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a b s t r a c t

When the 8T-LE partition is recursively applied to any initial trirectangular tetrahedron
T , only a finite number of dissimilar tetrahedra are generated. It implies the stability
of the meshes. At each step of refinement the number of right-type or path tetrahedra
grows, so the quality of the obtained meshes improves. The minimum angle condition
and the maximum angle condition are trivially satisfied, since the number of similarity
classes is finite.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

We focus in this paper on the 8T-LE partition applied to a special class of tetrahedron, the trirectangular, corner or cube
etrahedron. This partition is the natural extension to 3D of the well-known 4 Triangles Longest-Edge partition (4T-LE)
ntroduced and developed by Rivara [1]. Some of the suitable properties of the 4T-LE partition are the self-improvement
f the mesh, the non-degeneracy and the locality of the refinement [1,2].
The regular trirectangular tetrahedron appears in five of the six triangulations of a 3D-cube, except for the Freudenthal

artition. For this reason, this tetrahedron is a binary tetrahedron, together with the regular right-type tetrahedron and the
uasi right-type tetrahedron [3–5]. The vertices of these tetrahedra are directly related with 0-1 matrices, which appear in
any scenarios as graph theory or coding theory among others [6]. Also, the scalene trirectangular tetrahedron appears

n five of the six triangulations of any hexahedron, except for the Freudenthal partition of the hexahedron into six scalene
ight-type tetrahedra.

Trirectangular tetrahedron also appears when a 3D-cube is subdivided into 24 isosceles trirectangular tetrahedra. A
D-cube can be partitioned into 6 pyramids whose common vertex is at the center of gravity of the cube. Then each
yramid can be partitioned into 4 cube-corner tetrahedra see Fig. 6. This partition is called Face Centered division (FC) of
3D-cube [7]. The triangulation of the 3D-cube following different strategies, is of interest because, the conversion from
n octree-based hexahedral mesh [8] to a tetrahedral mesh is straightforward [9].
We will prove here that, for any initial trirectangular tetrahedron T , the iterative 8T-LE partition of T yields a sequence

f tetrahedra where the number of classes of similarity is bounded, and hence the non-degeneracy or stability of the
etrahedral meshes follows. In the finite element method, non-degeneracy plays a very significant role for the stiffness
atrix conditioning where a partial differential equation is converted into a large sparse linear system of algebraic
quations to be solved. In this context, dihedral angles near 0 or near π radians, can cause large matrix entries which
ead to poor matrix conditioning.
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Fig. 1. Four classes of tetrahedra where c > b > a. Tetrahedra (a) and (b) are ortho-simplices and nonobtuse. Tetrahedra (c) and (d) are obtuse.

The number of similarity classes also directly affects the total computational work, since there are data which can be
computed and stored only once per element of a given class [10], reducing hugely the computational cost, and hence
improves the efficiency of the algorithms [11]. These properties, are highly desirable in many areas of engineering, such
as, the finite element method.

2. Basic definitions and preliminaries

A closed subset T ⊂ Rn is called a k-simplex, 0 ≤ k ≤ n, if T is the convex linear hull of k + 1 affinely independent
ertices x(0), . . . , x(k) ∈ Rn, with T denoted by its vertices [x(0), . . . , x(k)]. If k = n then T is simply called a simplex of Rn.

If k = 2, 3 simplices are called triangles and tetrahedra as usual.
For any tetrahedron T each one of the six angles between any pair of its faces is called a dihedral interior angle or an

nterior angle. An angle is acute if it is less than a right angle. A simplex is nonobtuse if its dihedral angles are either acute
r right.

heorem 1. If n > 2 then each facet of an acute n-simplex is an acute (n − 1)-simplex [12].

The converse implication does not hold –see previous reference–, as it happens with the quasi right or slanted
etrahedron, as we will show later on.

efinition 1 (Ortho-simplex and Path-simplex).In Rn, an ortho-simplex is a simplex having n mutually orthogonal edges
legs), see Figs. 1(a) and 1(b) for the R3 case. An ortho-simplex can also be classified as regular, isosceles or scalene,
epending on the legs’s length. In Rn, a path-simplex is an ortho-simplex whose n orthogonal edges form a path in the
ense of graph theory, that is, a sequence of n edges which joins a sequence of vertices [12], see Fig. 1(b) for the R3 case.

Notice that each ortho-simplex is nonobtuse.

heorem 2. Each d-simplex has at least d acute dihedral angles. Each ortho-simplex has exactly d acute dihedral angles [12].

Fig. 1 shows two classes of ortho-simplices in R3. The tetrahedron in Fig. 1(b) has only right triangular faces. It is a
ath or right-type tetrahedron, because its three orthogonal edges (legs) form a path. The tetrahedron in Fig. 1(a), has
hree mutually orthogonal edges (legs) that share a common vertex O, where all three face angles at the same vertex are
ight angles. That vertex is called spatial right angle and the face opposite it is called the base. All these features define a
rirectangular, cube or corner tetrahedron. It is clear that the longest-edges of an ortho-tetrahedron are hypotenuses of its
ight-angled faces, and the shortest ones are the legs.
The right-type tetrahedron has been studied in [4], where the next theorem is stated:
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Fig. 2. (a) LE partition of triangle t1 , (b) 4T-LE partition of triangle t1 .

heorem 3. Two right-type tetrahedra T1(a1, b1, c1) and T2(a2, b2, c2) are similar if and only if their extreme legs are in the

ame ratio as their central legs. That is, either
b1
b2

=
a1
a2

=
c1
c2

, or
b1
b2

=
a1
c2

=
c1
a2

[4].

It is proved in [4] that, when the 8T-LE partition is applied to any initial right-type tetrahedron, the number of similarity
classes is bounded. Also, for the regular right-type tetrahedron, all the descendants are similar (up to mirror imaging) to
the original one.

Fig. 1(c) and (d) shows two classes of tetrahedra. Both tetrahedra are obtuse, although the first one its four triangular
faces are not of obtuse type, see Theorem 1.

Definition 2 (Quasi Right-type or Slanted Tetrahedron). This tetrahedron has three right-angled triangular faces, with the
right angles at different vertices, and the fourth one is acute, see face ABC in Fig. 1(c). On this face there are the second
longest-edges of the tetrahedron. The longest-edge is a common hypotenuse of two right-angled triangular faces, see edge
OC in Fig. 1(c).

The triangular face ABC in Fig. 1(c) can be equilateral, isosceles or scalene. For the first case, there will be three second
longest-edges of the same length, where the edge AB is a hypotenuse. For the other two cases, there will be two different
second-longest edges, with the edge AB the smaller of the two second longest-edges.

We call here new tetrahedron, the tetrahedron having two triangular faces of the right type and the other two are
of obtuse type. The longest-edge is not a hypotenuse but the two different second longest-edges are, see Fig. 1(d). This
tetrahedron will be denoted by T .

Definition 3 (Similar Simplices). In general, any pair of simplices T1, T2 ∈ Rn are called similar if there exists a translation
vector a ∈ Rn, a scaling factor c > 0, and an orthogonal matrix Q ∈ Rn×n such that T2 = a + cQT1 [13].

The similarity class of a simplex does not depend on its vertex ordering.

Definition 4 (Skeleton). Let τ be an n-simplicial mesh. The set skt(τ ) = {f : f is an (n − 1)-face of any Ti, with Ti ∈ τ }

will be called (n − 1)-skeleton of τ , and it is also denoted by (n − 1)-skt(τ ). For instance, the skeleton of a triangulation
in three dimensions are the triangular faces of the tetrahedra, and in two dimensions the skeleton is the set of the edges
of the triangles.

Definition 5 (The 4-triangle Longest-edge (4T-LE) Partition). The 4T-LE partition of a general triangle t1, is obtained
by performing first the longest-edge bisection of t1, generating two subtriangles t ′ and t ′′, see Fig. 2(a). Then, these
subtriangles are bisected by their common edge with original triangle t1, see Fig. 2(b).

3. The 8T-LE partition applied to trirectangular tetrahedra

For any tetrahedron T , the 8-Tetrahedra Longest-Edge partition (8T-LE) of T , produces 8 sub-tetrahedra by performing
the 4T-LE partition of the faces of T , and then subdividing the interior of T consistently with the division of the faces. To
perform this partition, the tetrahedron has to be previously classified in three types, according to the relative positions
of its longest-edges [14–16].

Fig. 3 shows an example of the 8T-LE partition applied to an arbitrary tetrahedron, with vertices A, B, C and D, in which
the longest-edge is AB, while edges CD and AD are the second longest-edges. According to the pseudocode in Section 3,
the tetrahedron is classified type 3. In this article, we will study the similarity classes generated by 8T-LE partition when
it is applied to a trirectangular tetrahedron, using simple geometrical arguments. The regular case has been studied in [5],
where it has been proved that the 8T-LE partition only generates 4 similarity classes. Now we focus on the isosceles and
scalene cases.

Let us label the longest-edge with number 1 and the opposite edge with number 6, see Figs. 3 and 4. The classification
of the tetrahedron can be summarized as follows [14]:

Procedure Classification
/*Input variables: T tetrahedron
3
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Fig. 3. 8T-LE partition of type 3 tetrahedron [ABCD].

Fig. 4. Classification of tetrahedra and the four refinement patterns for the 8T-LE partition.

Output variables: type */
If edge 6 is not the longest of any triangular face then

T is type 1
Else edge 6 is the longest of the two triangular faces sharing it then

T is type 2 (in blue colour in Fig. 4 b))
Else

T is type 3 (in green colour in Fig. 4 c))
End If

For the sake of clarity of exposition, we show in Fig. 4 the four refinement patterns (see [4,14–17]) associated to the
hree types of tetrahedra. The subtetrahedra generated have been depicted around its ‘‘parents’’. Type 1 is associated with
wo patterns.

From now and on, we will study and analyze the isosceles and scalene cases for the trirectangular tetrahedron.

.1. Isosceles trirectangular tetrahedron

In this case, there are two legs of equal length but different to the other one. This tetrahedron is classified type 1 by
he 8T-LE partition.

A particular case for an isosceles trirectangular tetrahedron belonging to the Sommerville’s tetrahedra family, is the
ell-known Sommerville tetrahedron number 2, ST2, which can be obtained by dividing the Sommerville tetrahedron
umber 1, ST1, into two similar tetrahedra ST2, by a plane through the longest edge and the midpoint of the opposite
dge [18]. Since the Sommerville tetrahedra are based on a particular splitting of the unit cube [19], tetrahedron ST2 can

also be obtained by bisecting the ST tetrahedron by the cube face (see Fig. 5(a)), and the ST tetrahedron is found by
1 1
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Fig. 5. Sommerville’s tetrahedra family [19].

Fig. 6. Face-Centered 24-fold subdivision. The 24 tetrahedra ST2 are depicted around the cube in groups of four.

joining two vertices of the cube which share a common edge to the centers of two adjacent cubes, as it is shown in
Fig. 5(b). Finally, the Sommerville tetrahedron number 3, ST3, is obtained by from the ST2 by joining two tetrahedra along
common face through a cube vertex, face center and cube center, see Fig. 5(c).
The ST2 tetrahedron also appears when the Face Centered subdivision is carried out in the unit cube [7], generating 14,

6, 18, 20, 22 and 24 subtetrahedra ST2, depending on the number of the face-centers added. Previously, the Face Divided
ubdivision of the unit cube is done in which 12 ST3 Sommerville tetrahedra are generated from pyramids whose bases
re the faces of the cube. Connecting each cube vertex to the body center, six square pyramids are obtained. Each of these
yramids are divided into two tetrahedra by an arbitrary face diagonal. This subdivision can be further subdivided by
dding new vertices in the center of faces of the cube –which is equivalent to generate the second diagonal of the face–,
enerating the Face Centered subdivision. Adding some or all the face-centers gives subdivisions with 14, 16, 18, 20, 22
r 24 subtetrahedra, respectively, see Fig. 6. All these tetrahedra are ST2.
Without loss of generality, the isosceles trirectangular tetrahedron to be studied has the vertices A = (0, 0, 0),

B = (a, 0, 0), C = (a, 0, b) and D = (a, b, 0) with b > a > 0, see Fig. 7. This figure shows the subtetrahedra generated
by the 8T-LE partition. Four subtetrahedra are similar to their father, and the remaining four subtetrahedra are two quasi
right-type tetrahedra similar to each other -[BEGH] and [BEFH]-, and two new tetrahedra T -[AEGH] and [AEFH]-, which
are also similar to one another. This congruency is shown by a mirror reflection by plane π1, see top left corner of
ig. 8.
The subtetrahedra quasi right-type and the new one, called T , will be studied by the 8T-LE partition. For the quasi right-

ype subtetrahedron, edge EH is a common hypotenuse, and the two second longest-edges are on an isosceles triangular
ace with vertices B, E and G, with edges BG (which is a hypotenuse) and EG of the same length. Edge BE is the largest
f all them, see Definition 2 and Figs. 7 and 8. The new classes of similarity for these subtetrahedra are depicted in
ig. 8.
5
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T

Fig. 7. 8T-LE partition applied to an isosceles trirectangular tetrahedron.

According to Figs. 8 and 9 we can see that:

• Cases (a), (f) and (h) are similar between them by Theorem 3, T3 ≡ T .
• The other cases from (f) and (h) -tetrahedron T ′-, are also similar to each other according to Theorem 3, T4 ≡ T ′.
• Case (b) is similar to the original tetrahedron T0.
• Case (d) is similar to its father and also to the case (e). To prove this, both subsubtetrahedra are similar to each other

by means of two consecutive mirror reflection through planes π9 and π10 applied to the subsubtetrahedron marked
with a diamond, as we can see on the bottom of Fig. 9.

• Cases (g) and (c) are similar between them, as we can see on the bottom of Fig. 9, according to three mirror reflection
by planes π9, π10 and π11 applied to the subsubtetrahedron marked with two diamonds, and also, similar to the quasi
right-type subtetrahedron generated in the first generation with vertices B, E, G and H .

At this point, the last step is to check the two isosceles right-type subsubtetrahedra. According to [4], the 8T-LE partition
applied to T = T (a/4, b/4, b/4) tetrahedron generates four T = T (a/8, b/8, b/8) tetrahedra similar to the original
one, and two T ′

= T ′ (b/8, a/8, b/8) tetrahedra, and applying this partition to the T ′
= T ′ (b/4, a/4, b/4) tetrahedron,

generates four T = T (a/8, b/8, b/8) tetrahedra and four T ′
= T ′ (b/8, a/8, b/8) tetrahedra similar to the original one.

These tetrahedra will be called as T3 and T4, respectively.
Finally, the number of different classes of similarity is 5. Fig. 10 shows the relations between the different classes of

similarity.
Let us denote by T (n)

i the number of tetrahedra of class Ti, after n iterative applications of the 8T-LE partition, to an initial
isosceles trirectangular tetrahedron T0. The recurrence relations associated to the 8T-LE partition of an initial isosceles
trirectangular tetrahedron T0, with initial conditions T (0)

0 = 1, T (0)
1 = T (0)

2 = T (0)
3 = T (0)

4 = 0, and also T (1)
3 = T (1)

4 = 0, are:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

T (n)
0 = 4T (n−1)

0 + 2T (n−1)
2

T (n)
1 = 2T (n−1)

0 + 2T (n−1)
1 + 2T (n−1)

2

T (n)
2 = 2T (n−1)

0 + 2T (n−1)
1 + 2T (n−1)

2

T (n)
3 = 2T (n−1)

1 + 2T (n−1)
2 + 6T (n−1)

3 + 4T (n−1)
4

T (n)
4 = 2T (n−1)

1 + 2T (n−1)
3 + 4T (n−1)

4

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
for n ⩾ 1. (1)

Theorem 4. Let T0 be an isosceles trirectangular tetrahedron. Then, T (n)
0 =

2n(1 + 3n)
2

, T (n)
1 = T (n)

2 =
2n(3n

− 1)
2

,

(n)
=

23n+1
+ 2n(1 − 3n+1)

T (n)
=

8n
+ 2n−1(1 − 3n+1)

.
3 3 4 3
6
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f

Fig. 8. 8T-LE partition applied to new subtetrahedron [AEGH] and quasi right-type subtetrahedron [BEGH], and similarity classes.

roof. By induction. As a matter of an example, we will prove the last two formulas, T (n)
3 and T (n)

4 . The formula given
by the theorem is trivially true for n = 0 since T (0)

0 = 1. Let us suppose that the statement is true for n = k − 1, then

T (k−1)
0 =

2k−1(3k−1
+ 1)

2
, T (k−1)

1 = T (k−1)
2 =

2k−1(3k−1
− 1)

2
, T (k−1)

3 =
23k−2

+ 2k−1(1 − 3k)
3

, T (k−1)
4 =

8k−1
+ 2k−2(1 − 3k)

3
.

y Eqs. (1) we have,

T (k)
3 = 2T (k−1)

1 + 2T (k−1)
2 + 6T (k−1)

3 + 4T (k−1)
4 =

4
2k−1(3k−1

− 1)
2

+ 6
23k−2

+ 2k−1(1 − 3k)
3

+ 4
8k−1

+ 2k−2(1 − 3k)
3

=

23k+1
+ 2k(1 − 3k+1)

3

T (k)
4 = 2T (k−1)

1 + 2T (k−1)
3 + 4T (k−1)

4 =

2
2k−1(3k−1

− 1)
2

+ 2
23k−2

+ 2k−1(1 − 3k)
3

+ 4
8k−1

+ 2k−2(1 − 3k)
3

=

8k
+ 2k−1(1 − 3k+1)

3
. □

According to [20], let sn be the number of different tetrahedra similarity classes that have been generated during the
irst n steps by the 8T-LE partition applied to a single tetrahedron.
7
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i

Fig. 9. Study of similarity classes. Subtetrahedra [AEGH] and [BEGH] from the first and second generation are similar.

The sequence {sn}∞n=0, where s0 = 1, is non decreasing. In many cases we get sn < sn+1 for all n, but sometimes there
s an integer n0 > 0 such that

sn = sn+1 ∀n ⩾ n0. (2)

For this case we have, s0 = 1, s1 = 3, s2 = 5 and the whole sequence sn is 1, 3, 5, 5, 5, . . . and n0 = 3.
When the 8T-LE partition is applied to an isosceles trirectangular tetrahedron –which is a nonobtuse tetrahedron–,

there appear two obtuse tetrahedra T1 and T2. However, Fig. 11 shows that each triangulation is less obtuse than the
previous one, and the evolution of the percentage of the volume covered by the by both isosceles right-type tetrahedra,
T3 and T4, are much greater in every step of refinement compared to the other classes of tetrahedra. The total number of
tetrahedra generated at stage 8 is 16, 777, 216.
8
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t

Fig. 10. Genealogy tree of the similarity classes for the isosceles trirectangular tetrahedron.

Fig. 11. Percentage of volume of each similarity class as the number of refinements grows.

The percentage covered by each class of right-type tetrahedra is shown more clearly solving the limit when n tends

o infinity of these expressions, lim
n→∞

T (n)
3

4∑
i=0

T (n)
i

and lim
n→∞

T (n)
4

4∑
i=0

T (n)
i

. For the first one,

lim
n→∞

T (n)
3

T (n)
0 + T (n)

1 + T (n)
2 + T (n)

3 + T (n)
4

=

lim
n→∞

23n+1
+ 2n(1 − 3n+1)

3
2n(1 + 3n)

2
+ 2

2n(3n
− 1)

2
+

23n+1
+ 2n(1 − 3n+1)

3
+

8n
+ 2n−1(1 − 3n+1)

3

= lim
23n+1

+ 2n(1 − 3n+1)
=

2
.

n→∞ 23n3 3
9
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Fig. 12. An example of a triangulation of an hexahedron.

Evaluating the limit for the second expression,

lim
n→∞

T (n)
4

T (n)
0 + T (n)

1 + T (n)
2 + T (n)

3 + T (n)
4

=

lim
n→∞

8n
+ 2n−1(1 − 3n+1)

3
2n(1 + 3n)

2
+ 2

2n(3n
− 1)

2
+

23n+1
+ 2n(1 − 3n+1)

3
+

8n
+ 2n−1(1 − 3n+1)

3

= lim
n→∞

8n
+ 2n−1(1 − 3n+1)

23n3
=

1
3
.

According to the results of those limits, the percentage of volume covered by the T3 isosceles right-type will be 66.6%,
and for the other isosceles right-type tetrahedron T4, will be 33.3%.

.2. Scalene trirectangular tetrahedron

It should be noted that when a hexahedral mesh is converted in a tetrahedral mesh, many trirectangular tetrahedra
ppear. Fig. 12 shows an example of a triangulation of a hexahedron into five and six tetrahedra respectively, in which a
calene trirectangular tetrahedron is involved.
In this case, a ̸= b ̸= c . For this purpose we focus on a general tetrahedron shown in Fig. 13(a) with vertices

= (0, 0, 0), A = (a, 0, 0), B = (0, b, 0) and C = (0, 0, c) with b > c > a and a > 0. This tetrahedron is type 1.
Fig. 13 shows that four subtetrahedra are similar to the original one. The remaining four subtetrahedra generated are all

f them different. There are two different quasi right-type subtetrahedra, T1 and T3, and two different new subtetrahedra,
2 and T4. Subtetrahedra T1 and T3 are classified type 3 by the 8T-LE partition, and T2 and T4 subtetrahedra are classified
ype 1 by the same partition. All these subtetrahedra have the vertices locally labeled with numbers from 1 to 4. For
he quasi right-type subtetrahedra (T1 and T3), the two second longest-edges are on a scalene triangular face, where the
maller one is a hypotenuse of the other face sharing it. Below we will study each one of these tetrahedra.

.2.1. Subtetrahedron T1
Fig. 14 shows the different classes of tetrahedra generated when the 8T-LE partition is applied to a subtetrahedron T1.
There are two scalene right-type subsubtetrahedra Tr1 and two scalene right-type subsubtetrahedra Tr2 . According

o [4], the 8T-LE partition applied to each subsubtetrahedron Tr1 generates 4 Tr1 , 2 Tr2 and 2 Tr3 , and for the second
calene right-type subsubtetrahedron, the classes generated are 4 T , 2 T and 2 T . Finally, for the T scalene right-type
r2 r1 r3 r3

10
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Fig. 13. Division of a general scalene tetrahedron by the 8T-LE partition.

Fig. 14. 8T-LE partition applied to subtetrahedron T1 and similarity classes.
11
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Fig. 15. Study of subsubtetrahedra T2 , T3 and T4 .

ubsubtetrahedron –which will appear later–, there are 4 Tr3 , 2 Tr1 and 2 Tr2 . In the right top corner of the figure, it
s shown that only one subsubtetrahedron is similar to subtetrahedron T1. So the next step is to study if for the three
emaining subsubtetrahedra called as T2, T3 and T4 belong to those classes, shown in Fig. 13.

Fig. 15 illustrates that by means of two different π clockwise rotations around axes r ≡ (a/4, b/4, c/4) + t(0, 0, c/4)
nd s ≡ (a/4, b/4, c/4) + λ(a/4, 0, 0), respectively applied to subsubtetrahedra T2 and T4, and to subsubtetrahedron T3,
hose subtetrahedra T2, T3 and T4 from the first generation and depicted in Fig. 13, and the respective subsubtetrahedra
from the second generation, belong to the same similarity classes.

3.2.2. Subtetrahedron T2
Wewill use Fig. 16. The top right corner of the figure shows that two subsubtetrahedra are similar to subtetrahedron T2,

wo subsubtetrahedra are similar to the original T0, another two are scalene right-type subsubtetrahedra Tr2 , and finally,
wo subsubtetrahedra are class T3.

It is clear that the subsubtetrahedron with vertices A4, B4, C4 and D4 is similar to the subtetrahedron T3 from
the first generation sketched in Fig. 13. Moreover, subsubtetrahedron with vertices A1, B1, C1 and D1, is similar to
ubsubtetrahedron with vertices A4, B4, C4 and D4, and hence, it is similar to first subtetrahedron T3. To prove this
imilarity, we use two π rotations around axis s and axis r , respectively, counterclockwise and clockwise, see Fig. 16.

.2.3. Subtetrahedron T3
Fig. 17 shows the different classes of similarity generated when the 8T-LE partition is applied to this tetrahedron. There

s only one descendant similar to subtetrahedron T3, located in the right top corner of the previous figure, and two scalene
ight-type subsubtetrahedra, Tr1 and Tr3 , respectively, which have already been studied.

For the remaining subsubtetrahedra T1, T2 and T4, the procedure is exactly the same as for the subtetrahedron T1. In
ig. 18, and according to the axes s -counterclockwise- and r -clockwise-, it is proved that the subsubtetrahedra T1, T2

and T4 from the second generation, belong to the same class that the respective T1, T2 and T4, from the first generation,
drawn in Fig. 13.

3.2.4. Subtetrahedron T4
Fig. 19 shows the different classes of similarity generated. The top right corner shows that two subsubtetrahedra

are similar to subtetrahedron T4, two subsubtetrahedra are similar to the original T0 and other two subsubtetrahedra
are scalene right-type subsubtetrahedra, Tr3 . Through a π clockwise rotation around axis r applied to one of the
subsubtetrahedra generated with vertices A3, B3, C3 and D3, this tetrahedron is similar to the other subsubtetrahedron
with vertices A2, B2, C2 and D2. In addition, both subsubtetrahedra are also similar to subtetrahedron T1 from the first
eneration depicted in Fig. 13.
To clarify the results obtained, the next genealogy tree is used in order to show the number of classes of similarity

enerated when the 8T-LE partition is applied to the scalene trirectangular tetrahedron, see Fig. 20. Each class of similarity
12
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Fig. 16. 8T-LE partition applied to subtetrahedron T2 and study of classes of similarity.

Fig. 17. 8T-LE partition applied to subtetrahedron T3 and similarity classes.
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h

i

Fig. 18. Study of subsubtetrahedra T1 , T2 and T4 .

Fig. 19. 8T-LE partition applied to subtetrahedron T4 and study of classes of similarity.

as been described by color and name. The number of different classes of similarity is 8 and the total amount of tetrahedra

n the last refinement step is 88.
Let us denote by T (n)

i the number of tetrahedra of class Ti, with r1 ≡ 5, r2 ≡ 6 and r3 ≡ 7, after n iterative applications

of the 8T-LE partition to an initial scalene trirectangular tetrahedron T . The recurrence relations associated to the 8T-LE
0

14



M.A. Padrón and Á. Plaza Journal of Computational and Applied Mathematics 409 (2022) 114150
Fig. 20. Genealogy tree of the different classes of similarity for the scalene trirectangular tetrahedron.

partition of an initial scalene trirectangular tetrahedron T0, with initial conditions T (0)
0 = 1, T (0)

1 = T (0)
2 = T (0)

3 = T (0)
4 =

T (0)
r1 = T (0)

r2 = T (0)
r3 = 0, and also T (1)

r1 = T (1)
r2 = T (1)

r3 = 0, are:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T (n)
0 = 4T (n−1)

0 + 2T (n−1)
2 + 2T (n−1)

4

T (n)
1 = T (n−1)

0 + T (n−1)
1 + T (n−1)

3 + 2T (n−1)
4

T (n)
2 = T (n−1)

0 + T (n−1)
1 + 2T (n−1)

2 + T (n−1)
3

T (n)
3 = T (n−1)

0 + T (n−1)
1 + 2T (n−1)

2 + T (n−1)
3

T (n)
4 = T (n−1)

0 + T (n−1)
1 + T (n−1)

3 + 2T (n−1)
4

T (n)
r1 = 2T (n−1)

1 + 2T (n−1)
3 + 4T (n−1)

r1 + 2T (n−1)
r2 + 2T (n−1)

r3

T (n)
r2 = 2T (n−1)

1 + 2T (n−1)
2 + 2T (n−1)

r1 + 4T (n−1)
r2 + 2T (n−1)

r3
(n) (n−1) (n−1) (n−1) (n−1) (n−1)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

for n ⩾ 1. (3)
Tr3 = 2T3 + 2T4 + 2Tr1 + 2Tr2 + 4Tr3
15
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T
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Fig. 21. Percentage of volume of each similarity class as the number of refinements grows.

heorem 5. Let T0 be a scalene trirectangular tetrahedron. Then, T (n)
0 =

2n(1 + 3n)
2

, T (n)
1 = T (n)

2 = T (n)
3 = T (n)

4 =

2n(3n
− 1)

4
, T (n)

r1 = T (n)
r2 = T (n)

r3 =
2n−1(1 + 22n+1

− 3n+1)
3

.

Proof. By induction in a similar way as in Theorem 4. □

For this example we have, s0 = 1, s1 = 5, s2 = 8 and the whole sequence sn is 1, 5, 8, 8, 8, . . . and n0 = 5.
According to Fig. 21, it is clear that asymptotically the scalene right-type tetrahedra will cover the entire volume. Each

scalene right-type tetrahedron will cover 33.3%, since the lim
n→∞

T (n)
5

7∑
i=0

T (n)
i

=
1
3
. We get the same result for the scalene

ight-type tetrahedra T6 and T7, and to prove one of them we just need to solve the limit.

lim
n→∞

T (n)
5

T (n)
0 + T (n)

1 + T (n)
2 + T (n)

3 + T (n)
4 + T (n)

5 + T (n)
6 + T (n)

7

=

lim
n→∞

2n−1(1 + 22n+1
− 3n+1)

3
2n(1 + 3n)

2
+ 4

2n(3n
− 1)

4
+ 3

2n−1(1 + 22n+1
− 3n+1)

3

=

lim
n→∞

1 + 22n+1
− 3n+1

3(1 + 3n) + 6(3n − 1) + 3(1 + 22n+1 − 3n+1)
=

lim
n→∞

(
1

22n+13
+

22n+1

22n+13
−

3n

22n+1

)
= 0 +

1
3

− 0 =
1
3
.

. Conclusions

We have studied the number of dissimilar classes generated when the 8T-LE partition is applied to a trirectangular
etrahedron.

1. The number of similarity classes generated by the 8T-LE partition when it is recurrently applied to a trirectangular
tetrahedron are respectively, 4, 5 and 8, depending on if the tetrahedron is regular, isosceles or scalene. Therefore,
in any case a finite number of similarity classes is obtained, so non-degeneracy and the stability of the triangulation
follow straightforwardly.
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W
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R

2. The number of similarity classes is directly related to the total computational cost, because many data can be
computed and stored only once per element of a given similarity class. Hence, from a computational point of view,
the number of similarity classes should be as small as possible.

3. When the number of refinement grows, most of the tetrahedra generated are of the right-type. For the isosceles

trirectangular tetrahedron, the two different isosceles right-type tetrahedra cover respectively
2
3
and

1
3
of the whole

volume. While for the scalene trirectangular tetrahedron the three different scalene right-type tetrahedra cover each

one
1
3

of the volume.

4. Note that since the right-type tetrahedra are nonobtuse, the quality of the generated meshes improves at each step
of refinement.

CRediT authorship contribution statement

Miguel A. Padrón: Conceptualization, Methodology, Investigation, Visualization, Writing – original draft, Validation,
Supervision, Writing – review & editing. Ángel Plaza: Conceptualization, Methodology, Investigation, Visualization,

riting – original draft, Validation, Supervision, Writing – review and editing.

cknowledgment

The authors were supported by the Project Puente Cabildo 2018-01 by the Cabildo de Las Palmas de Gran Canaria.

eferences

[1] M.C. Rivara, Algorithms for refining triangular grids suitable for adaptive and multigrid techniques, Internat. J. Numer. Methods Engrg. 20 (4)
(1984) 745–756, http://dx.doi.org/10.1002/nme.1620200412.

[2] A. Plaza, J.P. Suárez, M.A. Padrón, S. Falcón, D. Amieiro, Mesh quality improvement and other properties in the four-triangles longest-edge
partition, Comput. Aid. Geom. Desig. 21 (2004) 253–369, http://dx.doi.org/10.1016/j.cagd.2004.01.001.

[3] J.A.D. Loera, J. Rambau, F. Santos, Triangulations: Structures for algorithms and applications, in: Algorihtms and Computation in Mathematics,
Vol. 25, Springer-Verlag Heidelberg, New York, 2010, http://dx.doi.org/10.1007/978-3-642-12971-1.

[4] A. Plaza, M.A. Padrón, J.P. Suárez, S. Falcón, The 8-tetrahedra longest-edge partition of right-type tetrahedra, Finit. Elem. Anal. Desig. 41 (3)
(2004) 253–265, http://dx.doi.org/10.1016/j.finel.2004.04.005.

[5] M.A. Padrón, A. Plaza, The 8T-LE partition applied to the obtuse triangulations of the 3D-cube, Math. Comput. Simul. 176 (1) (2020) 254–265,
http://dx.doi.org/10.1016/j.matcom.2020.01.011.

[6] J. Brandts, A. Cihangir, Enumeration and investigation of acute 0/1-simplices modulo the action of the hyperoctahedral group, Special Matrices
5 (1) (2017) 158–201, http://dx.doi.org/10.1515/spma-2017-0014.

[7] G. Albertelli, R.A. Crawfis, Efficient subdivision of finite element datasets into consistent tetrahedra, in: Proceedings Visualization 97, IEEE
Computer Society Technical Committee on Computer Graphics, in Cooperation with ACM SIGGRAPH, Phoenix, AZ, United States, 1997, pp.
213–219.

[8] R. Schneiders, Octree-based hexahedral mesh generation, Int. J. Comput. Geom. Appl. 10 (4) (2000) 383–398, http://dx.doi.org/10.1142/
S021819590000022X.

[9] S. Korotov, M. Křížek, Local nonobtuse tetrahedral refinements around an edge, Appl. Math. Comput. 219 (13) (2013) 7236–7240, http:
//dx.doi.org/10.1016/j.amc.2011.03.143.

[10] T. Todorov, The optimal refinement strategy for 3-D simplicial meshes, Comput. Math. Appl. 66 (2013) 1272–1283, http://dx.doi.org/10.1016/j.
camwa.2013.07.026.

[11] M. Kříšek, Superconvergence phenomena on three-dimensional elasticity, Int. J. Numer. Anal. Model. 2 (1) (2005) 43–56.
[12] J. Brandts, S. Korotov, M. Křížek, J. Šolc, On nonobtuse simplicial partitions, SIAM Rev. 51 (2) (2009) 317–335, http://dx.doi.org/10.1137/

060669073.
[13] A. Plaza, The eight-tetrahedra longest-edge partition and kuhn triangulations, Comput. Math. Appl. 54 (2007) 427–433, http://dx.doi.org/10.

1016/j.camwa.2007.01.023.
[14] A. Plaza, G.F. Carey, Refinement of simplicial grids based on the skeleton, Appl. Numer. Math. 32 (2) (2000) 195–218, http://dx.doi.org/10.1016/

S0168-9274(99)00022-7.
[15] M.A. Padrón, J.P. Suárez, A. Plaza, A comparative study between some bisection based partitions in 3D, Appl. Numer. Math. 55 (4) (2005)

357–367, http://dx.doi.org/10.1016/j.apnum.2005.04.035.
[16] A. Plaza, M.A. Padrón, J.P. Suárez, Non-degeneracy study of the 8-tetrahedra longest-edge partition, Appl. Numer. Math. 55 (4) (2005) 458–472,

http://dx.doi.org/10.1016/j.apnum.2004.12.003.
[17] A. Plaza, M.C. Rivara, Average adjacencies for tetrahedral skeleton-regular partitions, J. Comput. Appl. Math. 177 (1) (2005) 141–158,

http://dx.doi.org/10.1016/j.cam.2004.09.013.
[18] D.M.Y. Sommerville, Space-filling tetrahedra in euclidean space, Proc. Edinb. Math. Soc. 41 (1923) 49–57, http://dx.doi.org/10.1017/

S001309150007783X.
[19] M. Senechal, Which tetrahedra fill space? Math. Mag. 54 (5) (1981) 227–243, http://dx.doi.org/10.2307/2689983.
[20] A. Hannukainen, S. Korotov, M. Křížek, On numerical regularity of the face-to-face longest-edge bisection algorithm for tetrahedral partitions,

Sci. Comput. Progr. 90 (2014) 34–41, http://dx.doi.org/10.1016/j.scico.2013.05.002.
17

http://dx.doi.org/10.1002/nme.1620200412
http://dx.doi.org/10.1016/j.cagd.2004.01.001
http://dx.doi.org/10.1007/978-3-642-12971-1
http://dx.doi.org/10.1016/j.finel.2004.04.005
http://dx.doi.org/10.1016/j.matcom.2020.01.011
http://dx.doi.org/10.1515/spma-2017-0014
http://refhub.elsevier.com/S0377-0427(22)00039-5/sb7
http://refhub.elsevier.com/S0377-0427(22)00039-5/sb7
http://refhub.elsevier.com/S0377-0427(22)00039-5/sb7
http://refhub.elsevier.com/S0377-0427(22)00039-5/sb7
http://refhub.elsevier.com/S0377-0427(22)00039-5/sb7
http://dx.doi.org/10.1142/S021819590000022X
http://dx.doi.org/10.1142/S021819590000022X
http://dx.doi.org/10.1142/S021819590000022X
http://dx.doi.org/10.1016/j.amc.2011.03.143
http://dx.doi.org/10.1016/j.amc.2011.03.143
http://dx.doi.org/10.1016/j.amc.2011.03.143
http://dx.doi.org/10.1016/j.camwa.2013.07.026
http://dx.doi.org/10.1016/j.camwa.2013.07.026
http://dx.doi.org/10.1016/j.camwa.2013.07.026
http://refhub.elsevier.com/S0377-0427(22)00039-5/sb11
http://dx.doi.org/10.1137/060669073
http://dx.doi.org/10.1137/060669073
http://dx.doi.org/10.1137/060669073
http://dx.doi.org/10.1016/j.camwa.2007.01.023
http://dx.doi.org/10.1016/j.camwa.2007.01.023
http://dx.doi.org/10.1016/j.camwa.2007.01.023
http://dx.doi.org/10.1016/S0168-9274(99)00022-7
http://dx.doi.org/10.1016/S0168-9274(99)00022-7
http://dx.doi.org/10.1016/S0168-9274(99)00022-7
http://dx.doi.org/10.1016/j.apnum.2005.04.035
http://dx.doi.org/10.1016/j.apnum.2004.12.003
http://dx.doi.org/10.1016/j.cam.2004.09.013
http://dx.doi.org/10.1017/S001309150007783X
http://dx.doi.org/10.1017/S001309150007783X
http://dx.doi.org/10.1017/S001309150007783X
http://dx.doi.org/10.2307/2689983
http://dx.doi.org/10.1016/j.scico.2013.05.002

	Similarity classes generated by the 8T-LE partition applied to trirectangular tetrahedra
	Introduction
	Basic definitions and preliminaries
	The 8T-LE partition applied to trirectangular tetrahedra
	Isosceles trirectangular tetrahedron
	Scalene trirectangular tetrahedron
	Subtetrahedron T1
	Subtetrahedron T2
	Subtetrahedron T3
	Subtetrahedron T4


	Conclusions
	CRediT authorship contribution statement
	Acknowledgment
	References


