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ABSTRACT  
This paper addresses the question whether energy consumption variables and the disaggregation 
of output matter in the context of efficiency analysis of container terminals. While it is obvious 
that the energy consumption of refrigerated cargo is higher than the energy consumption of 
non-refrigerated cargo, this work investigates whether those differences show in an overall 
efficiency analysis of terminals. This would point to a potentially important input for efficiency 
measures, to be considered in future productivity and efficiency analysis of terminals. Starting 
with a discussion on theoretical concepts and variable selection for measuring the energy 
dimension of terminal efficiency, the is the first paper that applies Data envelopment analysis 
(DEA) comparing results with and without energy consumption, as well as differentiating 
productive outputs (dry and reefer container handling). The results reveal how the output 
disaggregation leads to substantially different efficiency scores and are a first step to show the 
relevance of output disaggregation and the inclusion of the energy variables as inputs in 
container terminal efficiency studies.  
  
Keywords: Terminal efficiency; Output disaggregation; Energy consumption; Data 
envelopment analysis; dry container; reefer container.  
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1. INTRODUCTION  
Two aspects have been widely ignored in container terminal efficiency research so far: the 
disaggregation of production outputs of container terminals and energy consumption variables. 
The former relates to the fact that terminal throughput whether measured in TEU or number of 
containers is an aggregated measure for handling a variety of goods with different 
characteristics and requirements inside a “standard size” box. Despite being of standard sizes, 
standard containers and refrigerated containers vary significantly in their handling 
requirements. By way of example, whenever perishable commodities are transported, cooling 
is of essence to ensure their safe arrival at the destination. Reefer containers fulfil this role 
maintaining a pre-set temperature within the container. Therefore, the input requirements 
throughout the handling in the terminal are different. Consequently, dry container and reefer 
container should be considered as different outputs when it comes to measure the terminal 
efficiency instead to be aggregated in a single measure (total number of container).  
 
The relevance of reefer trades varies across different routes and therefore the proportion of 
dry/reefer managed for terminals as well. Some of the highest shares of reefer containers can 
be observed on trade routes from Brazil to Europe and Asia, where these, depending on the 
season, can reach up to 35% and 30% respectively. In trades between the United States and 
Northern Europe to Asia, the share of reefer containers ranges between 5% and 10%. On routes 
going to the Middle East from either the Mediterranean region or North Europe, the share is 
between 10% and 15% (Drewry Shipping Consultant Limited, 2018).  
Energy consumption and consequently emissions in container terminals have started to receive 
more attention in recent years (He et al. 2017; Martinez-Moya et al. 2019; Spengler and 
Wilmsmeier, 2019). The increasing interest in this topic is closely linked to the prominence of 
the sustainable development discussion and increasing energy costs. Ports and container 
terminals are for once faced with the initial managerial decision whether to purchase diesel or 
electrically powered equipment. Investment in cold ironing infrastructure and its use will have 
a further effect on energy consumption pattern in terminals.   
Given these considerations this paper applies Data envelopment analysis (DEA) to investigate, 
if energy consumption variables and the disaggregation of output matter in the context 
measuring efficiency in container terminals. To address this research question, this work is 
structured as follows. Section 2 reviews relevant research on container terminal energy 
consumption and provides a critical review on container terminal productivity and efficiency 
studies applying DEA. The DEA methodology, variables selected and models are described in 
section 3. Section 4 discusses the results of the DEA. Section 5 concludes.   
  

2. LITERATURE REVIEW  
The body of literature on efficiency and productivity in the port sector in general and 
specifically in the container terminal sector has grown to a considerable size during the past 
decades.  This literature review does not pretend to give an exhaustive insight into all different 
approaches in productivity and efficiency studies in the port sector but focuses on a selection 
of articles on container terminal efficiency that are deemed to be useful to address the 
aforementioned research question (Table 1).  
Two main methodological complementary approaches can be found in the literature: data 
envelopment analysis (DEA) and stochastic frontier analysis (SFA). DEA is a deterministic 
method based on linear programming (Charnes et al.,1978) and Cullinane et al. (2006) 
identified high correlations between the results from DEA and SFA on port efficiencies. One 



4 

advantage of applying DEA is that the functional form for the frontier does not have to be 
specified and thus results can be obtained with relatively small data sets (Tovar and Wall, 2015). 
DEA has been the predominant methodology in this research area (Woo et al, 2011). Given 
existing data limitations and in order to show the relevance of previously no considered 
variables, this paper also applies DEA. Consequently, the following literature review will focus 
on the application of DEA at container terminal level (Table 1).  
Two key challenges when applying DEA or practically any quantitative methodology, are the 
selection of variables as well as the structure of the sample. It is generally agreed that the 
efficient allocation of land, labour and equipment (see for example Dowd and Leschine, 1990; 
Cullinane et al., 2005; Guerrero and Rivera, 2009) is at the very core of container terminal 
productivity and efficiency. This, in turn, leads to the question how land, labour and equipment 
are represented in the previously conducted studies (see Section 3). 
The literature review is divided in two parts. The first reviews the literature on the emerging 
relevance of energy efficiency and energy consumption in container terminals, even if not 
necessarily conducted in the context of efficiency or productivity analysis. The second critically 
reviews previous efficiency studies at container terminal level applying DEA. 
 

2.1. Energy Consumptions and Energy Efficiency Studies in Terminals and Ports 
Energy consumption and energy efficiency in the context of container terminals have so far 
been addressed on either operational level, on terminal level or on policy level. To the best of 
the knowledge of the authors, no approach has been shown where energy variables were 
considered an input in a DEA or SFA model, the only exception being Guimaraes et al., (2014), 
who measure environmental efficiency. 
The research covering the operational level, stretches from individual equipment, routing 
problems to new approaches to reduce energy consumption or even produce energy in a 
terminal. By way of example, Yang et. al. (2013) analysed the monetary as well as CO2 saving 
potential of electric rubber-tired gantry cranes (RTGs). These authors mention a potential 
reduction in energy consumption of up to 60% through technological change. In the light of the 
apparent difficulties of identifying the actual consumption of equipment, Hangga and Shinoda 
(2015) proposed a methodology for obtaining energy consumption of straddle carriers. He et. 
al. (2015) discussed in their paper a novel approach to the yard crane scheduling problem where 
timesaving was not considered the ultimate goal but rather a trade-off with energy-saving. 
Budiyanto et. al. (2018) analysed the effect roof shades of refrigerated containers have on 
energy consumption pattern and estimated the savings to be about 17%. Van Duin et al. (2018) 
approached the question of how energy peaks of reefer racks can be reduced and found 
substantial opportunities for reducing energy consumption by applying peak shading. 
While those findings and approaches underline the importance of research in the field of energy 
consumption and efficiency in the terminal sector, they provide very limited insights as to how 
an approach could look like that covers an entire terminal, let alone multiple terminals. It shows 
however, that energy consumption in terminals is difficult to be modelled accurately as many 
different external as well as internal factors play an important role. 
Multiple approaches to coordinated collection and analysis of energy consumption data can be 
observed. Wilmsmeier et. al. (2014) collected data from 13 terminals in Argentina, Chile, 
Paraguay and Uruguay. This was done against the background of substantial traffic of 
refrigerated containers that are being moved through the terminals of those countries. Following 
an activity-based approach, they reported on energy consumption patterns in terminals in those 
countries. However, the findings were presented on a rather descriptive level without offering 
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insights into the potential ramifications on productivity or efficiency. Also, the kind of 
comparison of diesel and electricity consumption that was carried out made it necessary to 
convert those energy sources to the same unit. It was not accounted for energy conversion 
efficiency. In contrast, DEA allows to have the inputs electricity consumption as well as diesel 
consumption in their native unit of measurement. 
Wilmsmeier et. al. (2014) found that the energy consumption patterns differ vastly between 
terminals when a differentiation of dry and reefer TEU is carried out. Also, on equipment level, 
it was found that energy consumption can hardly be seen as mere function of the operating 
hours of the equipment which contradicted some modelling approaches like the one of 
Geerlings and van Duin (2011). Wilmsmeier and Spengler (2016) continued to build upon 
Wilmsmeier et. al. (2014) and reported among other things on the differences in consumption 
patterns of small, medium and large terminals. They also observed great differences in 
consumption patterns across terminals from different countries. This, in turn, raises the question 
if energy in and by itself should be considered an input in the analysis of terminal productivity 
and efficiency. 
Azarkamand et al. (2020) introduced an online tool, similar to the one developed by 
Wilmsmeier and Spengler (2016), for calculating carbon footprints in ports.  
Martínez-Moya et. al. (2019) followed a similar, activity-based, approach for the NCTV 
terminal of the port of Valencia. They report that roughly 50% of the electricity consumption 
in the terminal can be allocated to refrigerated containers. This figure as well as the other 
findings are aligned with the findings presented by Wilmsmeier et. al. (2014) and Wilmsmeier 
and Spengler (2016). 
Apart from the more practical approaches, certain publications address mostly the matter of 
policy implications. Acciaro et. al. (2014) describe the role port authorities could have for 
energy management based on a case study for the port of Hamburg and the port of Genoa. They 
found that at least in Hamburg the city seems to be more of the driving force towards more 
energy efficiency while in Genoa the port authority is taking this role. Wilmsmeier (2020) does 
similarly report that the Colombian government has adopted the methodology described by 
Wilmsmeier et. al. (2014) and Wilmsmeier and Spengler (2016). 
Iris and Lam (2019) carried out a review of the currently present operational strategies, 
technologies as well as energy management systems. In terms of operational strategies, they 
described two relevant options: (1) optimization of operations such as quay crane assignment 
and reduction of port stay time and (2) peak shaving as for example also described by van Duin 
et al. (2018). With respect to technologies, following aspects are mentioned: (1) cold-ironing, 
referring to supplying electricity to vessels from the shore side (2) improvements in the 
equipment as well as alternative fuels for equipment (3) more energy efficient handling of reefer 
containers, in particular shading as also mentioned by Budiyanto et. al. (2018) and (4) 
improvements in lighting through, by way of example, LED lamps. In terms of energy 
management, Iris and Lam (2019) mention (1) measuring as well as estimating of energy 
consumption which can be seen as a foundation for improvements and (2) the energy supply 
which could preferably be renewable or cleaner than conventional energy sources. Also 
mention is made of (3) smart grids as well as (4) policy frameworks for energy management. 
Consequently, the further understanding of energy consumption patterns as part of productivity 
and efficiency analysis are of increasing relevance in the port industry. 
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2.2. Productivity and Efficiency Studies in Container Terminals: a critical view 
It is paramount to point out that in numerous existing studies on port and terminal efficiency 
not all authors clearly define the unit of analysis. Frequently, the terminology “container port” 
is used as synonymous for “container terminal”, despite the fact that each corresponds to 
different realities1. Additionally, it can be observed that the unit of analysis is referred to as 
“container port”, but the sample includes ports that have significant movement of other cargo 
types (e.g. general cargo or even bulk cargo) (e.g. Gonzalez and Trujillo, 2009). Either of the 
two mentioned inaccuracies allows for questioning the actual comparability and validity of 
these studies. The research in this paper is specifically interested in analysing container 
terminals as they are one specific decision-making unit (DMU) (Yip et al., 2011). Thus, only 
those papers which verifiably define the unit of analysis as container terminal are included in 
the literature review. Throughout the text, the term terminal 2  always refers to container 
terminal, unless stated otherwise.  
Obtaining reliable and sufficient data has been (Neufville and Tsunokawa, 1981) and continues 
to be a common challenge in the study of productivity and efficiency in terminals. Pjevčević 
et. al. (2011) as well as Yip et al. (2011) argue for the importance of a clear DMU definition, 
when setting up their simulation exercise. Most of the here reviewed papers struggled with data 
availability as well (e.g. Yang and Yip, 2019). Bichou (2011) reported that he had to reduce the 
original sample size from 50 to 10 because of data availability issues. Lu and Wang (2012) used 
data from 31 terminals but were limited in the selection of input variables.  
The authors identified three works that analyse productivity (Wilmsmeier et al., 2013, Yang 
and Yip, 2019 and Chandrasekhar and Nihar, 2021), the majority of of studies apply DEA-CCR 
and DEA-BCC (Table 1), Munin (2020) being an exception applying also FDH.  By way of 
example Lu and Wang (2012) analysed the operating efficiency of 31 major container terminals 
in east-Asia, namely China and Korea. Their study was strongly following Cullinane et al. 
(2005) and the resulting findings were likewise aligned with those of Cullinane et al. (2005). 
By way of example, they found that terminals with a throughput of more than 0.5 million TEU 
show constant returns to scale, while terminals with a throughput of less than 0.5 million TEU 
show increasing returns to scale. Also, it should be noted that the variable selection of Lu and 
Wang (2012) was also influenced by Cullinane et al. (2005) in the sense that they did not 
consider labour as an input which stands in contrast to the findings of Itoh (2002). 
Rios and Maçada (2006) analysed the efficiency of container terminals of the Mercosur trade 
bloc. With respect to the input variables, it should be noted that an arbitrary aggregate is used 
for the number of yard equipment. This has to be seen critical, as yard equipment can range 
from a simple forklift to elaborated equipment such as Rail-Mounted Gantry Cranes (RMGs). 
Considering such an aggregate as input would mean that, ceteris paribus, a terminal with nine 
RMGs and one forklift is as efficient as a terminal with one RMG and nine forklifts. 
Despite the fact that Yang and Yip (2019) find that container efficiency changes have not been 
studied sufficiently in Asia, most recent studies focus on that region, Middle East or India, 

                                                 
1 As Cullinane and Wang (2004) recognized: "This study initially intended to investigate individual container terminals. 
However, data sources often reported the required data at the aggregate level of the whole port, …  In these cases, the input 
and output of a port are defined as the aggregation of the input and output of individual terminals within the port. It is 
important to recognise, however, that such aggregation may prove problematic in reflecting the true production efficiency 
of the individual terminals within the same port” 
 
2 The efficiency of terminals with multipurpose facilities (those handling also non-container cargoes) is out of the scope of 
the present paper but the interested reader could be found some example in Chang and Tovar (2014ab and 2017ab). 
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Wiegmans and Witte (2017) and the two studies from Bichou (2011, 2013) being exceptions. 
In several cases an application of almost similar input and output variables can be observed. 
Mokhtar (2013) applied DEA to six major container terminals in Malaysia. This work excludes 
labour, without given any arguments for the decision. A remarkable feature in his input 
selection is the one of Quay Crane Index, which was defined as the product of the number of 
quay cranes and their average lifting capacity. Given common weight restrictions for standard 
ISO containers, considering lifting capacity of cranes a relevant input for terminal efficiency or 
productivity is hard to justify. Still, accounting for different types of cranes such as mobile 
cranes can be a challenge. In this document the approach of Wilmsmeier et al. (2013) is 
followed as described in subsection 3.2.3.  
Sharma and Yu (2010) proposed a decision tree based DEA and illustrated its application to the 
container port industry. The authors argue that the labour was not included due to the 
unavailability of data and because they think it is undesirable to follow the suggestion of 
Tongzon (2001) to make some proxy estimation, as this may give biased results. What the 
author seems to forget is that their decision to ignore labour as an input also produces biased 
results. 
Few papers address productivity and efficiency in terminals in other regions. Dias et al (2012) 
assess the efficiency of 10 Iberian container terminals in 2007 applying a recursive DEA model. 
Almawsheki and Shah (2015) analysed 19 container terminals in the middle eastern region, 
aggregating yard equipment similar to Rios and Maçada (2006).  
Lim et al (2011) proposed a method based on the idea of the context-dependent DEA. To 
illustrate the proposed methodology, they evaluate the relative efficiency of 26 Asian container 
terminals in the year of 2004. In the empirical application they included a brief summary of 
input and output used for some previous DEA studies, they do not explain what the reasons 
behind their election of input and output are. It should be noted that they do not considered 
labour as an input. 
The inclusion or omission of labour variables has stimulated controversial discussions. Itoh 
(2002), was able to obtain rich data for eight terminals. In a similar approach to the research 
conducted in this research, regarding the relevance and representation of labour, Itoh (2002) 
analysed container port efficiency in Japan and the effect labour as an input variable on the 
obtained scores. Applying DEA, he was able to show how labour as an input changes the 
obtained efficiency scores substantially and argued that labour “is a key input in the port 
production and cannot be totally neglected.”.  Notwithstanding these results and to the best of 
the authors´ knowledge, only four later works (Rios and Maçada, 2006; Wilmsmeier et al., 
2013, Wiegmans and Witte, 2017; Park, et al., 2020) include labour variables in the analysis of 
container terminals applying DEA.  
The arguments for omitting labour variables vary. Almawsheki and Shah (2015) justified their 
decision to omit labour by referencing ten other studies that also did not use labour. An 
approach that actually does not justify their decision. Yang and Yip (2019) present three 
questionable argument for the omission. They argue for a “fairly close” relationship between 
the number of workers and the number of gantry cranes, which makes a separate inclusion of 
this input unnecessary, however they ignore that container terminals are much more than ship-
to-shore operations. Further, they mention low reliability of port statistics, due to outsourcing, 
without providing evidence. Finally, they argue, citing Notteboom et al. (2000), that 
infrastructure and machineries inputs reflect a more accurate configuration of the ports than 
labour. 
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Bichou (2011) studied container terminal efficiency applying a two-stage supply chain DEA 
model. He criticized existing publications for inconsistent findings as well as trade-offs that are 
made in the variable selection. To approach those perceived shortcomings, Bichou (2011) and 
Park et al. (2020) split container operations in three sub-processes: the quay, the berth and the 
gate with their respective inputs and outputs. This high level of disaggregation requires 
naturally a high number of detailed data on the terminals under study. While these authors were 
able to obtain some of them, only Park et al. (2002) include labour as an input. While Bichou 
(2011) argued that not including labour was due that each configuration of generic operating 
typologies (for both quay and yard operating sites) in the different sub-processes would require 
“a corresponding set of capital and labour mix, and thus no cost or labour data is required [in 
this study]”. However, Park et al. (2020) are able to contest this issue. 
Kuo et al (2020), while considering the commonly used input variables, is the only work that 
uses the number of vessel calls as an output variable. Measuring container terminal output in 
this way might be questionable as the number of vessels which call or arrive at a particular port 
at any given time is a heterogenous measures as it does not take differences in vessel size into 
account. Li et al (2021), also using the commonly applied variables, applies a super-efficiency 
data envelopment analysis (SEDEA) approach. This approach allows for categorizing and 
ranking the efficiency of container terminals more comprehensively. 

To sum up, the literature review reveals that no previous efficiency study applying DEA, has 
included energy variables or disaggregation of output at terminal level.  
Second, a detrimental development can be observed in the case of labour as an input variable 
over time. Only four works include labour variables in their models. Wiegmans and Witte 
(2017) provide the most detailed approach to this issue using weekly worked hours as an input 
variable. The broad omission, of labour variables in the majority of the works ignores 
significant inputs in container terminal operations.  
Third, with the only exception of Park et al (2020), who disaggregate the output in transhipment, 
inbound and outbound container, none of the existing studies addresses disaggregation of 
output by container type (dry and reefer), an approach that allows to analyse possible different 
input needs and productivity depending on the mix of containerised cargoes in a terminal. 
Consequently, this work addresses the three identified gaps in literature, aiming to show the 
relevance of energy variables and disaggregation of outputs, based on a data set that also 
includes the relevant dimension of labour as an input. 
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Table 1 – Summary papers on container terminals applying DEA and use of variables  

Paper Region Number 
of 

Terminals 

DEA Model Output Input Labour Energy Output 
disaggregation 

(dry/reefer) 

Itoh 
(2002) 

Japan 
10-year period 
(1990-1999) 

8 Window DEA-
CCR 
Window DEA-
BCC 

• Throughput (TEU) • Container terminal area (m2) 
• Container berths (number) 
• Gantry cranes (number) 
• Workers (number) 

YES NO NO 

Rios and Maçada 
(2006) 

Latin America 
3-year period 
(2002-2004) 

23 DEA-BCC • Throughput (TEU) 
• Avg. number of 

containers moved 
per hour per ship 

• Cranes (number) 
• Berths (number) 
• Terminal Area ( m2) 
• Employees (number) 
• Yard Equipment (number) 

YES NO NO 

Sharma and Yu 
(2010) 

 

World Wide 
(not available) 

70  Decision tree-
based DEA 

• Throughput (TEU) • Quay cranes (number) 
• Transfer cranes (number) 
• Straddle carriers (number) 
• Reach stackers (number) 
• Quay length (m) 
• Terminal area (m2) 

NO NO NO 

Bichou (2011) World Wide 
7-year period 
(2002-2008) 

10  Supply Chain 
DEA-BCC 

• Export TEUs 
• Yard dwell time 
• STS crane 

move/hour 

• Gate lanes (n.a.) 
• Cut-off time (n.a.) 
• Yard stacking index (n.a.) 
• Free yard storage (n.a.) 
• STS crane index (n.a.) 
• LOA/max draft (n.a.) 

NO NO NO 

Dias et al (2012) Iberian 
Peninsula 

(2009) 

10  Recursive DEA • Throughput (TEU) • Total yard equipment (number) 
• Quay length (m)  
• Terminal area (m2) 
• Container cranes (number) 

NO NO NO 

Lin et al (2011) 
 

Asia 
(2004) 

26  Context-
dependent DEA 

• Throughput per 
berth (TEU) 

• Berth (number) 
• Quay length (m)  
• Total area (m2) 
• Gantry cranes (number) 

NO NO NO 

Lu and Wang 
(2012) 

China and 
Korea 
(2008) 

31  DEA-CCR 
DEA-BCC 
DEA-Super 
Efficiency 

•  Throughput (TEU) • Yard area per berth (n.a.) 
• Quay crane per berth (n.a.) 
• Terminal crane per berth (n.a.) 
• Yard tractor per berth (n.a.) 
• Berth length (n.a.) 
• Water depth (n.a.) 

NO NO NO 
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Bichou 
(2013) 

 

World Wide 
7-year period 
(2004-2010) 

60  
 
 

DEA-CCR 
DEA-BCC 

• Throughput (TEU) • Terminal (m2) 
• Maximum draft (m) 
• Total quay length (m) 
• Quay crane index (TEU) 
• Yard-stacking index 

(TEU/1000 m2) 
• Trucks & vehicles (number) 
• Gates (number) 

NO NO NO 

Mokhtar 
(2013) 

Peninsular 
Malaysia 

8-year period 
(2003-2010) 

6  DEA-CCR 
DEA-BCC 

• Throughput (TEU) • Total terminal area (m2) 
• Maximum draft (m) 
• Berth length (m) 
• Quay crane index (n.a.) 
• Yard-stacking index (n.a.) 
• Vehicles (n.a.) 
• Gate lanes (number) 

NO NO NO 

Wilmsmeier et al 
(2013) 

Latin America 
and the 

Caribbean and 
Spain 

(2005-2011) 

20 DEA-CCR 
DEA-BCC 
Malmquist 

• Throughput (TEU) • Labour (number of employees) 
• Terminal area (m2) 
• STS equivalent (number) 

YES NO NO 

Almawsheki and 
Shah 

(2015) 

Middle East 
(2012) 

19  DEA-CCR 
DEA-BCC 

• Throughput (TEU) • Terminal area (Ha) 
• Quay length (m) 
• Quay cranes (number) 
• Yard equipment (number) 
• Maximum draft (m) 

NO NO NO 

Wiegmans, and 
Witte (2017) 

Mostly 
Germany, 

Belgium and 
Netherlands 

 

44 DEA-CCR 
DEA-BCC 

• Handling capacity 
(TEU) 

• Throughput (TEU) 

• Working hours (week) 
• Terminal area (m2) 
• Stacking Yard (TEU) 
• Quay Length (m) 
• Draught (m) 
• Cranes (number) 
• Reach stackers (number) 

YES NO NO 

Yang and Yip 
(2019) 

Asia 
(2000-2007) 

23 Malmquist • Throughput (TEU) • Berth length (m) 
• Terminal Area (m2) 
• Crane Capacity (Ton) 

NO NO NO 

Munin (2020) (Asia) 38 DEA-CCR 
DEA-BCC  
FDH 

• Throughput (TEU)  • Berth (number) 
• Berth length (m) 
• Depth (m) 
• Terminal area 
• Yard gantry cranes (number) 
• Ship-shore and quay gantries 

(number). 

NO NO NO 
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Note: DEA = Data Envelopment Analysis; FDH = Free Disposal Hull; TEU= Twenty feet Equivalent Unit; LOA = Length overall; Not available 
(n.a.) 
Source: Authors 

Kuo, Lu, and Le 
(2020). 

Vietnam 
(2017) 

53 DEA-CCR 
DEA-BCC 

• Tons 
• Ship (calls) 

• Total terminal area (m2) 
• Terminal length (m) 
• Equipment (number) 

NO NO NO 

Park, Lee, and 
Low (2020). 

South Korea 
(2014-2018) 

9 Two-stage parallel 
network DEA 
DEA-CCR  

• Outbound (TEU) 
• Inbound (TEU) 
• Transhipment 

(TEU) 

• Wharf length (m) 
• Employees (number) 
• Yard area (m2) 
• Quay cranes (number) 
• Yard cranes (number)  
• Supporting machines (number) 
• Vehicles (number)  
• Level of service (n.a.) 
• Market exposure (number of 

operating years) 
• Planned throughput Capacity (n.a.) 

YES NO NO 

Chandrasekhar & 
Nihar (2021)  

India 
(2015-2018) 

26 Malmquist • Throughput ( TEU) 
 

• Draft (m) 
• Quay Length (m) 
• Quay Cranes (number) 
• Yard equipment (number) 
• Yard Area (Ha) 

NO NO NO 

Li, Seo, and Ha 
(2021). 

China 
2018 

20 Super-efficiency 
DEA 

• Throughput (TEU) • Berth length (m) 
• Yard area (m2) 
• Bridge Crane and RTG (number) 
• Dock front water depth (m) 

NO NO NO 

Present paper 
 

Worldwide 
(2013) 

26 DEA-CCR 
DEA-BCC 

• Throughput 
container (number 
of boxes) 

• Throughput dry 
container (number 
of boxes) 

• Throughput reefer 
container (number 
of boxes) 

• Labour (number of employees) 
• Berth length (m) 
• STS equivalent (number) 
• Electricity (kWh) 
• Diesel (litres) 

YES YES YES 
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3. METHODOLOGY  
3.1. Data Envelopment Analysis (DEA)  
Efficiency and productivity are often used interchangeably (Wang and Cullinane, 2015), 
however they are two different but related concepts. Productivity is defined as the comparison 
between outputs over inputs, thus it can be asserted that the higher the rate between outputs and 
inputs the higher the productivity level. Besides, technical efficiency is defined as the maximum 
output that can be obtained from a given amount of input or the minimum input to achieve a 
given amount of output, depending on the output/input orientation of the model.   
Therefore, both concepts are defined in terms of a comparison of two components (inputs and 
outputs) and are equivalent if one component (inputs or outputs) does not change. However, 
when both change, what is the usual situation in the real world, there are important differences 
between both that could produce situations where not always an improvement in efficiency 
comes with an improvement in productivity.  
Moreover, to estimate technical efficiency it is necessary to estimate the best practice frontier 
whereas productivity could be calculated without it. If the frontier is estimated, it is possible 
not only to identify productivity changes but also it is also possible to decompose the 
productivity change to identify whether this originates from efficiency change and/or 
technological change.  
Given the previous definitions, measuring the efficiency or productivity of firms could be 
considered to be a trivial mathematical task. However, the production frontier of an industry is 
virtually never known, but using a variety of parametric and non-parametric approaches an 
efficient (best practice) frontier can be estimated.  
Container terminals in the context of DEA are referred to as one decision making unit (DMU). 
This implies that they are individual firms striving to achieve an objective. While the authors 
recognize that other possibilities exist, the authors assume that the objective can either be to 
maximize throughput (output) from a certain level of input or to achieve a certain level of output 
with as little input as possible. The following equation shows an input-oriented CRS DEA 
model:  

min 𝜃𝜃  (1) s.t.:  

−𝑦𝑦𝑖𝑖 + 𝑌𝑌𝑌𝑌 ≥ 0;  

𝜃𝜃𝜃𝜃𝑖𝑖 − 𝑋𝑋𝑋𝑋 ≥ 0;  

𝜆𝜆 ≥ 0.  
 

This equation is the most commonly solved envelopment form of the problem. The scalar 𝜃𝜃 is 
representing the efficiency of the container terminal and 𝜆𝜆 is a column vector “that describes 
the percentage of other companies, and is used for constructing the efficient company. X and Y 
are the companies’ input and output vectors, and [𝑥𝑥𝑖𝑖] and [𝑦𝑦𝑖𝑖] are the inputs and outputs of the 
company that is being evaluated” (Pérez-Reyes and Tovar, 2009). The calculations were carried 
out in Python with the help of numpy. 

3.2. Data Source and Variable Selection  
Reliable and sufficiently detailed data has been identified as a key challenge in the reviewed 
literature on terminal efficiency/productivity. Data used in this work, originate from a concerted 
effort that was led by the United Nations Economic Commission for Latin America and the 
Caribbean (UNECLAC) in collaboration with Hochschule Bremen and stakeholders from the 
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industry as well as governmental entities across Latin America (Wilmsmeier and Spengler, 
2016; Spengler and Wilmsmeier, 2019) and was collected through UNECLAC/HS Bremen port 
productivity and efficiency surveys. One challenge of the collected data, is the level of 
fragmentation. While data was collected from more than 100 terminals, it was not possible to 
fill in missing values in all dimensions in order to create sufficiently large panel data, which 
would be required to make sound statements from a time series perspective while maintaining 
the high number of variables.   
The data set for this research comprise 26 terminals for the year 2013. Given the nature of the 
research question, it is key to work with data that comply with the expected level of detail for 
all selected input and output variables as the research is focusing on a structural discussion of 
data requirements in terminal efficiency studies. While more recent data in general is available 
for some variables, particularly detailed data on energy consumption, which includes the 
composition of energy source is difficult to obtain. However, more recent data cannot be 
thought to increase the validity of this research. All terminals under study are specialized in 
container handling, but with varying functions within the container terminal system. Their 
functions vary between import/export, hybrid and transhipment terminals. The data set covers 
a wide array of terminals, reaching from rather small terminals in developing countries to large 
terminals in developed countries. Table 2.1 and Table 2.2 depict the maximum, minimum, 
standard deviation, average and median of the selected variables. The distributions of some of 
the variables are somewhat skewed considering a comparison of the median and the average. It 
is worth pointing out that the relation of dry to reefer containers tends to differ significantly 
between terminals. The terminals situated in Latin America have a generally higher share of 
reefer containers, which was to be expected given the different characteristics of trade routes.  
Table 2.1: Descriptive Statistics of output variables 

 Throughput (number of boxes) 

 Total Container  Dry Container Reefer Container 

Minimum  75989 50877 913 

Maximum  2206438 1967770 238668 

Standard Deviation  428393.98 381242.16 48520.12 

Median  425003 412986 15064 

Average  496831.96 460293.15 36538.81 

Source: Authors 

Note: Total container represents the aggregated output variable, Dry and Reefer container represent the 
disaggregated output variables. 

Table 2.1 depicts the descriptive statistics of the chosen output variables. A longer discussion 
as to why those variables were chosen, is provided in the following subsection. Total container 
throughput is equal to the sum of dry containers and reefer containers at individual terminal 
level. Within the sample the share of reefer containers in relationship to dry container handling 
varies. Some terminals handle close to no reefer containers while others handle a very 
substantial amount of reefer containers. 
Table 2.2: Descriptive Statistics of input variables 

 

Diesel (Litres)  Electricity (kWh)  
Labour 
(number)  

Total Berth 
Length (m)  

Ship-to-Shore 
Crane 
Equivalent 
(number) 



14 

Minimum  570000 1724029 216 320 3 

Maximum  8284658 46761686 4878 2884 25 

Standard Deviation  1796396.36 8999166.98 878.65 624.58 4.26 

Median  2718971 13509486.5 573 948.5 6.5 

Average  2767282.35 14103842.15 778.23 1081.88 7.19 

Source: Authors  
Table 2.2 depicts the descriptive statistics of the chosen input variables. Given the diverse 
sample, it is not surprising that the input variables show a relatively large standard deviation as 
well as a large spread between the maximum and minimum.  
As mentioned above, a common and almost generally accepted argument in the field of 
productivity and efficiency analysis in ports and terminals is the one of land, labour and 
equipment being the key deciding factors (Dowd and Leschine, 1990; Roll and Hayuth, 1993). 
The chosen input variables represent the physical characteristics, technology, and the type of 
operation in the terminals. Different to existing studies the authors include the energy 
consumption as an input variable. The following subsections (1) provide the rational of the 
selected variables, and (2) specify insights on required or unacceptable trade-offs when 
choosing these.   

3.2.1. Labour  
As exemplified in the literature review, only few works include direct labour variables. 
However, all of them recognize this lack as an important limitation of both the investigation 
and conclusions. Indeed, it is well-known that excluding labour input from the model may lead 
to a biased estimate of terminal efficiency if labour and capital are not perfectly complementary 
(Chang and Tovar, 2021). The latter assumption (perfect complementarity) means that all 
container terminals follow a Leontief technology that implies the factors of production will be 
used in fixed (technologically predetermined) proportions, as there is no substitutability 
between factors, which is implicit when labour is excluded from the analysis. To the best 
knowledge of the authors this relationship (perfect complementary between labour and capital 
in this industry) has neither been demonstrated in previous port studies nor can it easily be 
deduced, considering that the relationship between capital and labour can be affected by various 
factors, including the technological one. Therefore, we conclude that the inclusion of labour is 
of utmost relevance to avoid biased results.  
In those studies, where labour variables are included, the total number of employees is the most 
common variable. Only very rarely, the hours worked (Wiegmans and Witte, 2017) or labour 
cost can be found as input variables. It certainly can be argued that labour cost would be the 
most favourable input variable, since it would capture the rather fine differences between 
different equipment configurations, automatization, and labour conditions, as well as the more 
apparent differences between blue-collar and white-collar workers. At the same time, 
introducing a monetary variable also comes with caveats: if data from various periods is to be 
used, it must be deflated and, if data from a variety of countries is used, it must be expressed in 
a common currency. Following Wilmsmeier et al. (2013), the authors include the total number 
of employees of the container terminals as an input as no sufficient salary data is available to 
the authors.  

3.2.2. Land  
The factor of land is usually represented by variables such as berth length, terminal size, or 
terminal storage area. Each of them having specific advantages and disadvantages.   
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Total berth length is often calculated as the sum of the lengths of a variety of berths (e.g. Yang 
and Yip, 2019), which can give a somewhat skewed representation of the actual input. By way 
of example, one terminal could potentially have one berth of approximately 200 metres while 
another terminal could have 2 berths with a length of 100 metres per berth. The former would 
be able to accommodate significantly larger vessels while the latter could not. An advantage of 
using total berth length is that a very general understanding of this input exists. While total 
berth length indisputably is a measure for the available space in a container terminal to which 
ships can be moored, the actual berth capacity will depend on the distribution of this length in 
relation to the number of berths in the terminal.   
Terminal storage area and terminal size cannot be considered as intuitive input factors. Terminal 
size might yield different interpretations, depending on what might be considered as the 
terminal area. By way of example, parking areas for employees might be part of the terminal 
or not, so could the area where terminal buildings are placed. These challenges could be 
overcome, e.g. if the exact size from a potential concession contract would be available. 
Though, this exact information is not available in the dataset of this research.  
Terminal storage area also might not accurately capture land as an input. Measuring storage 
area in a two-dimensional way omits the fact that operations in a container terminal are rather 
three than two dimensional, meaning that the efficient use of the surface area at hand also 
depends on the stacking height of containers. Further, stacking height might differ in different 
areas of the terminal.  
One might argue that these issues are possible to overcome if primary data are collected and a 
very clear definition of variables is provided. Still, it is believed that the person who will 
provide the data has very little incentive to review the size of the terminal or storage area 
according to the variable definition and will rather provide the values that are readily available.  
Given the described restrictions of land input variables in combination with actual data 
availability, the authors decided to include total berth length in metres as a proxy input variable 
to the model, even though certain points can be made in favour of including a measure of area 
rather than length.  

3.2.3. Equipment  
It can be argued that this input factor is the most challenging to accurately represent in the 
model (Spengler and Wilmsmeier, 2019), given the variety of different possibilities to equip 
any given terminal. By way of example, the inclusion of only one particular kind or group of 
equipment, such as straddle carrier (SC) or rail mounted gantry crane (RMG), might lead to a 
restricted reference set. An aggregation of a variety of different equipment would also be 
difficult to justify as one would be required to argue that the overall aggregated number of 
equipment is in some way, shape or form related to the objective of a given terminal. An 
introduction of monetary variables for equipment and its operation, could be a future option, 
but would have the similar caveats as mentioned in the case of labour.  
While it would be desirable to account for different types of equipment as well or potentially 
even cluster the terminals by operational layout, this is not feasible with the available data and 
the limited sample size. Hence, the decision is made to restrict the equipment variable to berth 
side operating equipment, represented by the number of quay cranes equivalent. This variable 
is derived as a weighted aggregation (summation) of mobile and ship-to-shore cranes following 
the approach of Wilmsmeier et al. (2013).  
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3.2.4. Energy  
A unique feature of this research is the inclusion of energy consumption variables, namely 
diesel and electricity, as an input. Energy can be referred to in different ways. The most intuitive 
way is to treat the various energy sources in their own unit of measurement since a conversion 
of electricity (kWh) and diesel (litres) to a common energy related unit such as Joule or Watt is 
all but trivial.  
Other potential measures could be energy expenses. While energy expenses can be thought to 
be rather a desirable measure for the energy input, it has to be acknowledged that such data are 
difficult to obtain and bear similar challenges in measurement and comparability as other 
monetary measures.  
Based on the described challenges the authors include two variables for representing energy 
consumption: diesel (litres) and electricity (kWh). It should also be noted that an initial data 
review checked for other potential energy sources such as petrol, liquefied natural gas (LNG), 
liquefied petroleum gas (LPG) and compressed natural gas. These energy sources are either not 
used in the terminals or used in negligible quantities and thus were excluded from the model.  

3.2.5. Outputs  
Roll and Hayuth (1993) argue that terminals provide a significant variety of outputs. Including, 
not only “the quantities and the variety of cargoes handled”, but also “the types of ships 
serviced, the interchange with land transport modes, the additional services rendered (e.g. 
interim warehousing) ...”. In the majority of studies on container terminals this output is reduced 
to the measure of TEU or at best number of containers handled.  
The outputs of a container terminal would actually best be represented by a rather high level of 
disaggregation, since the activities related to handling a container in a terminal will vary 
according to the combination of the type of trade (e.g. import, export, or transhipment), the 
specific container types, (e.g. refrigerated, open top, dry), the size (e.g. 20 or 40 foot) and the 
condition (e.g. full or empty). For a discussion on the differences of energy consumption 
between dry and reefer containers see Wilmsmeier and Spengler (2016).  
Such level of disaggregation would be ideal; however, it would require an overwhelmingly 
large number of DMUs which is not available in this case. Since total energy consumption is 
considered as an input and based on the difference of the energy consumed by full refrigerated 
containers in comparison to other container types, the decision is made to disaggregate the 
output only by the refrigerated or dry property of a container. In some models an aggregate of 
container throughput will be used for the sake of comparison. In this respect, reefer containers 
as well as dry containers are measured in the unit of box rather than TEU. 
 

3.3. The Models  
To address the set-out research question a sequence of four models is built. The variables 
included, in order to investigate the impact of container terminal output disaggregation and the 
inclusion of energy consumption variables as an additional proxy to the traditional input factor 
proxies are: total berth length, ship-to-shore crane equivalent and labour.  
Table 3 summarises the estimated models, indicating the respective input and output variables. 
By way of example, in model 1, labour, berth length and STS crane equivalent are considered 
as input variables. As output variable, only total container movements is considered.  
Table 3: Models with their respective inputs and outputs  
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Output 
disaggregation 

  Inputs     Outputs  

Labour  Berth 
Length  

STS Crane 
Equivalent  Electricity  Diesel  Dry  Reefer  Total  

Model 1   √ √ √     √ 

Model 2   √ √ √ √ √   √ 

Model 3  Yes √ √ √   √ √  

Model 4  Yes √ √ √ √ √ √ √  

Source: Authors  
For each model, the variable return to scale (VRS) as well as constant return to scale (CRS) are 
estimated. The matter of orientation is not straightforward. As shown in the literature review, 
terminals are said to follow two approaches. Either terminals seek to maximize output, given a 
certain level of input, or terminals seek to minimize inputs, given a certain level of output that 
they might be able to anticipate. Experience shows that terminal operators generally try to 
increase market share, particularly in emerging markets, rather than maintaining a given share 
with as little input as possible. Therefore, the authors argue that the terminal operators included 
in this research rather seek to maximize output. 
Due to data confidentiality agreements with the terminals, the specific names of the terminals 
and their operators are not disclosed. The names are replaced by the ISO 3166-1 alpha-3 code 
of the country where the terminal is located, followed by a single number to differentiate 
various terminals within the same country.  
The data set comprises container terminals from different countries that to the authors' belief 
are comparable as they belong to the same population. However, given that the sample includes 
import/export, hybrid and transhipment terminals the authors applied the non-parametric 
Mann–Whitney U (MW) to test the null hypothesis that the samples come from the same 
population (Table 4)3.  
Table 4: Non-parametric Mann–Whitney U test  

  Z  P(1)  P(2)  Statistic U  

Model 1  -1.53  0.063  0.126  28.5  

Model 2  -1.01  0.1562  0.3125  36.5  

Model 3  -0.88  0.1894  0.3789  38.5  

Model 4  -0.65  0.2578  0.5157  42  

Note: with na=21, nb=5, (1) one-tailed probabilities, (2) two-tailed probabilities, U tabulated (α = 0.05) = 22  
Source: Authors  

                                                 
3 All calculated p values are greater than 0.05, meaning that the null hypothesis cannot be rejected on those bases. 
Given that the approximation of U by the normal distribution is best when both populations are equal or greater 
than 10, it is recommended to work with the tabulated value for respective sample sizes. In this respect, the statistic 
U is never below the tabulated value, indicating against this background the null hypothesis cannot be rejected, 
either. This indicates that there is no difference in the computed efficiency scores whether a terminal is a 
transshipment/hybrid terminal or an import/export terminal.  
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4. ANALYSIS AND DISCUSSION  
This section discusses the results of the DEA model estimation. Table 5 depicts the efficiency 
scores for CRS and VRS models, with and without aggregation of outputs (models 1 to 4).  
An initial finding, due to the nature of DEA, is that both CRS and VRS models yield higher 
efficiency scores if they include a greater number of dimensions; read model 4 with output 
disaggregation and including energy variables (Table 5). Likewise, the generally higher 
efficiency scores of VRS in comparison to CRS models are owed to the applied methodology.  
Even though, there are certain variations that are inherently related to the addition or omission 
of variables, other relevant results can be discussed. One of these cases are the scores for 
BRA_01, which turns out to be efficient when the analysis is done with energy as input and 
output disaggregation into dry and reefer container (Model 4) but is far from efficient when 
output is aggregated and energy is omitted (Model 1, see Table 5). It is worth noting in this 
context, that BRA_01 has not been moved into a multidimensional space where it can only be 
a peer to itself but is still forming part of the frontier for ARG_01 and GEO_01 (see Appendix 
Tables 8 and 9). The fact that BRA_01 is efficient in Model 4 (Table 5) is arguably related to 
the fact that BRA_01 has a significantly higher share of reefer containers (28%) compared to 
the average terminal in the data set (8%).  
Another terminal with a high share of reefer containers is COL_02, which also happens to be 
the terminal with the smallest overall container throughput. Moreover, while it had a different 
peer in the model with output disaggregation and energy input (Model 4), the efficiency score 
is still considerably low, whether under the assumption of variable return to scale as well as 
under the assumption of constant return to scale.  
A further interesting case are Chilean (CHL) terminals, which partly are far from efficient in 
Model 1, but turn out to get an efficiency score of one in Model 4 (Table 5). As in the case of 
BRA_01, it can be noted that the Chilean terminals have not been moved into an area where 
they are only a peer to themselves but form part of the frontier for other terminals (see Appendix 
Tables 8 and 9). This is in particular interesting as the Chilean terminals move much higher 
shares of reefer containers, between 14% to 30% in comparison to the average terminal in the 
sample. 
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Table 5: DEA scores for model 1 to 4  

 Terminals Model 1: no output disaggregation 
no energy consumption as input  

Model 2: no output disaggregation, 
energy consumption as input 

Model 3: output disaggregation, 
no energy consumption as input 

Model 4: output disaggregation, 
energy consumption as input 

CRS VRS CRS VRS CRS VRS CRS VRS 
ARG_01  0.363 0.471 0.425 0.557 0.41 0.556 0.455 0.671 
ARG_02  0.276 0.294 0.289 0.327 0.297 0.308 0.316 0.338 
BRA_01  0.492 0.555 0.594 0.663 1 1 1 1 
BRA_02  0.318 0.362 0.426 0.463 0.321 0.372 0.426 0.474 
BRA_03  0.241 0.311 0.328 0.376 0.254 0.322 0.341 0.383 
BRH_01  0.438 0.484 0.492 0.501 0.46 0.485 0.503 0.505 
BHS_01  0.956 1 1 1 1 1 1 1 
CHL_01  0.71 0.822 0.714 0.829 1 1 1 1 
CHL_02  0.446 0.446 1 1 1 1 1 1 
CHL_03  0.87 0.888 0.87 0.888 1 1 1 1 
COL_01  0.498 0.565 0.501 0.565 0.505 0.584 0.508 0.584 
COL_02  0.158 0.158 0.174 0.228 0.383 0.383 0.383 0.383 
COL_03  0.562 0.773 0.562 0.773 0.57 0.809 0.57 0.809 
GEO_01  0.272 0.335 0.441 0.455 0.304 0.337 0.467 0.472 
MEX_01  0.166 0.227 0.318 1 0.178 0.253 0.32 1 
MEX_02  0.57 0.603 0.704 0.732 0.592 0.632 0.726 0.765 
MEX_03  0.738 1 0.81 1 0.771 1 0.846 1 
MOR_01  1 1 1 1 1 1 1 1 
NIG_01  0.388 0.431 0.508 0.509 0.398 0.447 0.521 0.523 
PAN_01  0.798 1 0.994 1 0.97 1 1 1 
RUS_01  0.66 0.668 0.660 0.668 0.754 0.756 0.754 0.756 
RUS_02  0.343 1 0.407 1 0.344 1 0.411 1 
RUS_03  0.899 1 0.916 1 0.980 1 0.995 1 
SWE_01  0.517 0.59 0.572 0.622 0.521 0.609 0.581 0.643 
USA_01  1 1 1 1 1 1 1 1 
VIE_01  0.908 1 1 1 0.915 1 1 1 

Note: (ARG – Argentina, BHS - Bahamas, BRA – Brazil, BRH – Bahrain, CHL – Chile, COL – Colombia, GEO – Georgia, MEX – Mexico, MOR – Morocco, NIG – Nigeria, PAN – Panama, RUS 
– Russia, SWE – Sweden, VIE – Vietnam). Source: Authors 
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In fact, the terminal that only has itself as a peer and is not a peer to any other terminal in the 
model with energy and disaggregated output (model 4) is MEX_01 (Table 10). This, in turn, 
can be seen as an indication that output disaggregation and the inclusion of energy as an input 
leads to more advantageous comparisons, which reflects the differences in the multi-product 
nature of container terminals.  
Peer-wise, when disaggregating output and considering energy as input (model 4), the container 
terminal from Latin America or the Caribbean are more often a peer to another terminal (see 
table 10). If this is compared to the reported peers in Table 7 (model 1), a clear difference can 
be noted. If said disaggregation is not done and energy is not considered as an input (model1), 
most DMUs are benchmarked against highly specialized transhipment terminals (e.g. MOR_01 
and PAN_01) independent of their geographic location as can be clearly seen when comparing 
tables 7 and 10 (Appendix).  
One limitation of the comparisons above is that they do not provide any insight as to why certain 
changes might or might not have occurred. To address this matter the models 2 and 3 are 
compared with model 1 and 4 respectively. In Model 2 the energy variables are added but the 
output is not disaggregated (Table 5). In Model 3 output is disaggregated but no energy 
variables are added (Table 5).  
When comparing the results between model 3 and 4, an initial finding is that the obtained 
efficiency scores between do not differ significantly (Table 5). However, that by itself does not 
provide much insight with regard to the frontier that has been modelled. Similar efficiency 
scores, being scalars after all, might be similar for a number of reasons. A comparison of the 
peers reported in Table 8 and 9 (Appendix) does provide insights as to whether a terminal is 
inefficient in relation to the same terminals as in the other model or if it is in fact benchmarked 
against other terminals.  
From that perspective, COL_02 is interesting as it is benchmarked against CHL_02 regardless 
of the fact whether energy is considered as an input or not. Similar are the cases of COL_01, 
COL_03 and RUS_01 that are all benchmarked against the same peers regardless of the energy 
variables. The terminal MEX_02 gained more peers with the energy variables and ARG_01 
and ARG_02 also maintained a very similar set of peers (cf. Table 8 and Table 9). These 
findings indicate that the inclusion of energy variables contributes to additional insights (model 
2), in comparison to using disaggregated output, but no energy variables (model 3).  
The fact that the overall efficiency scores are similar in the different models and that the peers 
of the terminals did not change much can point towards one of two things: Either energy as an 
input does not add much to the model in general or the changes that are caused by adding energy 
as an input are similar to those caused by disaggregating output, meaning that energy 
consumption could also be accounted for by disaggregating output.  
The obtained efficiency scores, again, appear to be rather similarly independent of whether 
energy is considered as an input or not. This must be understood against the background that, 
in this case, effects that energy might or might not have on the obtained efficiency score is not 
potentially captured by a disaggregated output as it could have been the case with the efficiency 
scores.  
It is necessary to investigate, if the peers have changed to derive better insight regarding the 
question if energy matters in the context of efficiency analysis in container terminals. To do so, 
the reported peers in Table 7 are compared with those of Table 8.  
The terminals CHL_03, COL_01, COL_03 and RUS_01 have the exact same peers regardless 
of whether energy is added as an input or not. The terminals ARG_01, ARG_02 and BRA_03 
also still maintain almost the same peers when energy is added. Moreover, all of the following 
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terminals BHS, CHL2, MEX3, MOR1, PAN1, RUS2, RUS3, USA1, VIE1 are potential peers 
in both models. It is not surprising both models have similar sets of peers. Most likely this does 
not mean more than these terminals are efficient regardless of whether the output is 
disaggregated or the model includes energy variables. This reinforces the idea that these 
variables are highly correlated and contain similar information, but at the same underlines the 
relevance of energy consumption and the output disaggregation when measuring efficiency.  
Table 6 demonstrates the changes in inputs and outputs which might be necessary to make 
inefficient terminals full-efficient according to the VRS results of model 4. The results reveal 
significant inefficiencies in container terminal production. The sample terminals exhibit a mix 
of decreasing, increasing and constant returns to scale. Only one terminal exhibits constant 
returns to scale. The majority of terminals are operating at decreasing returns to scale, revealing 
that their size is too large regarding the activities performed. These terminals should reduce 
their operational scale to improve their level of efficiency. However, eight terminals show 
increasing returns to scale and given their small size of production need to enhance their 
efficiency by selecting a scaling up strategy. 
In general several terminals could improve their efficiency by increasing its outputs or reduce 
its inputs (Table 6). For example, Given its current size, BRA_02 to be fully efficient could 
increase its dry and reefer output by 111% and 222% respectively. As for the inputs BRA_02 
could decrease its crane capacity by 2%, labour by 18% and berth length by 23% respectively. 
Table 6. Changes in outputs and inputs which are necessary to make inefficient terminals full-
efficient according to Model 4 

  Model 4 Potential improvement (%)  

CRS VRS ES Returns Dry 
(output) 

Reefer 
(output) 

Electr-
icity diesel 

STS 
crane 
equiv. 

Labour Berth 
length 

ARG_01 0.455 0.671 0,679 irs 49 49 0 0 0 -5 0 

ARG_02 0.316 0.338 0,936 drs 196 196 0 0 -27 0 -23 

BRA_02 0.426 0.474 0,899 drs 111 222 0 0 -2 -18 -8 

BRA_03 0.341 0.383 0,889 irs 161 908 -2 0 -2 -22 0 

BRH_01 0.503 0.505 0,996 irs 98 98 -18 0 0 -45 -64 

COL_01 0.508 0.584 0,87 drs 71 698 -23 -9 -30 0 0 

COL_02 0.383 0.383 1 - 191 161 -90 -14 0 -28 -16 

COL_03 0.57 0.809 0,705 drs 24 643 -37 -33 0 0 -20 

GEO_01 0.467 0.472 0,989 irs 112 112 -4 0 0 -60 -77 

MEX_01 0.32 1 0,32 irs 0 0 0 0 0 0 0 

MEX_02 0.726 0.765 0,948 drs 31 285 0 0 0 -20 -1 

MEX_03 0.846 1 0,846 irs 0 0 0 0 0 0 0 

NIG_01 0.521 0.523 0,996 drs 91 260 0 -54 0 -41 -4 

RUS_01 0.754 0.756 0,996 irs 32 32 -7 -26 -22 -2 0 

RUS_02 0.411 1 0,411 irs 0 0 0 0 0 0 0 
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RUS_03 0.995 1 0,995 drs 0 0 0 0 0 0 0 

SWE_01 0.581 0.643 0,902 drs 55 400 0 -6 0 0 -28 

Source: Authors 
 

5. CONCLUSIONS  
DEA as other methods based on the frontier approach, allow to contrast the efficiency of an 
individual DMU relative to a set of other DMU that are homogenous. Following the initial 
research question, the output disaggregation in terms of reefer and dry containers did lead to 
efficiency scores substantially different from the ones obtained from a model considering 
container throughput in a generic way without such disaggregation. 
This confirms the assumption that the strategies of individual DMUs vary according to their 
containerized cargo mixes. The results reflect the different production processes, services and 
decision-making processes according to specific types of outputs.  
Consequently, these findings are in particular relevant when analysing the efficiency of 
terminals with significant volumes of reefer traffic and comparing them to terminals with dry 
container only traffic. The relevance of reefer traffic varies across geographic regions. In this 
research, the differences are very apparent as the majority of the container terminals under study 
are located in the Latin American and Caribbean region, one of the main export regions of 
reefer cargo. 
While theory suggests that a significant relationship exists between the volume of reefer 
container throughput and electricity consumption, said relationship could not be found in the 
obtained efficiency scores. This is not an argument against the relationship per se but rather an 
indication that other input variables that are highly linked to the volume of handled reefer 
containers contain similar information. Thus, a certain level of collinearity exists between the 
variables. One example for such relationship between inputs in the present research could be 
the one found between labour and energy consumption (i.e. electricity) inputs. Indeed, and in 
relation to the previous argument it might be that terminals with a greater share of reefer traffic 
require a greater number of workers, since reefer cargo requires a greater level of supervision 
than cargo in standard containers. This matter certainly deserves further research.  
From a policy perspective the proposed output differentiation can be considered as highly 
relevant in scenarios where the environmental performance of terminals becomes a more 
relevant topic in the current efforts to lead ports and terminals towards sustainable performance. 
In general, full reefer containers have a higher carbon footprint than standard container due to 
their additional energy need for cooling of cargo, which is represented by a relative increase in 
electricity or diesel consumption in terminals with greater reefer cargo traffic. Thus, regulatory 
efforts regarding the performance and efficiency of terminals will benefit from a deeper 
understanding of a container terminal´s traffic mix. Since consumers are requiring more 
detailed information on the external effects caused by the supply chains of the products they 
purchase, a differentiation of energy consumption and thus emissions according to different 
cargo types will enable terminals to define and report their share in the overall supply chain 
external effects. In order to avoid a misleading comparisons between container terminals, the 
full variety of existing container terminal lay-outs, handling technologies and operating 
strategies should also be accounted for as detailed as possible.  
Wang and Cullinane (2015) discuss the limitations of estimating efficiency limited to land, 
labour and equipment as key factors. They argue that numerous other factors can influence the 
way these factor endowments are interacting (e.g. operator model, level of vertical integration 
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between shipping lines and terminal). Thus, this paper contributes to the consideration of a 
greater range of factors,and underscores the different needs and strategies in container terminals 
depending on the output formation.  
Data availability still is a key challenge in port and container terminal analysis and this 
document is no exception to it. Firstly, it must be noted that certainly more recent data would 
have been desirable. Secondly, a more complex model and sounder statement could have been 
made if panel data were available.  
In terms of variables, it would be desirable to construct future models with data that are more 
closely related to some of the economic objectives of a terminal. None of the variables used in 
this research are of monetary nature. In the case of output disaggregation, the difference in the 
price for handling one reefer container in comparison to a standard dry container might be of 
relevance. While the focus of this document was merely technical efficiency, the matter of 
economic efficiency is of significant interest for future investigation.  
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Appendix  
 
Table 7: DMUs with their peers under VRS assumption - Model 1 

DMU   Peers  

ARG_01  USA_01  MOR_01   MEX_03  RUS_02  

ARG_02  BHS_01  MOR_01       

BRA_01  MOR_01  USA_01   RUS_02    

BRA_02  PAN_01  MOR_01       

BRA_03  USA_01  MOR_01   MEX_03  RUS_02  

BRH_01  MOR_01  USA_01       

BHS_01  BHS_01         

CHL_01  RUS_03  BHS_01   USA_01    

CHL_02  USA_01         

CHL_03  MOR_01  USA_01       

COL_01  BHS_01  RUS_03   USA_01    

COL_02  USA_01         

COL_03  MOR_01  RUS_03   USA_01    

GEO_01  USA_01  MOR_01       

MEX_01  USA_01  MOR_01   MEX_03  RUS_02  

MEX_02  MOR_01  PAN_01       

MEX_03  MEX_03         

MOR_01  MOR_01         

NIG_01  PAN_01  MOR_01       

PAN_01  PAN_01        

RUS_01  MOR_01  MEX_03      

RUS_02  RUS_02        

RUS_03  RUS_03        

SWE_01  MOR_01  RUS_03  USA_01    

USA_01  USA_01        

VIE_01  VIE_01        

Note: (ARG – Argentina, BHS - Bahamas, BRA – Brazil, BRH – Bahrain, CHL – Chile, COL – Colombia, GEO 
- Georgia, MEX – Mexico, MOR – Morocco, NIG – Nigeria, PAN – Panama, RUS – Russia, SWE – Sweden, 
VIE – Vietnam).  
Source: Authors  
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Table 8: DMUs with their peers under VRS assumption - Model 2 

DMU  Peers  

ARG_01  VIE_01  USA_01  RUS_02  CHL_02  

ARG_02  VIE_01  RUS_03  BHS_01  MOR_01  

BRA_01  MOR_01  VIE_01  RUS_02    

BRA_02  VIE_01  BHS_01  PAN_01    

BRA_03  VIE_01  RUS_02  MOR_01  MEX_03  

BRH_01  VIE_01  USA_01  MOR_01    

BHS_01  BHS_01        

CHL_01  VIE_01  BHS_01  RUS_03  USA_01  

CHL_02  CHL_02        

CHL_03  USA_01  MOR_01      

COL_01  RUS_03  BHS_01  USA_01    

COL_02  USA_01  CHL_02      

COL_03  MOR_01  RUS_03  USA_01    

GEO_01  PAN_01  MOR_01  VIE_01    

MEX_01  MEX_01        

MEX_02  PAN_01  BHS_01  MOR_01  VIE_01  

MEX_03  MEX_03        

MOR_01  MOR_01        

NIG_01  BHS_01  USA_01  MOR_01    

PAN_01  PAN_01        

RUS_01  MOR_01  MEX_03      

RUS_02  RUS_02        

RUS_03  RUS_03        

SWE_01  BHS_01  USA_01  RUS_03  VIE_01  

USA_01  USA_01        

VIE_01  VIE_01        

Note: (ARG – Argentina, BHS - Bahamas, BRA – Brazil, BRH – Bahrain, CHL – Chile, COL – Colombia, GEO 
- Georgia, MEX – Mexico, MOR – Morocco, NIG – Nigeria, PAN – Panama, RUS – Russia, SWE – Sweden, VIE 
– Vietnam  

Source: Authors  
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Table 9: DMUs with their peers under VRS assumption – Model 3.  

DMU  Peers   

ARG_01  USA_01  CHL_03  BRA_01  MOR_01  RUS_02  

ARG_02  CHL_01  BHS_01  PAN_01  MOR_01    

BRA_01  BRA_01          

BRA_02  PAN_01  MOR_01        

BRA_03  USA_01  MOR_01  MEX_03  RUS_02    

BRH_01  MOR_01  CHL_03  USA_01      

BHS_01  BHS_01          

CHL_01  CHL_01          

CHL_02  CHL_02          

CHL_03  CHL_03          

COL_01  BHS_01  RUS_03  USA_01      

COL_02  CHL_02          

COL_03  MOR_01  RUS_03  USA_01      

GEO_01  USA_01  MOR_01  CHL_03      

MEX_01  USA_01  CHL_03  BRA_01  MOR_01  RUS_02  

MEX_02  MOR_01  PAN_01        

MEX_03  MEX_03          

MOR_01  MOR_01          

NIG_01  PAN_01  MOR_01        

PAN_01  PAN_01          

RUS_01  RUS_02  CHL_03  MOR_01      

RUS_02  RUS_02          

RUS_03  RUS_03          

SWE_01  MOR_01  RUS_03  USA_01      

USA_01  USA_01          

VIE_01  VIE_01          

Note: (ARG – Argentina, BHS - Bahamas, BRA – Brazil, BRH – Bahrain, CHL – Chile, COL – Colombia, GEO 
- Georgia, MEX – Mexico, MOR – Morocco, NIG – Nigeria, PAN – Panama, RUS – Russia, SWE – Sweden, VIE 
– Vietnam).  

Source: Authors  
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Table 10 (antes 8/7): DMUs with their peers under VRS assumption – Model 4 

DMU  Peers   

ARG_01  USA_01  MOR_01  RUS_02  CHL_02  VIE_01  BRA_01  

ARG_02  BHS_01  CHL_02  MOR_01  VIE_01  CHL_01    

BRA_01  BRA_01            

BRA_02  VIE_01  BHS_01  PAN_01        

BRA_03  VIE_01  RUS_02  MEX_03        

BRH_01  USA_01  VIE_01  MOR_01  CHL_02      

BHS_01  BHS_01            

CHL_01  CHL_01            

CHL_02  CHL_02            

CHL_03  CHL_03            

COL_01  BHS_01  RUS_03  USA_01        

COL_02  CHL_02            

COL_03  MOR_01  RUS_03  USA_01        

GEO_01  PAN_01  MOR_01  BRA_01  VIE_01      

MEX_01  MEX_01            

MEX_02  MOR_01  BHS_01  PAN_01  VIE_01      

MEX_03  MEX_03            

MOR_01  MOR_01            

NIG_01  BHS_01  MOR_01  USA_01        

PAN_01  PAN_01            

RUS_01  MOR_01  CHL_03  RUS_02        

RUS_02  RUS_02            

RUS_03  RUS_03            

SWE_01  USA_01  RUS_03  BHS_01  VIE_01      

USA_01  USA_01            

VIE_01  VIE_01            

Notes: (ARG – Argentina, BHS - Bahamas, BRA – Brazil, BRH – Bahrain, CHL – Chile, COL – Colombia,  

GEO – Georgia, MEX – Mexico, MOR – Morocco, NIG – Nigeria, PAN – Panama, RUS – Russia, SWE – Sweden, 
VIE – Vietnam).  

Source: Authors  
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