12].
This is one of the main reasons why CNNs are a well-suited
choice for object detection.

B. Analysis of CNN architectures detection efficiency

In this work five different architectures have been evaluated.
The idea behind the selection of the architectures is to have an
option as simple and light as possible, able to rapidly process
small windows of a much larger image. The starting point
of this work was the evaluation of the ResNet50, AlexNet
and VGG19 architectures, as these are CNNs that are proven
to give a good accuracy so they can be used as a golden
reference. Then, we started to reduce the complexity of the
architectures trying to avoid a reduction in the performance
of the CNN. Obviously, these initial architectures turned out
to be too heavy for the target FPGA device, so we started
using lighter versions of the ResNet architecture and, as it
will be described next, some modifications were made to the
original AlexNet network to reduce the number of trainable
parameters. Additionally, some newer and lighter architectures
- MobileNet and DenseNet - were also introduced for the
experiments. All these architectures are generally described
in the following lines.

1) AlexNet: AlexNet was released in 2012 by Alex
Krizhevsky in collaboration with Ilya Sutskever and Geoffrey
Hinto. It consists of eight trainable layers: the first five are
convolutional layers and the last three are fully connected
layers. AlexNet uses the ReLU activation function, which
showed improved training performance over tanh and sigmoid
[14]. The main goal of this work is target detection, so the
final fully connected layer is connected to a 2-way softmax
layer. Figure 5 shows the architecture of this CNN.

2) VGG Network: The VGG Network was developed by
the Visual Geometry Group of the University of Oxford. It
consists of multiple connected convolutional layers and fully-
connected layers. The size of the convolutional kernel is 3x3
with a stride of 1 [15]. In this work the 19-layer version of the
architecture was used thinking that this very heavy architecture
would get great accuracy results.

Fig. 5. AlexNet architecture.
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3) ResNet: As technology evolves networks are becoming
deeper. However, really deep networks are not easy to train,
since there are issues like the vanishing gradient problem
[16]. As a result of this issue, as the network goes deeper
its performance starts degrading rapidly. In order to resolve
this, a new architecture was presented in [17] which explored
the addition of an ”identity shortcut connection”, skipping
one or more layers. These shortcut connections basically
perform identity mapping, i.e. their outputs are added to
the outputs of the stacked layers. These connections do not
add extra parameters or computational complexity. In this
work three different variants of the ResNet architecture were
investigated: ResNet18, ResNet34 and ResNet50. As explained
at the beginning of this section, ResNet50 often gives really
good accuracy results so this architecture is one of our golden
references. However, it is way too heavy, so lighter versions
of this architecture were also tested.

4) MobileNet: MobileNets were originally designed by
Google for mobile and embedded vision applications [18].
One of the main features of the MobileNet architecture is that
it uses depthwise separable convolutions. This significantly
decreases the number of trainable parameters when compared
to networks with regular convolutions with the same depth.
MobileNetv2 introduced the concept of linear bottlenecks and
inverted residuals [19]. Therefore, this results in lightweight
deep neural networks which is why this type of architecture is
really attractive for the kind of scenario this work is targeting.
The architecture of the MobileNetv1 CNN can be seen in
Figure 6.

5) DenseNet: The DenseNet architecture [20] was designed
to ensure the maximum flow of information between the layers
in the network. All layers with matching feature-map sizes are
directly connected with each other. In order to keep the feed-
forward nature, each of the layers gets additional inputs from
all the preceding layers and passes on its own feature-maps to
all the subsequent layers.

C. Data sets

One of the main applications of the VIDEO project is
ship and airplane detection using CNNs. This is why two
public ship and airplane data sets have been used to train
the architectures presented in Section III-B and Section III-D.
These data sets are described in the next section.

1) Ship data set: The Ship data set was created using the
MASATI data set [21] and a subset of the HRSC2016 data set
[22]. The MASATI data set provides colour images in dynamic
marine environments, and it can be used to evaluate ship

Fig. 6. MobileNet architecture.

Fig. 7. MASATI data set.

Fig. 8. Airplane data set.

detection methods. The HRSC2016 (High Resolution Ship
Collections 2016) is a data set used for scientific research
and contains a large number of images collected from Google
Earth with different ship types. The Ship data set consists of
8,558 RGB images, each of them with a size of 512x512
pixels. Each image may contain one or multiple targets in
different conditions (location, weather, illumination, etc.). The
labels are distributed in two categories: ”ship” and ”no-ship”.
The distribution of the training, validation and test sets is 80%,
10% and 10% respectively and the inclusion of the images
within each category has been executed in a random manner.
Figure 7 shows some of the images in this data set.

2) Airplane data set: The Airplane data set was created
using a combination of images from the UC Merced Land Use
data set [23] and the Aerial Image Data set (AID) [24]. The
images from the UC Merced Land Use data set were manually
extracted from large images from the USGS National Map
Urban Area Imagery collection. This is a 21-class land use
image data set meant for research purposes, containing 100
images with airplanes. The AID data set is a large-scale aerial
image data set, obtained by collecting sample images from
Google Earth imagery. This data set is made up of 30 aerial
scene types, being ”airport” one of the scene types included,
making it a good choice for our work. Each image has a size
of 256x256 pixels. In this work, this data set contains 2,695
RGB images divided as follows: 80% for the training set, 10%
images for the validation set and finally 10% images for the
test set. The labels are: ”airplane” and ”no-airplane”. Again,
the inclusion of the images within each category has been
executed randomly. Figure 8 shows some of the images present
in this data set.

3) Mixed data set: The mixed data set has been built using
a mixture of images from the Ship data set and the Airplane
data set. Since one of the main applications of the VIDEO
project is ship and airplane detection, we considered that
having a mixed data set made up of a mixture of the Ship and
Airplane data sets would be useful to test the methodology
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discussed in sub-section II-A. This data set has 8,235 images
with the same sets distribution as explained before, this is,
80% for the training set, 10% for the validation set and 10%
for the test set.

D. Modified architectures

As discussed in Section I, the large number of trainable
parameters and the considerable complexity of the involved
calculations, make the implementation of a CNN architecture
on an FPGA quite challenging. In order to reduce these
requirements, two of the architectures that provide better
results in the literature and are lighter in terms of FLOPs have
been modified: AlexNet and MobileNetv1.

The original AlexNet architecture presents three dense lay-
ers at the end of the processing chain. This type of layer
generates a huge amount of trainable parameters that adds an
extra overhead in the memory footprint. Therefore, we propose
a new architecture called AlexNetLite that removes two of the
final three dense layers, achieving a reduction of 98.32% in
the number of trainable parameters.

A similar reasoning has been followed with the original
MobileNetv1 architecture. In this case, a reduction in the
number of filters by a factor of 4 plus the activation of
the shallow option which removes 5 stages of the network
has been applied. This modified architecture, named Mo-
bileNetv1Lite, gives a reduction of 96.15% in the number of
trainable parameters.

Both architectures are introduced in Figure 9 and Figure
10. Additionally Table I presents a detailed description of the
MobileNetv1Lite architecture.

E. Metrics

A reasonable performance metric for CNN evaluation is the
ratio between the amount of correctly classified samples and
the total number of samples. This measure is named accuracy
and can be defined as follows:

Fig. 9. AlexNetLite.

Fig. 10. MobileNetv1Lite

TABLE I
MOBILENETV1LITE ARCHITECTURE

Stage Layer Kernel size Strides Filters
1 conv2D 3x3 2,2 8
2 dwconv2D 3x3 1,1 N/A
2 pwconv2D 1x1 1,1 16
3 dwconv2D 3x3 2,2 N/A
3 pwconv2D 1x1 1,1 32
4 dwconv2D 3x3 1,1 N/A
4 pwconv2D 1x1 1,1 32
5 dwconv2D 3x3 2,2 N/A
5 pwconv2D 1x1 1,1 64
6 dwconv2D 3x3 1,1 N/A
6 pwconv2D 1x1 1,1 64
7 dwconv2D 3x3 2,2 N/A
7 pwconv2D 1x1 1,1 128
8 dwconv2D 3x3 2,2 N/A
8 pwconv2D 1x1 1,1 256
9 dwconv2D 3x3 1,1 N/A
9 pwconv2D 1x1 1,1 256
10 globalAvgPool N/A N/A N/A
10 dense N/A N/A N/A

Acc =
TruePos + TrueNeg

TruePos + FalsePos + TrueNeg + FalseNeg
(3)

However, if the data set is unbalanced, accuracy is not a
reliable measure as it can give an overoptimistic estimation
on the majority class [25]. In this situation, F1Score gives a
much more reliable measure. F1Score can be calculated as:

F1Score = 2 · Precision · Recall
Precision + Recall

(4)

where Precision is the amount of True Positives divided by
the number of True Positives + False Positives and Recall is
the number of True Positives divided by the number of True
Positives + False Negatives.

As discussed in subsection III-C, the data sets used in this
work are unbalanced and thus F1Score is a better metric to
quantify the performance of the models.

At this point, it is important to define which metrics will be
considered to measure the suitability of the different network
architectures to carry out an efficient hardware implementation
that matches the VIDEO project goals and restrictions. In this
sense, we consider that a trade-off between the F1Score and
WFs obtained by each network provides a good measure of the
suitability of the architecture for this particular problem, where
WFs is a function that gets the FLOPs per window based on
the sliding window width (sww) and height (swh). Hence, in
order to facilitate the selection of the right architecture, we
define the efficiency factor of the CNN detection process as
follows:

efficiency =
F1Score

WFs(sww, swh)
(5)



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2022.3169330, IEEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 7

TABLE II
SUMMARY OF TRAINABLE PARAMETERS AND FLOPS - SHIP DATA SET

(512X512X3)

Architecture Trainable params (Millions) GFLOPs
ResNet50 23.79 20.34
ResNet34 2.55 2.85
ResNet18 1.42 1.74
AlexNet 230.17 6.17
AlexNetLite 3.85 5.71
MobileNetv1 3.21 3.04
MobileNetv1Lite 0.12 0.05
MobileNetv2 2.24 0.33
DenseNet 1.52 3.39
VGG19 573.70 103.26

Once the window size and stride are selected, the total
number of FLOPs needed to process the entire high resolution
image can be defined as:

TFs = WFs(sww, swh) ·WpR(S, iw) ·WpC(S, ih), (6)

where windows per row (WpR) is a function dependent on
the applied stride (S) and the width of the input image (iw);
and windows per column (WpC) is a function dependent on
the applied stride (S) and the height of the input image (ih).

F. Experiments and results

Each of the considered network architectures has been
implemented using Python and Keras [26]. Once the high
level implementation was done, each network was trained.
As presented in Section III-C, all the results obtained from
the different implementations were collected using the Ship,
Airplane and Mixed data sets. Each architecture was trained
running 25 epochs.

1) Ship and Airplane data sets results: Table II and Table
III show the number of trainable parameters and FLOPs
corresponding to each architecture for both the Ship and the

TABLE III
SUMMARY OF TRAINABLE PARAMETERS AND FLOPS - AIRPLANE DATA

SET (256X256X3)

Architecture Trainable params (Millions) GFLOPs
ResNet50 23.60 5.08
ResNet34 2.55 0.71
ResNet18 1.42 0.43
AlexNet 62.40 1.41
AlexNetLite 3.76 1.29
MobileNetv1 3.21 0.76
MobileNetv1Lite 0.12 0.012
MobileNetv2 2.24 0.43
DenseNet 1.49 0.81
VGG19 171.04 25.82

Fig. 11. Ship data set - F1Score vs. FLOPs.

Fig. 12. Ship data set - F1Score vs. Trainable parameters.

Airplane data sets. It is important to highlight that the input
size of each data set is different as explained in Section III-C1
and Section III-C2. Also, it is worth mentioning that the input
size used for both data sets accomplishes the calculations made
in Section II-D.

The obtained results can be seen in Figures 11-14, where the
F1Score is compared with the number of trainable parameters
(equivalent to the number of trained weights to be stored in
memory) and the number of FLOPs. Having a look at Figures
11 and 12, which correspond to the Ship data set results, it can
be concluded that all the flavours of the MobileNet architecture
get the best F1Score. However, MobileNetv1Lite not only gets
the third best F1Score but it is also the lightest architecture
which is a critical requirement for the FPGA implementation.
Taking a look now at Figures 13 and 14, this is the Airplane
data set results, MobileNetv1Lite gets the third best result
being also the lightest architecture.

Additionally, Equation 5 can be applied to get the efficiency
numbers for each CNN. These results can be seen in Table IV.
Having a look at these results, it is very clear, particularly in
the case of the Airplane data set, that MobileNetv1Lite gets
the best efficiency result, being MobileNetv2 the second option
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Fig. 13. Airplane data set - F1Score vs. FLOPs.

Fig. 14. Airplane data set - F1Score vs. Trainable parameters.

but with a much lower efficiency factor. MobileNetv1Lite gets
a 557% efficiency increase in the Ship data set and a 3,469%
increase in the Airplane data set compared with MobileNetv2.

According to these results, it is concluded that this archi-
tecture is the best candidate for the FPGA implementation of
the project, since ship detection is the main use case of the
VIDEO project. Also, architecturally speaking, MobileNetv2
is slightly more complex in terms of number of layers needed,
which may cause an increase in the resources consumption
when implemented in hardware. Finally, as the data path is
longer in the case of MobileNetv2, the critical path may affect
the speed of the implementation. This is why MobileNetv1
was considered as a good candidate for the optimization as it
has a better trade-off between implementation simplicity and
accuracy. However, MobileNetv2 will be definitely considered
for future implementations.

Finally, after applying Equation 6 to the MobileNetv1Lite
architecture, it can be estimated that, for an input size of
512x512 and a stride of 249 pixels, which means 30 horizontal
strides and 22 vertical strides, TFs, as already defined in
Equation 6, is 33.37 GFLOPs. For an input size of 256x256
and a stride of 125 pixels, which means 62 horizontal strides

TABLE IV
ARCHITECTURE EFFICIENCY

Architecture Ship data set Airplane data set
ResNet50 0.043 0.171
ResNet34 0.282 1.139
ResNet18 0.465 1.797
AlexNet 0.152 0.609
AlexNetLite 0.156 0.643
MobileNetv1 0.313 1.217
MobileNetv1Lite 18.716 76.526
MobileNetv2 2.845 2.144
DenseNet 0.223 0.995
VGG19 0.006 0.023

and 46 vertical strides, TFs is 34.22 GFLOPs. Therefore,
512x512 seems like a reasonable size for ship detection given
that it needs 2.48% less FLOPs compared to the results
obtained with a size of 256x256. Also, that size gives enough
margin considering the numbers presented in Section II-D.
In the case of airplane detection, 256x256 seems like a fair
size too, since generally airplanes are smaller than ships and
therefore the window size can be smaller.

2) Addressing the bandwidth limitation: One of the main
constraints of the VIDEO project application is the bandwidth
of the up-link and the down-link. Also, the target of the
application can change over time. In order to solve this, we
propose a transfer learning methodology to reduce the required
bandwidth in case new weights need to be uploaded onto the
on-board electronics. For this reason, the architecture that pro-
vided the best results in terms of efficiency, MobileNetv1Lite
(please refer to Table IV for more details), was trained with
the Mixed data set.

After a first training was done, the weights corresponding
to the trainable layers of stages 1-7 were stored. After that,
the model was loaded with those weights and re-trained using
the Ship and Airplane data sets, but only the layers of stages
8-10 were allowed to re-train. The obtained results are shown
in Table V.

As it can be seen, there is a slight decrease in the efficiency
factor achieved by this approach for both the Ship and the
Airplane data sets, 10.043% and 5.342% respectively, but
still the efficiency factor is much higher compared to the ones
obtained by the other architectures.

The main advantage this approach offers is that the on-

TABLE V
MIXED DATA SET RESULTS

Ship data set Airplane data set
F1Score 0.951 0.917
FLOPs 0.05 0.012
Efficiency 18.809 72.438
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board device can be loaded with the Mixed data set weights
corresponding to the trainable layers of stages 1-7 of the
architecture and then, depending on the target of the appli-
cation, only the weights corresponding to the trainable layers
of stages 8-10 of the architecture have to be uploaded via
the up-link, saving a considerable amount of bandwidth and
reconfiguration time.

IV. FPGA IMPLEMENTATION

In the previous section the obtained results for each ar-
chitecture were presented, reaching the conclusion that Mo-
bileNetv1Lite is the best candidate for the FPGA implemen-
tation, based on the size of the network in terms of trainable
parameters and the efficiency factor presented in Equation 5.

The increasing computational complexity has also brought
an increase in the performance of the state-of-the-art CNNs.
However, the extra cost in terms of computational resources
and memory requirements makes these networks non-viable
for applications that involve real time processing or their de-
ployment on embedded hardware with limited resources such
as FPGA devices [27]. That makes the research of solutions
that reduce this complexity and requirements a critical step
in the FPGA implementation. Some of these strategies can
be performed before deploying the design on the board. In
this work, two main optimizations have been implemented
and are presented next. In particular, the target FPGA device
that is used in the VIDEO project is the Xilinx Kintex
Ultrascale XCKU040-2FFVA1156E, a commercial equivalent
of the space-grade Xilinx Kintex Ultrascale XQRKU060 with
less capacity, which ensures the feasibility of the design since
if the available resources of the targeted FPGA are enough,
then the implementation on the XQRKU060 device should be
fine as well in terms of capacity. This device is integrated
in the Xilinx Kintex UltraScale FPGA KCU105 Evaluation
Kit board. Also, we make use of the Xilinx Vivado Design
Suite, which includes Vitis HLS and Vivado for the hardware
implementation.

A. Data type conversion

The initial Keras implementation of the different archi-
tectures made use of 32-bit single-precision floating point.
Although this precision gave really good results, we propose a
floating point to fixed point conversion for the CNN hardware
implementation. As a first step, the weights from the Keras
model were obtained using 16-bit single precision floating
point. The Keras API provides the user with tools so that
this conversion can be done in a few steps. Next, the input
and weights were read by the C model using the half data
type included in hls half.h. A floating point to fixed point
conversion was then performed using the ap fixed data type
provided by Vitis HLS. A reduction in both the memory
footprint and the computational cost was achieved with this
conversion, as it is presented in Section IV-C.

B. Batch Normalization layer optimization

The Batch Normalization layer is used to reduce Covariate
Shift. That is the change in distribution of activation of a

component. It also helps to reduce the effects of exploding and
vanishing gradients [28]. This layer optimization gets applied
for inference only. As it is explained next, all the trainable
parameters are obtained at high level during the training phase.
Considering the input has C channels, the output of this layer
gets calculated by applying the following formula:

y = gammac · x̂ + betac, (7)

where x̂ is the normalized input value and gammac and
betac are trainable parameters. x̂ is calculated as follows:

x̂ =
x−mean(xc)√

var(xc) + ϵ
, (8)

where x is the layer input, mean(xc) is the mean value
of the input within a batch and var(xc) is its variance
also within a batch. As it can be observed, there are many
operations that are costly in terms of hardware resources and
latency, particularly the square root and the division. This
work proposes a change in the way the output of this layer is
calculated based on the execution of most of these operations
in the high level Keras implementation. In order to do this,
new formulas have been developed. These are presented in
Equation 9 and Equation 11.

x̂ =
x−mean(xc)√

var(xc) + ϵ
= (x−mean(xc)) · var′c, (9)

where var’ is defined as follows:

var′c =
1√

var(xc) + ϵ
(10)

If x̂ is substituted in Equation 7, a new formula for the
output with just one multiplication and one subtraction can be
obtained. This is shown in Equation 11.

y = x · gvc − gbmvc, (11)

where gvc is gammac · var′c and gbmvc is (gammac ·
mean(xc) · var′c − betac).

Hence, the Python code now provides the hardware imple-
mentation with values for gvc and gbmvc, saving a consid-
erable amount of hardware resources and also reducing the
latency. Additionally, given that most of the calculations are
executed at high level using 32-bit floating point, there is no
reduction in the data precision when executing this. Finally,
with this approach the number of parameters to be used by
this layer gets reduced by a factor of two. This also causes
a positive impact in the memory requirements since now it
is only required to store gvc and gbmvc in memory, instead
of having to store gammac, betac, mean(xc) and var(xc)
(needed for Equations 7 and 8).

C. Implementation results

After selecting the most suitable architecture for the project
based on the results shown in Section III-F, the next step is
the hardware implementation. As discussed in Section IV-A,
the precision of the data type for this implementation must be
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Fig. 15. FPGA implementation setup.

changed from floating point to fixed point. In order to evaluate
the improvements that can be achieved with this modification,
two different FPGA implementations are presented next.

The fixed point precision format used in these experiments
was ap fixed<16,6,AP RND,AP WRAP>, where 16 is the
word length in bits, 6 is the number of bits used to represent
the integer value, AP RND is the quantization mode (rounding
to plus infinity) and AP WRAP is the number of saturation
bits in wrap modes (wrap around) [29]. Figure 15 shows the
hardware implementation setup used.

As it can be seen in Table VI, the frequency achieved in
both cases is 200 MHz. Also, resources consumption of the
32-bit floating point implementation is higher than the 16-bit
fixed point implementation, which is expected. Diving into
details, the percentage of CLBs, LUTs, BRAMs, DSPs and
FFs needed in the case of the 16-bit fixed point implementation
is 41%, 25%, 39%, 31% and 15% respectively, versus a 66%,
38%, 68%, 13% and 27% in the case of the 32-bit floating
point implementation. The number of DSPs is bigger for the
16-bit fixed point implementation as this precision type makes
a better usage of these resources.

Figure 16 show the post-implementation results in a more
graphical way.

V. CONCLUSIONS AND FURTHER RESEARCH.

In this manuscript, eight different state-of-the-art CNNs
have been evaluated for their hardware implementation on
an FPGA. The selected CNN will have to perform object
detection on HRRS images, therefore, several application con-
straints such as the image size or the easiness of the hardware
implementation of the architecture have to be considered.
In order to evaluate all the different candidates, memory

TABLE VI
FPGA IMPLEMENTATION RESULTS

Precision CLB LUTs BRAM DSP FF Freq
Float 32bits 19,964 91,809 407 252 131,265 200 MHz
Fixed 16bits 12,338 59,862 233 603 71,917 200 MHz

Fig. 16. FPGA post-implementation results.

footprint (in the form of number of parameters to be stored)
and FLOPs were calculated, comparing the results with the
F1Score of each model, as well as uncovering an efficiency
factor that allows the right selection of the architecture. After
getting the results and selecting the proposed-by-the-authors
MobileNetv1Lite architecture as the best fit for the hardware
implementation, a new experiment using transfer learning was
run. This shows how the selected CNN can be trained for
different applications by simply re-training the final layers of
the network using pre-trained weights for the previous layers.
Also, two hardware implementations using different data type
precision have been done, showing how the conversion from
a 32-bit floating point to a 16-bit fixed point implementation
improves the resources utilization.

Since we are working towards a space-grade FPGA imple-
mentation and considering all the different issues that radiation
in space could cause to the hardware device, we think that an
ablation study needs to be done in order to measure the contri-
bution of the different components to the overall system. Also,
and thanks to the flexibility of the methodology presented,
new modified architectures will be selected and implemented,
giving priority to MobileNetv2, since this architecture gave
really good results and its easiness of implementation makes it
a good candidate. The automation of the implementation from
high level to hardware is another key goal that fits within the
scope of this team’s interests, so works have already started
in that direction.
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